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We present an experimental and theoretical investigation of a variant of electroconvection using an
unusual nematic liquid crystal in an isotropic configuration~homeotropic alignment!. The
significance of the system is a direct transition to the convecting state due to the negative
conductivity anisotropy and positive dielectric anisotropy. We observe at onset rolls or squares
depending on the frequency and amplitude of the applied ac voltage with a strong signature of the
zigzag instability. Good agreement with calculations based on the underlying hydrodynamic theory
is found. We also construct an extended Swift–Hohenberg model which allows us to capture
complex patterns like squares with a quasiperiodic modulation. ©2004 American Institute of
Physics. @DOI: 10.1063/1.1774412#

Nonequilibrium transitions in spatially extended con-
tinuum systems lead to a wide variety of fascinating pat-
terns. The basic elements are stripes„or rolls …, squares,
and „under some restrictions… hexagons, which are the
only simple periodic patterns that appear directly via a
supercritical bifurcation in isotropic quasi-two-
dimensional systems.1 In rare cases there is a direct„su-
percritical … transition to a disordered stateandÕor to
spatial-temporal chaos. Here we study electroconvection
„EC… in an unusual nematic liquid crystal with strongly
positive dielectric anisotropy and negative anisotropy of
the conductivity. This unusual combination of the mate-
rial parameters leads in the isotropic configuration „ho-
meotropic alignment… to a direct transition into rolls
andÕor squares which in most cases show a characteristic
disorder and are well described by the theory. We per-
form a linear and nonlinear analysis of the full nemato-
hydrodynamic equations and carry out simulations of a
suitably constructed Swift–Hohenberg model. We obtain,
in agreement with the experiments modulated rolls and
squares at threshold. The type of modulation is of disor-
dered zigzag in the roll regime and undulated for the
squares. The square undulations are initially irregular
and after a long time they become almost periodic. For
some class of parameters and initial conditions in simu-
lations the undulations become completely regular and
the structure locks into a static, spatially quasiperiodic
attractor. To our knowledge a direct transition to a qua-
siperiodic pattern with square symmetry has never been
discussed.

I. INTRODUCTION

Nematic liquid crystals, the simplest type of intrinsically
anisotropic fluids, continue to provide model systems for a

wide variety of interesting nonlinear dynamical phenomena
like optical instabilities,2 flow-induced nonlinear waves,3

critical properties of nonequilibrium transitions,4 and in par-
ticular electrically or thermally driven convection
instabilities.5 Whereas convection in nematics has so far con-
tributed substantially to our general understanding of aniso-
tropic pattern-forming systems we present here in particular
a direct transition toisotropic convectionwhich opens up
scenarios unaccessible in simple fluids.

In nematics the mean orientation of the rodlike mol-
ecules is described by the directorn̂. The uniaxial anisotropy
is reflected in the material parameters such as the electric
conductivity tensors i j 5s'd i j 1saninj wheresa5s i2s'

~and analogously the dielectric permittivitye i j ). Here s i ,
s' are the conductivities parallel and perpendicular ton̂,
respectively.6 Electroconvection~EC! is driven in a nematic
layer by an ac voltage~effective amplitudeU, frequencyv
52p f ! applied between two bounding plates. Commonly
the planar configuration is considered, where the uniaxial
anisotropy is externally expressed by anchoring the director
along an axis parallel to the plates. Typically one chooses
materials like 4-methoxybenzylidene-48-n-butyl-aniline
~MBBA !7 with negative dielectric anisotropy (ea5e i2e'

,0) and positive conductivity anisotropy (sa.0) where
one obtains a satisfactory overall theoretical description.8,9 In
this paper we focus on EC in ahomeotropicallyaligned~no
external anisotropy is imposed! nematic with the unusual
combination ofsa,0 andea.0. Whereas the possibility of
a direct transition to EC in this case has been anticipated in
the early literature,6 the experimental study has started only
recently.10 Depending onv one finds transitions to rolls or
squares at onset with random global orientation. The patterns
exhibit spatial modulations with a slow dynamics~see Figs.
1–4, to be discussed below!.

The quantitative analysis of our experimental results is
first based on the standard nematohydrodynamic equations
~NHDE!. In this framework even the linear stability analysisa!Electronic mail: werner.pesch@uni-bayreuth.de
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of the uniform homeotropic ground state requires already, if
done rigorously, extensive numerics, not to mention the
much more difficult nonlinear regime. A much better insight
into pattern formation near threshold is provided by univer-
sal amplitude and order parameter equations, whose form is
governed by the symmetries of the problem, while largely
independent of physical details.11,12The underlying concepts
have been mainly developed and tested in Rayleigh–Be´nard
convection~RBC! driven by a temperature gradient in a hori-
zontal layer of a simple fluid.1,11,13The competition between
the prevailing stripes~rolls! and hexagons near threshold is
well understood after the pioneering work of Busse in
RBC.14 Although squares are observed in quite diverse
systems15 studies of their nonlinear aspects are scarce.19 To
assess the complex patterns found in our experiments we
have constructed on the basis of the NHDE results suitably
chosen amplitude equations and their isotropic generalization
~Swift–Hohenberg model!, which describe the experiments
near threshold very well.

The paper includes a brief review on general concepts
and of results presented elsewhere.10,20 It is organized as fol-
lows: In Sec. II we describe the experimental background of
our system and present the typical patterns. Section III is
devoted to the onset of convection. A discussion of the main
ingredients of the destabilization mechanism of the homeo-

tropic ground state is included. The comparison between the
rigorous linear stability analysis and the experiments allows
us to extract some unknown material parameters of our nem-
atic. In Sec. IV the stability of patterns in the nonlinear re-
gime is discussed. This leads naturally to the construction of
the appropriate Swift–Hohenberg equations~SHE!. Section
V deals with a discussion of results from numerical simula-
tions of the SHE. The paper ends with some conclusions and
general remarks in Sec. VI.

II. EXPERIMENT

The material used in the experiments was
p-~nitrobenzyloxy!biphenyl,21 which shows a nematic phase
in the temperature range fromT5110 to 94 °C, where a
transition to a smectic phase takes place.22 Presumably the
critical fluctuations associated with the continuous transition
from the smectic C (Sc) to the nematic phase are responsible
for the negative conductivity anisotropysa,0 in the whole
nematic range. Some material parameters such as the dielec-
tric susceptibilities (e i and e'), the conductivities (s i and
s') and one of the elastic constantsK11 have been measured
as a function of temperature.

FIG. 1. Snapshots of ZZ roll patterns in experiment~a! («50.038,
v/vexp* 50.18) and in simulation~b! of the SH-equation («50.006,
v/v theo* 50.16).

FIG. 2. Snapshots of rolls1squares in experiment~a! («50.08, v/vexp*
50.65) and in simulation~b! of the SH-equation («50.01, v/v theo*
50.74).

794 Chaos, Vol. 14, No. 3, 2004 Buka et al.

Downloaded 22 Sep 2004 to 128.197.60.149. Redistribution subject to AIP license or copyright, see http://chaos.aip.org/chaos/copyright.jsp



EC measurements have been carried out in the nematic
range at 96 °C. The temperature was controlled in an Instec
hotstage with an accuracy of 0.05 °C. Cells with homeotro-
pic alignment have been prepared with the nematic layer of
thicknessd51161 mm sandwiched between SnO2 coated
float glass plates~in thexy plane! used as electrodes to apply
the electric voltage across the sample~in the z direction!.
The patterns have been observed in a polarizing microscope
and recorded by a charge-coupled device~CCD! camera con-
nected to a frame grabber card. Images have been digitized
with a spatial resolution of 5123512 pixels and 256 gray-
scales.

For thehomeotropic alignment, where the director is an-
chored perpendicular to the bounding electrodes~i.e., paral-
lel to the applied voltage!, EC sets in directly from the un-
distorted state via a supercritical bifurcation in the whole
conductive range up to its upper limit at the cutoff frequency
vcut. We foundvcuttq50.7 with the charge relaxation time
tq5e' /s' . Note that, in the standard materials (ea,0,sa

.0) a homogeneous director distortion~a Freedericks tran-
sition! precedes the transition to EHC which changes the
situation completely23 ~see also Ref. 10 and further refer-
ences therein!.

For low frequencies we observe at threshold a pattern of
rolls ~stripes! broken up into different domains@see Fig.

1~a!#. In most cases the roll orientation changes abruptly at
the domain walls, which is typical for the zigzag~ZZ! insta-
bility driven by pure transverse modulations of rolls. The
in-plane director~projection of the director onto thexy
plane! is found experimentally to be perpendicular to the
~local! roll direction. The difference in brightness and con-
trast in the different domains of Fig. 1~a! is of purely optical
origin depending on the local angle between the director and
the polarizer. Although the ZZ instability is characteristic for
isotropic systems this type of structure can rarely be ob-
served in other systems under quasistationary conditions~see
the discussion below!. There is persistent slow dynamics.

Occasionally rolls at different angles form overlap re-
gions of rectangularlike patterns. Their area grows at the
expense of the uniform stripe patches with increasing fre-
quency. In an intermediate frequency range extended patches
of rolls and squares (R1S, a mixture of the two patterns!
appear@see Fig. 2~a!# and above a critical frequencyvexp*
with vexp* tq50.56 all stripe regions have disappeared. The
resulting square patterns retain near threshold some features
of the ZZ character of the stripes, i.e., the lines making up
the squares are undulated. We call this structuresoft square
pattern. In Fig. 3~a! we show a typical example at an early
stage of the experiment where in addition to the ZZ modu-
lation one has defect lines. It needs a relaxation timet r ,

FIG. 3. Snapshots of soft squares slightly abovev* in experiment~a! («
50.038, v/vexp* 51.16) and in simulations~b! of the SH-equation («
50.022,v/v theo* 51.07).

FIG. 4. Snapshots of ‘‘soft’’ square patterns with same parameter as in Fig.
3, but at a later stage.

795Chaos, Vol. 14, No. 3, 2004 Homeotropic electroconvection

Downloaded 22 Sep 2004 to 128.197.60.149. Redistribution subject to AIP license or copyright, see http://chaos.aip.org/chaos/copyright.jsp



which is typically about a quarter of an hour, to reach the
steady state with nearly defect free regions and extremely
slow dynamics, see Fig. 4~a!. t r is of the order 104td . Since
the director relaxation timetd

6,8 sets the scale for the local
dynamics,t r corresponds to the diffusion time over a hori-
zontal distance of 100 coherence lenghts, which corresponds
to roughly 100 rolls. Note thattd is comparable to the char-
acteristic Ginzburg–Landau timet0 introduced in Sec. IV
below.

Penetrating into the nonlinear regime~increasing the
voltage further above threshold! we observe at low frequen-
cies in the ZZ regime a persistent decrease of the size of the
patches with uniform roll orientation and acceleration of the
dynamics. Thus the patterns look eventually spatiotempo-
rally chaotic, but without the point defects typical for aniso-
tropic convection. At high frequencies~abovevexp* already at
rather smalle!, on the other hand, the soft square patterns
first undergo a transition ending in crystal-like, rigid, almost
perfect, quadratic, or slightly rhombic lattices with sharp
boundaries between differently oriented domains~see Fig.
5!. We call themhard squarepatterns. Hard-square domains
coarsen with time and do not qualitatively change with the
voltage up to a critical value where they undergo a discon-
tinuous transition to spatio-temporal chaos. The hard-square
patterns occur also belowvexp* ~at larger«! down to vtq

50.34 where their transition line merges with the onset of
spatio-temporal chaos.

III. THRESHOLD BEHAVIOR

First we discuss the qualitative features of the basic
~Carr–Helfrich! destabilization mechanism operative in our
material on the basis of the NHDE, which consist of the
generalized incompressible Navier–Stokes equation, the rate
equation for the director fieldn̂ ~‘‘torque balance’’! and the
quasistatic Maxwell equations, i.e., the Poisson and charge
conservation equations6

¹~e"E!5rel , ¹~s"E!52] trel , ~1!

with the electric fieldE and the electric charge densityrel .
Consider a ~small! director fluctuation dn5(nx ,0,1

2nx
2/2) where the planar perturbation about the homeotropic

ground staten05 ẑ is given asnx52nx0 cos(qx)cos(pz/d),
see Fig. 6. Note that the assumption of spatial variations only
in the x-, z-plane is not a restriction in our isotropic system.
The director distortion modifies the permittivity and conduc-

tivity tensors and leads in the presence of the applied electric
field E05E0ẑcos(vt), with E05A2(U/d), via Eq. ~1! to
space charges~‘‘charge focusing mechanism’’! and thus to a
deformation ofE0 in the form dE52¹f with the electric
potential f. After elimination of f one obtains for the in-
phase component of the charge density@the component
;sin(vt) is not needed below#

rel~x,z,t !5Q~q8,v8!qnx0 sin~qx!

3cos~pz/d!cos~vt !e'E0 , ~2!

where

Q~q8,v8!52~sa82ea8!
s~q8!~11q82!

s~q8!21v82e~q8!2 , ~3!

e~q8!511ea81q82, s~q8!511sa81q82, ~4!

with the dimensionless quantitiesq85qd/p, v85vtq , sa8
5sa /s' , ea85ea /e' . For our material the Helfrich param-
etersa82ea8 is negative, i.e.,Q.0. The space charge density
rel ~2! is indicated in Fig. 6. The resulting flow fieldv
5(vx ,0,vz) generated in the Navier–Stokes equations by the
Coulomb force 1/2relE0 ~the factor 1/2 arises from the time
average denoted by the overbar! is also illustrated in Fig. 6.
Note thatv andn̂ are here constant in time in contrast to the
time periodic fieldsf andrel . The velocity fieldv then acts
back on the director via the viscous torquesGy5G21G3

where G252a2]zvx , G352a3]xvz;a3q82(d/p)vx ~the
last estimate makes use of the incompressibility condition
¹•v50). The quantitiesa2 , a3 are Leslie viscosity
coefficients.6 The coefficienta2 is always negative, the sign
of a3 depends on the material. In our casea3.0. The torque
contributionsG2 andG3 along a vertical cut through the roll
center (x50 in Fig. 6! are shown in Fig. 7 for our case with
a rather largeua2u and a comparatively large value of
a3 /ua2u50.15. Both torques are symmetric inz, which is
consistent with the velocity field shown in Fig. 6.G2 has
extrema of opposite sign at the midplane (z50) and at the
boundaries (z56d/2) of the convection cell.G3 has its
maximum atz50, but is zero atz56d/2. The torquesG2 ,
G3 , which act in the same direction in most of thez-region,
provide the positive feedback on the initial director distortion

FIG. 5. Snapshot of hard squares atvtq50.53 and«50.81. FIG. 6. Sketch of a convection roll for homeotropic alignment in the
x,z-plane (l52p/q): velocity field ~short dashed!, and director fieldn
5(nx,0,nz) for experimental material parameters. Also indicated is the space
charge distribution at a time where the electric field points upward~other-
wise the signs are exchanged!.
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dn necessary for the destabilization of the homeotropic di-
rector orientationn0 . Counteracting stabilizing mechanisms
are provided by the dielectric torque (ea.0) and the viscous
damping of the flow. Thus there is a threshold voltage
U0(q,v) ~‘‘neutral curve’’! above which patterns appear.
Minimizing U0(q,v) with respect toq gives the critical
voltageUc(v) and the critical wavenumberqc(v).

In Figs. 8~a! and 8~b! the experimental results for the
threshold voltageUc and the critical wave-numberqc are
shown as functions ofvtq . The wavelengthlc52p/qc is of
the order of the cell thicknessd as is the case in planar
convection with conventional materials for frequences in the
conductive range.

We note that in the usual nematics withsa82ea8.0 the
sign of the space charge in Fig. 6, and thus the flow direc-
tion, would be reversed. Consequently the hydrodynamic
torque Gy would have to be reverted as well in order to
reinforce the initial director fluctuation and to enable a direct
transition to EC. SinceG2.0 is stabilizing in this case we
would need a sufficiently strong negativeG3 . This requires
a3,0 andq82;ua2 /a3u@1. It turns out thatea has to be
near zero to enable the instability and that the threshold is
rather large~see Refs. 24 and 8!. Therefore the experimental
situation for such materials is difficult.

In order to proceed to a quantitative description a linear
stability analysis of the homeotropic ground state with the
use of the full NHDE is needed. The resulting eigenvalue
problem diagonalizes in Fourier space with respect to the
horizontal coordinatesx5(x,y) leading to modal solutions
V(x,z,t)5eiq"xV̄(q,z,t)el(q)t. Here,V̄(q,z,t) is periodic in
time t with period 2p/v. The symbolic vectorV5(f,n,v)
represents the field variables~electric potential, director, ve-
locity!. V̄(q,z,t) is expanded with respect to the coordinatez
into a complete set of functions that satisfy the correct rigid
boundary conditionsn̂5 ẑ, v50, f50 at the confining
plates of the cell~Galerkin method!. The periodic time de-

pendence is captured by a Fourier expansion in time. Thus,
the stability analysis amounts to a linear algebraic eigenvalue
problem for the vector made up of the expansion coeffi-
cients. Consequently one obtains for fixedq a discrete set of
eigenvaluesl i(q,U) and eigenvectorsV i(q,z,t) with the
l i ,i 51,2¯ ordered according to decreasing real parts. The
growth rate Re(l1(q,U)) crosses zero atU5U0(q,v) (q
5uqu). In our case the bifurcation is stationary, i.e.,
Im@l1(qc ,Uc)#50.

As already mentioned some of the material parameters
needed in the calculations are available from measurements:
e'57.5e0 , ea53.9e0 , sa /s'520.65, and K1159.5
310212N.10 The remaining ones were chosen in order to get
a good fit for Uc(v) and qc(v), which led to K33/K11

52.5 for the ratio between thebendand splay elastic con-
stants, and to a1 /ua2u53.5, a3 /ua2u50.15, h1 /ua2u
51.06, andh2 /ua2u50.21 for the viscosity constants. Here
the effective shear viscositiesh15(2a21a41a5)/2 and
h25(a31a41a6)/2 have been introduced. The positive
and comparatively large values ofa1 and a3 might appear
surprising to specialists. However, they were necessary to
obtain the correct low-frequency threshold and the strong

FIG. 7. Torque contributionsG2 andG3 on a vertical cut through the center
of a convection rollx50 in Fig. 6

FIG. 8. Comparison between experimental~solid squares! and theoretical
threshold voltage~a! and the corresponding critical wave number~b! vs
dimensionless frequency. Solid line: rigorous Galerkin expansion; dot-
dashed: two-mode formula@cf. Eq. ~5!#, dashed: one-mode formula
@M (q8)[0 in Eq. ~5!#.
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increase ofqc versusv ~in comparison to the conventional
sa.0 case!. Also, as noted theoretically,25 as well as experi-
mentally using the material 4-n-octyl-48-cyanobiphenyl
~8CB!,26 and also in recent molecular dynamics
simulations,27 a1 anda3 are expected to become positive as
in our case and in fact even to diverge near a second-order
phase transition to a smectic phase.

In assessing the parameters we were guided by an ana-
lytic approximation for the neutral curveU0(q) @with the
minimum Uc5U0(qc)] obtained from a Galerkin expansion
with one z mode for V ~e.g., nx;sin(pz/d) and one time-
Fourier mode. This leads to

U0
25

K33p
2

e0e'

q82

S1
, ~5!

S15
1

11k1q82 F I hQ~q8!
a22a3q82

hh~q8!
2ea

eff~q8!G ,
ea

eff~q8!

5q2ea8
@s~q8!~11sa8!1v82e~q8!~11ea8!#~11q2!

s~q8!21v82e~q8!2 ,

hh~q8!5h21~h11h21a1!I 1q8221h1l1
4q824,

where k15K11/K33, and I h50.972 67, I h850.026 056, I 1

51.246 52, l151.505 62 are projection integrals. The re-
sults of the one-mode formula are included in Figs. 8~a! and
8~b! ~dashed!.

The one-mode formula, which captures the crucial
mechanisms, has been given before8,24 without reference to
its applicability forsa,0. Note also, that Eq.~5! can also be
used to describe conventional EC withsa.0 and planar
alignment after some parameters have been interchanged
(a2↔2a3 ,K11↔K33,h1↔h2). In the expressions for
S1(q8) one recognizes the EC mechanisms discussed above:
The driving part proportional toQ(q8)(a22a3q82) and sta-
bilizing effects included in the effective shear viscosity
hh(q8) and the dielectric torque;ea

eff(q8) ~the complexity of
this expression arises from the field distortion2¹f). Actu-
ally, in the homeotropic geometry, the effective viscosity is
relatively large, which explains why the threshold is higher
than in the planar geometry. The strong damping effect of the
dielectric torque resulting from the large value ofea in our
material is also responsible for the relatively low cutoff
vcuttq50.7.

Finally we mention that an improved analytical thresh-
old formula can be derived by including a secondz-mode,10

to get even nearer to the Galerkin curve~dashed-dot in Figs.
8~a! and 8~b!. This improvement is essential for materials
wherea3 /ua2u is very small; otherwiseUc is substantially
overestimated.

IV. NONLINEAR RANGE

The theoretical methods for analyzing pattern forming
instabilities in the nonlinear regime are discussed quite ex-
tensively in the literature~see, e.g., Refs. 8, 11, and 12!. In
order to describe stationary roll solutions and their stability
starting from the NHDE all fields are expanded in Fourier

modes in the horizontal directions (x,y)5x and in timet, as
well as into Galerkin modes inz, similar to the previous
section. The resulting nonlinear system of ordinary differen-
tial equations~ODE’s! for the expansion coefficients yield
the roll solutions. The stability problem can be treated analo-
gously, after separating out Floquet exponents inx and t. In
principle this approach can be extended to more complicated
periodic solutions like squares, but the stability analysis
based on the NHDE then becomes prohibitively complex.

Near threshold the calculations can be simplified in the
framework of an extended weakly nonlinear analysis~see,
e.g., Ref. 8, Sec. 3.5!, which allows us to describe also ad-
ditional slow variations of the patterns in time and space. At
first the fieldsV are expressed in terms of the eigenvectors
V1(q,z,t) corresponding to the smallest growth rates of the
linearized problem~see the previous section!

V~x,z,t !5(
q

A~q,t !V1~q,z,t !exp~ iqx!, ~6!

with A(2q)5A* (q) becauseV is real. This representation
is inserted into the NHDE, which are expanded up to cubic
order in the amplitudesA. One thus arrives at the ‘‘order
parameter equation’’~see, e.g., Refs. 8, 11, and 28!, which
contains the standard four-wave-vector coupling of ampli-
tudes A at cubic order. This approach allows an efficient
study of rolls, squares, and hexagons and, in principle, of
their stability near threshold.

In this way a perfect square pattern, which corresponds
to two nonvanishing amplitudes for the orthogonal wave-
vectorsq15(q,0), q25(0,q) is constructed from the ansatz

A~q,t !5Ā~q1 ,t !d~q2q1!1B̄~q2 ,t !d~q2q2!. ~7!

One arrives at

t0] tĀ5s~q!Ā2@m~q!uĀu22n~q!uB̄u2#Ā, ~8!

t0] tB̄5s~q!B̄2@n~q!uĀu22m~q!uB̄u2#B̄,

with s(q)5«2j2(q2qc)
2. Here « denotes the reduced

control parameter«5(U22Uc
2)/Uc

2 , j the coherence length
and t0 the relaxation time. The functionsm(q),n(q) are
found to be positive. Fornc /mc.1, where we use the defi-
nitions nc5n(qc) and mc5m(qc), there is a supercritical
bifurcation to rolls @B̄[0, Ā2(qc)}« or equivalently Ā

[0, B̄2}«]. In the opposite casenc /mc,1 rolls are un-
stable and stable squares withĀ5B̄ bifurcate.

Slow spatial modulations of the roll pattern with wave-
vectorqc in the horizontal plane are described by an ampli-
tude A(x,t) which varies on a large scale@p/q in space.
A(x,t) is obtained fromA(q) by a ‘‘shifted’’ Fourier trans-
form

A~x,t !5E
D(qc)

dqA~q,t !ei (q2qc)•x. ~9!

The integration is concentrated on a small areaD(qc) around
the critical wave vectorqc5(qc ,0) which we can choose in
the x-direction.

798 Chaos, Vol. 14, No. 3, 2004 Buka et al.

Downloaded 22 Sep 2004 to 128.197.60.149. Redistribution subject to AIP license or copyright, see http://chaos.aip.org/chaos/copyright.jsp



Transforming the order parameter equation in this way
back to position space one arrives at two coupled equations
for A and a mean-flow velocity potentialG

t0] tA5«~12e32iqc
21hA!A1j2h2A2muAu2A

12iqc
21@a7uAu2hA1a8A2h* A* 2A]yG/2#;

h5S ]x2
i

2qc
]y

2D , ~10!

~]x
21]y

2!G5g1]y~A* hA!1c.c. ~11!

These equations generalize the Newell–Whitehead equations
@first line of Eq.~10! with e350], where the locally rotation
invariant combination of differential operators inh has been
introduced.29 The linear term}e3 yields to cubic order in
(q2qc) a correction to the neutral curve«N5j2(q
2qc)

2@112e3(q2qc)#. For «.«N roll solutions exist. The
nonlinear terms}a7 , a8 contribute to the ZZ instability~see
below!. The coupling to mean flow was first proposed in the
context of RBC with intermediate Prandtl numbers.30 In hy-
drodynamics, mean flow goes hand in hand with a pressure
field, which satisfies a two-dimensional Poisson equation as
is the case forG, see Eq.~11!. Thus the mean flow~pressure!
is long range and acts instantaneously.

In a rigorous derivation of Eqs.~10! and~11! at first for
RBC31 and later for planar nematic convection32,33a system-
atic method was presented to separate out the mean-flow
contribution. Thus a smooth gradient expansion of the order
parameter equation up to cubic order was ensured. In some
cases a fairly large number of additional gradient terms had
to be kept, to capture quantitatively all long-wave longitudi-
nal and transverse instabilities near threshold. The same cal-
culational scheme has now been applied to our system and
we have determined all the necessary coefficients as a func-
tion of v. We found excellent agreement between the full
Galerkin method, the order parameter equations, and the am-
plitude equations near threshold in the weakly nonlinear re-
gime @0<«5(U22Uc

2)/Uc
2!1#.

With the material parameters determined in Sec. III we
find a direct transition to squares at threshold for frequencies
abovev theo* tq'0.60, which correlates well with the experi-
mentally observed crossover to squares atvexp* tq'0.56. In
Fig. 9 we show a full stability diagram for rolls in thee, q
plane for a frequency slightly belowv theo* . Rolls with wave-
numberq exist above the neutral curve«N(q). Outside the
region limited by the lineR(q) the rolls become unstable to
growth of transverse rolls with wavenumberqtr'qc . Near
onsetR(q) is easily obtained by consideringB̄ as the linear
cross-roll perturbation ofĀ in Eq. ~8!. One arrives at

R~q!5
j2~q2qc!

2

12mc /nc
. ~12!

To the left of line SQ, which meets the neutral curve at
(«SQ,qSQ), q is not contained in the band ofqtr . Thus the
perturbations do not saturate to stable rectangles, but initiate
a wavelength-changing process of the roll system. However,
to the right of line SQ there exist destabilizing cross-roll
processes withqtr5q, which lead to amplitude-stable square

patterns. For increasingv the point («SQ,qSQ) moves down
along the neutral curve, meets atv theo* the threshold («SQ

50,qSQ5qc) and moves again upward the neutral curve to
the left for v.v theo* . The scenario can be understood very
well on the basis of the coupled amplitude Eqs.~8! for the
square patterns. It is obvious that amplitude-stable square
solutions with wave-numberq bifurcate if the condition
n(q)/m(q),1 is fulfilled. The ration(q)/m(q) turned out to
be a monotonically increasing function ofq for all v in our
case. Thus squares exist for allq above the lower limitqSQ

and for«.«SQ5j2(qc2qSQ)2, whereqSQ is determined by
the conditionn(qSQ)/m(qSQ)51. Since on the other hand
the ration(q)/m(q) increases at fixedq with v as well, it is
obvious thatqSQ has to move to smaller values along the
neutral curve whenv increases.

At onset the rolls are unstable against long wavelength
ZZ modulations for allv,v theo* . Interestingly, the ZZ line
which emerges linearly from the onset point («50,q5qc) is
tilted strongly to the right. The slope can be easily calculated
from the amplitude Eqs.~10! and ~11! and is given by

«ZZ~q!5
~q2qc!

qc

j2qc
2

g11a72a8

mc
1e3

. ~13!

The contribution in the denominator due to the mean-flow
contributiong1 is about ten times larger than the other terms.
Note that in the simple SHE the slope of the ZZ line is
vertical. In contrast, in RBC the ZZ line tilts to the left~ex-
cept for large Prandtl numbers, where it is essentially
vertical!.1 In both cases the slopes result mainly from mean-
flow effects, Eq.~11!, but the coupling constantg1 has op-
posite sign for the two systems. Thus, the mean flow gener-
ated by roll curvature tends to reinforce the curvature in EC,
whereas it reduces it in RBC. The sign reversal in EC can be

FIG. 9. Stability diagram below the transition frequency to squares at
v/v theo* 50.82. Above the neutral curve~N, dashed! the Eckhaus~E, thin
dashed!, and ZZ instability~ZZ, thick solid! are shown. The roll pattern is
unstable against rectangles to the right of the R line and against squares to
the right of the SQ line. The inset indicates the merging of the R with the SQ
line ~cross! at higher values ofe and the regions where one may expect rolls,
rolls1squares (r1s), and squares.
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traced back to the influence of the Coulomb body force ap-
pearing in the~modified! Navier–Stokes equation of the
NHDE.

We have also studied the influence of a magnetic field in
the x-direction that breaks the isotropy. Then the amplitude
equations become slightly more complicated. In effect, the
combinations of gradients (]x2 i /2qc ]y

2) typical for isotro-
pic systems, splits into two independent contributions. A rep-
resentative stability diagram is shown in Fig. 10. The ZZ line
is shifted upwards and a stable roll regime appears.

The complex dynamic patterns shown in Figs. 1, 2, and
3 are not accessible to a Galerkin approach. Moreover, the
full NHDE are at present not amenable to direct simulations.
In this situation a model approach can be useful. Thus, we
have constructed a suitable Swift–Hohenberg equation
~SHE!, which is a standard approach to model isotropic
pattern-forming systems in the weakly nonlinear regime. Our
SHE model reads

t0] tc5F«2
j2

4qc
2 ~D1qc

2!22
e3

qc
2 «~D1qc

2!Gc
2Fc31

g

qc
2 c~¹c!2G1

b

qc
4 ] i@~] ic!~] jc!2#

2
1

qc
2 ~U•¹!c, ~14!

~12cD/qc
2!DG52

g1

2qc
2 ~¹~Dc!3¹c!• ẑ, ~15!

with U5(]yG,2]xG), c50.5. Here c(x,t) portrays the
pattern in the plane. This is a generalization of the ‘‘simple
SHE’’ 34 obtained by settinge35g5b5g150. The addi-
tional cubic nonlinearities proportional tog are well known
from the literature to improve the description of RBC within
the SH approximation.11 The term;b has been proposed to
capture bifurcations to squares.35 The description of the

mean flowU is also well established.36 The term}c is in-
troduced to filter out short scale contributions toG.37

The coefficients of the SHE~14! and~15! are determined
by mapping them for allv onto the amplitude Eqs.~8! for
squares and to Eqs.~10! and~11! for rolls with the use of the
ansatzc5Āeiqx1B̄eiqy1c.c. We obtainm(q)5313bq4

1gq2 and n(q)52(31bq41gq2). For our material the
cross coefficientnc /mc varies from 2.5 atv50.1 to 0.9 at
v50.7 ~it passes through 1 atv theo* ). This range can be
covered in the SHE by varying continuously the coefficients
b andg. We fixed the so-far undetermined ratiog/b by the
requirement that the SHE should reproduce the values for
qSQ, eSQ of the NHDE, i.e., by the requirement
n(qSQ)/m(qSQ)51 as already discussed. The combination of
a7 , a8 which appear in the slope ofeZZ @see Eq.~13!# is
given asa72a8523b. As the final result of this mapping
one obtains the parametersb, g, g1 as a function ofv, which
can be parametrized as followsb521.51621.154v̂2

21.326v̂4, g520.131813.048v̂221.092v̂4, g1536.3
151.32v̂21411.51v̂4 with v̂5vtq . It turns that the stabil-
ity diagram obtained from the full SHE for rolls is practically
indistinguishable from Fig. 9 up to«50.1, which covers the
experiments discussed in this paper.

For completeness some analytical results for the stability
of squares (v.v* ) are added. The ZZ-instability line cor-
responding to modulations of one of the roll systems in
squares is given by

«ZZ~q!5
~q2qc!

qc

j2qc
2

g129b

mc1nc
1e3

. ~16!

Thus, it is obtained from the roll case Eq.~13! by the sub-
stitution a72a8523b→29b and mc→mc1nc . Further-
more, there exists a ‘‘rectangular’’ instability which involves
coupled, symmetric modulations of both roll systems in
squares.19 It is operative outside of the parabola

« r5
j2~q2qc!

2~3mc1nc!

mc2nc
. ~17!

Note that the parabola collapses atv* .

V. SIMULATIONS AND DISCUSSION

In this chapter we describe and discuss results from nu-
merical simulations of the SHE. Our main goal is to compare
with the complex experimental patterns presented in Sec. II.
Equations~14! and ~15! have been solved using a standard
pseudo-spectral code on a two-dimensional periodic domain,
which covered up toN530 rolls with wavelengthlc

52p/qc . The resolution was at least six gridpoints perlc .
Thus, the relevant time scale is set by the horizontal diffu-
sion timetH5N2t0 . Typically we started with random initial
conditions and let the system evolve for at least 5tH .

The experimental ZZ patterns in Fig. 1~a! are well repro-
duced by the simulation of the SHE immediately above
threshold forv well below v theo* (nc /mc well above 1). We
note that in Fig. 1 as in Figs. 2 and 3 the value ofe is smaller
in the simulation than in the experiment. The larger experi-
mentale was needed to obtain sufficient contrast for the pic-

FIG. 10. Stability diagram atv850.3 in the presence of a symmetry break-
ing magnetic fieldHx50.9HF with the Freedericks fieldHF5p/dAk33xa.
The ZZ line which would start atq5qc at zero magnetic field is shifted
upward.
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tures, but the pattern remains essentially the same in the
experiments at the lower«. The structure is reminiscent of
patterns found in the simple SHE (g150, corresponding to
infinite Prandtl number Pr in RBC! at comparable«, which
appear only as transients41 when starting a simulation from a
ZZ unstable roll pattern (q,qc). ZZ patterns are also ob-
served significantly above threshold. In the latter case theq
band widens and certain resonance processes involving
modes withq,qc become active38 which leads to frozen
states. By contrast, in our case there is persistent slow dy-
namics. At intermediate Prandtl numbers in RBC~i.e., finite
g1}Pr21) sharp structures in the roll pattern are smoothed
out by mean flow, whereas in our system grain boundaries
remain sharp despite the strong mean flow. With increasingv
approachingv* at small e we find a mixture of rolls and
squares@R1S, see Fig. 2~b!# in good agreement with the
experiments discussed in Sec. II, see Fig. 2~a!. The undulated
squares observed in experiments near onset@see Figs. 3~a!
and 4~a!# are typically reproduced in the simulations forv
.v theo* , see Fig. 3~b!.

Interestingly, for not too large« («&0.022 atv/v theo*
51.16), and then for large classes of initial conditions, all
defects are pushed out in the simulations and one arrives at
stationary soft squares with perfectly periodic undulations;
see Fig. 4~b!, which is a continuation of the run shown in
Fig. 3~b!. The final pattern represents a quasiperiodic solu-
tion of Eqs.~14! and~15! with an exact cubic symmetry, i.e.,
invariance under rotation byp/2. Stationary solutions of this
type are indeed expected to exist quite generally. Since the
modulations are of long wavelength, an approximate descrip-
tion is given by the nonlinear phase equation for the rectan-
gular instability proposed in Ref. 19 with equal modulation
wave numbers in thex and y direction. The quasiperiodic
solutions are usually expected to be unstable representing
saddle points which separate stable periodic solutions with
different wave vectors. When the periodic solutions are de-
stabilized, as is the case here, the situation may change. An
analogous situation is known to arise in roll patterns under-
going the ZZ instability. In anisotropic systems one then has
stable undulated roll structures in the regime where rolls are
destabilized by the ZZ instability.39 Similar effects have been
predicted for isotropic systems.40 For «→0 the allowed
modulation wavenumber should tend to zero. In this sense
the quasiperiodic solutions do not bifurcate from the basic
state in a direct way. For completeness we mention that in
the immediate vicinity of the threshold~very small «! the
simulations tend to settle down to perfect squares, which is
presumably an effect of the finite size suppressing the long-
wave ZZ instability. This is not expected in the experiments
because of the huge aspect ratio of the convection cells~sev-
eral thousands of rolls!.

The transition to hard squares occurring in the experi-
ments with increasing« are not captured appropriately by
our SHE model. Instead, in the regimev.v theo* , the simu-
lations display with increasing« increasingly disordered pat-
terns characterized by patches of undulated squares separated
by grain boundaries. On the other hand, atv,v theo* , upon
increase of« above«QS the system tends to also settle in a
state of rather well-ordered, undulated stationary squares

with wave-numberq.qSQ, i.e., in the regime of amplitude-
stable squares. Thus, interestingly, the mean flow, which in-
creases withe and destabilizes the roll pattern, seems to gen-
erate a selection process toward squares, which, if perfectly
ordered, do not excite mean flow. We have checked that by
reducing g1 in Eq. ~15! this crossover to squares is sup-
pressed.

We suggest that the hard squares represent a superlattice
where several groups of wave vectors interact to suppress the
ZZ instability, a process easily missing in our SHE. Such
superlattices, which often represent quasiperiodic structures,
have been of considerable general interest recently.42 They
have been investigated experimentally in particular in the
Faraday instability43 in cells with aspect ratio up to about 50
and in oscillated RBC.44

VI. CONCLUSION

We have studied a model system for isotropic pattern
formation, namely, a variant of EC in a nematic liquid crys-
tal. Unlike other systems, the competition between rolls and
squares can be systematically investigated at small amplitude
in the same large-aspect ratio cell by merely changing the
frequency of the applied ac voltage. Since the system is
driven by an ac voltage it has an intrinsic reflection symme-
try about the mid plane. Thus the quadratic resonance cou-
pling leading to competing hexagons15 is absent. In most
cases the patterns near threshold exhibit a specific disorder
with a slow dynamics. The disordered pattern is of the
zigzag-type in the roll regime and undulated in the regime of
squares. Interestingly, in simulations the undulations some-
times become completely regular, i.e., the soft squares settle
into a static, spatially quasiperiodic attractor. In the experi-
ments the dynamics of soft squares can become extremely
slow and very nearly quasiperiodic, see Fig. 4.

The scenario originates in particular from the well-
known transverse modulational ZZ instability, which is
present in rolls as in squares, since it acts on each roll system
individually ~in contrast to hexagons, where the ZZ instabil-
ity is suppressed!.19 The ZZ instability is here driven largely
by the mean flow, which in our system acts quite differently
than in RBC and has to be included already at threshold.
Thus we have the unique case of a direct transition to a
stationary patternthat is destabilized by long-wave instabili-
ties leading to disorder or to an ordered, quasiperiodic pat-
tern. Other experimentally accessible direct transitions to
long-wave destabilized patterns involve Hopf bifurcations to
travelling waves.45,46 Alternatively, destabilization can be
prompted by a short-wave instability, as in rotating RBC,47

or by the presence of an additional Goldstone mode.23 In all
these cases the destabilization leads to disorder only. A par-
ticularly intriguing feature is that mean flow, which in RBC
is responsible for the skewed varicose instability and spiral
defect chaos48 here leads to a very mild form of disorder or
even to the generation of an unconventional ordered pattern.

In the future we plan to extract from weakly nonlinear
theory a quantitative understanding of the soft square attrac-
tor, in particular its quasiperiodic manifestation. Also, a de-
tailed description of the hard square pattern and the transition
from soft to hard squares appears of interest. We expect simi-
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lar phenomena in other systems provided the aspect ratio can
be made comparably large. The ZZ instability may be re-
placed by some other long-wave destabilization, e.g., the
skewed-varicose instability.
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