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Theoretical results on the dynamics of dislocations in RayleigmaRBe convection are reported

both for a Swift—Hohenberg model and the Oberbeck—Boussinesq equations. For intermediate
Prandtl numbers the motion of dislocations is found to be driven by the superposition of two
independent contributiong) the Peach—Koehler force afid) an advection force on the dislocation

core by its self-generated mean flow. Their competition allows to explain the experimentally
observed bound dislocation pairs. ZD04 American Institute of Physics.
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In many situations nonequilibrium transitions in nature
lead to striped patterns. These are typically not perfect
and various types of defects sustain a specific persistent
dynamics. In particular, dislocations, i.e., the topological
point defects where stripes terminate in the interior of the
system, play an important role. Here we study various
aspects of the dynamics of dislocations in Rayleigh
Benard convection, which is one of the best investigated
paradigms among pattern forming systems. We interpret
the dislocation dynamics in terms of two competing
forces, one of which corresponds roughly speaking to an
energy minimization principle (Peach-Koehler force)
while the other is mediated by a long-range mean flowjor
pressure field. This leads, for instance, to a natural ex-
planation of the experimentally observed bound disloca-
tion pairs. Our approach can be expected to transcend
the particular example of Rayleigh-Benard convection,
as different pattern forming systems share a commonal-
ity, which is most clearly captured in familiar model
equations, like the Swift-Hohenberg equation used here.

I. INTRODUCTION

actions, remains a challenge. Dislocations present a simple
realization of topological singularities in a field description
of continuous extended systems. To which extent their dy-
namics can be understood in terms of quasiparticles subject
to effective forces is a general important issue beyond the
field of pattern formatiort?

In this paper we present a numerical study of the dislo-
cation dynamics in Rayleigh-Bard convection(RBC),
which is a main paradigm for pattern forming instabilities in
isotropic system$&® By using both the full hydrodynamic
equations and standard, well accepted model equations we
show that dislocations are driven by a superposition of two
independent “forces.” One is the well known Peach-—
Koehler(PK) force, which describes the tendency of the sys-
tem to develop towards a striped pattern with an optimal
average wave numbef This concept has been at first intro-
duced in solid state physics to describe the dislocation dy-
namics under the influence of an external stfésshich is
crucial to understand the strength of crystals. The second
force, an “advection force,” is due to a long-range pressure
field caused by strong roll curvature gradients in the vicinity
of a dislocation, which excite a flow field with a finite verti-
cal averaggmean flow.'®> We demonstrate that the advec-
tion force acts in general to remove dislocations from the

Striped patterns are ubiquitous in nature. They are foundygiem s as to reduce the wave number of the pattern. For a

in physical, chemical, and biological systems, which are

driven away from equilibriunt. In general natural patterns
are not perfect due to the presence of defects,

boundaries (line defecty and topological point defects

(dislocation$.? The nucleation, motion, and annihilation of
dislocations is essential for many pattern-selection process

which are initiated by modulational instabilitiésDisloca-

certain wave numbegp the two forces balance and a single

? _dislocation is stationary. In the vicinity af, two approach-
like graifly gisiocations of opposite topological charge can form

bound states which have been observed before in
experiments®’ Although the significance of the mean flow

&ad been expected for a long time in line with experiméfits,

its direct identification in a previous theoretical analysis had

tions govern the ordering kinetics of initially disordered failed 19

patternd and sustain in defect turbulent systems the per-

In Sec. Il we review some basic facts about dislocations

petual reordering of the plan forridthough much effort has ;4 sketch our numerical procedures. Section Il is the cen-

been devoted to their studgee, e.g., Refs. 1 and 5-11 and 5| hart of this paper. We present the numerical results that
references therejna detailed understanding of the disloca- 510,y 4 natural interpretation in terms of the PK and advec-

tion dynamics, especially in the presence of nonlocal interyg, force. The bound state of two dislocations demonstrated
in Sec. IV is a natural consequence of this concept. In Sec. V
we have added some comments on the stability of disloca-
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of dislocation dynamics by first studying the standard two-
dimensional generalized SH equatid@SH):*#2!

y Y +(U-V)W=[eg— (1+V?)?|¥ -3, (1)
U:(Ux:Uy):(ﬁygr_axg)v (2
(8,—V2+0)V2e=g(V(V2W)XVV¥)-g,. ©)

X

In terms of the two-dimensional fiel# (x,t) the GSH
equations describ@n suitable dimensionless unjthe bifur-
cation to patterns with critical wave numbgy=1 and their
nonlinear saturatioreg measures the relative distance to on-
set. The vertical average of the mean ddt mean flowy
U(x) is determined by a velocity potenti&l The coupling of
& andV is characterized by a coupling constantin RBC
g 1l/o) and a cutoff parameter (c=2 in this work. Note,
FIG. 1. Temperature fieldgray scalg in the presence a dislocation with that the mean flowJ(x) is associated with the vertical vor-

positive topological charg®= 27 and the superimposed mean-flow veloc- .. . _ _ . .
ity field (arrows shown at the midplane of the fluid layer; from simulations ticity Ag. For 9=0 the present GSH equations derive

; 1
of the OBE fore=(R—R,)/R.=0.3, v=1.2, and background wave num- T0OM @ Lyapunov functlonat._ _ _
berg=q, . The dislocation is moving downwards along thexis, while it In our numerical analysis we focused on dislocation

would move upwards iQ=— 2. climb, i.e., the motion parallel to the roll axis as shown in
Fig. 1, in a rectangular domais L, ,/2<X,y<L, /2 with
width L, and lengthL,=2L, . We solved both the GSH and
tions. The paper concludes with some final remai®sc. the OBE equations numerically by a pseudospectral method
V). with semi-implicit time stepping? In order to minimize
finite-size effects, we initially simulated dislocation pairs
with periodic boundary conditions in they directions(Fig.
Il. THEORETICAL BACKGROUND AND NUMERICAL 1 has to be extended mirror symmetrically along yhexis).
PROCEDURE We found, however, almost identical results for the less ex-
In RBC a horizontal layer of a simple fluid is heated pensive simulations with a single dislocation in a box kept
from below and cooled from above, where conventionallyfinite in they direction by gradually ramping to zero aty
the Rayleigh numbeR serves as the dimensionless measure= *Ly/2. The ideal periodic roll pattern of wavelength
of the applied temperature gradiédtFor R above the =2/q without an immersed dislocation consisted of up to
thresholdR, buoyancy driven convection is observed in the N==64 roll pairs, corresponding to,=NN\. The typical nu-
form of striped convection roll patterns with the critical wave Merical resolution was>16 grid points per wavelength. It is
numberq=gq.. The strength of the mean flow is determined crucial to study systematically the defﬁct dynamics as a func-
by the relative distance= (R—R.)/R. to the threshold and tion of the background wave number of the underlying
in particular by the Prandtl number=v/«, with the kine-  Pattern. A superimposed dislocation leads\té 1 roll pairs
matic viscosityr and the thermal diffusivity. Intermediate  in some parts of the celee Fig. 1, below the dislocatipn
Prandtl numbers ¢~1) are realized in gas convection @hd consequently to a reduced wavelength=N/(N
experimentd? In RBC the full hydrodynamic description +1)A and thus to a wave number, =2m/\,.>q. We
[Oberbeck—Boussinesq equatid@BE)] is well established found that defining the background wave number cas
and the theoretical analysis can be quantitatively compared (d+*+d)/2 was most effective to absorb the finiecor-
with well controlled experiment® The commonality of rections. In designing the details of our calculation scheme
RBC with other bulk pattern-forming systems is most cIearIyand to validate our GSH code we have considerably benefit-
expressed in well known model equations, like the Swift—ted from the comparison with Ref. 8, devoted to the GSH
Hohenberg SH) equatior® and its generalizatiorf.In Fig. ~ model.
1, a snapshot of the midplane temperature figlg,y) con-
taining a dislocation with positive topological chargg
=2 from simulations of the OBE is showiQ is defined
via the winding number of the phase gradi&mb(x,y) of ¥ In this section we present numerical results mainly from
around a dislocation with the two possibilities GSH equations but also from the OBE equation. The analysis
$Vd(x,y)ds= +27. The mean flowfarrows is maximal at  of the data leads naturally to the notion of two forces acting
the dislocation core and tends to advect the dislocatiomn a climbing dislocation, namely the PK force in competi-
downwards along the symmetry axis. In the direction perpention with an advection force.
dicular to the plane shown in Fig. 1 the mean flow shows an  The simulations are initialized with a single dislocation
almost perfect parabolic profile. at the centery=(xq,Yo)=(0,0) by anapproximate ansatz
While a comprehensive exploration of theo param-  ¥(x,y,t=0)xcoggx—¢(|r|)]. Here ¢(r) is the polar angle
eter space within the OBE is extremely time consuming, weaboutr,. After the initial transients died outypically after
have gained much insight into the basic physical mechanisrthe dislocation core has moved about four wavelengtirs

Ill. PEACH-KOEHLER VERSUS ADVECTION FORCE
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FIG. 2. Profiles ofo(y) =¥ (xo,y) andUo(y)=U,(xo.y)/g plotted along -0.14 s
the roll axis centered about the dislocation corexgt=(0y=y—vst=0) r
obtained from GSH simulations at=0.3 andq=0.98 in the range 29 -0.18 i
<20 forN=16. The profiles cover 100 pixe{#) and 200 pixel$B) of the |
calculation grid of 512 pixels along, where 16 grid points correspond to a . | | | |
wavelength.= 2/ 0205 10 15 20 25 30
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Fig. 1) the dislocation would Cll_mb with a constant Ve|0C|ty FIG. 3. Dislocation velocity from GSH simulations as function of the mean
vg and a relaxed asymptotic shap(x,y,t)=Y(x,y flow strengthg at eg=0.3, N= 16, for variousy: (1) 1.04,(2) 1.02,(3) 1.00,
—v4t) is reached. Starting from this state in subsequent rung4) 0.98, and5) 0.96. The linear fits of the data serve as a guide for the eye.
considerably reduced the computational time. In agreement

with prior investigation$;** we have identified a wave num-
ber gp(€,9), such that forg>qp the dislocation climbed
downwards withv <0 (the case shown in Fig.)lwhile it
moved upward fogq<qp .

The key for the physical interpretation of the numerical

results lies in a certain universality & andU for a dislo-
cation, which climbs uniformly along the symmetry axis
=Xo=0 (see Fig. 1 As demonstrated in Fig. 2 the solutions
W (Xg,y)=Y(y) withy=(y—uvgt) of Eqg. (1) atfixedback-

ground wave number are virtually identical although the

mean-flow couplingg varies over a wide range. Note that ItS Self-generated mean flod, . _ :
drom the GSH model Eq(1) (and also from inspection of

data forg<<2 are not available, but there is no reasonabl
doubt that the limiting casg—0 is covered® When the
source term fog in Eq. (3) is evaluated withV; the explicit
linear dependence apprevails. Thus it is not surprisifgee
Fig. 2(B)] that the(suitably rescaledmean flow component
Uy(Xo,y)/g along the symmetry axis has practically a
g-independent shapdy(y). Note that the transverse com-
ponentU, vanishes for symmetry reasonsxat X .

According to the discussion above the field on the
symmetry axis is very well approximated by tge-0 limit
of Wy. Thus on the symmetry axis Efl) reduces to

—vsdy¥o(y)= —(Uydy) Wo(y). (4)

oL
oW o(y)
Integrating the three terms in E@l) separately ovey about
the dislocation core at=0 leads thus to the following rela-
tion for v as function ofq andg:

vs(@,9) =vpk(@) +gUd 1 (@). 5)

Here we have rewritten thg average of the mean-flow con-
tribution in Eq. (4) in terms of the minimurrgU}\,’I of Uy
=gV, at the dislocation corey(=0), whered; ¥ (y) is also
strongly peakedsee Fig. PA)]. The quantitiesvpk,Cq,
which are determined by the practicatlyindependent pro-
file ¥, must be calculated numerically as a functiongof
andes.

For clarity the two contributions tog; on the right hand
side of Eq.(5) are discussed foQ=2x (see Fig. ], since

the caseQ=—2m is analogous. The PK force leads to the
g-independent velocity contributiompy, which is negative
for 9>Qqpr=dc, vanishes foq=qqy, and becomes positive
for d<gqp. Thus forg=0 the dislocation climbs as to ad-

just the wave number of the pattern in its wake towagds

=(opt- The second termrg on the right hand side of E@5)
originates from an advection force on the dislocation due to
i It is not difficult to deduce
Figs. 1 and 2that the direction of the mean flow and of the
ensuing advection force depends only on the topological
chargeQ of the dislocation. As a result the mean flow tends
in general to advect the dislocation in order to decrease the
wave numbeq.* In our GSH simulations the PK force cor-
responds, in fact, to the minimization of the Lyapunov po-
tential £. This potential property has, however, not been ex-
ploited in the discussion before, when we isolatgd as the
g—0 contribution tov .

The competition of the Peach—Koehler and the advec-
tion force is elucidated in Fig. 3 where we present the veloc-
ity of an isolated dislocation as a function gfandq. Con-
sistent with prior investigatiofisour numerical results show
that v varies almost linearly as a functian like vgec(q
—qgp(9)) for fixedg>0 andes>0. According to Eq(5) this
implies at fixedq a linear dependence af; on g as con-
firmed in Fig. 3 for a wideg range. Extrapolation of the
straight lines towardgg=0 in Fig. 3 yields the Peach—
Koehler limitvg=wvpk as function ofg. We find indeed that
vpk vanishes agp~qg.=1 in this limit. With increasingg
the negative advection force comes into play and the values
of qp determined by the conditiong=0 become increas-
ingly smaller tharg, . For instance a dislocation as shown in
Fig. 1 on a background pattern with=0.96 would move
upward @ >0) for g=0, but downwards fog> 10.

Although the full hydrodynamic$OBE) cannot be rig-
orously mapped on the GSH, the reasoning in terms of a PK
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FIG. 4. Dislocation velocityvg in
7 o units of 10°2h/t,, with h the cell
> 0.00 : ,&_’ 1 . height, and, =h? « the vertical diffu-
c sion time:(A) as function ofg at fixed
k77 o=1.4 and(B) as function ofo in the
>0_ . range 0.&¢<2.5 at q=2.91; data
from simulations of the OBE fore
=0.3.
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force (c—=) and a competing mean flow force seems tomean flow contributions from each dislocation begin to over-
apply as well. As a typical example fer=1.4, we show in lap destructively. The velocities diminish and eventually the
Fig. 4(A) the linear variation ob(q)«=(g—qp), wherevy  dislocations stop moving, when the reduced advection force
crosses zero afj=qp=2.75. This behavior is in perfect is balanced by the opposing PK force. To our surprise even
agreement with the experimental and numerical analysis ahe deceleration of the approaching dislocations was well
the dynamics of the off center “giant spirals® for o~1 captured adiabatically by Ed@5), though derived under the
where the orbiting outer dislocations probe roll patches in assumption of constamt;. The velocityv of the approach-
fairly large g range. Our results are at variance withva ing dislocations, which decreases continuously with their
«((q—qp)*? law as favored in Ref. 7 to describe RBC de- distanceL [see Fig. €)], remains indeed directly propor-
fect dynamics fowr~1. As already mentioned in Ref. 8 such tional to U('g" at either dislocation corgsee Fig. @b)].

a law cannot be justified for nonpotential models. In line

with the GSH it is demonstrated in Fig(B) thatv varies V- STABILITY OF DISLOCATIONS

indeed linearly ino~'~g at fixed{. In our OBE and GSH simulations dislocations are found
to be very robust objects except whgrwas in the vicinity
IV. BOUND STATE OF DISLOCATIONS of a cross-roll (CR) instability boundary of the Busse

The notion of the advection force, which has been intro-
duced in Sec. lll, is supported by the observation of bOUNU ——
states of dislocations in our numerical SIMUIAtioNS. AIthOUGH |—_—_—————————
bound states have been observed more than a decade ago

—_— T ——
gas convection experiments at medium Prandtl UMb 1< M

a,** they had not found a theoretical explanation. *

As a representative example from our OBE simulations —-h-ﬂl-—

the stationary configuration of two dislocations with separa- “
tion Ip is shown in Fig. $8). The bound state, WhiCh SHOWS  ——

an additional roll segment between the dislocations, has (e e ————
veloped when we seeded two dislocations of opposite charg1(a)
Q at a distancd.>I on a background pattern wiifp=qp
=2.75. Analogous bound states have been found in our mort
detailed investigations of the GSH equations as well. The
equilibrium distance of the bound dislocations as function
of g and g, or o, respectively, has not been investigated
systematically. Typically we findp~2—-3\. A systematic,
certainly difficult stability analysis of the bound state was not
attempted; we tested, however, that the equilibrium state
would also develop from a dislocation pair with an initial
distanceL <l . An experimental example of a bound state
in a giant spiral is shown in Fig.(B), which was destroyed
after a long period by an increase of the background wave
numberqg away fromqp .

The existence of bound states can be easily rationalize(=-
from Eq. (5). A well separated pair of oppositely charged ®
dislocations is driven by the dominant mean-flow contribu-_ . o Stationary bound state from OBE simulations 0.3y — 14N

thn =|Ug| n Eq. (5) towards the”‘.anmh"auon- However,- =16, forg= 2.8 [upper panela)] and experimental bound state in section
this advection force weakens continuously, as the opposingF a giant spiral ak=0.7,0=1.4 (Ref. 17 [lower panel(b)].
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FIG. 6. Velocityv of two approaching dislocations in the GSH model as a

. 2 ; ) M
funcuon_of the_|r Instantaneous ghstarice{upper panela)]; _mean_flowUO FIG. 7. Bridges developing in front of a dislocation moving to the left (Pr
at the dislocation core as function of[lower panel(b)]; simulations aty =1.09¢=0.70q=2.3) [experimentRef. 13, upper panela)] and in OBE

=5,€=03, andq=0.98 simulations (Pt 1.4€=0.3,q=2m\=2.425)[lower panel(b)] near cross-
roll instability atq=2.385.

balloorf® for ideal roll. A typical experimental snapshot is
shown in Fig. 7a), where a dislocation, moving from the to the CR instabilityg,, (from the upper to the lower curve in
right into a pattern witlg<<qp , seems to split into a chain of Fig. 8. Only for the lower curve was a persistent generation
“bubbles.” In analogous OBE simulationg=ig. 7(b)] it is  of local CRs and bubbles observed for a longer period. How-
obvious that the bubbles develop from localized transversever, eventually the CRs extended over many rolls and the
bridging of adjacent rolls. The phenomenon of a splitting oforiginal pattern was globally reorganized.
the dislocation core has been described at first in GSH-model Besides the short wavelength CR instability of a roll
simulationg® for g=0 in perfect agreement with our own pattern with wave vectog=(q,0) the Busse balloon is in
simulations. In Ref. 10 a generic instability of a dislocationaddition organized by modulational instabilities with wave
towards the splitting into disclinations has been invoked. Invector s=(s,,s,) with s<q. The cases,=0 denotes the
contrast we favor an interpretation in terms of a local CRzig-zag(ZZ2), the cases,=0 the Eckhaus instability, while
instability, which is nucleated by the finite perturbation duethe general cass,,s,#0 corresponds to the skewed vari-
to the dislocatiorf® In fact, in all our OBE and GSH simu- cose instability?® The cases, # 0 is reflected in characteristic
lations core splitting has been observed exclusively in thaeindulations along the stripes, which are inevitably nucleated
vicinity of a CR instability line of the corresponding Busse by the strong perturbations of a dislocation.
balloons. In Fig. 9(a) the case of a ZZ unstable pattern is shown.
The excitation of local CRs by a dislocation is also re-Sinceq<gp=1 in this case, the dislocation tends to pen-
flected in regular oscillations of its velocity in time. A repre- etrate the pattern. However, it does not climb along a straight
sentative example is shown in Fig. 8. A dislocation waspath, but is almost perfectly guided by the undulations. This
seeded at timée=0 into striped patterns with differelqt An  is demonstrated in Fig.(8), where the trajectory of the dis-
initial steep increase of the velocitydue to the relaxation of location follows closely the undulations of the stripes. The
the seeded dislocation is followed by oscillations. Theirdynamics involves thus a combination of climb along the roll
number and intensity increases with decreasing distange of axis and glide perpendicular. For completeness we mention
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FIG. 8. Dislocation velocityv as function of time in a GSH simulation F
(N=16,6=0.3) near the CR instability lineq=1.164) for increasingj:
q= 1.1 (upper long-dashed curyeq=1.12 (short-dasheg g=1.14 (solid); © H
g=1.15(dashed dotted £ 48 |+ -
> L

that in the case of a SV instability the dislocation moves into
a direction perpendicular t So far, an appropriate theoret- 40 |
ical modeling of combined climb and glide dynamics is I
missing.

VI. CONCLUSIONS -15 10 -05 0.0 0.5 1.0 15
xind

32

We have reported numerical experiments on RBC at in-
termediate Prandtl numbers with particular emphasis on thei. 9. Snapshot of a dislocation moving along thexis (<qg) into a
dynamics of dislocations. The theoretical analysis led us t@Z unstable background pattern; from an OBE simulationea0.3, o
the identification of two driving forces: the PK force due to =20, 4=2.85, and\=32[upper panela)]. The trajectory of a dislocation

(dashed-dotted linein the x—y plane in units of the roll diametat= 7/q
the short scale pattern moW) and the Iong-range advec- [lower panel(b)]. The instantaneous undulations of convection roll in front

tion forces driven by a mean flow§) with its large scale  of the dislocatior(solid line) recorded at the dislocation position marked by
contributions. There is hope that these considerations mighie black dot are superimposed.

also help to get a better intuitive picture of the intriguing
dislocation dynamics in the presence of ramps in the Ray-

leigh number.” We expect that our methodology will be ap- ganta Barbara, where the work was completed (W®. and
plicable to a number of other systems as well. Striped patg g ) gegicate this paper to Lorenz Kramer. For many years
terns are observed in a large variety of extended continuUM,anz has been a good friend. We have very fond memories

systems, ;or ex.ample,. in Tgylor—Couette flbwgas of his leadership during excursions, including mountain
discharges? and in vertically vibrated granular layef$, climbing with W.P., hiking with the group, paragliding and

where the mean drifttvorticity) plays an important role in white water canoeing with E.B. From his deep insights into

the defect dynamics, although an appropriate continuumy,ysies we have benefited a lot in joint work. His persistent
model has yet to be constructed. In binary fluid convecéion q,est for the understanding of topological defects has always
corresponds to a concentration malevhich allows bound  oq, contagious as reflected already in investigations on vor-
states of fronts in analogy to our bound dislocations. As giceq in superconductivity with W.P. in the early 1970s. In the
last exam_ple we mention patterns ob_served in block p°|y'mid 1980s, when E.B. was a graduate student at Bayreuth,
mers, which have have been described by a SH modglyen, wrote with us a well accepted paper about defect
coupled to a flow field as weff: dynamics in anisotropic pattern forming systethslany of

the ideas presented here have their roots in those beginnings.
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