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Theoretical results on the dynamics of dislocations in Rayleigh–Be´nard convection are reported
both for a Swift–Hohenberg model and the Oberbeck–Boussinesq equations. For intermediate
Prandtl numbers the motion of dislocations is found to be driven by the superposition of two
independent contributions:~i! the Peach–Koehler force and~ii ! an advection force on the dislocation
core by its self-generated mean flow. Their competition allows to explain the experimentally
observed bound dislocation pairs. ©2004 American Institute of Physics.
@DOI: 10.1063/1.1772231#

In many situations nonequilibrium transitions in nature
lead to striped patterns. These are typically not perfect
and various types of defects sustain a specific persistent
dynamics. In particular, dislocations, i.e., the topological
point defects where stripes terminate in the interior of the
system, play an important role. Here we study various
aspects of the dynamics of dislocations in Rayleigh–
Bénard convection, which is one of the best investigated
paradigms among pattern forming systems. We interpret
the dislocation dynamics in terms of two competing
forces, one of which corresponds roughly speaking to an
energy minimization principle „Peach–Koehler force…
while the other is mediated by a long-range mean flow„or
pressure… field. This leads, for instance, to a natural ex-
planation of the experimentally observed bound disloca-
tion pairs. Our approach can be expected to transcend
the particular example of Rayleigh–Bénard convection,
as different pattern forming systems share a commonal-
ity, which is most clearly captured in familiar model
equations, like the Swift–Hohenberg equation used here.

I. INTRODUCTION

Striped patterns are ubiquitous in nature. They are found
in physical, chemical, and biological systems, which are
driven away from equilibrium.1 In general natural patterns
are not perfect due to the presence of defects, like grain
boundaries ~line defects! and topological point defects
~dislocations!.2 The nucleation, motion, and annihilation of
dislocations is essential for many pattern-selection processes,
which are initiated by modulational instabilities.1 Disloca-
tions govern the ordering kinetics of initially disordered
patterns3 and sustain in defect turbulent systems the per-
petual reordering of the plan forms.4 Though much effort has
been devoted to their study~see, e.g., Refs. 1 and 5–11 and
references therein!, a detailed understanding of the disloca-
tion dynamics, especially in the presence of nonlocal inter-

actions, remains a challenge. Dislocations present a simple
realization of topological singularities in a field description
of continuous extended systems. To which extent their dy-
namics can be understood in terms of quasiparticles subject
to effective forces is a general important issue beyond the
field of pattern formation.12

In this paper we present a numerical study of the dislo-
cation dynamics in Rayleigh–Be´nard convection~RBC!,
which is a main paradigm for pattern forming instabilities in
isotropic systems.13 By using both the full hydrodynamic
equations and standard, well accepted model equations we
show that dislocations are driven by a superposition of two
independent ‘‘forces.’’ One is the well known Peach–
Koehler~PK! force, which describes the tendency of the sys-
tem to develop towards a striped pattern with an optimal
average wave number.5,8 This concept has been at first intro-
duced in solid state physics to describe the dislocation dy-
namics under the influence of an external stress,14 which is
crucial to understand the strength of crystals. The second
force, an ‘‘advection force,’’ is due to a long-range pressure
field caused by strong roll curvature gradients in the vicinity
of a dislocation, which excite a flow field with a finite verti-
cal average~mean flow!.15 We demonstrate that the advec-
tion force acts in general to remove dislocations from the
system so as to reduce the wave number of the pattern. For a
certain wave numberqD the two forces balance and a single
dislocation is stationary. In the vicinity ofqD two approach-
ing dislocations of opposite topological charge can form
bound states which have been observed before in
experiments.16,17Although the significance of the mean flow
had been expected for a long time in line with experiments,18

its direct identification in a previous theoretical analysis had
failed.19

In Sec. II we review some basic facts about dislocations
and sketch our numerical procedures. Section III is the cen-
tral part of this paper. We present the numerical results that
allow a natural interpretation in terms of the PK and advec-
tion force. The bound state of two dislocations demonstrated
in Sec. IV is a natural consequence of this concept. In Sec. V
we have added some comments on the stability of disloca-a!Electronic mail: werner.pesch@uni-bayreuth.de
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tions. The paper concludes with some final remarks~Sec.
VI !.

II. THEORETICAL BACKGROUND AND NUMERICAL
PROCEDURE

In RBC a horizontal layer of a simple fluid is heated
from below and cooled from above, where conventionally
the Rayleigh numberR serves as the dimensionless measure
of the applied temperature gradient.13 For R above the
thresholdRc buoyancy driven convection is observed in the
form of striped convection roll patterns with the critical wave
numberq5qc . The strength of the mean flow is determined
by the relative distancee5(R2Rc)/Rc to the threshold and
in particular by the Prandtl numbers5n/k, with the kine-
matic viscosityn and the thermal diffusivityk. Intermediate
Prandtl numbers (s;1) are realized in gas convection
experiments.13 In RBC the full hydrodynamic description
@Oberbeck–Boussinesq equations~OBE!# is well established
and the theoretical analysis can be quantitatively compared
with well controlled experiments.13 The commonality of
RBC with other bulk pattern-forming systems is most clearly
expressed in well known model equations, like the Swift–
Hohenberg~SH! equation20 and its generalizations.21 In Fig.
1, a snapshot of the midplane temperature fieldC(x,y) con-
taining a dislocation with positive topological chargeQ
52p from simulations of the OBE is shown.Q is defined
via the winding number of the phase gradient¹F(x,y) of C
around a dislocation with the two possibilities
r¹F(x,y)ds562p. The mean flow~arrows! is maximal at
the dislocation core and tends to advect the dislocation
downwards along the symmetry axis. In the direction perpen-
dicular to the plane shown in Fig. 1 the mean flow shows an
almost perfect parabolic profile.

While a comprehensive exploration of theR,s param-
eter space within the OBE is extremely time consuming, we
have gained much insight into the basic physical mechanism

of dislocation dynamics by first studying the standard two-
dimensional generalized SH equations~GSH!:1,8,21

] tC1~U•¹!C5@eS2~11¹2!2#C2C3, ~1!

U5~Ux ,Uy!5~]yj,2]xj!, ~2!

~] t2¹21c!¹2j5g~¹~¹2C!3¹C!•ez . ~3!

In terms of the two-dimensional fieldC(x,t) the GSH
equations describe~in suitable dimensionless units! the bifur-
cation to patterns with critical wave numberqc51 and their
nonlinear saturation.eS measures the relative distance to on-
set. The vertical average of the mean drift~or mean flow!
U~x! is determined by a velocity potentialj. The coupling of
j andC is characterized by a coupling constantg ~in RBC
g}1/s) and a cutoff parameterc (c52 in this work!. Note,
that the mean flowU~x! is associated with the vertical vor-
ticity 2Dj. For g50 the present GSH equations derive
from a Lyapunov functionalL.1

In our numerical analysis we focused on dislocation
climb, i.e., the motion parallel to the roll axis as shown in
Fig. 1, in a rectangular domain2Lx,y/2,x,y,Lx,y/2 with
width Lx and lengthLy52Lx . We solved both the GSH and
the OBE equations numerically by a pseudospectral method
with semi-implicit time stepping.22 In order to minimize
finite-size effects, we initially simulated dislocation pairs
with periodic boundary conditions in thex,y directions~Fig.
1 has to be extended mirror symmetrically along they axis!.
We found, however, almost identical results for the less ex-
pensive simulations with a single dislocation in a box kept
finite in they direction by gradually rampinge to zero aty
56Ly/2. The ideal periodic roll pattern of wavelengthl
52p/q without an immersed dislocation consisted of up to
N564 roll pairs, corresponding toLx5Nl. The typical nu-
merical resolution was>16 grid points per wavelength. It is
crucial to study systematically the defect dynamics as a func-
tion of the background wave numberq̄ of the underlying
pattern. A superimposed dislocation leads toN11 roll pairs
in some parts of the cell~see Fig. 1, below the dislocation!
and consequently to a reduced wavelengthl15N/(N
11)l and thus to a wave numberq152p/l1.q. We
found that defining the background wave number asq̄
5(q11q)/2 was most effective to absorb the finiteN cor-
rections. In designing the details of our calculation scheme
and to validate our GSH code we have considerably benefit-
ted from the comparison with Ref. 8, devoted to the GSH
model.

III. PEACH–KOEHLER VERSUS ADVECTION FORCE

In this section we present numerical results mainly from
GSH equations but also from the OBE equation. The analysis
of the data leads naturally to the notion of two forces acting
on a climbing dislocation, namely the PK force in competi-
tion with an advection force.

The simulations are initialized with a single dislocation
at the centerr05(x0,y0)5(0,0) by anapproximate ansatz
C(x,y,t50)}cos@qx2f(ur u)#. Heref(r ) is the polar angle
aboutr0 . After the initial transients died out~typically after
the dislocation core has moved about four wavelengthsl in

FIG. 1. Temperature field~gray scale! in the presence a dislocation with
positive topological chargeQ52p and the superimposed mean-flow veloc-
ity field ~arrows! shown at the midplane of the fluid layer; from simulations
of the OBE fore[(R2Rc)/Rc50.3, s51.2, and background wave num-
ber q̄5qc . The dislocation is moving downwards along they axis, while it
would move upwards ifQ522p.
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Fig. 1! the dislocation would climb with a constant velocity
vst and a relaxed asymptotic shapeC(x,y,t)5C(x,y
2vstt) is reached. Starting from this state in subsequent runs,
considerably reduced the computational time. In agreement
with prior investigations,8,11 we have identified a wave num-
ber qD(e,g), such that forq̄.qD the dislocation climbed
downwards withvst,0 ~the case shown in Fig. 1!, while it
moved upward forq̄,qD .

The key for the physical interpretation of the numerical
results lies in a certain universality ofC andU for a dislo-
cation, which climbs uniformly along the symmetry axisx
5x050 ~see Fig. 1!. As demonstrated in Fig. 2 the solutions
C(x0 ,ȳ)[C0( ȳ) with ȳ5(y2vstt) of Eq. ~1! at fixedback-
ground wave number are virtually identical although the
mean-flow couplingg varies over a wide range. Note that
data forg,2 are not available, but there is no reasonable
doubt that the limiting caseg→0 is covered.23 When the
source term forj in Eq. ~3! is evaluated withC0 the explicit
linear dependence ong prevails. Thus it is not surprising@see
Fig. 2~B!# that the~suitably rescaled! mean flow component
Uy(x0 ,ȳ)/g along the symmetry axis has practically a
g-independent shapeU0( ȳ). Note that the transverse com-
ponentUx vanishes for symmetry reasons atx5x0 .

According to the discussion above the fieldC on the
symmetry axis is very well approximated by theg→0 limit
of C0 . Thus on the symmetry axis Eq.~1! reduces to

2vst] ȳC0~ ȳ!52
dL

dC0~ ȳ!
2~Uy] ȳ!C0~ ȳ!. ~4!

Integrating the three terms in Eq.~4! separately overȳ about
the dislocation core atȳ50 leads thus to the following rela-
tion for vst as function ofq̄ andg:

vst~ q̄,g!5vPK~ q̄!1gU0
Mc1~ q̄!. ~5!

Here we have rewritten theȳ average of the mean-flow con-
tribution in Eq. ~4! in terms of the minimumgU0

M of Uy

5gU0 at the dislocation core (ȳ50), where] ȳC0( ȳ) is also
strongly peaked@see Fig. 2~A!#. The quantitiesvPK,c1 ,
which are determined by the practicallyg-independent pro-
file C0 , must be calculated numerically as a function ofq̄
andeS .

For clarity the two contributions tovst on the right hand
side of Eq.~5! are discussed forQ52p ~see Fig. 1!, since

the caseQ522p is analogous. The PK force leads to the
g-independent velocity contributionvPK, which is negative
for q̄.qopt'qc , vanishes forq̄5qopt, and becomes positive
for q̄,qopt. Thus forg50 the dislocation climbs as to ad-
just the wave number of the pattern in its wake towardsq̄
5qopt. The second term}g on the right hand side of Eq.~5!
originates from an advection force on the dislocation due to
its self-generated mean flowUy . It is not difficult to deduce
from the GSH model Eq.~1! ~and also from inspection of
Figs. 1 and 2! that the direction of the mean flow and of the
ensuing advection force depends only on the topological
chargeQ of the dislocation. As a result the mean flow tends
in general to advect the dislocation in order to decrease the
wave numberq̄.24 In our GSH simulations the PK force cor-
responds, in fact, to the minimization of the Lyapunov po-
tentialL. This potential property has, however, not been ex-
ploited in the discussion before, when we isolatedvPK as the
g→0 contribution tovst.

The competition of the Peach–Koehler and the advec-
tion force is elucidated in Fig. 3 where we present the veloc-
ity of an isolated dislocation as a function ofg and q̄. Con-
sistent with prior investigations8 our numerical results show
that vst varies almost linearly as a functionq̄ like vst}(q̄
2qD(g)) for fixed g.0 andeS.0. According to Eq.~5! this
implies at fixedq̄ a linear dependence ofvst on g as con-
firmed in Fig. 3 for a wideg range. Extrapolation of the
straight lines towardsg50 in Fig. 3 yields the Peach–
Koehler limit vst[vPK as function ofq. We find indeed that
vPK vanishes atqD'qc51 in this limit. With increasingg
the negative advection force comes into play and the values
of qD determined by the conditionvst50 become increas-
ingly smaller thanqc . For instance a dislocation as shown in
Fig. 1 on a background pattern withq̄50.96 would move
upward (vst.0) for g50, but downwards forg.10.

Although the full hydrodynamics~OBE! cannot be rig-
orously mapped on the GSH, the reasoning in terms of a PK

FIG. 2. Profiles ofC0( ȳ)[C(x0 ,ȳ) andU0( ȳ)[Uy(x0 ,ȳ)/g plotted along
the roll axis centered about the dislocation core at (x050,ȳ5y2vstt50)
obtained from GSH simulations ateS50.3 andq̄50.98 in the range 2,g
,20 for N516. The profiles cover 100 pixels~A! and 200 pixels~B! of the
calculation grid of 512 pixels alongȳ, where 16 grid points correspond to a
wavelengthl52p/q.

FIG. 3. Dislocation velocity from GSH simulations as function of the mean
flow strengthg at eS50.3, N516, for variousq̄: ~1! 1.04,~2! 1.02,~3! 1.00,
~4! 0.98, and~5! 0.96. The linear fits of the data serve as a guide for the eye.
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force (s→`) and a competing mean flow force seems to
apply as well. As a typical example fors51.4, we show in
Fig. 4~A! the linear variation ofvst(q̄)}(q̄2qD), wherevst

crosses zero atq̄5qD52.75. This behavior is in perfect
agreement with the experimental and numerical analysis of
the dynamics of the off center ‘‘giant spirals’’11 for s'1
where the orbiting outer dislocations probe roll patches in a
fairly large q̄ range. Our results are at variance with av
}((q̄2qD)3/2 law as favored in Ref. 7 to describe RBC de-
fect dynamics fors'1. As already mentioned in Ref. 8 such
a law cannot be justified for nonpotential models. In line
with the GSH it is demonstrated in Fig. 4~B! that vst varies
indeed linearly ins21;g at fixed q̄.

IV. BOUND STATE OF DISLOCATIONS

The notion of the advection force, which has been intro-
duced in Sec. III, is supported by the observation of bound
states of dislocations in our numerical simulations. Although
bound states have been observed more than a decade ago in
gas convection experiments at medium Prandtl numbers
s,16,17 they had not found a theoretical explanation.

As a representative example from our OBE simulations
the stationary configuration of two dislocations with separa-
tion l D is shown in Fig. 5~a!. The bound state, which shows
an additional roll segment between the dislocations, has de-
veloped when we seeded two dislocations of opposite charge
Q at a distanceL. l D on a background pattern withq̄*qD

52.75. Analogous bound states have been found in our more
detailed investigations of the GSH equations as well. The
equilibrium distancel D of the bound dislocations as function
of q̄ and g, or s, respectively, has not been investigated
systematically. Typically we findl D;2 – 3l. A systematic,
certainly difficult stability analysis of the bound state was not
attempted; we tested, however, that the equilibrium state
would also develop from a dislocation pair with an initial
distanceL, l D . An experimental example of a bound state
in a giant spiral is shown in Fig. 5~b!, which was destroyed
after a long period by an increase of the background wave
numberq̄ away fromqD .

The existence of bound states can be easily rationalized
from Eq. ~5!. A well separated pair of oppositely charged
dislocations is driven by the dominant mean-flow contribu-
tion }uU0

Mu in Eq. ~5! towards their annihilation. However,
this advection force weakens continuously, as the opposing

mean flow contributions from each dislocation begin to over-
lap destructively. The velocities diminish and eventually the
dislocations stop moving, when the reduced advection force
is balanced by the opposing PK force. To our surprise even
the deceleration of the approaching dislocations was well
captured adiabatically by Eq.~5!, though derived under the
assumption of constantvst. The velocityv of the approach-
ing dislocations, which decreases continuously with their
distanceL @see Fig. 6~a!#, remains indeed directly propor-
tional to U0

M at either dislocation core@see Fig. 6~b!#.

V. STABILITY OF DISLOCATIONS

In our OBE and GSH simulations dislocations are found
to be very robust objects except whenq̄ was in the vicinity
of a cross-roll ~CR! instability boundary of the Busse

FIG. 4. Dislocation velocityvst in
units of 1022h/tv , with h the cell
height, andtv5h2/k the vertical diffu-
sion time:~A! as function ofq̄ at fixed
s51.4 and~B! as function ofs in the
range 0.8<s<2.5 at q̄52.91; data
from simulations of the OBE fore
50.3.

FIG. 5. Stationary bound state from OBE simulationse50.3,s51.4,N
516, for q̄52.8 @upper panel~a!# and experimental bound state in section
of a giant spiral ate50.7,s51.4 ~Ref. 17! @lower panel~b!#.
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balloon25 for ideal roll. A typical experimental snapshot is
shown in Fig. 7~a!, where a dislocation, moving from the
right into a pattern withq,qD , seems to split into a chain of
‘‘bubbles.’’ In analogous OBE simulations@Fig. 7~b!# it is
obvious that the bubbles develop from localized transverse
bridging of adjacent rolls. The phenomenon of a splitting of
the dislocation core has been described at first in GSH-model
simulations10 for g50 in perfect agreement with our own
simulations. In Ref. 10 a generic instability of a dislocation
towards the splitting into disclinations has been invoked. In
contrast we favor an interpretation in terms of a local CR
instability, which is nucleated by the finite perturbation due
to the dislocation.26 In fact, in all our OBE and GSH simu-
lations core splitting has been observed exclusively in the
vicinity of a CR instability line of the corresponding Busse
balloons.

The excitation of local CRs by a dislocation is also re-
flected in regular oscillations of its velocity in time. A repre-
sentative example is shown in Fig. 8. A dislocation was
seeded at timet50 into striped patterns with differentq. An
initial steep increase of the velocityv due to the relaxation of
the seeded dislocation is followed by oscillations. Their
number and intensity increases with decreasing distance ofq

to the CR instabilityqcr ~from the upper to the lower curve in
Fig. 8!. Only for the lower curve was a persistent generation
of local CRs and bubbles observed for a longer period. How-
ever, eventually the CRs extended over many rolls and the
original pattern was globally reorganized.

Besides the short wavelength CR instability of a roll
pattern with wave vectorq5(q,0) the Busse balloon is in
addition organized by modulational instabilities with wave
vector s5(sx ,sy) with s!q. The casesx50 denotes the
zig-zag ~ZZ!, the casesy50 the Eckhaus instability, while
the general casesx ,syÞ0 corresponds to the skewed vari-
cose instability.25 The casesyÞ0 is reflected in characteristic
undulations along the stripes, which are inevitably nucleated
by the strong perturbations of a dislocation.

In Fig. 9~a! the case of a ZZ unstable pattern is shown.
Since q,qD'1 in this case, the dislocation tends to pen-
etrate the pattern. However, it does not climb along a straight
path, but is almost perfectly guided by the undulations. This
is demonstrated in Fig. 9~b!, where the trajectory of the dis-
location follows closely the undulations of the stripes. The
dynamics involves thus a combination of climb along the roll
axis and glide perpendicular. For completeness we mention

FIG. 6. Velocityv of two approaching dislocations in the GSH model as a
function of their instantaneous distanceL @upper panel~a!#; mean flowU0

M

at the dislocation core as function ofv @lower panel~b!#; simulations atg
55, e50.3, andq̄50.98

FIG. 7. Bridges developing in front of a dislocation moving to the left (Pr
51.09,e50.7,q52.3) @experiment~Ref. 13!, upper panel~a!# and in OBE
simulations (Pr51.4,e50.3,q52pl52.425) @lower panel~b!# near cross-
roll instability at q52.385.

937Chaos, Vol. 14, No. 3, 2004 Dislocation dynamics

Downloaded 22 Sep 2004 to 128.197.60.149. Redistribution subject to AIP license or copyright, see http://chaos.aip.org/chaos/copyright.jsp



that in the case of a SV instability the dislocation moves into
a direction perpendicular tos. So far, an appropriate theoret-
ical modeling of combined climb and glide dynamics is
missing.

VI. CONCLUSIONS

We have reported numerical experiments on RBC at in-
termediate Prandtl numbers with particular emphasis on the
dynamics of dislocations. The theoretical analysis led us to
the identification of two driving forces: the PK force due to
the short scale pattern mode~C! and the long-range advec-
tion forces driven by a mean flow~j! with its large scale
contributions. There is hope that these considerations might
also help to get a better intuitive picture of the intriguing
dislocation dynamics in the presence of ramps in the Ray-
leigh number.27 We expect that our methodology will be ap-
plicable to a number of other systems as well. Striped pat-
terns are observed in a large variety of extended continuum
systems, for example, in Taylor–Couette flow,1 gas
discharges,28 and in vertically vibrated granular layers,29

where the mean drift ([vorticity) plays an important role in
the defect dynamics, although an appropriate continuum
model has yet to be constructed. In binary fluid convectionj
corresponds to a concentration mode,30 which allows bound
states of fronts in analogy to our bound dislocations. As a
last example we mention patterns observed in block poly-
mers, which have have been described by a SH model
coupled to a flow field as well.31
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