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Abstract

We investigate a number of complex patterns driven by the electro-convection instability in a

planarly aligned layer of a nematic liquid crystal. They are traced back to various secondary

instabilities of the ideal roll patterns bifurcating at onset of convection, whereby the basic nemato-

hydrodynamic equations are solved by common Galerkin expansion methods. Alternatively these

equations are systematically approximated by a set of coupled amplitude equations. They describe

slow modulations of the convection roll amplitudes, which are coupled to a flow field component

with finite vorticity perpendicular to the layer and to a quasi-homogeneous in-plane rotation of

the director. It is demonstrated that the Galerkin stability diagram of the convection rolls is well

reproduced by the corresponding one based on the amplitude equations. The main purpose of the

paper is, however, to demonstrate that their direct numerical simulations match surprisingly well

new experiments, which serves as a convincing test of our theoretical approach.
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I. INTRODUCTION

Electroconvection (EC) in the planar configuration of nematic liquid crystals is a prime

paradigm for pattern forming instabilities in anisotropic systems (see, e.g., [1–3]). Ne-

matic liquid crystals (nematics) are fluids with a long range orientational ordering of their

nonspherical molecules, the mean orientation of which is described by the director field

n = (nx, ny, nz) subject to the normalization n2 = 1. In the standard, planar, experimental

setup a nematic layer of thickness d, 10 µm . d . 50 µm, is sandwiched between two elec-

trically conducting plates parallel to the x, y plane. By an appropriate treatment of their

surfaces the director is homogeneously oriented parallel to the plates along a fixed direction

(along x̂). A sinusoidal ac voltage of angular frequency ω with the root mean square (rms)

amplitude U0(ω) is then applied transversely (along ẑ). If U0(ω) exceeds a certain critical

value Uc(ω) the homogeneous basic state is destabilized against the EC instability. One ob-

serves a common convection roll pattern whose periodicity in the x, y plane is characterized

by the critical wave vector qc(ω). Due to the associated periodic out-of-plane modulation

of the director (nz 6= 0) in EC the nematic layer acts as an optical grating, such that the

patterns are easily visualized.

Though there exists some analogy of EC to isotropic thermal Rayleigh-Bénard convection

(RBC), the present system is generically anisotropic in the plane of the nematic layer. As a

consequence, the angle between qc and the preferred x-axis is small and in most cases even

zero for moderate ω.

The richness of the various EC scenarios derives from the fact that the ac frequency ω

serves as an important second control parameter. Apart from the ω-dependence of qc and

Uc, also certain time-symmetries of the convection patterns and their secondary instabilities

with increasing voltage depend on ω. A big advantage is that the characteristic times in

EC are typically short, which allows to record the pattern dynamics during relatively short

measurements. Furthermore one can easily achieve large aspect ratios in experiments, i.e.,

the horizontal extension of the patterns is much larger than the roll diameter. In fact one

may observe quasi-uniform roll patterns of up to 500 rolls. Consequently it is safe to use in

the theoretical analysis periodic boundary conditions in the plane of the nematic layer. That

leads to essential simplifications by switching from position to Fourier space with respect to

the horizontal spatial coordinates.

2



A full theoretical description of EC starting from the well accepted nemato-hydrodynamic

equations (see, e.g., [4–6]), which describe the intricate coupling of the electric field E, of

the director n and of the flow field v, is highly demanding. Compared to isotropic RBC one

has to deal with quintic nonlinearities and with the time dependence of the applied voltage,

apart from the additional director field. Furthermore the primary roll patterns show already

quite near to the EC onset secondary and tertiary bifurcations to complex spatio-temporal

planforms, characterized for instance by a persistent generation and annihilation of defects

like dislocations or grain boundaries. The various nematics differ in their material parameters

(e.g., electric conductivities, dielectric constants), which may also have a considerable impact

on the pattern morphology. In this paper we concentrate exclusively on the material MBBA

(N-4-methoxybenzylidene-4-butylaniline). Already in the past it has been used in many

experimental and theoretical EC studies, in particular since the MBBA material parameters

are fairly well known.

Our theoretical analysis of EC starts as usual with the determination of the critical

properties, Uc(ω), qc(ω), at onset of convection. Then we construct an exact ‘Galerkin’

stability diagram of the resulting roll patterns in the ω−U0 plane. The calculations make use

of specific series expansions, which are adapted to the assumed periodic boundary conditions

of E, n, v in the x, y plane and to the vertical boundary conditions at z = ±d/2, where for

instance v has to vanish.

The main theme of the present work is the description of the complex dynamics of the

pattern that develop at the stability boundaries of the stability diagram. The crucial point is,

that the theoretical analysis of the nemato-hydrodynamic equations (NHE) can be substan-

tially simplified by reducing them to a system of partial differential (amplitude) equations

in the horizontal coordinates; a general discussion of this procedure is for instance found in

[7, 8].

The first amplitude equations for EC have been presented in [1], which reflect clearly the

anisotropy of the system. Even the complex dynamics of topological defects (dislocations)

in the roll pattern has been assessed [9, 10]. Later investigations have concentrated on

the proper description of the important secondary instabilities in EC in the form of long-

wavelength modulations of the roll orientations, which have been first described in RBC

(see, e.g., [11]). Such instabilities are reinforced by an induced flow field component with

vertical vorticity associated with any roll curvature, which has thus been incorporated into
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the amplitude equations in [12] (for the analogous approach in RBC, see [13]). Even these

generalized amplitude equations were still incomplete as demonstrated clearly in [14]. The

key result was, that a twist distortion of n in the form of a homogeneous rotation (i.e.,

independent of x, y) in the plane opens a novel route for a destabilization of rolls in the

weakly nonlinear regime. This leads to the so called abnormal convection rolls, whose

director field contains not only the usual, in x, y periodic, out-of-plane distortion nz 6= 0,

but also the finite twist component ny. For completeness, it should be mentioned, that the

study of thermally driven roll patterns in planar nematics has revealed clear analogies to

EC patterns (see, e.g., [15]). Thus it is not surprising, that homogeneous director modes are

also important in this system [16].

To describe the abnormal rolls and their instabilities, it was necessary to generalize the

amplitude equations further by including the twist mode. This task was accomplished in

[15], where a first version of the resulting system of three coupled amplitude equations (CAE)

was presented. In the present paper we have derived a more general version of the CAE, by

which many features of our exact Galerkin stability diagram analysis are well reproduced;

this serves as a first important test of the reliability of the CAE approximation of the full

NHE.

To validate the CAE concept in further detail, the EC instability has been systemati-

cally studied in new experiments with MBBA. When varying frequency and amplitude of

the applied ac voltage, one is confronted with a number of different complex experimental

convection patterns, which match surprisingly well the corresponding numerical simulations

of the CAE.

The paper is organized as follows. In section II we discuss briefly the underlying nemato-

hydrodynamic equations and the methods to calculate from them the convection roll patterns

and their stability. In section III the experimental setup, which was used for our new

experimental studies, is briefly sketched. The Galerkin stability diagram of rolls near onset

is discussed in Sec. IV. Section V is devoted to the derivation and the discussion of the CAE.

Selected simulations of the CAE together with a detailed comparison with the experiments

are presented in Sec. VI. The paper concludes with some final remarks in Sec. VII. In an

Appendix we list the material parameters of MBBA together with the coefficients of the

amplitude equations as used in this paper.
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II. THEORETICAL ANALYSIS OF EC

The nematic fluids used in EC experiments contain a small amount of mobile ions (either

associated with the production process or brought in by doping) which leads to a very small

electric conductivity of the scale σ0 typically between 10−9 (Ω m)−1 and 10−7 (Ω m)−1. Due

to uniaxial symmetry of nematics all constitutive equations are of tensorial nature. Thus

the electric current density j and the dielectric displacement D are related to the electric

field E as follows:

j = σ0σE , D = ǫ0ǫE , (1)

with the dimensionless tensors σ (electrical conductivity), ǫ (dielectric permittivity) and

the vacuum permittivity ǫ0 = 8.8542×10−12 A s/(V m). The electric field is represented as:

E(x, y, z, t) = E0 cos(ωt)ẑ −∇φ(x, y, z, t) , E0 =
√
2U0/d , (2)

where the electric potential φ describes the correction of the applied electric ac field ∝ E0

inside the nematic layer in the presence of convection.

As standard for any substance with uniaxial symmetry the components of the tensors σ

and ǫ are represented in terms of the director components ni with i = x, y, z as follows:

σij = σ⊥δij + σaninj , ǫij = ǫ⊥δij + ǫaninj . (3)

The strength of the anisotropies is quantified by the dimensionless parameters σa = σ‖−σ⊥

and ǫa = ǫ‖ − ǫ⊥. For instance when E, j ⊥ n the conductivity is given as σ0σ⊥ while for

E, j ‖ n, it is given as σ0σ‖. The signs of σa, ǫa, which can be both positive and negative for

the various nematic materials, play a key role to understand the possible driving mechanism

for EC (see, e.g., [3]); for MBBA one finds σa > 0, ǫa < 0. Since flexoelectric effects (see,

e.g., [17]) turn out to be unimportant we use a simplified version of the general NHE, the

so called standard model [1], where the potential φ is determined by the Maxwell equations

in the quasi-static approximation (charge conservation).

The velocity field v is determined by a (generalized) Navier-Stokes equation in the pres-

ence of the volume force ρelE with the charge density ρel = ∇ ·D. The anisotropic stress

tensor depends in a complicated manner on v, n and their gradients. Five independent

viscosity coefficients αi, i = 1 . . . 5 come into play, which are of the order of α0 = 10−3 Pa s.
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The dynamics of the director n is governed by the balance of electric, viscous and orienta-

tional elastic torques on the director. The latter depend on three additional elastic constants

kii, i = 1 . . . 3 of the order of k0 = 10−12 N.

A. Non-dimensionalization of the basic equations

The number of parameters appearing in the standard model can be reduced to some extent

by introducing suitable dimensionless quantities. Lengths are measured in units of d/π, time

in units of the director relaxation time τd = α0d
2/(k0π

2), the elastic constants in units of

k0 and the viscosity coefficients in units of α0. It turns out that the dimensionless ratio

Q = τd/τq plays an important role, where τq = ǫ0ǫ⊥/(σ0σ⊥) denotes the charge relaxation

time. For large Q the conductivity scale σ0 appears only in the dimensionless frequency

parameter ω′ = ωτq, which also simplifies considerably the interpretation of the experimental

data. Large Q require obviously fairly large values of d together with not too small σ0.

Since a direct measurement of σ0 in convection cells is not trivial, σ0 is typically used as

fit parameter to match the frequency scale in theory and experiments. For convenience we

have listed all material parameters of the nematic MBBA in Appendix A where one finds

also the values of τd, τq to be used in this paper. The main control parameter U0 is typically

parametrized by the dimensionless quantity R or by the relative distance ε to the onset of

convection, which are defined as follows:

R =
ǫ02U

2

0

k0π2
, ε =

R− Rc

Rc

with Rc =
ǫ02U

2

c

k0π2
. (4)

B. EC roll solutions and their stability

In general the roll solutions of the NHE are determined using Galerkin methods. The

spatial periodicity of all fields with respect to the x, y coordinates, which is governed by a

wave vector q = (q, p), is captured by 2D Fourier series. With respect to the z-dependence we

expand into complete sets of functions which fulfill the boundary conditions at the confining

plates (z = ±d/2). Here the director is parallel to the x-direction, while the induced

electrical potential φ as well as the velocity field v have to vanish there. For instance we
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use for the z-component of n the following expansion

nz(x, z, t) =
K
∑

k=−K

M
∑

m=1

nz(q, t; k,m) exp(i k q · x)Sm(z) , (5)

with Sm(z) = sin[mπ(z/d+1/2)] and x = (x, y). Analogous truncated series expansions are

used for φ, for v and for nx, ny. In this way the NHE are mapped to a system of coupled

ordinary differential equations (ODEs) in time t for the respective expansion coefficients.

The standard analysis of these equations in the linear regime shows that steady nontrivial

spatially periodic roll solutions with wave vector q exist only when the control parameter

R [Eq. (4)] fulfills the condition R > R0(q) with so called neutral surface R0(q). The

minimum ofR0(q) with respect to q defines the critical wave vector qc and the critical control

parameter Rc = R0(qc), meaning that the basic homogenous planar state undergoes at

R = Rc the EC convection instability. It turns out, that both Rc and |qc| are monotonically

increasing functions of ω. Returning from Rc, qc to physical units the critical rms voltage

U0 = Uc would vary between 10 V and 100 V and |qc| ∼ O(1/d), respectively. The bifurcation

to EC at R = Rc is supercritical, i.e., steady roll solutions exist only for R & Rc, i.e., for

positive ε = (R− Rc)/Rc [Eq. (4)].

To determine the roll solutions in the case of purely sinusoidal ac driving voltage as

assumed in this paper it is convenient to expand in addition all expansion coefficients like

nz(q, t; k,m) in Eq. (5) as truncated Fourier series in time as follows:

nz(q, t; k,m) =
N
∑

n=−N

n̂z(q;n, k,m) exp(i n ωt) . (6)

In principle we should also envisage a subharmonic response of our parametrically driven

system by summing in Eq. (6) over half integers n/2 as well. This possibility is in particu-

lar realized when the applied voltage is characterized by two different frequencies [18, 19].

However, for pure sinusoidal ac voltage the ansatz Eq. (6) turns out to be sufficient as the

consequence of special symmetries of the NHE with respect to a time shift by half period

π/ω in combination with the reflection z → −z.
At the end, the NHE are mapped to a system of nonlinear algebraic equations for the

expansion coefficients n̂z(q;n, k,m) in Eq. (6) and the corresponding ones for the other fields,

which is solved by the Newton-Raphson method. The tedious mapping procedure has been

fully automatized using Mathematica to produce finally a number of Fortran codes, which
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are exploited in this work. Compared to previous calculations (see, e.g., [15]) the numerical

effort has been substantially reduced. In particular the annoying quintic nonlinearities of

the original NHE could be replaced by cubic ones by introducing certain products of director

components as new auxiliary variables.

We are interested in the stability diagram of rolls with q = qc, i.e., in the regions in the

ω − ε plane where the rolls are stable. For that purpose the coupled ordinary differential

equations for the time-dependent expansion coefficients like nz(qc, t; k,m) in Eq. (5) are

linearized about the respective roll solutions in terms of their linear perturbations. Thus one

arrives at a set of linear ODEs with time-periodic coefficients which are solved with the use

of a standard Floquet ansatz. For instance the perturbation δnz(qc, t; k,m) of nz(qc, t; k,m)

is thus represented as:

δnz(qc, t; k,m) = exp(σt) exp(i s · x)
N
∑

n=−N

δn̂z(qc;n, k,m) exp(i n ωt) . (7)

with the Floquet vector s. In this way we arrive for fixed qc(ω) at a linear eigenvalue problem

with a set of eigenvalues σj(ε, s), j = 1, 2, . . . where Re(σ1) & Re(σ2), . . . . Next we define

a function ε0(s), such that for each s the smallest ε, which solves Re[σ1(ε, s)] = 0 is given

as ε = ε0(s). Consequently the primary rolls become unstable at the minimum s = s0 of

ε0(s), i.e., at εinst = ε0(s0). Important features of the EC stability diagram are governed by

long-wavelength instabilities with |s0| ≪ qc. They are expressed as slow spatial modulations

of the rolls patterns, which have been thoroughly studied before in RBC (see, e.g., [11]). The

special case s0 ⊥ qc is known as the zig-zag (ZZ) instability, whereas the skewed varicose

(SV) instability stands for the more general case of an arbitrary angle between s0 and qc.

These instabilities are reflected in the average 〈nz(x)〉 of nz(x, z, t) with respect to z and t

which is for ε & εinst well approximated by:

〈nz(x)〉 = A cos(q · x)[1 +B sin(s0 · x)] with A ∝
√
ε , B ∝

√
ε− εinst . (8)

The in-plane rotation or ‘twist’ of the director gives rise to the additional destabilization

mechanisms. The corresponding perturbation δny has a finite time average and is even in z.

III. EXPERIMENTAL SETUP

In this paper we refer mainly to new systematic experiments with the nematic liquid

crystal MBBA (TCI Co.). To work in a convenient range of ac frequencies up to f ∼ 1000 Hz
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the material was weakly doped with tetra-ethyl-ammonium chloride. The nematic is then

filled into a commercially available cell (EHC Co., Japan) with ITO electrodes, which are

coated with rubbed polymer coatings to provide the planar alignment of the nematic. The

cell thickness was d = (25±1) µm and the temperature of the cell was kept at (26±0.1) ◦C,

which is well adapted to the material parameter set listed in Appendix A. The sinusoidal

voltage U(t) =
√
2U0 sin(ωt) applied to the cell was provided by an Agilent 33220 waveform

generator and a Tabor 9200 voltage amplifier. To determine the onset of convection the

value of U0 is slowly increased at fixed ω. Typically we changed the voltage every 3− 5 min

by steps between 0.01 − 0.1 V. To map out the whole stability diagram and to study the

patterns above EC threshold the waiting time between successive voltage steps has been

increased to 10− 30 min, such that transient dynamical processes would have died out.

The EC patterns act as an optical grating, which allows their detailed exploration by

shining light through the convection cell (for a most recent theoretical analysis, see [20, 21]

and references therein). The light coming from an illuminator passes a polarizer before

entering the cell and an analyzer above the cell. We used two different optical setups (O1,

O2) to enhance the impact of specific director components to the pattern images.

(O1) Both the polarizer and the analyzer are oriented parallel to the initial planar director

orientation (‖ x̂). This geometry is in particular sensitive to the out-of-plane distortion, nz,

of the director field, which is exploited in the standard shadowgraph analysis of EC patterns.

In this way the basic periodicity of the roll patterns bifurcating at onset of convection, i.e.,

at R = Rc with wave vector qc = (qc, 0), is immediately visible. For R > Rc one easily

observes amplitude and phase modulations in these patterns, which can be traced back to

the secondary long-wavelength instabilities of rolls described in Sec. II.

(O2) The polarizer is oriented perpendicular to the initial planar director orientation,

while the analyzer remains parallel to it; furthermore an additional quarter-wave plate is

placed between the cell and the analyzer. This geometry is in particular sensitive to the

identification of the nx, ny components of the director, i.e., to the in-plane twist of the

director [22–24], and thus to the spatial variations of the twist amplitude ϕ ∝ arctan(ny/nx).

The EC patterns are visualized with a Zeiss Axio Imager A1m polarizing microscope

together with a Zeiss HAL 100 halogen white light illuminator. The resulting images were

recorded by an Optronis CL600x2 camera with a spatial resolution of 512×512 pixels and

256 gray levels. All images were normalized to a background image taken slightly below
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onset of electroconvection to minimize the effects of inhomogeneities in the optical system

and in the experimental cell.

IV. ELECTROCONVECTION STABILITY DIAGRAM FOR MBBA

In the following we discuss the stability diagram of EC rolls for MBBA (see Appendix A)

near onset of convection in the ω − R plane. The calculation makes use of the theoretical

tools introduced in Sec. II according to which the number of the algebraic equations to be

solved is determined by the truncation parameters M , N , K for instance in the ansatz for

the director component nz [Eq. (5)]. Their values used for the different calculations in this

paper will be explicitly given, where we made sure that increasing these values does not lead

to visible modifications in the graphical presentations of our theoretical results. It will be

demonstrated, that our system is in fact characterized by a large value of Q = τd/τq, such

that ω appears only in the form ω′ = ωτq (see Sec. IIA).

To determine the onset of convection (Uc, qc) the cutoffs K = 1, M = 4, N = 1 have

been used. We find for all ω only a bifurcation to normal rolls at R = Rc with qc ‖ x̂ where

ny ≡ 0. A closer look reveals, however, two roll types. For ω . ωc, with the cutoff-frequency

ωc, in the so-called conductive regime, the time average of nz(x, z, t) [Eq. (5)] vanishes in

leading order. This means that n̂z(qc;n = 0, k = m = 1) in Eq. (6) is finite whereas

n̂z(qc;n = 1, k = m = 1) = 0. For ω & ωc in the so-called dielectric regime nz(x, z, t)

oscillates with the ac frequency, which implies finite expansion coefficients n̂z(qc;n = 1, k =

m = 1) while n̂z(qc;n = 0, k = m = 1) = 0. In this paper we will restrict ourselves to

the conductive regime. The resulting curves for Uc and qc as function of the dimensionless

frequency ω′ = ωτq are shown in Fig. 1 where ω′
c = 2.3. In the experiments we find ωc = 2πfc

with fc ≈ 980 Hz, which yields ω′
c = 2.3 as well by using τq ≈ 0.37× 10−3 s (corresponding

to σ0 = 1.25 × 10−7 (Ω m)−1 ≡ σexp), as fit parameter. Inspection of all the experimental

data for Uc, qc in Fig. 1 shows their excellent agreement with the theory in the whole ω′

range. In the following we will hold on σexp to characterize in general the conductivity scale

of MBBA in the experiments, which leads indeed to large Q ≈ 170 (see Appendix A).

For completeness it should be mentioned that our analysis does not cover the case of

very small ω of the order of 10−3 s−1, where ωτd becomes small. In this case the director

dynamics looks spiky [25, 26] and one would need many Fourier modes in time (N ≫ 1) to
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resolve it. Thus we exclude in this paper very low ω at all.
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FIG. 1. Critical rms voltage Uc and critical wave number qc for MBBA as function of ω′ = ωτq in

the conductive regime from theory (solid lines) in comparison with experimental data (circles).

The stability diagram of normal EC rolls with wave vector qc = (qc, 0) ‖ x̂ in the ε − ω′

plane is shown in Fig. 2 for the same material parameters as in Fig. 1 and for the cutoff

parameters K = 3, M = 4, N = 2. First, the normal roll solutions in the nonlinear regime

with ε > 0 are calculated following the procedure sketched in Sec. II B. Above the line

ε = εAR they become unstable against a homogeneous rotation of the director in the plane.

Consequently the stability boundaries in Fig. 2 for ε > εAR refer always to the resulting

abnormal roll solutions with a finite ny component.

In the lower gray-shaded regions for ω′ < ω′
C2

≈ 1.15, where ω′
C2

defines a kind of

codimension-2 point, the normal rolls are destabilized already for ε < εAR against the long-

wavelength zig-zag (ZZ) instability discussed after Eq. (7). For ε > εAR the basic abnormal

rolls remain unstable against a skewed-varicose (SV) instability until the restabilization line

ε = εARst is crossed. The angle between the Floquet vector s0 and qc is here about 70◦ and

thus slightly smaller then 90◦ for the zig-zag instability. Increasing ε further the abnormal

EC rolls remain stable until the so called bimodal instability line ε = εBV . Here the rolls

become unstable against convection rolls with a wave vector q with |q| = O(qc) including a
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FIG. 2. Stability diagram for normal rolls in MBBA in the ω′ − ε plane for the same parameters

as in Fig. 1.

finite angle with qc. This instability will not be discussed in this paper; some details can be

found in [15].

The stability diagram of EC rolls changes qualitatively for ω′ > ω′
C2
. For frequencies

ω′ & ω′
C2

the abnormal rolls bifurcating at ε = εAR loose stability against the bimodal

instability as already discussed for ω′ < ω′
C2
, while for larger ω′ a long-wavelength skewed

varicose instability at ε = εSV takes over.

The main features of the phase diagram shown in Fig. 2 for MBBA are similar to those

shown in Fig. 3 in [14] for the nematic Phase 5. The main difference is that here the primary

bifurcation at small ω′ is towards oblique rolls, where qc and x̂ include a finite angle.

V. AMPLITUDE EQUATIONS

Amplitude equations have been proven in general to be a very convenient tool to describe

roll patterns and their stability near a convection instability [7]. The main idea is to make use

of a separation of length and time scales near ε = 0. By suitable techniques fast variations

in space and time are projected out to arrive at equations that describe the physics on the
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slow length scales of the order 1/(
√
εqc) in space and of the order τd/ε in time.

As already described in the introductory section I the complete description of EC in the

weakly nonlinear regime needs three coupled amplitude equations for the roll amplitude A,

a vorticity potential G and a quantity ϕ associated with in-plane rotations of the director

field. Following closely the procedure discussed in [15], the CAE read as follows:

τ0∂tA = ε(A− ie1∂xA− e2∂
2

xA− e3∂
2

yA) + r1∂
2

xA+ r2∂
2

yA− |A|2A

− ia1|A|2∂xA− ia2A
2∂xA

∗ − a3|A|2∂2xA

− a4A
2∂2xA

∗ − a5|A|2∂2yA− a6A
2∂2yA

∗

− is1A∂yG− s2A∂x∂yG

− ib1A∂yϕ− ib2ϕ∂yA+ b3ϕ∂x∂yA+ b4A∂x∂yϕ

− β1Aϕ
2 + iβ2Aϕ∂xϕ+ β3ϕ

2∂2yA ,

(9a)

0 = (νa∂
2

x + νb∂
2

y)G+ q1∂x∂y|A|2 + iq2∂x(A∂x∂yA
∗ − c.c.)

+ iq3∂y(A
∗∂2xA− c.c.) + iq4∂

2

y(A
∗∂yA− c.c.) + ΓG∂

2

y(|A|2ϕ) ,
(9b)

∂tϕ = σTϕ+K3∂
2

xϕ+K1∂
2

yϕ+ Γϕ|A|2ϕ− gϕϕ
3

− γ1(A
∗∂x∂yA+ c.c.) + iγ2(A

∗∂yA− c.c.) .
(9c)

Here c.c stands for complex conjugate. Compared to [15] the present formulation of the CAE

[Eq. (9)] contains additional derivatives with respect to x. These are for instance needed

to capture the SV instabilities of rolls, which have been identified before in the Galerkin

stability analysis (see Fig. 2).

The numerical values of the coefficients of Eq. (9) have been calculated for MBBA along

the lines explained in [12, 15]; for some selected frequencies they are listed in Appendix B.

The extensive use of Mathematica was again crucial to perform the tedious but in principle

straightforward manipulations. Our CAE are considered to be a kind of minimal description

of planar EC in the weakly nonlinear regime with respect to the stability of the rolls and

the patterns that develop in the ensuing unstable regimes.

It is certainly worthwhile and clarifying to give a more detailed interpretation of the

fields A, G, and ϕ appearing in the CAE. The complex pattern amplitude A(x, t) describes

the spatial variations of the rolls in the horizontal plane together with their dynamics. By

multiplying A with exp(iqcx) the original fast scale variations are restored. The resulting
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quantity is proportional to the z-average 〈nz(x, t)〉 of the out-of-plane component nz(x, z, t)

of the director field, i.e.,

〈nz(x, t)〉 ∝ Re[A(x, t) exp(iqcx)] . (10)

which governs according to [20, 21] in a first approximation the standard shadowgraph pic-

tures of the patterns recorded with the geometry O1 discussed in Sec. III. Using the general

decomposition A(x, y, t) = |A| exp[iψ(x, y, t)] it is obvious that a finite value of (∂x, ∂y)ψ de-

scribes spatial modulations of the wave vector qc = (qc, 0) of an ideal roll pattern, whereas

spatial variations of |A| are directly reflected in amplitude modulations. In this context a

zero point (x0, y0) of A(x, y, t) corresponds to a dislocation in the striped roll pattern when

the circulation of (∂x, ∂y)ψ around (x0, y0), the so called topological charge of the point

defect, has the value ±2π. The importance of point defects in the EC pattern dynamics has

been emphasized in earlier studies (see, e.g., [9, 12]). The amplitude A is coupled to the

vorticity potential G(x, y, t), which is not directly accessible in experiments. The point is

that any distortion of the perfect roll pattern with wave vector qc, i.e., spatial variations in

A, leads to a toroidal flow field of the form V (x, y, z, t) = [z2 − (d/2)2]{∂y,−∂x, 0}G(x, y, t)
and thus to a vertical vorticity field (rotV )z ∝ (∂xx + ∂yy)G. To derive the equation for

the in-plane rotation of n we had to project, in line with [15], the director equations on the

leading mode ny(x, y, z, t) = ϕ(x, y, t) cos(πz/d). To visualize the dynamics of ϕ in space

and time, which is barely reflected in standard shadowgraphy, one needs the special optical

setup O2 discussed in Sec. III.

As a first test of the CAE, we recalculate the stability diagram of rolls near onset. Normal

rolls are described by the constant solutions A = A0 =
√
ε and ϕ = 0. It is easy to see, that

at ε = εAR = |σT |/Γϕ this solution becomes unstable against a ϕ perturbation. Thus the

normal rolls are replaced by the abnormal roll solutions A = A0, ϕ = ϕ0 of Eq. (9) which

read as follows:

A0 =

√

β1|σT | − gϕε

β1Γϕ − gϕ
, ϕ0 = ±

√

Γϕε− |σT |
β1Γϕ − gϕ

, ε ≥ εAR . (11)

Since the amplitudes A0 and ϕ0 are constant we have G ≡ 0. To analyze the stability of

these solutions against long-wavelength instabilities with wave vector s = (sx, sy) we insert

the ansatz A = A0 + δA, ϕ = ϕ0 + δϕ, G = δG with

δA = (a1e
is·r + a2e

−is·r)eσt , δϕ = ϕ1(e
is·r + e−is·r)eσt , δG = g1(e

is·r + e−is·r) (12)
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into the CAE [Eq. (9)] and keep only the linear terms δA, δG, and δϕ. It is easy to see,

that one arrives at a 3 × 3-eigenvalue problem in terms of the coefficients a1, a2, and ϕ1

in Eq. (12) which yields the ‘nonlinear growth rate’ σ = σ(s). Obviously σ > 0 indicates

an instability of the constant solutions A0, ϕ0 of Eq. (11). Note that ε appears directly

as a parameter in Eq. (9a) for the roll amplitude A, whereas ω comes in via the frequency

dependence of the coefficients (see Table I).
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FIG. 3. Stability diagram for normal rolls in MBBA in the ω′ − ε plane in the framework of the

CAE.

Comparison of the resulting approximate CAE stability diagram in Fig. 3 and the exact

Galerkin one in Fig. 2 shows that they fit each other fairly well. This applies in particular to

the transition line εAR(ω
′) to abnormal rolls and to the characteristic grey-shaded instability

regime of the rolls for not too large ω′.

A closer look at the CAE stability analysis shows, that the ZZ instability exists only if the

particular parameter combination δΓ = s1ΓG/νb − b1Γϕ/|σT | of the ω-dependent coefficients

of Eq. (9) is positive. Thus the condition δΓ = 0 was used to determine ω′
C2

≈ 1.28 within

the CAE approximation, which is slightly larger than the Galerkin value ω′
C2

= 1.15 given

in Sec. IV. The main discrepancies between the exact Galerkin and the CAE results are

observed for ω′ > ω′
C2
. In the Galerkin stability diagram (Fig. 2) the SV destabilization line
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εSV starts bending up at about ω′ = 1.4 and would further increase when decreasing ω′. But

this has no relevance for the stability diagram since the bimodal instability line εBV takes

over. The latter mechanism is not covered by the CAE and thus in Fig. 3 only the strongly

rising εSV line has survived. Such quantitative deviations mainly at larger ε are expected

to become smaller by keeping additional gradient terms and to go beyond the cubic terms

in the CAE. But striving for quantitative agreements for larger ε is in general outside the

scope of amplitude equations as a means to explore pattern forming systems.

In the following Sec. VI numerical simulations of the CAE [Eq. (9)] are compared with

corresponding experimental results. Here the lengths (x, y) are measured in units of d/π

and the time t in units of τd (see Appendix A). For simulations ‘Ginzburg-Landau (GL)

rescalings’ of the CAE are convenient. They depend then on the dimensionless variables

X, Y in space, on T in time and on the rescaled amplitude A′, which are defined as follows:

A =
√
εA′ , x =

√

r1/εX , y =
√

r2/εY , t = (τ0/ε)T . (13)

The so called GL correlation lengths
√
r1 >

√
r2 and the GL correlation time τ0 depend on

ω′ and are given in Table I for the frequencies discussed in this paper. For ω′ = 1, ε = 0.1

and d = 25 µm we see for instance that the critical wavelength λc(ω
′) = (2π/qc(ω

′)(d/π)

corresponds to ∆X ≈ 0.1 and a time interval of 1 s to ∆T ≈ 1.1.

VI. SIMULATIONS AND COMPARISON WITH EXPERIMENTS

In the standard experiments ε is slowly increased at fixed ω (for more details, see Sec. III).

Thus one identifies the various destabilization mechanism and gets insight into the pattern,

that develop after an instability. To investigate them in theory we consider the use of CAE

to be at the moment the only feasible way.

The rescaled CAE (see the previous section) are integrated on a suitably chosen square

with side lengths LX = LY in the X, Y plane. Since we use periodic boundary conditions,

the calculations are performed in Fourier space; the nonlinearities are treated by pseudo-

spectral methods, whereby extensive use of FFT (fast Fourier transformation) methods is

made. We use typically a 256× 256 grid with the same grid size ∆Q in the X, Y -directions

determined by the condition LX = LY = 2π/∆Q. This square corresponds in the physical

x, y plane [see Eq. (13)] to a rectangle of side lengths lx, ly with lx/ly =
√

r2/r1, which are
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given in units of λc below. Note that according to Table I qc, r1, r2, depend on ω′.

The results of the simulations are visualized as gray scale pictures of |A(X, Y )| and

ϕ(X, Y ), where maxima are mapped to ‘white’ and minima to ‘black’. To compare our simu-

lations directly with experiments we have in general to return to the physical spatial variables

x, y with use of Eq. (13). In the following we will in particular visualize Re[A(x) exp(iqcx)]

[Eq. (10)]. The resulting, so called fast-scale-A (fs-A), pictures represent well experimental

shadowgraph pictures, recorded with the optical setup O1. In contrast, ϕ(x, y) is directly

accessible in experiments via the setup O2. To make the fs-A structures in the x, y plane

better visible, we cut out smaller rectangles of side lengths Lc
X < LX , L

c
Y < LY from the

original pictures of |A|(X, Y ), ϕ(X, Y ), where we choose Lc
X/L

c
Y =

√

r2/r1. These cutouts,

which are marked by rectangular frames in the figures below, transform thus according to

Eq. (13) to squares in the x, y plane with side lengths lcx = lcy. Counting the number nr of

the roll pairs in the fs-A pictures, i.e., the number of white (or black) stripes, allows imme-

diately to assess the physical size of a cutout via lcx = lcy = nrλc. A quantitative agreement

between theory and experiment is not to be expected, as apart from the complicated optics

involved in shadowgraphy [20, 21] the experimental pictures are typically digitally processed

to enhance their contrast.

A. Frequency regime ω′ < ω′
C2

At first we will concentrate on frequencies ω′ < ω′
C2
, where the normal rolls become ZZ

unstable at ε = εZZ (see Figs. 2 and 3). In our CAE simulations for this regime the ZZ-

instability leads in general for ε & εZZ to slow undulations of the rolls along their axes as

predicted in Eq. (8). At larger ε the undulations develop then into the so called zig-zag

patterns in the form of alternating domains of oblique rolls with wave vectors q = (qc,±p),
which are separated by sharp walls. This general scenario has been already observed in

fairly old experiments [27–30].

To clarify the details of the ZZ destabilization process of rolls we discuss in the following

representative simulations for the frequency ω′ = 1 < ω′
C2

on a square with side lengths

(lx, ly) = (250, 115)λc in physical space. For ε < εZZ(≃ 0.084) we arrive indeed at stable

normal roll patterns (not shown) when starting the simulations of the CAE with random

initial conditions. For ε slightly above εZZ the regular smooth undulations of the rolls along
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a b

FIG. 4. Transient zig-zag pattern clearly visible in a fs-A picture (Re[A(x, y) exp(iqcx)]) (a) and

the modulus of the roll amplitude |A(X,Y )| (b) for ω′ = 1 and ε = 0.1.

their axis are clearly visible in the fs-A picture in Fig. 4a. In Fig. 4b we show |A(X, Y )|.
Here the white horizontal lines indicate maxima of |A|. They correspond to lines of ϕ = 0,

which separate horizontal domains with twist-field ±ϕ [see Eq. (11)]. During the temporal

evolution of the undulated roll structure we observe a complicated transient defect dynamics.

Here point defects in the form of zeros of |A(X, Y )| [as already discussed in more detail after

Eq. (10)] play an important role. In the experimental roll pattern zeros of A appear as

dislocations. This is evident by concentrating on the two dislocations inside the ellipse with

the ratio
√

r1/r2 of the major and minor axis in the lower part of Fig. 4a, which corresponds

to the circular region in Fig. 4b. At later times the two point defects in the circular region

with opposite topological charges will annihilate each other and the two adjacent white lines

will coalesce, such that eventually a regular undulated roll pattern will cover the whole

integration domain.

a b

FIG. 5. Quasistationary fs-A zig-zag pattern (a) and the corresponding twist-field ϕ (b) for ω′ = 1

and ε = 0.12.

For ε > εAR ≃ 0.11 the undulations develop into zig-zag patterns as shown in Fig. 5a
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a b

FIG. 6. Experimental snapshots for ω′ = 1 and ε = 0.12, above threshold of zig-zag instability:

optical geometry O1 (a) and optical geometry O2 (b). The image size is 800 µm × 800 µm.

for ε = 0.12, where zig- and zag-domains alternate along the y-direction. The final pattern,

which has developed after about T = 2× 104 (∼ 4.2 h in physical units) is stationary. Note

that this process takes typically a much longer time in our deterministic simulations than in

experiments in the presence of imperfections of the cell and thermal noise. Inspection of the

corresponding twist-amplitude ϕ(X, Y ) (Fig. 5b) demonstrates, that the zig- and zag-regions

correspond indeed to the white (black) regions with ϕ > 0 (ϕ < 0); the framed rectangular

cutout in Fig. 5b has been used to construct the fs-A pattern in Fig. 5a. The results of the

simulations are very well confirmed by the experimental quasi-stationary zig-zag pattern

shown for comparison in Fig. 6. Note that similar pictures of the zig-zag instability of

normal rolls have been observed in the nematic Phase 5 [27].

B. Frequency regime ω′ > ω′
C2

Our main focus in this paper is on the parameter regime ω′ > ω′
C2

of the CAE-phase

diagram in Fig. 3 which has so far attracted less interest in systematic experimental studies.

This regime deserves certainly a more detailed investigation to understand a number of

interesting, complex structures superseded to the EC roll patterns, like regular chains of

defects, line defects and defect-chaotic states, which have been described previously in the

literature [24, 28, 29].

According to Fig. 3 the primary bifurcation of the normal rolls at ε = εAR leads to the

abnormal rolls, which are characterized by a homogeneous in-plane rotation (±ϕ) of the

director. As long as ε < εSV , where the abnormal rolls become unstable against the skewed

varicose instability (see Fig. 3), the simulations show clearly, that the abnormal rolls for
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ε > εAR have the strong tendency to develop in general striped domains with alternating

angles ±ϕ, which are separated by straight walls. It is remarkable that those domains have a

strong preference for a horizontal orientation (perpendicular to the roll axes). This behavior

is documented in a representative example for ω′ = 1.6 at ε = 0.1 (above εAR ≃ 0.074)

in Fig. 7, where the fs-A pattern (panel a) corresponds to the framed cutout of the ϕ-field

(panel b); the full integration domain corresponds to (lx, ly) = (220, 150)λc. Note, that the

two horizontal abnormal roll domains are not reflected in the roll pattern. The pictures

shown in Fig. 7 are in fact not stationary, since the horizontal walls drift globally with a

constant velocity upward in y-direction without any influence on the shape of the domains.

As a typical value for the drift velocity we find vD ≈ 0.055 (≈ 7 µm/s in physical units).

Note that by symmetry reasons the upward or downward drifts are equally possible in our

system; the actual direction is selected by the initial conditions.

a b

FIG. 7. Abnormal fs-A roll pattern (a) and the corresponding twist-field ϕ (b) for ω′ = 1.6 and

ε = 0.1.

Experimental pictures of horizontal abnormal roll domains taken in the two optical ge-

ometries are shown in Fig. 8. Since the contributions to the optical image from out-of-plane

(nz) and in-plane (nx, ny) director distortions cannot be completely separated the horizontal

grain boundary is also visible in Fig. 8a in contrast to Fig. 7a. The horizontal grain bound-

ary between abnormal rolls moves here upward along the roll axis with a drift velocity of

about 8 µm/s.

With increasing ε the walls between the ±ϕ-domains become steeper and the drift veloc-

ities smaller [e.g., vD = 0.013 (1.6 µm/s in physical units) at ε = 0.13]. At about ε = 0.135

the patterns seem to become stationary. Above ε = εSV ≈ 0.142 for ω′ = 1.6 the abnormal

roll patterns like the one shown in Fig. 7 start to become unstable. They show a weakly

chaotic dynamics, which is characterized by a permanent generation and annihilation of
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a b

FIG. 8. Experimental snapshots for ω′ = 1.6 and ε = 0.11, above threshold of abnormal rolls:

optical geometry O1 (a) and optical geometry O2 (b). The image size is 800 µm × 800 µm.

domain walls and dislocations. Figure 9a presents a characteristic fs-A picture which corre-

sponds to the framed cutout in the pictures of the twist-field ϕ and the modulus of the roll

amplitude |A| shown in Figs. 9b and 9c, respectively. The simulations are well confirmed by

corresponding experimental snapshots taken in the two optical geometries O1, O2, which

are shown in Fig. 10. In fact they look also very similar to the experimental Fig. 8(d) in

[29], which was, however, taken at a much higher value of the control parameter ε.

a b c

FIG. 9. Defect chaotic fs-A patterns (a), the corresponding twist-field ϕ (b), and the modulus of

the roll amplitude |A| (c) for ω′ = 1.6 and ε = 0.19.

In the following we study the patterns for ε > εAR at larger ω′. It turns out that at

ω′ = ω′
HV ≈ 1.67 the general morphology of the patterns changes qualitatively. As described

before the ϕ-patterns are characterized in the interval ω′
C2
< ω′ < ω′

HV by horizontal domain

walls running perpendicular to the rolls and separating horizontal stationary ϕ-domains,

where ϕ alternates between the symmetry degenerate states (±ϕ). In distinct contrast we

obtain for ω′ > ω′
HV and ε > εAR typically ϕ-patterns with vertical domain walls running

parallel to the roll axes. The typical scenarios are discussed in the sequel for ω′ = 1.9.
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a b

FIG. 10. Experimental snapshots of chaotic defect patterns for ω′ = 1.6 and ε = 0.2: optical

geometry O1 (a) and optical geometry O2 (b). The image size is 800 µm × 800 µm.

a b c

d e

FIG. 11. Formation of vertical domain walls for ω′ = 1.9 and ε = 0.11: fs-A picture (a), the

corresponding twist-field ϕ (b), and modulus of rolls amplitude |A| (c) after integration time

T = 104. The corresponding pictures, fs-A (d) and ϕ (e) after continuing the simulations by

T = 104.

Figure 11(top) shows for ε = 0.11 > εAR ≃ 0.051 a fs-A roll picture together with the

corresponding pictures of ϕ and of |A|, which have developed after T = 104 (∼ 37 min

in physical units) when starting from random initial conditions. The simulations cover an

area (lx, ly) = (155, 135)λc. A tendency to a vertical wall structure is clearly visible in
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a b

FIG. 12. Experimental snapshots for ω′ = 1.9 and ε = 0.1: optical geometry O1 (a) and optical

geometry O2 (b). The image size is 500 µm × 500 µm.

the |A| picture; in addition the skewed varicose instability of the rolls (εSV = 0.078) is

reflected in dislocations (black points in |A|). Continuing the simulation further by T = 104

the pattern becomes eventually stable against the generation of dislocations leading to the

regular final stationary state of vertical ±ϕ-domains separated by the ϕ = 0 lines (walls) in

Fig. 11(bottom). Typical experimental pictures for this case are shown in Fig. 12 for the

two geometries O1, O2.

As demonstrated by simulations shown in Fig. 13 an increase of ε leads to a destabilization

of the vertical domain structure such that their average width gets smaller. During this

process regular distortions develop along a single domain, which cause eventually its splitting

as clearly visible when concentrating on the time evolution of the second domains on the

left. The details of this process will be elucidated in Fig. 14 by following the dynamics of

|A| in the small framed part in the lower left corner of Fig. 13. Note that the stripes of

maximal |ϕ| (either white or black in Fig. 13) correspond to minima of |A| (black), while the
walls in Fig. 13 (ϕ = 0) appear as white lines (maxima of |A|). Starting with a ϕ-domain

between the vertical white lines in Fig. 14 (picture 0), the skewed varicose instability is

responsible for the periodically modulated shear lines (black lines in the |A|-field) along

the y-direction (picture 1). At their centers a spontaneous generation of dislocation pairs is

observed. Subsequently the defects (black points in the |A|-field) move in opposite directions

to stop at the vertical walls (picture 2). Later the process repeats (picture 3), but the

single dislocations arriving at the walls annihilate with the previous ones. As a consequence

we observe along the center line of the domain a periodic sequence of white closed quasi-

annular patches (picture 4) with increased roll amplitude |A|. In the center of these patches
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the sign of ϕ is opposite to that of the original uniform domain. Subsequently the center

patches contract along the x-direction, the horizontal connection are cut (picture 6) and two

additional domain walls appear (picture 7). The whole process takes only about T = 700

(∼ 2 min in physical units).

a b

c d

FIG. 13. Wall dynamics viewed via twist-field ϕ during the generation of new walls for ω′ = 1.9

and ε = 0.13. The single pictures are shown at times T = 351 (b), 367 (c), and 950 (d) when

starting with picture (a).
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FIG. 14. Time sequence of the defect- and wall dynamics in |A| during the generation of a pair of

new walls for the parameters of Fig. 13. The pictures are shown for the times T = 340 (1), 351

(2), 358 (3), 367 (4), 382 (5), 389 (6), and 700 (7) after the first one (0).
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In essence, it has been demonstrated that the generation of new ±ϕ-domains does not

involve the whole pattern, but is rather concentrated to a single wall. In fact we see the

initial state of a new splitting process again at the right hand side of Fig. 13d. When

increasing ε the domain splitting process continues until only about three rolls belong to a

single domain wall. At ε = 0.17 also this structure is destabilized by the SV process. At

the end we arrive at so called defect lattices a typical example of which is shown in Fig. 15.

It is characterized by a regular sequences of vertical ϕ-domains which contain periodically

repeating walls along the domains (panel b). Each domain (see panel a) contains about

three rolls which are periodically disturbed by short dislocation lines. They are related to

the short horizontal walls in the ϕ-field in panel b.

a b

FIG. 15. Defect lattice in the roll pattern fs-A (a) and the corresponding twist-field ϕ (b) for

ω′ = 1.9 and ε = 0.19.

a b

FIG. 16. Experimental snapshots for ω′ = 1.9 and ε = 0.18: optical geometry O1 (a) and optical

geometry O2 (b). The image size is 500 µm × 500 µm.

For comparison we present in Fig. 16 corresponding experimental pictures of a defect

lattice taken with the optical setups O1, O2. As in the simulations the vertical ϕ-domains

(panel b) demonstrate periodic sequences of short horizontal walls. The corresponding roll
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patterns show also domains with about three rolls (panel a) superseded with short bright

horizontal structures. Note that in the simulations the horizontal structures appear dark

since they are caused by regions of reduced amplitude A. In contrast, they appear bright in

the experiments since light can pass them without strong deflection.

VII. SUMMARY AND OUTLOOK

The good agreement between the theory on the basis of the CAE and the experiment

proves without doubt the reliability of our theoretical approach. It is in any case very useful,

to has visualized not only the convection rolls as standard in EC experiments but also the

director configuration by the special optical setup O2, which was rarely done in the past.

The CAE [Eq. (9)] look certainly very complicated and contain quite a number of coeffi-

cients. Thus it was crucial to calculate those directly from the basic nemato-hydrodynamic

equations, such that our theory does not contain adjustable parameters except the frequency

scale (determined by the fit parameter τq).

In fact, some qualitative features of experimental EC patterns in planar nematics have

been reproduced by numerical simulations of simpler CAE versions. Their construction is

based on symmetry arguments and the coefficients are treated as free parameters. Further-

more the vorticity amplitude G [Eq. (9b)], relevant to describe properly the dynamics of

defects in the patterns, is not included. One example of such simplified CAE can be found

in [31, 32]. Some of the resulting simulation pictures (see in particular Fig. 4.2 in [32]) show

indeed some superficial similarities to ours shown in Sec. VI. We doubt strongly, however,

that this is sufficient for a reliable validation of these simplified CAE. For instance, when

mapping our general CAE to those used in [32], nonrealistic values of the coefficients are

needed. We have to allow for a sign change of b1 in Eq. (9a) at larger ω′, while in Ta-

ble I this coefficient is really always positive and monotonically increasing as function of

ω′. Furthermore, we had to increase our ‘effective elastic constant’ K1 in Eq. (9c) by factor

5− 10.

A different set of quite simple CAE, proposed in [33], is certainly worth mentioning as

well. By an interesting analysis the existence and stability of vertical domains was clearly

proven in this approach, which supports the present simulations of our full CAE.

In near future a more detailed exploration of the CAE solution manifold is planned. For
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instance, one would like to reveal the mechanism responsible for the transition from vertical

walls to horizontal walls. It would be also rewarding to construct more general CAE for a

combined ac and dc driving voltage to provide a theoretical interpretation of oscillating grid

patterns [34] recently observed in experiments.
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Appendix A: Material parameters of MBBA

In the following we list the material parameters for MBBA which have been used for

the theoretical analysis in this paper: dimensionless elastic constants k11 = 6.66, k22 = 4.2,

k33 = 8.61 in units of k0 = 10−12 N; dimensionless electric conductivities σ‖ = 1.5, σ⊥ = 1

in units of σ0; dielectric constants ǫ‖ = 4.72, ǫ⊥ = 5.25; dimensionless viscosity coefficients

α1 = −18.1, α2 = −110.4, α3 = −1.1, α4 = 82.6, α5 = 77.9, α6 = −33.6 in units of

α0 = 10−3 Pa s. Here we have reproduced the data set introduced as MBBA I in [1], which

has been used in a number of papers since (see, e.g., [12, 15, 35]).

In line with the experiments in Sec. III the cell thickness is fixed as d = 25 µm which yields

τd = α0d
2/(k0π

2) = 0.0633 s. An excellent match of the theoretical and experimental values

of Uc(ω), qc(ω) in Fig. 1 is obtained by using σ0 = 1.25 × 10−7 (Ω m)−1 as fit parameter.

Thus τq = ǫ0ǫ⊥/(σ0σ⊥) = 0.372× 10−3 s, corresponding to a Q = τd/τq ≈ 170.

Appendix B: Coefficients of the coupled amplitude equations

In Table I the coefficients of the CAE Eq. (9), calculated for the material parameters given

in Appendix A, are listed for selected dimensionless frequencies ω′ = ωτq; all coefficients

show in general a monotonic dependence on ω′. The calculations are based on the general

formalism presented in [15]; we use four z-modes, three Fourier modes in time [exp(±inωt),
0 ≤ n ≤ 2] and three Fourier modes in x [exp(±ikqcx), 0 ≤ k ≤ 2] to represent the fields

φ, n, v in the NHE [see, e.g., Eqs. (5), (6)]. We have tested that increasing the number of
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modes does not lead to visible modifications of the CAE stability diagram in Fig. 3.

TABLE I: Coefficients in the coupled amplitude equations

(9).

Coeff. ωτq = 0.5 ωτq = 1.0 ωτq = 1.3 ωτq = 1.6 ωτq = 1.9

τ0 1.9929 1.4317 1.0670 0.7167 0.3882

qc 1.5933 1.8081 2.0150 2.3190 2.8195

e1 1.5276 1.3964 1.2761 1.1213 0.9322

e2 -0.0938 -0.146 -0.1758 -0.1820 -0.1251

e3 0.1549 0.0338 -0.0435 -0.1143 -0.1505

r1 0.9127 0.7841 0.6828 0.5621 0.4165

r2 0.0870 0.1657 0.2136 0.2599 0.3066

a1 -2.0205 -1.9760 -1.8665 -1.6794 -1.4258

a2 -0.2818 -0.2654 -0.2266 -0.1615 -0.0793

a3 -0.8905 -0.9486 -0.8949 -0.7728 -0.6392

a4 -0.6358 -0.5572 -0.4818 -0.3889 -0.3035

a5 -0.2519 -0.3300 -0.4072 -0.5302 -0.7769

a6 -0.0103 -0.0630 -0.1005 -0.1494 -0.2398

s1 2.8581 2.3418 1.9601 1.5330 1.0195

s2 2.4493 2.0644 1.7670 1.4296 1.0591

b1 0.1219 0.2551 0.3632 0.5074 0.7312

b2 0.1847 0.4706 0.7023 1.0071 1.4693

b3 0.7318 0.4551 0.3112 0.2121 0.1586

b4 -0.1815 -0.2024 -0.1930 -0.1592 -0.1014

β1 0.2303 0.4587 0.6959 1.0916 1.8842

β2 -0.3560 0.0900 0.3841 0.6860 1.0498

β3 0.8861 1.1119 1.4289 2.0927 3.8605

νa 41.3000 41.3000 41.3000 41.3000 41.3000

νb 23.9500 23.9500 23.9500 23.9500 23.9500

q1 25.3168 28.6833 32.1739 37.5227 46.7913

q2 -17.3895 -17.4692 -17.8390 -18.6265 -20.3171
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q3 -18.8906 -19.2267 -19.5125 -19.7740 -19.9609

q4 3.0407 3.5551 4.2481 5.4752 7.8299

ΓG 30.0423 38.0550 47.2205 63.2443 97.4061

σT -0.0384 -0.0384 -0.0384 -0.0384 -0.0384

K3 0.0788 0.0788 0.0788 0.0788 0.0788

K1 0.0601 0.0603 0.0605 0.0607 0.0608

Γϕ 0.2973 0.3468 0.4088 0.5212 0.7600

gϕ 0.0048 0.0048 0.0048 0.0048 0.0048

γ1 0.1520 0.1500 0.1535 0.1615 0.1759

γ2 0.1202 0.1268 0.1377 0.1583 0.1997
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[26] N. Éber, L. O. Palomares, P. Salamon, A. Krekhov, and Á. Buka, Phys. Rev. E 86, 021702
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