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We investigate flexodomains, which are observed in planar layers of certain nematic liquid crystals,
when a dc voltage U above a critical value Uc is applied across the layer. They are characterized
by stationary stripe-like spatial variations of the director in the layer plane with a wavenumber
p(U). Our experiments for different nematics demonstrate, that p(U) varies almost linearly with
U for U > Uc. That is confirmed by a numerical analysis of the full nonlinear equations for the
director field and the induced electric potential. Beyond this numerical study, we demonstrate
that the linearity of p(U) follows even analytically, when considering a special parameter set first
used by Terent’ev and Pikin [E. M. Terent’ev and S. A. Pikin, Sov. Phys. JETP 56, 587 (1982)].
Their theoretical paper serves until now as the standard reference on the nonlinear analysis of
flexodomains, since it has arrived at a linear variation of p(U) for large U ≫ Uc. Unfortunately the
corresponding analysis suffers from mistakes, which in a combination led to that result.

PACS numbers: 61.30.Gd, 47.54.-r, 64.70.M-

I. INTRODUCTION

In the last decades pattern forming instabilities in-
duced by electric fields in nematic liquid crystals (ne-
matics) have been intensely studied both in theory and
experiments; for a recent review see [1]. Nematics are
anisotropic liquids without translational, but with long-
range orientational order of their elongated molecules.
That order is described by the director field n(r), which
obeys the normalization condition n

2 = 1. The crucial
ingredient for the understanding of electrically driven in-
stabilities in nematics is the uniaxial anisotropy of all
their material parameters, which thus depend on the lo-
cal orientation of n [2]. In the past so called electrocon-
vective instabilities have been mostly studied, where the
electrical conductivity of the nematic liquid crystal plays
an important role. One deals then with dissipative sys-
tems, where the instabilities are associated with charge
separation and flow fields, which are tightly coupled to
n.
In the present paper we concentrate, however, on insu-

lating (dielectric) nematics, where in contrast to dissipa-
tive systems, the thermal equilibrium state corresponds
to a minimum of a free energy. That contains, first, a
term describing the orientational elasticity against direc-
tor variations, characterized by three elastic constants
kii, i = 1, 2, 3. Secondly, there exists a dielectric contri-
bution with two dielectric permittivities, ǫ‖ and ǫ⊥, for
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the electric field parallel and perpendicular to n, respec-
tively. Finally, the so called flexoelectric effect is crucial,
which means that spatial variations of n lead to an elec-
tric polarization (flexopolarization). There is a certain
analogy to piezoelectricity, where mechanical deforma-
tions of various solids produce an electric polarization as
well. The flexopolarization couples to the applied electric
field and gives a contribution to the free energy, which is
characterized by the two flexocoefficients e1 and e3 (for
recent reviews, see [3, 4] and references therein).

In the following, we deal with the so called planar con-
figuration, where a thin nematic layer of thickness d is
sandwiched between two confining plates parallel to the
x, y plane at z = ±d/2. The plates serve two purposes.
First, they are used as electrodes to apply a dc voltage U
to the nematic layer. Secondly, the plates are specially
treated to enforce a fixed orientation of n parallel to the x
axis at the surface. Due to the orientational elasticity of
nematics, this configuration is uniformly present over the
whole layer for zero and small U . However, for certain fa-
vorite combinations of the dielectric constants, the elastic
ones, and the flexocoefficients, one observes instead for
U above a critical voltage Uc the so called flexodomains,
which present a periodic array of the director distortions
along the y direction with wavenumber p [5]. By exploit-
ing the optical anisotropy of nematics, the flexodomains
can be identified by optical means (diffraction, shadowg-
raphy) when light is transmitted through the layer. It
should be noted, that flexodomains can be easily distin-
guished from the intensely examined electroconvection
rolls where n varies periodically in the x direction.

The theoretical analysis of flexodomains is based on
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the exploration of the absolute minimum of the free en-
ergy. For values of U < Uc the minimum corresponds to
the uniform planar basic state and for U > Uc to the flex-
odomains, which continuously bifurcate at U = Uc from
the basic state with the critical wavenumber pc. A de-
tailed analysis of the threshold quantities Uc and pc can
be found in the literature (see, e.g., [6–8]). The main goal
of the present paper is the theoretical description of the
flexodomains in the nonlinear regime for U > Uc, where
the minimal free energy is realized by flexodomains with
wavenumber p = pmin(U).

To our best knowledge, the only theoretical analysis
of pmin(U) has been presented in the paper of Terent’ev
and Pikin [9] for U ≫ Uc. Their study is restricted to
a substantially simplified version of the general equa-
tions, which is characterized by two different aspects.
First, they used a special “isotropic” material parame-
ter set assuming the one-elastic-constant approximation
(kii = kav), equal dielectric permittivities (ǫ‖ = ǫ⊥), and
e1 + e3 = 0. Secondly, the inevitable correction φ(r) to
the electric potential in the nonlinear regime has been
simply neglected without any comment. We will refer to
the whole simplification scheme as the Terent’ev-Pikin
approximation (TPA) throughout this paper.

In general, the basic equations for flexodomains can be
mapped to a system of coupled partial differential equa-
tions for n(y, z) and φ(y, z). The problem vastly sim-
plifies under the TPA and one arrives analytically at a
constant slope of pmin(U) for U > Uc. The analysis re-
mains still quite simple when using a less strict version
of the TPA, where the induced potential φ is taken into
account. In fact, one arrives at the same slope of pmin(U)
as before except for some modifications in the vicinity of
Uc.

A constant slope of pmin(U), though only for U ≫ Uc,
has been also obtained in the original analysis of [9],
which, however, disagrees with our value. In [9] addi-
tional, not justified approximations beyond the TPA have
been used. However, after correcting some additional
technical errors in their work, we have been unable to
obtain a linear behavior of pmin(U) at all.

The analysis of flexodomains using the TPA serves cer-
tainly as a first important step to understand the qualita-
tive features of flexodomains in the nonlinear regime. But
certainly one would like to compare the exact solutions
of the basic equations for more realistic material param-
eters with experiments. However, experimental studies
of the nonlinear behavior of flexodomains are not so of-
ten found in the literature; we are only aware of [10–14].
One finds here indeed a linear behavior of p(U) with a
reference to [9].

Since the material parameters of the nematics used in
these papers are not well known, a conclusive theoreti-
cal analysis is prohibited. Thus we have performed our
own experiments using several nematics with well known
material parameters. As before, p(U) shows a fairly lin-
ear behavior and it was very satisfying, that the slopes
of p(U) would match well our corresponding theoretical

values of pmin(U).
The paper is organized as follows. After this introduc-

tion the basic equations are discussed in Sec. II. Their
linear stability analysis, which yields the critical voltage
Uc, at which the flexodomains with critical wavenumber
pc bifurcate from the homogeneous planar ground state,
is sketched in Sec. III. The properties of the flexodomains
in the nonlinear regime for U > Uc using the TPA ma-
terial parameters restrictions are analyzed in Sec. IV. In
Sec. V we present our experiments on flexodomains for
four different nematics and compare with corresponding
theoretical results. After some concluding remarks in
Sec. VI, several appendices deal with technical details
and contain further supplementary information.

II. BASIC EQUATIONS

The nematic liquid crystal layer considered in this pa-
per is assumed to have a very large lateral extension in
the x, y plane compared to its thickness d, where the di-
rector n = n0 = (1, 0, 0) is uniform in the basic state.
When a dc voltage U = E0d is applied to the layer in the
z direction, the corresponding electric field E0 = E0ez

exerts a torque on the director. IfE0 is sufficiently strong
to overcome the stabilizing elastic torques, flexodomains
appear, which are characterized by spatially periodic dis-
tortions of n0 and of E0. The resulting field E is irrota-
tional and is described by the ansatz:

E = E0ez −∇φ , (1)

where the unit vectors ex, ey, ez span our coordinate
system and −∇φ yields the nonlinear correction to E0.
As demonstrated below, it is indeed sufficient to consider
only E0 > 0. Since U is kept fixed, φ vanishes at the
confining plates, i.e., φ(z = ±d/2) = 0.
The total free energy, Ftot, of the system is obtained

from the volume integral, Ftot =
∫

d3rFtot of the total
free energy density, Ftot, which is defined as follows:

Ftot = Fd + Fel − λ(r)(n · n− 1) , (2)

where Fd describes the orientational elasticity of nemat-
ics and Fel the electric contribution. By the Lagrange
parameter λ(r) the normalization n

2 = 1 is guaranteed.
The standard expression for Fd is given as follows:

Fd =
1

2

[

k11(divn)
2 + k22(n · curln)2

+k33(n× curln)2
]

. (3)

The three elastic constants, k11, k22, k33, correspond to
the splay, twist, and bend director deformations, respec-
tively. The electric part, Fel, which depends on the two
relative dimensionless dielectric permittivities ǫ⊥, ǫ‖ with
the dielectric anisotropy ǫa = ǫ‖ − ǫ⊥ and on the flexo-
coefficients e1, e3 is given as:

Fel = −1

2
ǫ0
[

ǫ⊥(E
2 −E

2

0) + ǫa(n ·E)2
]

−E ·Pfl , (4)
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with the flexopolarization

Pfl = e1n(divn) + e3(n · ∇)n , (5)

where ǫ0 = 8.8542 × 10−12 Vs/(Am) denotes the vac-
uum permittivity. According to Landau-Lifshitz (p. 11
in [15]), Fel (marked with a tilde there) is the appropriate
free energy density in the presence of an external electric
field E acting on the nematic. This case is realized in the
experiments, where the U is treated as fixed. The term
1

2
ǫ0ǫ⊥E

2
0 in Eq. (4) has been added to ensure that Fel,

as well as Ftot vanish in the uniform basic state n = n0,
E = E0. Furthermore, Ftot is invariant against the si-
multaneous transformations E → −E and ei → −ei.
Thus the case U < 0 can be mapped to U > 0 by simply
reversing the sign of the ei.
A necessary condition for thermodynamic equilibrium

states of our system is the vanishing of the functional
derivatives δFtot/δn and δFtot/δE of Ftot with respect to
n and E (for details see Appendix A). For the derivative
with respect to n we obtain thus:

h(r)− λ(r)n = 0 , (6)

with

h(r) =
δ
∫

d3r(Fd + Fel)

δn
. (7)

In the literature the notion “molecular field” is common
for h(r) [2]. Taking the cross product of Eq. (6) with n

one arrives at the vector equation n×h = 0 (“balance of
torques”), where the three components are not linearly
independent. Thus keeping the y and the z components
one arrives at the standard director equations:

hznx − hxnz = 0 , hynx − hxny = 0 . (8)

The explicit expressions for the components of h can be
found in Appendix A.
Using the ansatz (1) forE in Eq. (4) one easily obtains:

δ
∫

d3rFel

δφ
= divD = 0 . (9)

Here D denotes the dielectric displacement

D = ǫ0[ǫ⊥E + ǫan(n ·E)] + Pfl . (10)

The explicit expression of divD = 0, which means the
absence of true charges, can be found in Appendix A.
As a consequence, the equilibrium solutions for n and

φ have to satisfy Eqs. (8) and (9). To guarantee n2 = 1,
we use the ansatz nx = 1− δnx which leads to:

δn2

x − 2δnx + n2

y + n2

z = 0 , (11)

or

δnx = 1−
√

1− n2
y − n2

z . (12)

In our analysis, the extensions of the integration do-
main in space are chosen as Lx, Ly, Lz, where Lx, Ly ≫

Lz = d. In the x and y directions we require periodic
boundary condition, while δnx, ny, nz and φ have to
vanish at z = ±d/2.
For the flexodomains n and φ depend only on y and z.

Then Ftot is also invariant against the reflection y → −y
which implies:

nx(−y, z) = ry nx(y, z) ,

nz(−y, z) = ry nz(y, z) ,

φ(−y, z) = ry φ(y, z) ,

ny(−y, z) = −ry ny(y, z) , (13)

with a symmetry factor ry = ±1. It will be demonstrated
in the following sections that the flexodomains are char-
acterized by ry = 1 in Eq. (13).
To fulfill the boundary conditions of n and φ, we use

a Galerkin method. It implies Fourier expansions of
all fields with respect to y and in the z direction an
expansion in terms of suitable trigonometric functions
Sm(z) = sin[mπ(z/d+ 1/2)], which vanish at z = ±d/2.
Thus one uses for ny(y, z) the ansatz:

ny(y, z) =

K
∑

k=1

M
∑

m=1

n̂y(k,m) sin(kpy)Sm(z) . (14)

The fields δnx, nz , and φ are represented in analogy to
Eq. (14), except that the y dependence is described by
cos(kpy). In addition, it turns out that for φ and δnx

only the expansion coefficients for even k = 0, 2, 4, . . .
have to be kept, while for ny and nz only the odd ones,
k = 1, 3, 5, . . . contribute. Systematically increasing the
cutoffs of the sums, we found that the choiceK = 6,M =
8 was sufficient to guarantee a relative error of less than
0.1% for all numerical data given in this paper.
As usual, all equations will be non-dimensionalized.

Lengths will be measured in units of d/π and E in units
of E0 > 0. The elastic constants kii will be given in
units of k0 = 10−12 N and the flexocoefficients in units
of

√
k0ǫ0. The free energy will be measured in units of

k0Lx. The main dimensionless control parameterR reads
as:

R =
ǫ0E

2

0
d2

k0π2
=
ǫ0U

2

k0π2
, (15)

where ǫ0/k0 = 8.8542 V−2. From now on all equations
will be given in dimensionless units.

III. REMARKS ON THE LINEAR STABILITY

ANALYSIS

While the total free energy, Ftot, is always zero for
the “ground state” solution with n = n0 and arbitrary
E = E0ez , it becomes negative at a certain critical field
strength E0 = Ec ∝

√
Rc/d, where the bifurcation to

the stationary flexodomains with wavenumber pc takes
place. In the linear regime only the elastic constants k11
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and k22 come into play and it is convenient to introduce
their average value, kav, and their relative deviation, δk,
from kav as follows [7]:

k11 = kav(1 + δk) , k22 = kav(1− δk) , (16)

where obviously |δk| < 1. We also use instead of the di-
electric anisotropy ǫa and of the main control parameter
R [Eq. (15)] the dimensionless parameter combination µ
and the dimensionless voltage u:

µ =
ǫakav

(e1 − e3)2
, u =

|e1 − e3|
kav

√
R . (17)

Flexodomains exist for u above the neutral curve uN (p).
The minimum of uN(p) at p = pc yields the critical (di-
mensionless) voltage uc = uN (pc), where all quantities
depend on δk and µ. For the calculations of uN(p) we
refer to [7, 8]. Some details can be also found in Ap-
pendix B. Within the TPA (δk = µ = 0, e1 + e3 = 0)
one obtains directly the following well known expression
for the neutral curve uN(p) [6]:

uN (p) = (p2 + 1)/p , (18)

with its critical point at

uc = 2 , pc = 1 . (19)

For a fixed u the necessary condition u > uN(p) restricts
the range of possible wavenumbers p of the flexodomains
to the interval pN1 < p < pN2 with

pN1,2 = (u∓
√

u2 − 4)/2 . (20)

In the following along with u also its reduced version ε
will be used:

ε = u/uc − 1 . (21)

Then Eq. (18) transforms into:

εN(p) = (p− 1)2/(2p) , (22)

which yields directly the typical parabolic shape of εN (p)
near p = pc = 1. For p≫ pc, εN (p) approaches a straight
line with the slope 1/2.

IV. FLEXODOMAINS IN AND BEYOND THE

TERENT’EV-PIKIN APPROXIMATION

As evident from the lengthy, nonlinear expressions for
the molecular fields hx, hy, hz, and divD [Eqs. (A4, A6)
in Appendix A], solving Eqs. (8) and (9) is in general
a difficult numerical task. Apparently, a great simplifi-
cation is achieved by the Terent’ev-Pikin-approximation
(TPA) in [9], already alluded to in the introduction.
First, using the one-elastic-constant approximation k11 =
k22 = k33 = kav the lengthy contributions to the molecu-
lar field proportional to (k22 − k33) vanish [see Eqs. (A4)

in Appendix A]. Furthermore, the requirements ǫa =
ǫ‖ − ǫ⊥ = 0 and e1 + e3 = 0 lead to additional simpli-
fications also in the equation for the electric potential φ
[Eq. (A6) in Appendix A]. In the following, the rescaled
control parameter u [Eq. (17)] will be used instead of R
in Appendix A.
A closer look at the resulting equations for n and φ

shows that the y dependence of all fields is surprisingly
simple. In fact, they are solvable in general by the ansatz:

n =
(

√

1− f2(z), f(z) sin(py), f(z) cos(py)
)

, (23)

which shares the y dependence with the linear solu-
tion [see Eq. (B2) in Appendix B]. Note, that nx =
√

1− f2(z) results from n
2 = 1. As a consequence of

n2
x < 1, the condition |f(z)| < 1 must be valid in gen-

eral in the (u, p) parameter space for u > uc = 2. If the
ansatz for n above is used in Eq. (A6), φ is found to be
y independent as well. At the end, the general Eqs. (8)
and (9) transform thus into the following coupled non-
linear ODEs for f(z) and the rescaled electric potential

φ̃ = uφ(z):

√

1− f2f ′′ − (
√

1− f2)′′f

+ [C(p, u)− pφ̃′)]
√

1− f2f = 0 , (24a)

φ̃′′ − pα(f2)′ = 0 , (24b)

where

C(p, u) = p(u− p) , α =
2e21
kavǫ⊥

, (25)

with u = 2|e1|
√
R/kav [see Eq. (17)]. Furthermore, in

Eqs. (24), as also later in this section, derivatives with
respect to z are denoted by a prime. Since ny, nz and

φ̃ have to vanish at z = ±π/2, the ODEs for f and φ̃
[Eqs. (24)] have to be solved with the boundary condi-

tions f(±π/2) = φ̃(±π/2) = 0.
It is easy to see, that Eqs. (24a), (24b) can be recovered

as the functional derivatives δF/δf and δF/δφ̃, respec-
tively, of the free energy functional:

F (f, φ̃;u, p, α) =
kav
2

∫ π/2

−π/2

dz
{[

(
√

1− f2)′
]2

+ (f ′)2

−[C(p, u)− pφ̃′]f2 − 1

2α
(φ̃′)2

}

. (26)

As it should be, the functional F is identical to the total
free energy Ftot on the basis of the free energy density
Ftot [Eq. (2)] when using the ansatz for n in Eq. (23)

and the y independence of φ̃.
Our main goal is to determine the wavenumber p =

pmin(u), where F attains its absolute minimum at fixed
u and α. In a first step, we locate the stationary points of
F , which requires vanishing functional derivatives δF/δf

and δF/δφ̃. This is obviously guaranteed for all solutions
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f(z;u, p, α), φ̃(z;u, p, α) of Eqs. (24). One of these solu-

tions, fm(z;u, p, α), φ̃m(z;u, p, α), yields then the min-
imum, Fm(u, p, α) < 0, of F , which exists for u above
the neutral curve uN(p) [Eq. (18)] with pN

1
< p < pN

2

[Eq. (20)], i.e., for C(p, u) > 1.

The construction of fm, φ̃m simplifies by the observa-
tion that Eqs. (24) are invariant against the transforma-

tion z → −z with f(−z) = cf(z) and φ̃(−z) = −cφ̃(z),
c = ±1. In fact, only solutions fm and φ̃m, which belong
to the “even” class (c = 1) become relevant in our case.

Note that in this case φ̃(0) = 0 holds in agreement with
Eq. (27). The prevalence of even f(z) solutions against
odd ones with additional nodes is not surprising, since
stronger spatial variations of f lead obviously to larger
positive contributions to F in Eq. (26).
It is easy to see, that Eq. (24b) together with the

boundary condition φ̃(z = ±π/2) = 0 can be reformu-
lated in the special case of even f(z) as follows:

φ̃(z) =α p
[

∫ z

−π/2

dz̄ f2(z̄)

− 1

π
(z +

π

2
)

∫ π/2

−π/2

dz̄ f2(z̄)
]

. (27)

Thus φ̃ ≡ 0, as part of the TPA in [9], corresponds for-
mally to the limit α → 0.
A detailed discussion of Eqs. (24) in the nonlinear

regime is found in Appendix D. In the special case, φ̃ = 0
(α = 0), Eq. (24a) allows for an analytical even-in-z so-
lution fm(z). The same symmetry governs also the case
α 6= 0, where Eqs. (24) are numerically solved using stan-
dard ODE-solvers.
In general, we exploit the fact that the derivative

∂pFm(u, p, α) has to vanish for p = pmin(u). One has
thus to solve the equation:

∂Fm

∂p
= −kav

2

{

(u − 2p)I[f2

m]− I[φ̃′mf
2

m]
}

= 0 , (28)

where

I[f2

m] =

∫ π/2

−π/2

dz f2

m(z) ,

I[φ̃′mf
2

m] =

∫ π/2

−π/2

dz φ̃′m(z)f2

m(z) . (29)

Note that only the explicit derivatives with respect to p
have to be kept because of δF/δfm = δF/δφ̃m = 0. Thus
we arrive from Eq. (28) at the implicit relation

pmin = u/2− Σm(u, pmin, α) , (30)

where

Σm(u, pmin, α) =
I[φ̃′mf

2

m]

2 I[f2
m]

. (31)

In view of our construction of Fm, it is evident that we
have to determine the solutions p = pmin(u) of Eq. (30)

0 0.5 1 1.5 2 2.5 3
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α=1
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α=8

FIG. 1. Plot of pmin − pc given by Eq. (30) as function of
ε = u/uc − 1 for different values of α.

which minimize Fm, i.e., ∂ppFm(u, p, α) > 0 holds for the
second derivative at p = pmin(u). The determination of
pmin(u) requires in general a numerical treatment, since

Σm depends on u, p, and α via solutions fm and φ̃m. For
α = 0 (φ̃ = 0), however, solving Eq. (30) is trivial and
leads to the following linear relation:

pmin = u/2 , or pmin − pc = (u− uc)/2 = ε , (32)

without even determining fm(z) from Eq. (24a). This is
one of the central results of this paper. The value of the
slope dpmin/du = 1/2 disagrees, however, with the one
given in [9] for large u ≫ uc, where one finds the value
0.603/π = 0.192 in our units. This discrepancy might
first appear as a minor problem. However, as demon-
strated in Appendix E, the approximate approach used
in [9] is, in general, not sufficient for large u and suffers
also from calculation errors.
In Fig. 1, on the basis of Eq. (30), the curves pmin−pc

as function of ε = u/uc−1 are plotted for different α. The
straight solid line pmin−pc = ε [Eq. (32)] corresponds to
α = 0 (TPA), the remaining ones are all shifted down-
wards for finite α. In line with Eq. (30) this vertical
shift is given by Σm. It first increases with increasing ε,
but becomes then quickly constant for finite ε. Thus the
slope dpmin/dε for larger ε equals again 1, as in the case
α = 0. To clarify the α dependence of the shift in more
detail, Σm is plotted in Fig. 2 as function of ε for differ-
ent α. First, it is obvious that the curves develop quickly
an extended plateau as function of ε. With respect to α,
the plateau heights increase monotonically as 0.186α0.73.
We have no direct analytical insight into the exponent
of α, but according to Appendix D the general trend is
qualitatively understood by a rough estimate of the inte-
grals I[f2], I[φ̃′f2] for f = fm(z), which determine Σm

in Eq. (31).
In general, it is also of interest to study the stabil-

ity of the “minimal” solutions nm and φm, where nm
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FIG. 2. The downward shift Σm [Eq. (31)] of pmin − pc as
function of ε = u/uc − 1 for different values of α.

is given by Eq. (23) with f(z) = fm(z) at a fixed u
for varying p. In particular, we are interested in long-
wavelength phase modulations of nm(y, z), which lower
the free energy Fm. One considers thus a perturbation of
the wavenumber p using the ansatz p y → p y+ a cos(s y)
with a small amplitude a ≪ 1 in the limit s ≪ p. If
these phase-modulated solutions lower Fm at a certain
p, we speak of an Eckhaus instability of the ideally pe-
riodic solutions with wavenumber p = pE . This insta-
bility has been studied for many different systems in the
literature (for a general discussion, see [16]). For sys-
tems, which are governed by a free energy as in our case,
it has been shown in [17], that the solution p = pE of
∂ppFm(p) = 0 determines the Eckhaus instability. In our
case, one starts from ∂Fm/∂p in Eq. (28) to arrive at:

∂2Fm

∂p2
= −kav

2

[

− 2I[f2

m]+(u− 2p)
∂I[f2

m]

∂p

−∂I[φ̃
′
mf

2

m]

∂p

]

= 0 . (33)

To determine the solution p = pE(u) this equation has
been analyzed numerically.
Finally, we present in Fig. 3 the complete phase di-

agram of flexodomains in the p, ε plane for the TPA
(α = 0) and for α = 8, where similar to Fig. 1 the reduced
control parameter ε = u/uc − 1 is used. Flexodomains
exist in a region bounded by the neutral curve εN (p)
[Eq. (22)] and are stable in a smaller region bounded by
the Eckhaus curve εE(p). Furthermore, we show also
some representative curves for εmin(p), the inverse func-
tion of pmin(ε) in Fig. 1. They appear as straight lines
except near p = pc = 1, i.e., near ε = 0.
In general, with increasing α the impact of the induced

potential φ on the phase diagram becomes more and more
pronounced. Thus it is obvious that the ad hoc approxi-
mation φ ≡ 0 in [9] is rather poor.
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p

0

0.5

1

1.5

2

2.5

3

ε

ε
N

ε
E
 (α=0)

ε
E
 (α=8)

ε
min
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FIG. 3. Phase diagram of flexodomains: neutral curve εN (p),
Eckhaus curves εE(p) and εmin(p) curves for α = 0 and α = 8.

The numerical calculations of the phase diagram in
Fig. 3 are well confirmed by the much simpler weakly
nonlinear analysis for u & uN(p), as described in Ap-
pendix C. Here Eqs. (24) are solved with the stan-
dard ansatz f(z) = A sin(z + π/2), which is based on
the linear solution near onset. The amplitude A is
shown to converge to zero in the limit u → uN(p) with
C(p, uN (p)) → 1. Thus the bifurcation of flexodomains
from the planar basic state is continuous in agreement
with the experiments. The total free energy is approx-
imated by a quartic polynomial in A, which allows the
calculation of εmin(p) and εE(p) in the weakly nonlinear
regime. As detailed in Appendix C the resulting data
match well the exact numerical ones.

V. FLEXODOMAINS IN REAL NEMATICS:

EXPERIMENTS AND THEORY

The previous section was devoted to a theoretical anal-
ysis of flexodomains using the special parameter set con-
vention of the TPA, which allowed even for analytical
solutions. Thus a first insight into the main features of
flexodomains in the nonlinear regime has already been
achieved.
In this section, we will analyze flexodomains for

more general, realistic material parameters, which re-
quire a full numerical solution of the basic equations.
Instead of systematic studies of parameter variations,
which would go beyond the scope of this paper, we
will restrict ourselves to selected nematics, which have
not shown electroconvection under an applied dc volt-
age and where the material parameters are known to
some extent. In detail we analyze thus experiments
in the nematic mixtures Phase 4 [18] and Phase 5
[19, 20], the rodlike compound 4-n-octyloxyphenyl
4-n-methyloxybenzoate (1OO8) [21], and a bent-
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FIG. 4. Shadowgraph images of flexodomains recorded at
two different applied voltages for the nematic Phase 4. (a)
Uexp − Uexp

c = 7 V; (b) Uexp − Uexp
c = 27 V. The length of

the scale bar is 50 µm, the double arrow indicates the initial
director orientation n0. The cell thickness is d = 10.8 µm.

core nematic 2,5-di4-[(4-heptylphenyl)-difluoromethoxy]-
phenyl-1,3,4-oxadiazole (7P-CF2OODBP) [14].

The measurements have been performed using stan-
dard sandwich cells, where rubbed, polyimide coated
electrodes provided a planar initial orientation n0 of the
director. Flexodomains have been excited by applying
a dc voltage Uexp to the whole cell, which are then ob-
served in a polarizing microscope using shadowgraphy
[22]. Figure 4 shows representative examples of shadow-
graph images of flexodomains at two voltages Uexp above
the threshold value Uexp

c . As already mentioned, the
flexodomains cannot be confused with electroconvection
rolls since the latter show an orientation orthogonal to
the initial director alignment. Furthermore, in contrast
to electroconvection patterns, flexodomains remain rela-
tively regular even at voltages considerably above thresh-
old, with only a few defects [see the one in Fig. 4(b)].

To determine the threshold voltage Uexp
c , we system-

atically monitor as function of Uexp the contrast of the
flexodomains patterns, which vanishes, when approach-
ing the flexoelectric instability at Uexp

c from above. The
wavenumber p(Uexp) of the flexodomains is obtained
from a two-dimensional Fourier transformation of the
patterns, where the critical wavenumber pexpc is deter-
mined by pexpc = p(Uexp

c ). The resulting data for the
four nematics mentioned before are listed in Table I in
Appendix F. In Fig. 5 we present the experimental data
plotted as p(Uexp)−pexpc as function of Uexp−Uexp

c . Ob-
viously, p(Uexp) is quite well described by linear curves.
This feature has been already described before in the the-
oretical studies of Sec. III and has strongly suggested the
following analysis.

A direct comparison of the experiments with theory is
far from straightforward. The main control parameter
in theory is the voltage drop U over the nematic layer.
In contrast, the experimental voltage Uexp contains in
addition the contribution of the boundary layers at the
electrodes, which is practically not available. To cope
with this problem, we have exploited the empirical fact,
that in experiments with the same nematic material the
values of pexpc are fairly reproducible for different elec-

trode configurations in distinct contrast to Uexp
c . Thus

it is suggested that pexpc is mainly determined by the ne-
matic layer alone, which is described by the theory.
For a given material parameter set we have to con-

struct the numerical solutions of the basic equations for
n [Eq. (8)] and φ [Eq. (9)], together with the normal-
ization of n [Eq. (11)]. The linear analysis (see Sec. III
and Appendix B) yields pc and the nondimensional crit-
ical voltage uc. Most material parameters of the four
nematics introduced before have been measured except
the flexocoefficients ei. Their difference, e1 − e3, has
been determined for each material by fitting the theo-
retical values of pc to the experimental values pexpc (see
Appendix B), such that for each material pc = pexpc holds.
The full material parameter sets used in this paper for
the four nematics mentioned before are listed in Table I
of Appendix F. In the nonlinear regime we make use
of Galerkin expansions as defined in Sec. II, whereby we
arrive at a system of coupled nonlinear algebraic equa-
tions for the Galerkin expansion coefficients, which are
solved by Newton’s iteration methods. The iterations
start from the weakly-nonlinear solutions for u & uN (p),
which are easily obtained (see Appendix C). As in the
previous section, we obtain then the minimal free energy
Fm(u, p) on the basis of Ftot =

∫

d3rFtot with the free
energy density defined in Eq. (2). Solving numerically
∂pFm(u, p) = 0 yields pmin(u) as function of u, as dis-
cussed before [see Eq. (32) for the TPA case]. For this
calculation we need also the values of the sum e1 + e3.
Thus we have compared the solutions for the representa-
tive values e1 + e3 = 0,±10 and found only a quite weak
dependence on e1 + e3. Furthermore, to test the numer-
ical procedure described above, it has been applied also
to the TPA case, where indeed all results of Sec. IV have
been reproduced.
To compare the theoretical results with the experi-

ments we switch now from the dimensionless voltage u
to U measured in volts. According to Eqs. (15), (17) the
corresponding scaling factor s is given as:

s =
U

u
=

kavπ

|e1 − e3|

√

k0
ǫ0
. (34)

The resulting theoretical data for pmin − pc (in units
of π/d) are then presented in Fig. 5 as function of the
voltage difference U − Uc (in volts). Note, that the
curves do not depend on d since they derive from the
strictly d-independent, dimensionless basic equations in
Appendix A. It is evident that the slope dpmin/dU re-
mains constant over a wide range of U for all material
parameter sets. Furthermore, the dependence of the the-
oretical curves on e1 + e3 is indeed weak.
Figure 5 also depicts (as dot-dashed lines) in physi-

cal units the corresponding TPA curves for δk = ǫa =
e1 + e3 = φ = 0, where uc = 2, pc = 1 [Eq. (19)].
The material parameters kav and e1 − e3, listed in Ta-
ble I in Appendix F, come in only via the scaling fac-
tor s in the same table. In physical units we obtain
thus UTPA

c = 2s and the TPA relation Eq. (32) yields
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FIG. 5. The reduced wavenumber of flexodomains p− pc (in units of π/d) as function of U −Uc (in volts) for various nematics:
(a) Phase 4, (b) Phase 5, (c) 1OO8, and (d) 7P-CF2OODBP. The open circles correspond to the experimental data, where
U corresponds to Uexp and p to p(Uexp). The straight lines present the corresponding theoretical curves of pmin(U) for the
material parameters from Table I and e1 + e3 = 0,±10. Furthermore, the corresponding TPA curves (dashed-dotted) are
plotted as well.

pmin − pc = (U − UTPA
c )/(2s) shown in Figure 5 for the

four nematics as function of U − UTPA
c . Note, that the

TPA leads to significantly larger slopes compared to the
exact numerical calculations.

As already mentioned the nematic layer presents only
one part of the experimental cell. Unfortunately the volt-
age drop U over this layer, which is provided by the the-
ory is not directly accessible in the experiment. One ex-
pects, however, that U should be smaller than Uexp due
to an internal voltage attenuation in the cell. This atten-
uation, on the one hand, may originate from the ratio of
the impedances of the nematic and of the boundary lay-
ers [20]. On the other hand, due to the dc driving, ionic
Debye layers may form at the electrodes, which yields a
nonuniform initial electric field distribution in the sample
reducing the voltage drop over the nematic layer. Inspec-
tion of Fig. 5 shows, however, that, apart from Phase 5,
the theoretical curves match remarkably well the experi-
mental data. This observation seems to indicate that the

difference between U and Uexp is fairly independent of
Uexp. We are unable to give a theoretical foundation of
this finding, which is certainly a demanding task, going
much beyond the scope of the present paper.

VI. CONCLUSIONS

In this paper we have presented the first complete the-
oretical analysis of flexodomains in planar layers of ne-
matic liquid crystals in the nonlinear regime. Our main
focus was on the wavenumber p(U) of the flexodomains
as function of the applied dc voltage U . It is important,
that in view of the scaling properties of the basic equa-
tions with respect to d (see Appendix A), wavenumbers
strictly vary as 1/d in physical units, which is in general
not the case for electroconvection patterns.
In contrast to the common approach in the literature

starting with [9], which is based on a direct minimiza-
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tion of the free energy, we have concentrated in this pa-
per first on the solution manifold of the basic equations.
This gives additional insights and allows for instance a
systematic weakly nonlinear analysis near the onset of
the flexodomains instability. In particular, in the frame-
work of the approximation used in [9], we obtain an exact
analytical solution of p(U), which is linear in U . In this
context it is demonstrated that this often cited paper is
incorrect.
In addition, for four different nematics with well known

material parameters the measurements of the wavenum-
ber p(U) of the flexodomains and a full numerical anal-
ysis have been performed. In all cases, we arrived at a
linear relation between p and U . For three of our nemat-
ics even the calculated slopes of pmin(U) are in a very
good agreement with the experimental ones despite the
experimental uncertainties discussed in the previous sec-
tion. Why the experimental and the theoretical slope
of p(U) for the nematic Phase 5 differ more strongly re-
mains open for the moment. As a first step it would
for instance be useful to perform detailed measurements
on flexodomains for the same material, but for different
electrode configurations.
As a byproduct of the analysis, we have access to the

detailed director configuration of flexodomains as func-
tion of p and U in the nonlinear regime. It is planned
to exploit this knowledge to analyze also the optical ef-
fects of flexodomains in diffraction experiments and in
shadowgraphy.
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Appendix A: General equations

According to Sec. II, the equilibrium states of our sys-
tem are characterized by the vanishing of the functional

derivatives of the total free energy Ftot with respect to
the director field n(r) and the electric potential φ(r).
In the present case the corresponding free energy den-
sity Ftot depends only on n, φ, and their first spatial
derivatives with respect to r = (x, y, z). Then the func-
tional derivative, for instance with respect to nx, reads
as follows:

hx ≡ δFtot

δnx
=
∂Ftot

∂nx
− ∂i

∂Ftot

∂nx,i
= 0 , (A1)

where i = x, y, z and a comma indicates spatial deriva-
tives.

It is convenient to rewrite the elastic contribution Fd

[see Eq. (3)] by using the identity

(n× curln)2 = (curln)2 − (n · curln)2 , (A2)

which holds in the case of n2 = 1. Thus we arrive at:

Fd =
1

2

[

k11(div n)
2 + k33(curln)

2

+(k22 − k33)(n · curln)2
]

. (A3)

Note that in the framework of the TPA, where k22−k33 =
0, the elastic free energy is only quadratic in n and in its
derivatives, which simplifies the calculations.
In the following, we concentrate on flexodomains,

which depend only on y and z. The explicit expressions
for hx obtained from Eq. (A1) and the analogous ones
for hy and hz, which are needed in the director equations
[Eq. (8)] read as follows:

hx =k33
(

nx,yy + nx,zz

)

+(k22 − k33)
{

− 2nx(ny,z − nz,y)
2

+ny

[

nx,z(2ny,z − nz,y)− nx,ynz,z

]

+nz

[

nx,y(2nz,y − ny,z)− nx,zny,y

]

+nxny(nz,yz − ny,zz) + nxnz(ny,yz − nz,yy)

+n2

ynx,zz − 2nynznx,yz + n2

znx,yy

}

,

hy =k11
(

ny,yy + nz,yz

)

+ k33
(

ny,zz − nz,yz

)

+(k22 − k33)
{

nx

[

nx,ynz,z + nx,z(2ny,z − 3nz,y)
]

+2(nznx,y − nynx,z)nx,z

+n2

x(ny,zz − nz,yz) + nx(nznx,yz − nynx,zz)
}

+ǫaR
(

− nz + nyφ,y + 2nzφ,z
)

φ,y

+(e1 − e3)
√
R
(

− nz,y + nz,yφ,z − nz,zφ,y
)

+(e1 + e3)
√
R
(

nyφ,yy + nzφ,yz
)

,

hz =k11
(

ny,yz + nz,zz

)

+ k33
(

nz,yy − ny,yz

)

+(k22 − k33)
{

nx

[

nx,zny,y + nx,y(2nz,y − 3ny,z)
]

+2(nynx,z − nznx,y)nx,y

+n2

x(nz,yy − ny,yz) + nx(nynx,yz − nznx,yy)
}

+ǫaR
[

− nyφ,y + (−2nz + nyφ,y + nzφ,z)φ,z
]

+(e1 − e3)
√
R
(

ny,y + ny,zφ,y − ny,yφ,z
)

+(e1 + e3)
√
R
(

nyφ,yz + nzφ,zz
)

. (A4)

In line with Eq. (A3), the expressions for hx, hy and hz
simplify considerably in the one-elastic-constant approx-
imation k11 = k22 = k33, where the terms nonlinear in n

in the curly brackets vanish. In addition, in [9] the spe-
cial case of ǫa = 0 and e1+ e3 = 0 was considered, where
eventually only the flexoelectric contributions ∝ (e1−e3)
survive.
The electric potential is determined by:

δ
∫

d3rFel

δφ
= −∂i

∂Fel

∂φ,i
= divD = 0 . (A5)
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In detail we obtain:

divD =−ǫ⊥
√
R
(

φ,yy + φ,zz
)

+ǫa
√
R
{

nynz,y + nz(ny,y + 2nz,z)

−ny

[

nyφ,yy + (2ny,y + nz,z)φ,y + nz,yφ,z
]

−nz

[

nzφ,zz + (2nz,z + ny,y)φ,z + ny,zφ,y
]

−2nynzφ,yz

}

+(e1 − e3)
(

ny,ynz,z − ny,znz,y

)

+(e1 + e3)
[

ny(ny,yy + nz,yz)

+nz(ny,yz + nz,zz) + ny,ynz,z + ny,znz,y

+n2

y,y + n2

z,z

]

= 0 , (A6)

Even using the approximation ǫa = 0 and e1 + e3 = 0, a
term ∝ (e1−e3), quadratic in the spatial derivatives of n
survives. It results in a finite correction via φ to the basic
potential −E0z; however, it has been neglected in [9].
It should be realized, that the thickness of the nematic
layer d has perfectly scaled out in the non-dimensional
Eqs. (A4), (A6).

Appendix B: Linear stability analysis

In the linear regime Eqs. (8) reduce to:

hy = 0 , hz = 0 . (B1)

They are obtained from Eq. (A4)for k22 − k33 = 0 and

φ̃ = 0 and have to be solved [in line with Eq. (14)] using
the ansatz

ny = ñy(z) sin(py) , nz = ñz(z) cos(py) , (B2)

where ñy(±π/2) = ñz(±π/2) = 0 have to be fulfilled.
Introducing the new variables µ, δk, u [see Eqs. (16) and
(17)], we arrive at a transcendental equation (see Eq. (12)
in [7]), which determines for fixed p a discrete set of u
values that depend on µ and δk. The smallest u > 0
determines the neutral curve uN (p;µ, δk). As explained
in [7], this function can be alternatively calculated using
a time dependent “viscous” generalization of Eqs. (B1).
In this way, one obtains the growth rates of flexodomains
as function of u, which cross zero at u = uN(p).
It turns out that |δk| is fairly small for the nematic ma-

terials used in the experiments discussed in Sec. V. Thus,
in line with [7], it is very useful to analyze Eqs. (B1) first
in the limit δk → 0 using the “one-mode” approximation
ñy ∝ sin(z + π/2), ñz ∝ sin(z + π/2). The neutral curve
is then given as:

u2N (p) =
(p2 + 1)2 − δk2(p2 − 1)2

p2 + µ[p2 + 1 + δk(p2 − 1)]
. (B3)

The minimum of u2N (p) with respect to p determines the
critical wavenumber p = pc:

p2c =
(−1 + δk2)µ+

√

(1 + δk)[1 + δk(1 + 4µ)]

(1 + δk)[1 + µ(1 + δk)]
. (B4)

In general, Eqs. (B3) and (B4) approximate very well the
corresponding rigorous data. The relative errors are in
fact smaller than 0.5% for |δk| < 0.2; for larger |δk|, these
approximations provide valuable starting conditions for
the full numerical analysis for arbitrary δk.
As explained in Sec. V we obtain e1−e3 by fitting pc to

pexpc . The solution of Eq. (B4) with respect to µ defines
the function µ̃(pc) as follows:

µ̃(pc) = − (1 + δk)(p4c − 1)

(1 + p2c + δk(p2c − 1))2
, (B5)

from which we obtain µexp
c = µ̃(pexpc ). Exploiting then

the equation

ǫakav
(e1 − e3)2

= µexp
c , (B6)

[see Eq. (17)], one obtains for a given value of pexpc the
value of (e1−e3)2 in the one-elastic-constant approxima-
tion. That fit is then iteratively refined for arbitrary δk
by using the exact solutions of Eq. (B1).

Appendix C: Weakly nonlinear analysis

In this section we discuss pmin(u) in the so called
weakly nonlinear analysis using the TPA parameters con-
vention k11 = k22 = k33 = kav, ǫa = 0, and e1 + e3 = 0
but keeping φ̃ finite. One starts with the ansatz f(z) =
A sin(z+π/2) in Eqs. (24), which is even in z. It derives
from the identical z−dependence of the linear solutions
ny(y, z) and nz(y, z) of Eqs. (B1) on the neutral curve
uN(p) = (p2+1)/p [Eq. (18)], where C(p, u = uN(p)) = 1
holds. Expanding Eqs. (24) up to cubic order in the am-
plitude A, which involves also a contribution ∝ A2 to
φ̃, we obtain after a simple calculation from the free en-
ergy F [Eq. (26)] the corresponding Fweak in the weakly
nonlinear approximation as

Fweak = −πkav
4

{

A2[C(p, u)− 1]− A4

4
(1 + αp2/2)

}

.

(C1)
Thus the condition ∂Fweak/∂A = 0 yields the amplitude
Aeq(u, p, α) as:

A2

eq(u, p, α) = 2
C(p, u)− 1

1 + αp2/2
. (C2)

Obviously, since A2
eq increases continuously with increas-

ing u > uN (p), i.e., with C(p, u) > 1, we have a contin-
uous bifurcation to flexodomains at u = uN(p). Substi-
tuting A2 = A2

eq into Eq. (C1) we obtain the equilibrium

free energy Fweak
eq (p, u, α) as:

Fweak
eq (p, u, α) = −πkav

4

[p(u− p)− 1]2

1 + αp2/2
. (C3)

Evaluating ∂pF
weak
eq (p, u, α) = 0 one arrives at the rela-

tion p = pmin(u) which is written in analogy to Eq. (30)
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as follows:

pmin(u) = u/2− Σm(pmin, α) , (C4)

where

Σm(pmin, α) = αpmin(p
2

min − 1)/4 . (C5)

For α = 0, one recovers the general linear relation
pmin(u) = u/2 in Eq. (32), which is shifted downwards
for α 6= 0 near u = uc and p = pc consistent with Fig. 1.
In the weakly nonlinear regime, the Eckhaus stability

line uE(p) is determined by ∂ppF
weak
eq (p, u, α) = 0, where

Fweak
eq is given in Eq. (C3). One arrives at a lengthy

expression not shown here. In leading order in α and
keeping only terms up to order (p− 1)3 it reduces to:

εE(p)= uE(p)/uc − 1

=
3

2
(p− 1)2

[

1− (3− 4α/3)(p− 1)
]

. (C6)

One sees in particular that the εE(p) curve for α > 0
runs above the one for α = 0 for p > pc = 1 and below
for p < 1, i.e., the stability region is tilted to the left in
agreement with Fig. 3.

Appendix D: Discussion of the solutions f(z) and

φ̃(z)

In the following, we discuss Eqs. (24) at first neglecting

the φ̃ correction of the applied field, as done in the work
of Terent’ev and Pikin [9], without any comment. It will
be demonstrated, that in this case the highly nonlinear
ODE [Eq. (24a)] for f(z) can be solved in terms of an
elliptic function. In view of |f(z)| < 1 we use the ansatz
f(z) = sin[θ(z)] with θ(±π/2) = 0. Then Eq. (24a)
transforms into

∂zzθ + C(p, u) sin θ cos θ = 0 , (D1)

where C(p, u) = p(u− p) and |f(z)| < 1 implies |θ(z)| <
π/2. Multiplication of Eq. (D1) with ∂zθ leads to the
conservation law:

(

∂zθ
)2

+ C(p, u) sin2 θ = const . (D2)

Again we need only even f(z), which implies ∂zf(z =
0) = 0 and consequently ∂zθ(z = 0) = 0. Thus we obtain
from Eq. (D2) the condition C(p, u) sin2[θ(0)] = const
which leads via separation of variables to:

z = −π
2
+

1√
C sin θ0

∫ θ

0

dψ
1

√

1− sin2 ψ/ sin2 θ0

, (D3)

with θ0 = θ(0). The integral over ψ defines the elliptic in-
tegral of the first kind, F (θ |m), with m = 1/ sin2 θ0 (see,
e.g., Chapter 17 in [23]). Thus θ(z) can be expressed by
the inverse function F−1(θ |m). Since f(z) = sin[θ(z)],
it is convenient to introduce the Jacobi elliptic function

−0.5 −0.4 −0.3 −0.2 −0.1 0

z/π

0

0.2

0.4

0.6

0.8

1

f(
z) α=0
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α=8

FIG. 6. Solutions f(z) of Eq.(24) for u = 8 (ε = 3),
p = pmin(u), and different values of α. Since f(z) is mir-
ror symmetric about z = 0, it is not shown in the interval
0 ≤ z ≤ π/2.

sn(z |m) defined as sn(z |m) = sin[F−1(z |m)]. Using
the general relation sn(x |m) = m−1/2 sn(xm−1/2 |m−1)
we obtain

f(z) = f0sn[(z + π/2)
√

C(p, u) | f2

0
] , (D4)

with f0 = f(z = 0), which for z = 0 leads to the follow-
ing transcendental equation to determine f0 = sin θ0 as
function of C(p, u):

sn[(π/2)
√

C(p, u) | f2

0
] = 1 . (D5)

This equation has to be solved numerically. Here and
also in the following Mathematica has been extensively
used.
From a numerical point of view it is sometimes more

convenient to determine first f0 as function of C by us-
ing the inverse function, sn−1(x | f2

0
), of sn(x|f2

0
) with re-

spect to the first argument. In particular, sn−1(x = 1|f2
0 )

defines the complete elliptic integral of the first kind,
K(m), with m = f2

0 (see Eq. (17.3.1) of [23]). Thus we
obtain from Eq. (D5) the relation

π

2

√

C(p, u) = K(f2

0
) . (D6)

Using the limits of K(m) at m = 0 and m = 1, respec-
tively, to be found again in [23], we obtain f0 → 0 for
C(p, u) → 1 and f0 → 1 for C(p, u) → ∞. As a represen-
tative example, the function f(z) is shown in Fig. 6 for
u = 8 (ε = 3) and p = pmin(u) for different values of α.

In general, f(z) rises with a slope ∝
√
C at z = −π/2

and transforms into an extended flat plateau with f(z) ≈
f0, when increasing z towards z = 0. This observation
leads to a rough argument, why the downward shift of
pmin(ε) in Fig. 1 for finite α becomes constant for larger
ε. According to Eq. (30) we have to discuss the inte-

grals I[f2] and I[φ̃′f2]. It is obvious that the first one is
governed by the plateau regime of f(z) for large C; thus

I[f2] approaches π. To estimate I[φ̃′f2] first Eq. (24b) is
integrated with respect to z, which yields:

φ̃′(z) = αp

[

f2(z)− 1

π

∫ π/2

−π/2

dz f2(z)

]

. (D7)
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Here the condition
∫ π/2

−π/2 dz φ̃
′(z) = 0 has been exploited,

which derives from φ̃(±π/2) = 0. Using Eq. (D7) the

integral I[φ̃′f2] can be rewritten as:

I[φ̃′f2] = αp

[

∫ π/2

−π/2

dz f4(z)− 1

π

(

I[f2]
)2

]

. (D8)

For larger C, only the contribution ∝ αp/
√
C from the

linear part of f(z) near z = ±π/2 survives, while the
plateau of f(z) does not contribute. Since C = O(p2) at
large ε, the shift Σm becomes indeed ε independent.

Appendix E: Comment on the Terent’ev&Pikin

analysis

The starting point in [9] was the free energy density
Ftot [Eq. (2)] under the TPA. The condition n

2 = 1 was
guaranteed by representing n in terms of polar angles
θ(y, z), ϕ(y, z):

nx = cos θ cosϕ , ny = cos θ sinϕ , nz = sin θ . (E1)

This representation for n was then substituted into Ftot,
where only the terms up to sixth order in θ and ϕ have
been kept. In addition, θ and ϕ have been expanded as
follows:

θ(y, z) = cos(πz/d)
[

θ1 cos(py) + θ3 cos(3py)
]

,

ϕ(y, z) = cos(πz/d)
[

ϕ1cos(py) + ϕ3 sin(3py)
]

. (E2)

After integrating Ftot over z and y, one arrives at the to-
tal free energy, FTP (θi, ϕi) in the form of a polynomial of
sixth order in θi and ϕi, i = 1, 3 with coefficients depend-
ing on p and u. Next the solutions θi(u, p), ϕi(u, p) of
the four coupled nonlinear equations, ∂FTP /∂θi = 0 and
∂FTP /∂ϕi = 0, i = 1, 3, are inserted into FTP . Min-
imizing the resulting equilibrium free energy FTP

eq (p, u)
at fixed u with respect to p should then give pmin(u) as
given in [9]. Thus we have carried through the whole
procedure using Mathematica. Not surprisingly, we ob-
tained in the weakly nonlinear regime (u & uc = 2) again
pmin(u) = c u with c = 1/2. However, while c = 1/2 re-
mains unchanged for arbitrary u in our rigorous analyt-
ical TPA calculations [see Eq. (32)], it decreases contin-
uously with increasing u in the approximation described
above. We find, for instance, dpmin/du = 0.47 for u = 2.5
and dpmin/du = 0.31 for u = 5. This finding is in distinct
contrast to the corresponding result given in [9], where
dpmin/du = 0.603/π = 0.192 (in our units) is predicted
to hold for large u≫ uc.
That the approximation scheme based on Eq. (E2) is

problematic at larger u, becomes already clear in the light
of our exact solution for n [Eq. (23)], where for instance
nx does not depend on y. Though in [9] not all details

of their calculations are available, their analysis suffers
from technical errors. For instance, instead of a required
expansion of cos2 θ (∂yϕ)

2 term in the elastic part of the
free energy expression, erroneously cos θ (∂yϕ)

2 has been
expanded, as inspection of Eq. (2) in [9] shows. Keeping
as a test this error in our calculations, we were even un-
able to find a minimum of the free energy as function of
p for fixed u and must conclude that the analysis in [9]
suffers from additional errors.

Appendix F: Experimental and theoretical data and

material parameters

In Table I one finds first some data (cell thickness
d, critical wavenumber pexpc and voltage Uexp

c ) char-
acterizing the experiments in Sec. V together with
the corresponding material parameters of our four
nematics and the scaling factor s = U/u [Eq.(34)]. The
material parameters are taken for the nematic mixture
Phase 4 from [18], for the mixture Phase 5 from [19],
and for the rodlike compound 4-n-octyloxyphenyl 4-n-
methyloxybenzoate (1OO8) from [21]. Data for the bent-
core nematic 2,5-di4-[(4-heptylphenyl)-difluoromethoxy]-
phenyl-1,3,4-oxadiazole (7P-CF2OODBP) [14] are not
available, thus those of the similar substance 2,5-di4-[(4-
heptylphenyl)-difluoromethoxy]-phenyl-1,3,4-oxadiazole
(9P-CF2OODBP) are taken from [24]. From the linear
stability analysis of the full equations one obtains
Uc = s uc and pc, which is identified with pexpc by fitting
e1 − e3 (see Appendix B).

TABLE I. Experimental data for the nematics Phase 4,
Phase 5, 1OO8, and 7P-CF2OODBP. Cell thickness d mea-
sured in µm, critical wavenumber pexpc in units of π/d, critical
voltage Uexp

c in V. The elastic constants in units of k0, the
dielectric constants in units of ǫ0 are taken from the litera-
ture. Together with e1 − e3, in units of

√
k0ǫ0, obtained by

fitting pc (for details, see text) they determine the scaling fac-
tor s = U/u. The linear stability analysis of the full equations
gives then Uc = s uc in V.

Phase 4 Phase 5 1OO8 7P-CF2OODBP
d 10.8 6.9 10.8 6.0
pexpc 1.21 1.14 2.35 2.77
Uexp

c 13.0 11.0 26.0 22.0
kav 7.5 7.2 5.3 10.6
δk 0.213 0.361 0.302 0
k33 14.1 12.7 8.2 25.6
ǫ⊥ 5.0 5.25 4.53 9.5
ǫa -0.1 -0.184 -0.428 -4.3
e1 − e3 1.88 2.93 1.91 7.69
s 4.2 2.59 2.93 1.45
Uc 10.64 5.97 23.0 12.61
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Applied 7, 064032 (2017).

[15] L. D. Landau and E. M. Lifshitz, Electrodynamics of

Continuous Media, Course of Theoretical Physics, Vol. 8
(Pergamon Press, Amsterdam, 1984).

[16] L. S. Tuckerman and D. Barkley, Physica D 46, 57
(1990).

[17] L. Kramer and W. Zimmermann, Physica D 16, 221
(1985).
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