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Yuchou Hu,1,2 Werner Pesch,3 Guenter Ahlers,2 and Robert E. Ecke1
1Condensed-Matter and Thermal Physics and Center for Nonlinear Studies, Los Alamos National Laboratory,

Los Alamos, New Mexico 87545
2Department of Physics and Center for Nonlinear Sciences, University of California at Santa Barbara,

Santa Barbara, California 93106
3Physikalisches Institut der Universität Bayreuth, 95440 Bayreuth, Germany

~Received 26 May 1998!

The Küppers-Lortz~KL ! instability in Rayleigh-Be´nard convection rotated about a vertical axis was studied
experimentally using optical-shadowgraph imaging in the rotating frame for dimensionless rotation rates 6
,V,20. Two cylindrical convection cells with radius-to-height ratiosG540 and 23 were used. The cells
contained CO2 at 33.1 bar and 16.6 bar with Prandtl numberss50.93 ands50.83, respectively. Numerical
solutions of the Boussinesq equations with parameter values corresponding to the experiments were obtained
for comparison. ForG540 and 8,V,10.5, the initial pattern above onset was time dependent. Its dynamics
revealed a mixture of sidewall-nucleated domain-wall motion characteristic of the KL instability and of
dislocation-defect motion. ForV.10.5, spontaneous formation of KL domain walls away from the sidewall
was observed. For 8,V,12, there were differences between the two cells very close to onset, but fore

*0.02 the systems were qualitatively similar. ForV*12 there was no qualitative difference in the behavior of
the two cells at anye. The average size of a domain containing rolls of approximately the same orientation
decreased with increasingV, and the time dependence speeded up and became dominated by domain-wall
propagation. The numerical solutions were qualitatively similar, although there was a tendency for the domains
to be larger at the samee andV. The replacement of domains of one orientation by those with another led to
a rotation in Fourier space which was characterized by a rotation frequencyva in the frame rotating at angular
velocity V. Quantitative experimental measurements ofva , of a correlation lengthj, and of a domain-
switching angleQs as functions ofe[DT/DTc21 andV are presented. For 13&V&18, Qs was independent
of V and close to 58°. We computed the angle of maximum growth rateQKL of KL perturbations, and found
it to be 43°, distinctly different fromQs . The results forva(e,V) over the range 13&V&20 can be collapsed

onto a single curveṽa(e)[va(e,V)/vr(V) by applying anV-dependent factor 1/vr . Similar collapse can be

accomplished forj̃(e)5j(e,V)/jr(V). An analysis ofṽa(e) andj̃(e) in terms of various functional forms is

presented. It is difficult to reconcile thee dependence ofṽa and j̃ at smalle with the theoretically expected
proportionality toe ande21/2, respectively.@S1063-651X~98!12911-2#

PACS number~s!: 47.20.2k, 47.27.2i, 47.32.2y

I. INTRODUCTION

The Küppers-Lortz~KL ! instability occurs in Rayleigh-
Bénard convection~RBC! with rotation about a vertical axis
@1,2#. It is of interest for several reasons. One of these is that
one expects asupercritical bifurcation from the spatially uni-
form conduction state directly to a KL-unstable state of con-
vection @3#. The instability produces spatio-temporal chaos
~STC! immediately above onset@4,5#. Thus the KL instabil-
ity offers a rare opportunity to study STC in a parameter
range where weakly nonlinear theories should be applicable.
After receiving only limited attention for several decades@1–
3,6–9#, there has been renewed interest in it both among
experimentalists@4,5,10–12# and theorists@13–17#.

Without rotation, straight, parallel rolls are predicted just
beyond the onset of RBC when the temperature difference
DT across the fluid layer exceeds a critical valueDTc @18#.
The dimensionless control parameter for this system is the
Rayleigh numberR5gad3DT/nk whereg is the accelera-
tion of gravity, a is the thermal expansion coefficient,d is
the layer depth,n is the kinematic viscosity, andk is the
thermal diffusivity of the fluid. The critical valueRc
5R(DTc) is equal to 1708@19#. With rotation, there is an

additional control parameter, namely the dimensionless rota-
tion rateV[2p f d2/n, wheref is the rotation rate in Hz. As
a function ofV, DTc(V) @and thusRc(V)# increases@19#.
The critical Rayleigh numberRc(V) is independent of the
Prandtl numbers[n/k. For V.Vc(s), the KL instability
is predicted@1–3# to occur atRc(V). It is an instability of a
set of parallel straight rolls of a given orientation to a short-
wavelength perturbation at an angleQKL relative to these
rolls. The angleQKL is advanced in the direction ofV.

The seminal experiments of Heikes and Busse@6,7# using
water and shadowgraph flow visualization were fore
[DT/DTc21*0.5 and for large aspect ratios. They con-
firmed the existence of the KL-unstable state and showed
that the patterns resulting from the instability consisted of
domains of rolls, characterized by a more or less uniform roll
orientation within a given domain. As a function of time, a
replacement of one set of unstable rolls by another occurred
via domain-wall~front! propagation. At largee, the instabil-
ity was observed forV less than the theoretically expected
Vc . The angleQs between domains was found to be gener-
ally greater than the predicted KL angle of about 60°@20#.
Later experiments by others@10#, also using water and a cell
with a radius-to-height ratioG515, recorded patterns down
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to e'0.1 and also found KL domains well below the pre-
dicted Vc . The measuredQs , however, agreed well with
theoretical predictions forQKL . For smallers, experiments
using liquid 4He and a cell withG.10 showed that the heat
transport became time dependent at the onset of convection
for V'9, fairly close toVc.10 at their Prandtl number of
0.7 @9#. There was, however, no flow visualization and thus
no spatial information was obtained. No experiments had
provided the combination of largeG, smalle, and flow visu-
alization necessary for a quantitative study of the KL insta-
bility near onset.

Other issues addressed by the experiments were the length
and time scalesj and va

21 which characterize the KL-
unstable patterns and their dynamics. Heikes and Busse
@6,7,20# found va

21}e23/4 for their e range well above the
convective onset. In the liquid-helium experiments@9# a
broadband nonperiodic time dependence was observed in the
heat transport near onset which yielded a characteristic fre-
quency proportional toe1/2; but without flow visualization
the interpretation of this global measurement for a relatively
small cell in terms of the KL state is uncertain because of
other possible sources of time dependence. Our previous
measurements based on the patterns at smalle showed@5,21#
that the time scale is approximately proportional toe20.5,
consistent with the helium experiments. They also gave a
length scale approximately proportional toe20.2. As we will
see below, these results are difficult to reconcile with various
model equations which generally yieldva}e1 and j
}e21/2.

The theoretical work of Ku¨ppers and Lortz@1,2# demon-
strated that straight rolls are unstable at the onset of convec-
tion whenV.Vc , but the theory made no predictions about
the spatial patterns produced by the instability. Nonlinear
stability analysis by Clever and Busse@3# provided addi-
tional details about the instability, including the dependence
of QKL on V and s. There was, however, relatively little
information fors near 1, which is of interest in the present
work. It is known thatQKL varies between 10° and 60° over
a range ofV and s, and that it approaches@22# 59.7° for
larges andV.Vc.27.4. This led to the use by Busse and
Heikes @6# of a three-mode model@23# with Qs5QKL
560°. The model consisted of three coupled amplitude
equations, one for each of three roll orientations. Since it did
not include spatial variation, it is not suitable for the descrip-
tion of the intricate patterns consisting of domains which
were seen in the experiments@4–7,10,11#. In order to pro-
duce persistent chaotic dynamics, a noise term~presumably
representing the influence of other modes which the model
neglects! had to be added. More recently@13#, certain
spatial-derivative terms have been added to this model, thus
obtaining three coupled Ginzburg-Landau~GL! equations.
This model yielded persistent chaotic dynamics without the
addition of noise and produced domains of different roll ori-
entations in different spatial locations. The time dependence
consisted primarily of domain-wall motion, as seen in the
experiments. The model also offered an explanation for the
experimentally observed@10,4,11# KL-like state belowVc :
the domain-wall speed is nonzero belowVc , so if an inter-
face exists, it can propagate and cause roll-switching even
for V,Vc . In the experiments, the patterns contained grain

boundaries or defects near the sidewall, and fronts could be
nucleated by these structures.

Despite their successes, the three-mode models just de-
scribed cannot capture effects associated with departures of
Qs from 60°, with the distortions of rolls such as roll curva-
ture and wave-number variations, and with the influence of
large-scale circulation important for smalls. To investigate
the qualitative influence of these factors, the Swift-
Hohenberg~SH! equation @24# was extended to include
terms associated with rotation@14–16#. This provided a rea-
sonable model for high-Prandtl-number fluids. Numerical
studies based on it@14,15# have qualitatively reproduced ex-
perimental observations of sidewall-initiated front propaga-
tion caused by the KL instability. In addition to the KL dy-
namics, these simulations yielded rigid pattern rotation,
gliding defects, and defect-induced rotation at moderateV
ande @25–27#. These latter phenomena have been studied in
recent experiments@21#. More recently, mean flow@17# has
been coupled to the SH equation, thus providing a model for
finite-Prandtl-number effects.

Perhaps most relevant to the present experiment are the
simulations and pattern analysis based on a SH model by
Crosset al. @16#. As is done for experimental images@28#,
they computed the structure factorS(k) ~the square of the
modulus of the Fourier transform! corresponding to their nu-
merical integrations of the SH model. From it they obtained
a correlation length equal to the inverse of the half-width of
S(k). They concluded that the main features of the KL dy-
namics are not substantially altered from that predicted using
the more restrictive three-mode GL model@13#. They also
found for the SH model that the correlation length was ap-
proximately proportional toe21/2. The data were not suffi-
cient to determine the dependence ofva on e.

The above summary shows that there are a number of
properties of the system which are found both in experiment
and theory. At the linear level there is quantitative agreement
aboutRc(V) and the critical wave numberkc(V) @21#. At
the weakly nonlinear level both theory and experiment yield
a supercritical bifurcation. The main characteristic of the KL
state common to experiments and models is the existence of
domains, with one domain invading another by domain-wall
motion. This feature suggests the name ‘‘domain chaos’’ for
the KL state. The existence of KL domains belowVc can be
understood in terms of domain walls emanating from the
sidewall of the finite experimental system and is consistent
with a finite domain-wall speed found in the models below
Vc .

There remain two major issues on which theory and ex-
periment yield different answers. These are the typical length
and time scales which describe the KL state. The experiment
finds that they are approximately proportional toe20.2 and
e20.5, respectively, at smalle, whereas the theoretical mod-
els yielde21/2 ande21 in the limit ase vanishes. If one tries
to interpret the experiment by retaining the leading theoreti-
cal exponents, large corrections to the asymptotic behavior at
smalle are required which do not seem to have a basis in the
theoretical models. The theoretical leading exponents are in-
herent in the structure of GL equations, and it is not obvious
how to change them. As one possible source of the discrep-
ancy between theory and experiment, we note that the dy-
namics of the KL state is dominated by fronts. They are
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associated with lines of defects which may not be describ-
able by GL equations if they involve rapid spatial variations.
On the other hand, the difference between theory and experi-
ment may possibly be found in the influence of the experi-
mental cell sidewall, which seems to have a much larger
influence for a rotating system than for a stationary one@21#.
In particular, measurements forV,Vc have shown that de-
fects and KL domain walls tend to be injected into the
sample interior in the rotating system. Although~as de-
scribed below! we have seen no aspect-ratio dependence of
the KL dynamics aboveVc and no evidence for the impor-
tance of wall-nucleated defects or domain walls in the KL
state aboveVc , it is difficult to rule out completely that the
cell walls play a role, except perhaps by comparison with
numerical integrations of the Boussinesq equations with re-
alistic sidewall boundary conditions. Such calculations have
not yet been done.

In this paper, we present a detailed description of patterns
and their dynamics in the KL-unstable regime. A comparison
is made between experimental patterns and patterns gener-
ated by integration of the Boussinesq equations. We then
concentrate on the time scale of the dynamics and its depen-
dence on system size and boundary conditions, and present
experimental results for a domain switching-angleQs and
theoretical results for the angleQKL of the KL perturbation
with the maximum growth rate at onset. Characterization of
the pattern wave number and the spatial correlation length
over the entire range ofV encompassing the KL region were
reported previously@21# but are reexamined here.

In Sec. II we briefly describe the experimental apparatus,
the image-analysis procedures, and the integration of the
Boussinesq equations. The overall pattern dynamics are dis-
cussed in Sec. III. Quantitative analysis of the time and
length scaling and results forQs are presented in Sec. IV.
Conclusions and future prospects are discussed in Sec. V.

II. APPARATUS, IMAGE ANALYSIS, AND INTEGRATION
OF THE BOUSSINESQ EQUATIONS

A. Apparatus

The apparatus is described thoroughly elsewhere
@21,29,30#. Most of the data presented here were obtained
from a circular convection cell with a diameter of 86 mm and
a height of 1.0660.002 mm (G540). The cell was filled
with CO2 at 33.1 bar. This pressure was held constant within
0.005%. The temperature of the bath which cooled the top
plate was held constant within60.0002 °C near 33.7 °C.
Under these conditions, the fluid had a Prandtl number of
0.93. The vertical thermal diffusion timet

v
5d2/k was 4.5

sec, and the horizontal thermal diffusion timeth5G2t
v

was
7200 sec. The measuredDTc(V50) was 1.487
60.004 °C, in good agreement with the value 1.47 °C cal-
culated from the fluid properties and the cell thickness.

We also made measurements in aG523 cell with d
50.201 cm and CO2 gas pressure of 16.6 bar. In this cell, a
thinner sapphire window~3.2 mm! was used for the cell top,
and the small pressure differential between the gas sample
and the water bath caused a slight bowing of the cell in the
middle, but left the cell profile approximately axisymmetric.
Due to the maximum height at the center@21#, a convection
pattern first appeared there ate520.015 and filled the cell

for e>0.012. For this cell,t
v

was 6.7 sec ands was 0.83.
Each cell was placed inside a pressure vessel mounted on

a turntable driven by a stepper motor through a belt-and-
pulley arrangement with one revolution of 360° completed in
50 000 microsteps. For theG540 cell, 1 Hz was equivalent
to V530. The effect of the centrifugal force at the highest
rotation rate in the experiments of 0.7 Hz was small, with
(2p f )2Gd/g50.09. The rotation direction was counter-
clockwise as viewed from above. The convection patterns
were observed by the shadowgraph-visualization method
@30# in the rotating frame. The contrast-enhanced images in
this paper show black regions corresponding to hot fluid~up-
flow! and white regions corresponding to cold fluid~down-
flow!. For the work discussed in the present paper, approxi-
mately 130 000 images were analyzed.

B. Image analysis

We used the time evolution of the modulusF(k,t) of the
spatial Fourier transform and of the structure factorS(k,t)
@the square ofF(k,t), also known as the spatial power spec-
trum# to determine the spatial and temporal structure of KL-
unstable states. Often it was useful to averageS(k,t) over
time to giveS(k). Although there may be some ambiguities
of interpretation because of the combination of influences
that determine the shape ofS(k) @31#, this method allows the
rapid, efficient analysis of many images and is unambiguous
in its definition. We used the angular distributionF(Q,t),
0,Q,p, obtained by averagingS(k,t) over uku in the up-
per half-planeky.0 @k5(kx ,ky)#, and made angle-time
plots of F(Q,t) @10,11#. The autocorrelation function
C(dQ,dt) of F(Q,t) yielded averaged information about
the dynamics@12#. Alternatively, we averagedS(k) over Q
to obtain S(k). The first moment ofS(k) yielded a mean
wave numberk̄, and its second moment aboutk̄ gave the
inverse squarej22 of a length scalej @28#. We now illus-
trate these analysis methods with examples.

For gray-scaled graphical representations of the Fourier
transform we foundF(k,t) to be preferable toS(k,t) be-
cause a smaller gray-scale resolution was sufficient to con-
vey the nature of the structure ink space. In Fig. 1 we show
three examples of images and the correspondingF(k,t). The
Fourier transforms were done after multiplying the image by
a Hanning window as described elsewhere@32#. Thus the
rolls near the center of the image contributed primarily to
F(k,t), and the rolls near the sidewall were deemphasized.
The single-domain nearly straight rolls in Fig. 1~a! yield con-
tributions only at a nearly unique angle corresponding to the
direction of the dominantk. For patterns containing multiple
domains of different roll orientations or curved rolls near the
cell center, as in Fig. 1~b!, F(k,t) contains two or more pairs
of arcs of greater angular extent. In the fully developed KL
state, where many domains are present simultaneously in the
cell, there are contributions at numerous wave vectors as
seen in Fig. 1~c!; but even then two or three orientations
often dominate the part of the sample emphasized by the
window function. The major drawback of this analysis is the
loss of local spatial information. For instance, this method
cannot distinguish rolls with the same wave vector in several
disconnected domains from rolls in a single larger domain.
Nonetheless, it has yielded abundant information on the evo-
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lution of the ‘‘average’’ roll orientation of the patterns.
Examples of the computation ofS(k) and its various mo-

ments have been given elsewhere@28#. Here we illustrate the
use of angle-time plots ofF(Q,t) and of the corresponding
C(dQ,dt). Figure 2~a! showsF(Q,t) for V515.4 ande
50.027. The horizontal axis spans 0,Q,p, and the verti-
cal axis covers a time interval of 2080t

v
, with time increas-

ing in the upward direction. Figure 2~b! is the corresponding
C(dQ,dt). Here the origin is in the center, the horizontal
axis spans2p/2,dQ,p/2, and the vertical axis runs from
21040,dt,1040t

v
. As expected,C(dQ,dt) has all the

same features asF(Q,t), except that they are smoothed by

the averaging involved in computing it. A noticeable feature
of F(Q,t) is the temporal succession of bright clusters cor-
responding to large values. Each cluster corresponds to a
time when a domain with a particular roll orientation domi-
nated the central portion of the sample which is emphasized
by the Hanning window. The angular changeQ s between
successive clusters yields the difference in domain orienta-
tion between temporally successive domains. InC(dQ,dt)
this angular distance is an average^Qs& over the distribution
of such angular changes. SometimesQs is apparent even in
single snapshots ofF(k,t) such as the one in Fig. 1~c!. This
happens when two domains contribute significantly near the
center of the cell. Depending on thee andV range, we found
that Qs could be very well defined or could have a broad
distribution. When it had a narrow distribution, then the
bright clusters inF(Q,t) tended to fall on lines which in Fig.
2 run from the top left to the bottom right. In Fig. 2~b! we
have drawn three such lines to guide the eye.

The time interval between two temporally successive
bright clusters defines a lifetime of a KL domain, or a
domain-switching timetd . td is defined, however, only
when there are well-defined domains which form a temporal
succession. Alternatively, one sees that the temporal succes-
sion of the bright clusters in Fig. 2 defines a set of lines with
a small positive slope. We have drawn one such line
~dashed! in Fig. 2~b! to guide the eye. Its slope likewise
characterizes the time scale of the KL dynamics, and we use
its inverseva as the characteristic frequency. This has the
advantage thatva can be determined even for relatively
smallV where domain switching is absent and wheretd thus
is not defined. In that parameter rangeva represents an over-
all pattern rotation mediated primarily by dislocation defects
@21#. Presumably small contributions from defect nucleation
and possibly other processes which are difficult to identify in
complicated patterns also contribute tova in the KL param-
eter range, but domain switching seems to dominate there
since it is faster and more abundant.

C. Numerical integrations

The nondimensionalized Boussinesq equations~BE! for
RBC with rotation read as follows~see, e.g., Ref.@3#!:

s21S ]u

]t
1u•“uD52“p1“2u1 êQ1V ê3u, ~1!

]Q

]t
1u•“Q5“2Q1R ê•u, ~2!

where ê is the unit vector in thez direction. The velocity
field u and the deviationQ of the temperature from the dif-
fusive linear profile vanish at the horizontal boundaries of
the cell. Incompressibility (“•u50) is assumed, which al-
lows the introduction of poloidal and toroidal velocity poten-
tials @3# instead of the three velocity components. Moreover,
the pressurep can be eliminated. Numerical simulations of
Eqs.~1! and~2! were performed by the use of the techniques
already described elsewhere in some detail@33,34#. With re-
spect to the vertical coordinatez, all fields are expanded in a
set of appropriate functions that vanish at the boundaries
~Galerkin method!. We found that even two such functions

FIG. 1. Real-space images and their gray-scaled Fourier-
transform moduliF(k,t) for ~a! V54.4 ande50.05, ~b! V58.8
ande50.05, and~c! V517.6 ande50.024.

FIG. 2. An example of~a! F(Q,t) and ~b! C(dQ,dt) for V

515.4 ande50.027. ForF(Q,t) the horizontal axis spans 0,Q

,p. The vertical axis fort covers an interval of 2080t
v

, with t
increasing in the upward direction. ForC(dQ,dt) the origin is in
the center, with 2p/2,dQ,p/2 and 21040,dt,1040t

v
.

Bright ~dark! areas are high~low! values.
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were sufficient for obtaining semiquantitative results. With
respect to the horizontal directions, a Fourier expansion was
used. By projecting on the linear eigenmodes, the linear parts
of Eqs.~1! and ~2! are diagonalized; in the simulations usu-
ally three ‘‘active’’ modes are kept~see Ref.@34#!.

Within our approach, where a periodic regime is assumed,
it is strictly speaking impossible to incorporate lateral bound-
ary conditions as required in a circular cell. To deal approxi-
mately with this situation we set all fields to zero at each
time step outside the cell radius. One recovers in simulations
some features at the boundaries~e.g., small cross roll
patches! familiar from experiments. On the other hand, the
tendency of rolls to terminate with their axes perpendicular
to the boundary is less pronounced.

All simulations in this paper are made on a 2563256
horizontal grid fors51, with the same aspect ratioG540 as
in the experiments. Representative results from experiments
and simulations at the same parameter values are presented
in Figs. 3 and 4.

III. QUALITATIVE DESCRIPTION OF PATTERNS
AND THEIR DYNAMICS

Here we give a qualitative description of the patterns and
their dynamics in the parameter regimes where the KL insta-
bility was the dominant mechanism for time dependence.
The patterns and dynamics at smallerV and largere were

presented earlier@21#. Except for smallV ande, the patterns
in the G540 andG523 cell were very similar and only the
former is described in detail. Recall that theG523 cell had a
small radial variation in height that had interesting effects
near the onset forV,Vc , which we describe briefly below
in Sec. III B ~see also Ref.@21#!.

A. Patterns for G540

For G540, no Küppers-Lortz domains were observed for
V&5 up toe'1, where spiral-defect chaos dominated. The
first appearance of KL domains was atV56.6 ande50.08
although there the main time dependence was still due to
dislocation motion. ForV>8.8, representative patterns from
the experiment and corresponding images from BE integra-
tions are shown in Figs. 3 and 4 fore50.06 ande'0.17,
respectively.

We first consider the smalle range represented in Fig. 3.
For 8&V&11, the patterns at onset were time dependent,
with KL domains and fronts initiated by crossrolls at the
sidewall. The domains grew into the unstable central region
of the cell. A typical front generated in this manner is visible
near the center of the cell in Fig. 3~a!. The phenomena are
similar to previous observations@10# for G510 and s
56.4. Dislocation defects were also abundant and active in
the same parameter range; some of them can be seen in the
upper-left quarter of Fig. 3~a!. Qualitatively the same phe-

FIG. 3. Representative patterns forG540 from experiment
~left! and from integrations of the Boussinesq equations~right! at
e50.06 for ~a!,~e! V58.8; ~b!,~f! V512.7; ~c!,~g! V516.5; and
~d!,~h! V519.8.

FIG. 4. Representative patterns forG540 from experiment
~left! and from integrations of the Boussinesq equations~right!.
~a!,~e! V58.8, e50.16; ~b!,~f! V512.7, e50.18; ~c!,~g! V

516.5, e50.16; ~d!,~h! V519.8, e50.18.
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nomena were found also in the GL@13# and SH simulations
@14,15#, as well as in our BE integrations@Fig. 3~e!#.

For V512.7 @Fig. 3~b!#, a typical pattern looked very
similar to those atV58.8, but the dynamics showed an im-
portant difference: although most KL fronts were still initi-
ated at the sidewall, some fronts appeared spontaneously in
regions away from the sidewall. The smallestV at which
nucleation of fronts in the cell interior was observed was
10.5. Cellular regions where two sets of differently oriented
rolls coexisted began to appear, as seen in Fig. 3~b!. The
cellular regions were not fixed in space. As the domains
evolved in both size and shape via KL fronts, different re-
gions appeared cellular at different times. The BE integration
yielded similar patterns, as shown in Fig. 3~f!, although cel-
lular regions seemed to be somewhat less abundant.

At V516.5, Fig. 3~c!, the average size of a domain was
much smaller than forV&12 and cellular regions were more
abundant. Here a noticeable difference between the experi-
ment and the BE integration becomes apparent. In the nu-
merically generated image@Fig. 3~g!# the domains are sig-
nificantly larger than in the experiment, and cellular regions
are less abundant. The trend in the experiment with increas-
ing V of decreasing domain size and increasing occurrence
of cellular regions persisted up to the highestV.20 inves-
tigated, Fig. 3~d!. Although the BE integrations showed simi-
lar trends, the changes withV were less pronounced.

As e was increased to about 0.17, there were some
changes in the nature of the patterns as illustrated in Fig. 4.
For V&10, KL fronts became less frequent. The patterns
became S-shaped, and two large sidewall foci usually ap-
peared as shown in Fig. 4~a!. On the side clockwise from the
foci, rolls ended with their axes nearly perpendicular to the
sidewall whereas on the other side rolls terminated more ob-
liquely. This is in contrast to the sidewall foci seen forV
50 @32# which were highly symmetric. Dislocation defects
appeared from the side of the foci with rolls perpendicular to
the wall and traveled across the cell, disappearing on the
opposite side. The direction of defect motion is determined
by their topological charge and the direction of cell rotation
@21#. Compared to lowere, the rate of nucleation of defects
was higher, but no sidewall accumulation of defects was ob-
served. As for lowere, KL domains and fronts began to
dominate asV increased, as seen in Figs. 4~b!–4~d!. Again
we found that the domain size in the BE integration was
larger than in the experiment at a givenV. Cellular regions
seemed less abundant than in the experiment, as was found at
smallere.

Although we do not yet have a quantitative comparison, it
is apparent from Figs. 3 and 4 that the domains in the BE
integration are generally larger than those in the experiment.
We do not know the reason for this difference, but note that
the major difference between experiment and simulation is to
be found in the boundary conditions. Simulations with real-
istic sidewall boundary conditions would thus be very desir-
able, but have not yet been performed.

B. Patterns for G523

Except for their size, the patterns encountered in the
smallerG523 cell were generally similar to those of theG
540 cell. A few examples were presented in Ref.@21#, and

we will not discuss them any further. The major difference
between the two existed close to onset and forV,12, where
the small cell showed a bifurcation to a time-independent
state without any KL domains~see Fig. 16 of Ref.@21#!. We
believe that this is the result of the small radial variation of
the cell thickness mentioned above which caused a rounded
transition to convection, with rolls appearing first in the cen-
tral region while the region near the sidewall was still in the
conduction state@21#. Consequently, fore&0.02, there were
no sidewall-nucleated domains and thus no KL dynamics.
Thus the behavior of theG523 cell supports the idea that the
KL dynamics for theG540 cell at onset and belowVc is
sidewall-mediated.

C. Dynamics for G540

We now return to theG540 cell and illustrate the KL
dynamics in temporal sequences of images. ByV58.8, KL
domains and fronts occurred at the onset of convection and
were responsible for much of the dynamics, as seen in the
time sequence of Fig. 5. Here the images are fore50.04 and
were taken at time intervals of 80t

v
. The fronts were nucle-

ated at the wall. Figure 5~c! illustrates a case where two
fronts merge in the cell interior. The region enclosed by the
circle in Fig. 5~d! gave rise to the domain circled in Fig. 5~e!.
From time to time the cell was almost completely occupied
by a single domain, as in Fig. 5~g!. Such occurrences were

FIG. 5. Time sequence of images forG540 with sidewall-
nucleated Ku¨ppers-Lortz domains and dislocation-defect motion at
e50.04 andV58.8. The images are 80t

v
apart.
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never observed forV*12. Much defect movement occurred
along the advancing front between the stable and unstable
rolls. This is illustrated by the well-defined front in the upper
right of Fig. 5~f!. The rolls behind this growing front joined
with the unstable rolls in Fig. 5~g!, and the defects that sepa-
rated the two sets of rolls propagated toward the right, leav-
ing behind joined rolls with kinks which gradually smoothed
out. Even with this smoothing process, the overall roll orien-
tation still changed by discrete steps, but the changes varied
from 30° to 90°. This is qualitatively different from the
smooth angular changes induced by repeated dislocation-
defect motion which dominated the dynamics for 5&V
&10 at highere @21#. There the orientation of the underlying
roll pattern advanced slowly in the direction of rotation. Al-
though occasional KL fronts were initiated either by the side-
wall or by the clusters of defects next to the sidewall, these
fronts only affected a small portion of the cell and rarely
propagated across the whole cell.

At V512.7, the KL fronts which originated near the side-
wall remained dominant in the dynamics, but the pattern al-
ways contained several domains with different roll orienta-
tions as shown in the time sequence in Fig. 6. In addition to
fronts nucleated at the sidewall, occasionally new fronts ap-
peared spontaneously in the interior of the cell. With increas-
ing e the spontaneous front nucleation away from the wall

became more frequent. One such front is indicated by the
arrow in Fig. 6~d!.

At higher V, front motion continued to dominate the dy-
namics, although defects still played a role. The rolls tended
to terminate with their axes more nearly perpendicular to the
sidewall @21#, as seen in Fig. 7. It is possible that this ten-
dency influenced the dynamics. Defect nucleation in an oth-
erwise uniform domain was sometimes observed as well, as
shown in Fig. 7~g!, which contains a pair of such defects.

IV. QUANTITATIVE IMAGE ANALYSIS

A. Angle-time plots and their correlation functions for G540

Figure 8~a! shows the angle-time plot ofF(Q,t) ~see Sec.
II B ! for V58.8 ande50.04. It corresponds to the same run
as the image sequence in Fig. 5, but is composed of the
complete 257 images of the run. The total duration of this
run was 9600t

v
. Most of the time the cell contained prima-

rily one domain, so there was a dominant roll orientation.
This led to the bright irregular clusters, some of which we
identified by pluses in the upper part of the figure. The clus-
ters trace out a temporal sequence representing the time evo-
lution of the roll orientation. Lines drawn through them have
a small positive slope equal to a characteristic inverse fre-
quencyva

21 . For this example the switching angleQs varied

FIG. 6. Time sequence of images forG540 with Küppers-Lortz
domains and dislocation-defect motion ate50.10 andV512.7.
The images are 8.9t

v
apart. The arrow in~d! points to a region

away from the sidewall with a spontaneously nucleated domain
wall.

FIG. 7. Time sequence of images forG540 with Küppers-Lortz
domains and dislocation-defect motion ate50.03 andV516.5.
The images are 6.7t

v
apart. The ellipse in~g! contains a pair of

defects which formed by the pinching-off of a roll.
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from less than 40° to close to 90°. This wide distribution is
characteristic of the range ofV,Vc where the domains are
primarily wall-nucleated.

At the sameV and highere, KL fronts became less fre-
quent, and defect motion dominated the dynamics. The
angle-time plot of a 4800t

v
sequence fore50.16 is shown

in Fig. 8~b!. No KL fronts were observed in these images.
The dominant roll orientation changed smoothly at a con-
stant rate. The change was caused by defect nucleation and
propagation and was rather slow compared to the KL switch-
ing process shown in the other angle-time plots.

As V was increased, the average size of the KL domains
became smaller, and a single domain rarely dominated the
pattern. AtV*11, there was always more than one domain
in the cell. A typical angle-time plot atV512.1 ande
50.11 is shown in Fig. 8~c!. This run contained the image
sequence shown in Fig. 6. Even though more than one do-
main was present, there was usually a dominant orientation
in the cell center~in the analysis the center is emphasized by
the use of the Hanning window!. A dominant orientation
remained discernible from the angle-time plots even at
highere and/orV. An example, atV516.5, is shown in Fig.
8~d!, which was produced from the complete image sequence
corresponding to Fig. 7. The light spots are arranged in regu-
lar intervals as the domain switching angle was fairly con-
stant for most of the sequence.

The two-dimensional autocorrelation functionC(dQ,dt)
of F(Q,t) ~see Sec. II B! enhances the angle-time plots in a
manner that emphasizes the average domain switching. In
Fig. 9 we showC(dQ,dt) corresponding to Fig. 8. No dis-
crete switching is seen in Fig. 9~b! because no domains were
present in real space. The other examples show differing
degrees of short-time correlations corresponding to the do-
main switching. It is possible to measure both the average
switching angle^Qs& and the switching frequencyva as

functions of e and V over a significant parameter range.
However, the existence of multiple domains and the mixing
of the effects of KL fronts and defects generated by the
skewed-varicose instability~SV defects! @21# prevented the
measurement of̂Qs& over some other parameter ranges. In
practice, the angle could only be determined fore<0.06 and
V>12, and then only for some image sequences. This is a
shortcoming of the analysis method as visually the domains
still switched discretely even when the angle-time plot was
unable to pick up these changes. This difficulty precluded
directly measuring the switching timetd for those sequences
where^Qs& could not be determined. Thus we report instead
the angular changeva per unit time which can be measured
from either the angle-time plots, e.g., Fig. 8, or from the
autocorrelation plots, e.g., Fig. 9. This could introduce a sys-
tematic difference between the actual switching time and our
measured angular rate of change if the switching angle var-
ied appreciably withe andV. With that in mind, we consider
first the measurement of^Qs&.

B. The domain switching angle ŠQs‹ for G540

The angle-time plots in Figs. 2~a! and 8~d! are good ex-
amples of sequences for which an accurate value of^Qs&
could be easily obtained. In the autocorrelations, Figs. 2~b!
and 9~d!, the constant angular change per KL switching is
apparent as the distance between the relatively evenly spaced
bright spots. The switching angles are plotted againste in
Fig. 10 for the values ofV and e where the technique was
sufficient to extract them. The angles were all very close to
58° with no systematic dependence onV and only a slight
variation with e. A fit to the data yielded the straight line.
The average switching angle ranged only from about 59°
neare50 to about 56° neare50.06. The lack of a discern-
ible switching angle in the correlation function, when it oc-
curs, is then a result of decoherence of the switching in dif-
ferent domains and of a broad distribution ofQs .

FIG. 8. Gray-scaled angle-time plots ofF(Q,t) for G540 and
~a! V58.8, e50.04, 9600t

v
; ~b! V58.8, e50.16, 4800t

v
; ~c!

V512.7, e50.10, 1133t
v

; and ~d! V516.5, e50.03, 1600t
v

.
Bright ~dark! areas correspond to large~small! values.

FIG. 9. Gray-scaled autocorrelationsC(dQ,dt) for the angle-
time plots in Fig. 8.~a! V58.8, e50.04; ~b! V58.8, e50.16; ~c!

V512.7, e50.10; ~d! V516.5, e50.03. Bright~dark! areas cor-
respond to large~small! values.
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Particularly for smallerV, the large variation in the switch-
ing angle from 40° to 70° and the additional angular change
arising from defect motions prevents the determination of
^Qs&.

For V.Vc it is interesting to ask what relationship~if
any! ^Qs& may have to the anglesQKL of the infinitesimal
KL perturbations with positive growth ratess(QKL). For V
.Vc , there is a continuous band of such angles, ands has a
positive maximum at a particular angle which is usually as-
sociated with the KL instability. In Fig. 11 we shows(QKL)
as a function ofQKL for V515.4 ands50.93 as an ex-
ample. Heres was evaluated for the average pattern wave
number k5kc21.45e found @21# in the experiment. The
wave number of the KL perturbation was chosen so as to
maximizes(QKL). The range of̂ Qs& chosen by the experi-
ment ase varied from zero to 0.06~solid line in Fig. 10! is
shown by the short horizontal bar from 56° to 59°. We see
that ^Qs& is at the extreme upper end of the range where
s(QKL).0. This suggests that there is in fact no relationship
betweenQKL and Qs , and thatQs is chosen by nonlinear
selection processes inherent primarily in domain-front propa-
gation which are not understood in detail and which are un-
related to the linear instability.

C. The pattern-rotation and domain-switching
frequency va at small V

We now consider the characteristic switching frequency.
SinceQs was found to be essentially constant forV*13, the

average rotation rate in Fourier spaceva is, to a good ap-
proximation, proportional to the discrete inverse switching
time td when domains are present. When there are no do-
mains, va is much smaller and represents pattern rotation
dominated by dislocations and other defects@21#.

First we consider the rangeV&Vc for G540. In Fig. 12
is a plot ofva versuse for 8.8<V<12.1. At V510.5, the
dynamics at the onset involved both KL-front and SV-defect
motions, andva increased withe. As e increased, there was
decreased activity of KL fronts relative to the SV defects,
and va decreased beyonde'0.1, reflecting the difference
between the contribution tova of KL fronts and SV defects.
Beyonde'0.2, the dynamics was mostly mediated by the
SV instability, resulting in smallerva even though at higher
e the motion of SV defects became faster. This slowing
down seemed to be caused by the accumulation of sidewall
defects which interfered with KL-front nucleations. These
sidewall defects began to nucleate traveling defects at higher
e, and ate'0.3, KL activity was completely suppressed.
Neare'0.5, spirals appeared@21#. A similar dependence of
va on e is seen in Fig. 12 forV.10.5, although the maxi-
mum value ofva was pushed to highere as V increased.
This behavior may be attributable to similar pattern evolu-
tion, i.e., KL behavior being suppressed by dislocation-
defect motion, ase was increased.

D. The domain-switching frequency va for V>Vc

Next we examine the rangeV*Vc.13 for G540. There
the patterns were composed of many domains of differently
oriented rolls, and the rapid changing of roll orientations was
accomplished by moving fronts characteristic of the KL in-
stability. Although SV defects may have been present in this
parameter range, their presence was difficult to detect in the
more complicated patterns. In any case, their much slower
dynamics implies that their contribution tova was minor or
negligible. Nevertheless, the same trends of increasingva
near onset, reduced rate of increase at intermediatee, and a
gentle decrease for highere were seen throughout the range
10<V<17. This is evident in Fig. 13, which showsva for
13<V<20. It is surprising that the behavior ofva remained
quite consistent throughout the range 10<V<17 as the dy-
namics varied significantly at fixede as V changed. ForV
*13 most fronts were nucleated away from the wall and
often five or more domains were visible, whereas forV
&13, KL fronts were generally initiated at the sidewall and
the number of distinct domains was generally less than 3.

FIG. 10. Measured switching angle^Qs& in units of degrees for
G540 as a function ofe for V513.2 ~solid diamonds!, 13.8~open
circles!, 14.3 ~solid circles!, 14.9 ~open squares!, 15.4 ~solid
squares!, 16.5 ~open triangles!, and 17.6~solid triangles!.

FIG. 11. Calculated growth ratess(QKL) as a function ofQKL

~units of degrees! for V515.4 ande50.05 ~open circles!, 0.10
~solid circles!, 0.15 ~open squares!, and 0.20~solid squares!. The
small horizontal bar represents the experimental results forQs

shown in Fig. 10.

FIG. 12. The frequencyva as a function ofe for G540 and
V58.8 ~crosses!, 10.5~circles!, 11.0~triangles!, and 12.1~pluses!.
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Measurements ofva for the G523 cell were limited to
the region near onset. The results forV<15 are shown in
Fig. 14. For a quantitative comparison, we fitted straight
lines tova(e,V) for e,0.04. As discussed before@5#, this
fitted the data quite well but, contrary to theoretical expecta-
tions, yielded finite values ofva at e50. In Fig. 15 we show
the results for the slopeW5dva /de for G523 ~crosses! and
G540 ~solid circles!. Both sets of data show a flat range of
small W for V&12 and increasingW at higherV. Straight-
line fits to W(V) in these two different regions gave an
approximateV0 at which the slope started to increase rap-
idly. For G540, V0 was 12.560.4 close to the theoretical
Vc of 12.95 fors50.93. ForG523, V0 was 1260.6 close
to Vc for s50.83. ForV slightly aboveVc , the results for
G523 are somewhat lower than those forG540. This may
well be attributable to the fact that the dynamics at smalle
had to be driven exclusively by bulk-nucleated KL fronts
because of the absence of sidewall-nucleated fronts~see Sec.
III B !. At larger V, the results for the two cells were more
nearly equal.

E. Analysis of va for G540 and V>Vc

We demonstrated previously@5# that it is difficult to rec-
oncile the data forva with the theoretical prediction

va}e ~3!

which is based on general properties of GL models and
which is consistent with numerical integrations@16# of SH
equations. For GL models one would expect Eq.~3! to be

valid for sufficiently smalle. Here we review the interpreta-
tion of the experimental results, and then offer an alternative
interpretation of the data which is consistent with Eq.~3!, but
which requires large analytic corrections to the linear varia-
tion. From a theoretical viewpoint the problem presented by
the data can thus be reduced to the need to explain anoma-
lously large coefficients of correction terms to the small-e
asymptotic behavior.

First we illustrate in Fig. 16 that the results forva can be
reduced, or collapsed, onto a single curveṽa(e)
[va(e,V)/vr(V) within their experimental uncertainties.
We chose the data atV519.8 as a reference set, and divided
the results at the other values ofV by an appropriately cho-
senV-dependent constantvr . Interestingly, the requiredvr
~given in the figure caption! have a simple dependence upon
V; within error they fall on a straight line given by

vr50.129~V212.16!. ~4!

The data collapse is successful fore<0.2.
The reduced frequenciesṽa in Fig. 16 are shown on

double-logarithmic scales. Thus a straight line in the figure
corresponds to

ṽa5va,0e
x. ~5!

The dashed line in the figure corresponds tox51, which
would be consistent with Eq.~3!. It clearly is a poor repre-

FIG. 14. The frequencyva in units of rad/t
v

as a function ofe
for G523 and theV values given in the figure.

FIG. 15. The slopeW5dva /de for small e as a function ofV
for G540, s50.93 ~solid circles! andG523, s50.83 ~crosses!.

FIG. 16. The reduced frequencyṽa5va /vr as a function ofe
for G540 on logarithmic scales. The data are for (V,vr)
5(13.2, 0.152)~crosses!, ~14.3, 0.273! ~circles!, ~15.3, 0.400! ~tri-
angles!, ~16.5, 0.541! ~pluses!, and ~19.8, 1.000! ~squares!. The
dashed line corresponds to an exponent of 1. The dash-dotted line is
a fit of the power law Eq.~5! to the data and corresponds to an
exponent of 0.52. The solid line is a fit of Eq.~6! to the data.

FIG. 13. The frequencyva as a function ofe for G540 and
V513.2~crosses!, 14.3~circles!, 15.3~triangles!, 16.5~pluses!, and
19.8 ~squares!.
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sentation of the data. A fit of Eq.~5! to the data over the
rangee,0.2 is represented by the dash-dotted line in the
figure and gaveva,050.575 andx50.518. This result agrees
with the previously published analysis@5# which, however,
was done forva(e,V) separately at eachV. It fits the data
quite well except perhaps at very smalle where the experi-
mental uncertainties are largest. But the exponentx.0.52
,1 is difficult to reconcile with the theory.

In an attempt to search further for an interpretation which
retains the predictedx51, we show in Fig. 17 the ratioṽa /e
as a function ofe on linear scales. If Eq.~3! is valid, then the
data should tend toward a constant value ate50. The data
are indeed consistent with this expectation, but the large
slope and the curvature suggested by the data indicate that a
fit would require a function of the form

ṽa5va,0e~11va,1e1va,2e
2!. ~6!

The solid line in the figure is a fit of this equation to the data.
It clearly is an excellent representation, but it is a fit of a
function with three parameters. The values of the coefficients
areva,053.34, va,1526.09, andva,2514.9. We note that
the coefficients of the higher-order terms are rather large,
whereasa priori one might have expected them to beO(1).
For comparison, the power-law fit@Eq. ~5!# is shown as a
dash-dotted line. It is not as good a fit to the data, but it
requires only two adjustable parameters. The dashed line in
Fig. 16 is the leading termva,0e of Eq. ~6!.

F. The correlation length j for V>Vc

Previously @5,21# we presented results for a correlation
lengthj(e,V) which was defined@28# in terms of the second
moment ofS(k). On the basis of GL models, such a length
would be expected to diverge as

j}e21/2. ~7!

This was found to be inconsistent with the data@5#. Instead a
fit of the power law

j5j0ey~11Dje ! ~8!

to the data yieldedy.0.2, in disagreement with the theory.
The successful collapse of theva data suggests that a

similar procedure might be applied toj. Here we use only
the three data sets which were shown in Fig. 29 of Ref.@21#
to avoid excessively crowded figures, but they adequately
span the range 14<V<20 of the KL instability. We took the
set atV514.3 as the reference set, and divided thej values
of the other sets by anV-dependent reference valuejr to
obtainj̃[j/jr . The resulting reduced correlation lengths are
shown in Fig. 18, where the values ofjr are also given. One
sees that the collapse is successful over a wide range ofe. A
fit of Eq. ~8! to j̃ for e,0.2 yieldedj054.64,y50.167, and
Dj520.73. This fit is shown as the dash-dotted line in the
figure. It is excellent even beyond the fit range, i.e., fore
.0.2. But the value ofy disagrees with the theory.

Encouraged by the successful fit of Eq.~6! to the data for
ṽa , we show in Fig. 19 the experimental results for (1/j̃)2/e
as a function ofe. An asymptotic proportionality ofj̃ to
e21/2 would imply that this parameter should approach a
constant value ase vanishes. Unfortunately the data fore
,0.04 are not consistent with this expectation. A fit

FIG. 17. The reduced frequencyṽa5va /vr divided bye as a
function of e on linear scales. The data are for (V,vr)
5(13.2, 0.152)~crosses!, ~14.3, 0.273! ~circles!, ~15.3, 0.400! ~tri-
angles!, ~16.5, 0.541! ~pluses!, and ~19.8, 1.000! ~squares!. The
solid line is a fit of Eq.~6! to the data. The dash-dotted line is a fit
of the power law Eq.~5! to the data and corresponds to an exponent
of 0.52.

FIG. 18. The reduced correlation lengthj̃5j/jr as a function of
e on logarithmic scales. The data are for (V,jr)5(14.3, 1.00)
~open circles!, ~16.5, 0.913! ~solid circles!, and~19.7, 0.839! ~open
squares!. The dash-dotted line is a fit of the power law Eq.~8! to
the data and corresponds to an exponent of 0.17. The solid line is a
fit of Eq. ~9! to the data.

FIG. 19. The inverse square (1/j̃)2 of the reduced correlation

length j̃5j/jr , divided by e, as a function ofe on linear scales.
The data are for (V,jr)5(14.3, 1.00)~open circles!, ~16.5, 0.913!
~solid circles!, and ~19.7, 0.839! ~open squares!. The dash-dotted
line is a fit of the power law Eq.~8! to the data and corresponds to
an exponent of 0.17. The solid line is a fit of Eq.~9! to the data.
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~1/j̃ !2
5X0e~11X1e1X2e2! ~9!

to the data using a function of the form for 0.04,e,0.2 is
shown by the solid line in the figure. It gives the parameters
X050.517,X1527.12, andX2520.4. We note thatX1 and
X2 are similar in size to the corresponding coefficientsva,1

andva,2 for the fit to ṽa . For j̃, however, the deviation of
the data fore,0.04 is significant, whereas forṽa the fit was
good for alle,0.2. One might conjecture that the deviation
for j̃ is caused by the finite size of the convection cell. Un-
fortunately, we have neither a theory nor sufficient data to
test this hypothesis.

G. The diffusivity D for V>Vc

In Ginzburg-Landau models,D[j2va is independent of
e. In the preceding section we saw that the correction terms
in Eq. ~6! for ṽa and in Eq.~9! for 1/j̃ 2 are of similar size.
Thus they should nearly cancel inD, yielding a nearlye-
independent result. This is indeed the case. Using the unre-
duced data forj andva , we obtained the diffusivities shown
in Fig. 20. There is a sharp rise at smalle which is associated
with the deviation of the data forj̃ from the fit of Eq.~9!.
Then there is an approximately constant region for 0.05,e
,0.2, and finally a decrease at highere. Averages of the data
in the approximately constant range yield the solid lines in

the figure. The average values are plotted in Fig. 21 as a
function ofV. Remarkably, the data show a simpleV depen-
dence. They can be fit by the straight lineD50.53(V
210.5). Thus, although the individual dependencies one of
space and time scales do not follow the simplest predictions,
the diffusivity is well behaved over a range ofe where KL
front propagation is dominant over dislocation-defect nucle-
ation and motion.

V. SUMMARY AND CONCLUSIONS

We presented experimental results of patterns and their
dynamics for Rayleigh-Be´nard convection~RBC! in the
presence of rotation about a vertical axis with an angular
velocity V. For comparison with these data, we integrated
the Boussinesq equations for RBC with rotation using some
of the same parameter values as in the experiment. In this
paper we focus on the range 8&V&20 where we observed
patterns consisting of interacting domains of straight rolls.
The domains exhibit a chaotic dynamics which consists pri-
marily of domain-wall ~or front! propagation by which a
given domain tends to replace a neighboring one. The do-
main replacement~or switching! usually results in a reorien-
tation of the rolls in a given location through an angleQ s
.58° in the direction ofV. This ‘‘domain chaos’’ is typical
of the parameter range where straight rolls are linearly un-
stable to Ku¨ppers-Lortz perturbations.

For V&12 the dynamics are difficult to interpret because
they are strongly influenced by the nucleation of dislocation
defects and fronts near the sidewalls. In this regime the dy-
namics is a mixture of sidewall-mediated front propagation
and defect motion. We illustrate this parameter range with
temporal pattern sequences, and we present quantitative
measurements of the average pattern rotation rateva which
results from the defect motion and front propagation.

With increasingV, and particularly close to onset, the
dynamics became dominated by the nucleation of domain
walls in the sample interior. Although a quantitative com-
parison has not yet been made, we found that the BE inte-
grations yielded patterns with larger domains than the ex-
periment. Although we do not know the reason for this
difference, it is worth noting that the major difference be-
tween the experiment and the simulation is to be found in the
boundary conditions at the sidewall.

In the intrinsic regime 13&V&20 where domain walls
form spontaneously in the interior, the domain switching
angle Qs could be measured quantitatively fore&0.06 by
Fourier-transform analysis of the patterns. We found thatQs
was independent ofV and that it varied from about 59° to
about 56° ase varied from zero to 0.06. For comparison we
calculated the growth rates of KL perturbations as a function
of their angleQKL and ofe. The experimental results forQs
differ from the calculated valueQKL543° for the angle at
which the KL perturbations have their maximum growth rate
at onset and forV515.4. We conclude that the domain-front
propagation selects an angle which is determined by nonlin-
ear properties of the system and which is unrelated to the
linear growth rate of the KL perturbations.

In the range 13&V&20 the pattern rotation-frequency in
Fourier space is determined primarily by the domain switch-
ing. We made quantitative measurements ofva over this
range ofV and over a widee range. We found thatva(e,V)
could be reduced to a singlee-dependent curveṽa(e)
[va(e,V)/vr(V). On the basis of Ginzburg-Landau mod-

FIG. 20. The diffusivityD5j2va in units d2rad/t
v

as a func-
tion of e for V512.6 ~open circles!, V514.3 ~solid circles!, V

516.5 ~open triangles!, V517.6 ~open squares!, and V519.8
~solid squares!. The solid lines are averages^j2va& of the data for
a givenV for 0.04,e,0.2.

FIG. 21. The average diffusivitŷj2va&, averaged over the
range 0.04,e,0.2, as a function ofV.
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els one would expectṽa to be proportional toe for small e.
We found that the data are difficult to reconcile with this
prediction, and that a power law with an exponent near 0.52
provides a good fit. When it is assumed that the leadinge

dependence isṽa}e, then large corrections of ordere2 and
e3 are required to fit the data over a significant range. We
also determined a correlation length from the Fourier analy-
sis of the data, and found similar problems in its interpreta-
tion. We have not yet been able to get reliable information
about statistical properties likeva andj from the numerical
integrations of the BE equations because much longer runs
would be required for this purpose.

We close by pointing out some opportunities for addi-
tional work on this system. Perhaps the major remaining
problem is that the origin of the anomalouse dependence of
the switching frequencyva and of the correlation length re-
mains largely obscure. Even though the anomalous behavior
has been seen in two cells of quite different aspect ratio, it is
difficult to rule out definitively that the dynamics is influ-
enced by defects and fronts injected by the sidewall. Circum-
stantial evidence pointing in this direction is to be found in
the larger domain size in the BE integration which used
boundary conditions different from those relevant to the ex-
periment. For the larger values ofV, sidewall-induced pro-
cesses are difficult to observe in the physical system because
of the complexity of the patterns. The importance of these
processes at lowerV suggests that they may also play a role

for V*13. This issue could be pursued theoretically by in-
tegrations of the Boussinesq equations with realistic bound-
ary conditions. In addition, it may be possible to reduce these
effects in an experiment~if they are present! by deliberately
introducing ane variation from above to below threshold
near the wall. This could be done for instance by a slight
radial variation in the cell thickness.

Finally, it is worth remarking that additional pattern-
analysis techniques could be usefully employed in future
studies of this system. These include variations on the Fou-
rier methods described in this paper, as well as real-space
analysis such as that used in some of our previous work
@21,32#. Particularly useful may be the determination of the
wave-director field in real space by fast computational meth-
ods advocated recently@35#. This should make it possible to
develop algorithms for the direct determination of domain
sizes and might avoid some of the ambiguities of correlation
lengths determined by Fourier methods.
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