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FIG. 21. The average di�usivity < �2!a >, averaged over the range 0:04 < � < 0:2, as a

function of 
.
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FIG. 20. The di�usivity D = �2!a as a function of � for 
 = 12:6 (open circles), 
 = 14:3

(solid circles), 
 = 16:5 (open triangles), 
 = 17:6 (open squares), and 
 = 19:8 (solid squares).

The solid lines are averages < �2!a > of the data for a given 
 for 0:04 < � < 0:2.
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FIG. 19. The inverse square (1=~�)2 of the reduced correlation length ~� = �=�r, divided by �, as

a function of � on linear scales. The data are for (
; �r) = (14.3,1.00) (open circles), (16.5,0.913)

(solid circles), and (19.7,0.839) (open squares). The dash-dotted line is a �t of the power law Eq. 8

to the data and corresponds to an exponent of 0.17. The solid line is a �t of Eq. 9 to the data.
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FIG. 18. The reduced correlation length ~� = �=�r as a function of � on logarithmic scales. The

data are for (
; �r) = (14.3,1.00) (open circles), (16.5,0.913) (solid circles), and (19.7,0.839) (open

squares).The dash-dotted line is a �t of the powerlaw Eq. 8 to the data and corresponds to an

exponent of 0.17. The solid line is a �t of Eq. 9 to the data.
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FIG. 17. The reduced frequency ~!a = !a=!r divided by � as a function of � on linear scales.

The data are for (
; !r) = (13.2,0.152) (crosses), (14.3,0.273) (circles), (15.3,0.400) (triangles),

(16.5,0.541) (plusses), and (19.8,1.000) (squares).The solid line is a �t of Eq. 6 to the data. The

dash-dotted line is a �t of the power-law Eq. 5 to the data and corresponds to an exponent of 0.52.
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FIG. 16. The reduced frequency ~!a = !a=!r as a function of � for � = 40 on logarithmic scales.

The data are for (
; !r) = (13.2,0.152) (crosses), (14.3,0.273) (circles), (15.3,0.400) (triangles),

(16.5,0.541) (plusses), and (19.8,1.000) (squares). The dashed line corresponds to an exponent of

one. The dash-dotted line is a �t of the powerlaw Eq. 5 to the data and corresponds to an exponent

of 0.52. The solid line is a �t of Eq. 6 to the data.
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FIG. 14. The frequency !a as a function of � for � = 23 and the 
 values given in the �gure.
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FIG. 13. The frequency !a as a function of � for � = 40 and 
 = 13.2 (crosses), 14.3 (circles),

15.3 (triangles), 16.5 (plusses), and 19.8 (squares).
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FIG. 12. The frequency !a as a function of � for � = 40 and 
 = 8.8 (crosses), 10.5 (circles),

11.0 (triangles) and 12.1 (plusses).
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FIG. 11. Calculated growth rates s(�KL) as a function of �KL for 
 = 15:4 and � = 0.05 (open

circles), 0.10 (solid circles), 0.15 (open squares), and 0.20 (solid squares). The small horizontal bar

represents the experimental results for �s shown in Fig. 10.
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FIG. 10. Measured switching angle < �s > for � = 40 as a function of � for 
 = 13.2 (solid

diamonds), 13.8 (open circles), 14.3 (solid circles), 14.9 (open squares), 15.4 (solid squares), 16.5

(open triangles), and 17.6 (solid triangles).
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a
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c

d

FIG. 9. Grey-scaled auto-correlations C(��; �t) for the angle-time plots in Fig. 8. (a):


 = 8:8; � = 0:04. (b): 
 = 8:8; � = 0:16. (c): 
 = 12:7; � = 0:10. (d): 
 = 16:5; � = 0:03.

Bright (dark) corresponds to large (small) values.
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c
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FIG. 8. Grey-scaled angle-time plots of S(�; t) for � = 40 and (a) 
 = 8:8, � = 0:04, 9600�v ,

(b) 
 = 8:8; � = 0:16; 4800�v , (c) 
 = 12:7; � = 0:10; 1133�v , and (d) 
 = 16:5; � = 0:03; 1600�v .

Bright (dark) corresponds to large (small) values.
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(a) (e) 

(b) (f) 

(c) (g) 

(d) (h) 

FIG. 7. Time sequence of images for � = 40 with K�uppers-Lortz domains and dislocation-defect

motion at � = 0:03 and 
 = 16:5. The images are 6.7 �v apart. The ellipse in (g) contains a pair

of defects which formed by the pinching-o� of a roll.
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(a) (e) 

(b) (f) 

(c) (g) 

(d) (h)

FIG. 6. Time sequence of images for � = 40 with K�uppers-Lortz domains and dislocation-defect

motion at � = 0:10 and 
 = 12:7. The images are 8.9 �v apart. The arrow in (d) points to a region

away from the sidewall with a spontaneously-nucleated domain wall.
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(a) (e) 

(b) (f) 

(c) (g) 

(d) (h) 

FIG. 5. Time sequence of images for � = 40 with sidewall-nucleated K�uppers-Lortz domains

and dislocation-defect motion at � = 0:04 and 
 = 8:8. The images are 80 �v apart.
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FIG. 4. Representative patterns for � = 40 from experiment (left) and from integrations of

the Boussinesq equations (right). (a, e): 
 = 8:8, � = 0:16. (b, f): 
 = 12:7, � = 0:18. (c, g):


 = 16:5, � = 0:16. (d, h): 
 = 19:8, � = 0:18.
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FIG. 3. Representative patterns for � = 40 from experiment (left) and from integrations of the

Boussinesq equations (right) at � = 0:06 for (a, e) 
 = 8:8, (b, f) 
 = 12:7, (c, g) 
 = 16:5, and

(d, h) 
 = 19:8.
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a b

FIG. 2. An example of (a) F (�; t) and (b) C(��; �t) for 
 = 15:4 and � = 0:027. For F (�; t)

the horizontal axis spans 0 < � < �. The vertical axis for t covers an interval of 2080�v , with t

increasing in the upward direction. For C(��; �t) the origin is in the center, with ��=2 < �� < �=2

and �1040 < �t < 1040. Bright (dark) are high (low) values.
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FIGURES

a

b

c

FIG. 1. Real-space images and their grey-scaled Fourier-transform moduli F (k; t) for (a)


 = 4:4 and � = 0:05, (b) 
 = 8:8 and � = 0:05, and (c) 
 = 17:6 and � = 0:024.
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importance of these processes at lower 
 suggests that they may also play a role for 
 >
� 13.

This issue could be pursued theoretically by integrations of the Boussinesq equations with

realistic boundary conditions. In addition, it may be possible to reduce these e�ects in an

experiment (if they are present) by deliberately introducing an �-variation from above to

below threshold near the wall. This could be done for instance by a slight radial variation

in the cell thickness.

Finally it is worth remarking that additional pattern-analysis techniques could be usefully

employed in future studies of this system. These include variations on the Fourier methods

described in this paper, as well as real-space analysis such as that used in some of our

previous work[21,32]. Particularly useful may be the determination of the wave-director

�eld in real space by fast computational methods advocated recently[35]. This should make

it possible to develop algorithms for the direct determination of domain sizes and might

avoid some of the ambiguities of correlation lengths determined by Fourier methods.
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that it varied from about 59 to about 56� as � varied from zero to 0.06. For comparison we

calculated the growth rates of KL perturbations as a function of their angle �KL and of �.

The experimental results for �s di�er from the calculated value �KL = 43� for the angle at

which the KL perturbations have their maximum growth rate at onset and for 
 = 15:4.

We conclude that the domain-front propagation selects an angle which is determined by

nonlinear properties of the system and which is unrelated to the linear growth rate of the

KL perturbations.

In the range 13 <� 
 <
� 20 the pattern rotation-frequency in Fourier space is determined

primarily by the domain switching. We made quantitative measurements of !a over this

range of 
 and over a wide �-range. We found that !a(�;
) could be reduced to a single

�-dependent curve ~!a(�) � !a(�;
)=!r(
). On the basis of Ginzburg-Landau models one

would expect ~!a to be proportional to � for small �. We found that the data are di�cult to

reconcile with this prediction, and that a powerlaw with an exponent near 0.52 provides a

good �t. When it is assumed that the leading �-dependence is ~!a / �, then large corrections

of order �2 and �3 are required to �t the data over a signi�cant range. We also determined

a correlation length from the Fourier analysis of the data, and found similar problems in

its interpretation. We have not yet been able to get reliable information about statistical

properties like !a and � from the numerical integrations of the BE equations because much

longer runs would be required for this purpose.

We close by pointing out some opportunities for additional work on this system. Per-

haps the major remaining problem is that the origin of the anomalous �-dependence of the

switching frequency !a and of the correlation length remains largely obscure. Even though

the anomalous behavior has been seen in two cells of quite di�erent aspect ratio, it is dif-

�cult to rule out de�nitively that the dynamics is inuenced by defects and fronts injected

by the sidewall. Circumstantial evidence pointing in this direction is to be found in the

larger domain size in the BE integration which used boundary conditions di�erent from

those relevant to the experiment. For the larger values of 
, sidewall-induced processes are

di�cult to observe in the physical system because of the complexity of the patterns. The
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V. SUMMARY AND CONCLUSIONS

We presented experimental results of patterns and their dynamics for Rayleigh-B�enard

convection (RBC) in the presence of rotation about a vertical axis with an angular velocity


. For comparison with these data, we integrated the Boussinesq equations for RBC with

rotation using some of the same parameter values as in the experiment. In this paper we

focus on the range 8 <� 
 <
� 20 where we observed patterns consisting of interacting domains

of straight rolls. The domains exhibit a chaotic dynamics which consists primarily of domain-

wall (or front) propagation by which a given domain tends to replace a neighboring one.

The domain replacement (or switching) usually results in a re-orientation of the rolls in a

given location through an angle �s ' 58� in the direction of 
. This \domain chaos" is

typical of the parameter range where straight rolls are linearly unstable to K�uppers-Lortz

perturbations.

For 
 <
� 12 the dynamics are di�cult to interpret because they are strongly inuenced

by the nucleation of dislocation defects and fronts near the sidewalls. In this regime the

dynamics is a mixture of sidewall-mediated front propagation and defect motion. We illus-

trate this parameter range with temporal pattern sequences, and we present quantitative

measurements of the average pattern rotation-rate !a which results from the defect motion

and front propagation.

With increasing 
, and particularly close to onset, the dynamics became dominated by

the nucleation of domain walls in the sample interior. Although a quantitative comparison

has not yet been made, we found that the BE integrations yielded patterns with larger

domains than the experiment. Although we do not know the reason for this di�erence, it is

worth noting that the major di�erence between the experiment and the simulation is to be

found in the boundary conditions at the sidewall.

In the intrinsic regime 13 <
� 
 <

� 20 where domain walls form spontaneously in the

interior, the domain switching-angle �s could be measured quantitatively for � <� 0:06 by

Fourier-transform analysis of the patterns. We found that �s was independent of 
 and
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to ��1=2 would imply that this parameter should approach a constant value as � vanishes.

Unfortunately the data for � < 0:04 are not consistent with this expectation. A �t of

(1=~�)2 = X0�(1 +X1�+X2�
2) (9)

to the data for 0:04 < � < 0:2 is shown by the solid line in the �gure. It gives the parameters

X0 = 0:517, X1 = �7:12, and X2 = 20:4. We note that X1 and X2 are similar in size to

the corresponding coe�cients !a;1 and !a;2 for the �t to ~!a. For ~�, however, the deviation

of the data for � < 0:04 is signi�cant whereas for ~!a the �t was good for all � < 0:2. One

might conjecture that the deviation for ~� is caused by the �nite size of the convection cell.

Unfortunately, we have neither a theory nor su�cient data to test this hypothesis.

G. The Di�usivity D for 
 > 
c

In Ginzburg-Landau models, D � �2!a is independent of �. In the previous section we

saw that the correction terms in Eq. 6 for ~!a and in Eq. 9 for 1=~�2 are of similar size. Thus

they should nearly cancel in D, yielding a nearly �-independent result. This is indeed the

case. Using the unreduced data for � and !a, we obtained the di�usivities shown in Fig. 20.

There is a sharp rise at small � which is associated with the deviation of the data for ~� from

the �t of Eq. 9. Then there is an approximately constant region for 0:05 < � < 0:2, and

�nally a decrease at higher �. Averages of the data in the approximately constant range

yield the solid lines in the �gure. The average values are plotted in Fig. 21 as a function of


. Remarkably, the data show a simple 
-dependence. They can be �t by the straight line

D = 0:53(
 � 10:5). Thus, although the individual dependences on � of space- and time-

scales do not follow the simplest predictions, the di�usivity is well behaved over a range of

� where KL front propagation is dominant over dislocation-defect nucleation and motion.
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cients are !a;0 = 3:34, !a;1 = �6:09, and !a;2 = 14:9. We note that the coe�cients of the

higher-order terms are rather large, whereas a priori one might have expected them to be

O(1). For comparison, the power-law �t (Eq. 5) is shown as a dash-dotted line. It is not as

good a �t to the data, but it requires only two adjustable parameters. The dashed line in

Fig. 16 is the leading term !a;0� of Eq. 6.

F. The Correlation Length � for 
 > 
c

Previously[5,21] we presented results for a correlation length �(�;
) which was de�ned[28]

in terms of the second moment of S(k). On the basis of GL models such a length would be

expected to diverge as

� / ��1=2 : (7)

This was found to be inconsistent with the data[5]. Instead a �t of the power-law

� = �0�
y(1 +D��) (8)

to the data yielded y ' 0:2, in disagreement with the theory.

The successful collapse of the !a data suggests that a similar procedure might be applied

to �. Here we use only the three data sets which were shown in Fig. 29 of Ref. [21] to avoid

excessively crowded �gures; but they adequately span the range 14 � 
 � 20 of the KL

instability. We took the set at 
 = 14:3 as the reference set, and divided the �-values of the

other sets by an 
-dependent reference value �r to obtain ~� � �=�r. The resulting reduced

correlation lengths are shown in Fig. 18, where the values of �r are also given. One sees

that the collapse is successful over a wide range of �. A �t of Eq. 8 to ~� for � < 0:2 yielded

�0 = 4:64, y = 0:167, and D� = �0:73. This �t is shown as the dash-dotted line in the

�gure. It is excellent even beyond the �t range, i.e. for � > 0:2. But the value of y disagrees

with the theory.

Encouraged by the successful �t of Eq. 6 to the data for ~!a, we show in Fig. 19 the

experimental results for (1=~�)2=� as a function of �. An asymptotic proportionality of ~�
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First we illustrate in Fig. 16 that the results for !a can be reduced, or collapsed, onto a

single curve ~!a(�) � !a(�;
)=!r(
) within their experimental uncertainties. We chose the

data at 
 = 19:8 as a reference set, and divided the results at the other values of 
 by an

appropriately chosen 
-dependent constant !r. Interestingly, the required !r (given in the

�gure caption) have a simple dependence upon 
; within error they fall on a straight line

given by

!r = 0:129(
� 12:16) : (4)

The data collapse is successful for � � 0:2.

The reduced frequencies ~!a in Fig. 16 are shown on double-logarithmic scales. Thus a

straight line in the �gure corresponds to

~!a = !a;0�
x : (5)

The dashed line in the �gure corresponds to x = 1, which would be consistent with Eq. 3. It

clearly is a poor representation of the data. A �t of Eq. 5 to the data over the range � < 0:2

is represented by the dash-dotted line in the �gure and gave !a;0 = 0:575 and x = 0:518.

This result agrees with the previously-published analysis[5] which, however, was done for

!a(�;
) separately at each 
. It �ts the data quite well except perhaps at very small �

where the experimental uncertainties are largest. But the exponent x ' 0:52 < 1 is di�cult

to reconcile with the theory.

In an attempt to search further for an interpretation which retains the predicted x = 1,

we show in Fig. 17 the ratio ~!a=� as a function of � on linear scales. If Eq. 3 is valid, then

the data should tend toward a constant value at � = 0. The data are indeed consistent with

this expectation, but the large slope and the curvature suggested by the data indicate that

a �t would require a function of the form

~!a = !a;0�(1 + !a;1�+ !a;2�
2) : (6)

The solid line in the �gure is a �t of this equation to the data. It clearly is an excellent

representation, but it is a �t of a function with three parameters. The values of the coe�-
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of distinct domains was generally less than 3.

Measurements of !a for the � = 23 cell were limited to the region near onset. The results

for 
 � 15 are shown in Fig. 14. For a quantitative comparison, we �tted straight lines to

!a(�;
) for � < 0:04. As discussed before[5], this �tted the data quite well but, contrary to

theoretical expectations, yielded �nite values of !a at � = 0. In Fig. 15 we show the results

for the slope W = d!a=d� for � = 23 (crosses) and � = 40 (solid circles). Both sets of data

show a at range of small W for 
 <� 12 and increasing W at higher 
. Straight-line �ts

to W (
) in these two di�erent regions gave an approximate 
0 at which the slope started

to increase rapidly. For � = 40, 
0 was 12:5 � 0:4 close to the theoretical 
c of 12.95 for

� = 0:93. For � = 23, 
0 was 12� 0:6 close to 
c for � = 0:83. For 
 slightly above 
c the

results for � = 23 are somewhat lower than those for � = 40. This may well be attributable

to the fact that the dynamics at small � had to be driven exclusively by bulk-nucleated KL

fronts because of the absence of sidewall-nucleated fronts (see Sec. III B). At larger 
 the

results for the two cells were more nearly equal.

E. Analysis of !a for � = 40 and 
 > 
c

We demonstrated previously[5] that it is di�cult to reconcile the data for !a with the

theoretical prediction

!a / � (3)

which is based on general properties of GL models and which is consistent with numerical

integrations[16] of SH equations. For GL models one would expect Eq. 3 to be valid for

su�ciently small �. Here we review the interpretation of the experimental results, and then

o�er an alternative interpretation of the data which is consistent with Eq. 3, but which

requires large analytic corrections to the linear variation. From a theoretical viewpoint the

problem presented by the data can thus be reduced to the need to explain anomalously large

coe�cients of correction terms to the small-� asymptotic behavior.
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First we consider the range 
 <
� 
c for � = 40. In Fig. 12 is a plot of !a versus �

for 8:8 � 
 � 12:1. At 
 = 10:5, the dynamics at onset involved both KL-front and SV-

defect motions, and !a increased with �. As � increased there was decreased activity of KL

fronts relative to the SV defects, and !a decreased beyond � � 0:1, reecting the di�erence

between the contribution to !a of KL fronts and SV defects. Beyond � � 0:2, the dynamics

was mostly mediated by the SV instability, resulting in smaller !a even though at higher

� the motion of SV defects became faster. This slowing down seemed to be caused by the

accumulation of sidewall defects which interfered with KL-front nucleations. These sidewall

defects began to nucleate traveling defects at higher �, and at � � 0:3, KL activity was

completely suppressed. Near � � 0:5 spirals appeared[21]. A similar dependence of !a on

� is seen in Fig. 12 for 
 > 10:5 although the maximum value of !a was pushed to higher

� as 
 increased. This behavior may be attributable to similar pattern evolution, i.e. KL

behavior being suppressed by dislocation-defect motion, as � was increased.

D. The Domain-Switching Frequency !a for 
 > 
c

Next we examine the range 
 >
� 
c ' 13 for � = 40. There the patterns were composed

of many domains of di�erently oriented rolls, and the rapid changing of roll orientations was

accomplished by moving fronts characteristic of the KL instability. Although SV defects

may have been present in this parameter range, their presence was di�cult to detect in

the more complicated patterns. In any case, their much slower dynamics implies that their

contribution to !a was minor or negligible. Nevertheless, the same trends of increasing !a

near onset, reduced rate of increase at intermediate �, and a gentle decrease for higher �

were seen throughout the range 10 � 
 � 17. This is evident in Fig. 13 which shows !a for

13 � 
 � 20. It is surprising that the behavior of !a remained quite consistent throughout

the range 10 � 
 � 17 as the dynamics varied signi�cantly at �xed � as 
 changed. For


 >
� 13 most fronts were nucleated away from the wall and often 5 or more domains were

visible, whereas for 
 <
� 13 KL fronts were generally initiated at the sidewall and the number

20



all very close to 58� with no systematic dependence on 
 and only a slight variation with

�. A �t to the data yielded the straight line. The average switching angle ranged only from

about 59� near � = 0 to about 56� near � = 0:06. The lack of a discernible switching angle

in the correlation function, when it occurs, is then a result of decoherence of the switching

in di�erent domains and of a broad distribution of �s. Particularly for smaller 
, the large

variation in the switching angle from 40 to 70 � and the additional angular change arising

from defect motions prevents the determination of < �s >.

For 
 > 
c it is interesting to ask what relationship (if any) < �s > may have to

the angles �KL of the in�nitesimal KL perturbations with positive growth rates s(�KL).

For 
 > 
c there is a continuous band of such angles, and s has a positive maximum at

a particular angle which is usually associated with the KL instability. In Fig. 11 we show

s(�KL) as a function of �KL for 
 = 15:4 and � = 0:93 as an example. Here s was evaluated

for the average pattern wave-number k = kc � 1:45� found[21] in the experiment. The wave

number of the KL perturbation was chosen so as to maximize s(�KL). The range of < �s >

chosen by the experiment as � varied from zero to 0.06 (solid line in Fig. 10) is shown by

the short horizontal bar from 56 to 59�. We see that < �s > is at the extreme upper end

of the range where s(�KL) ' 0. This suggests that there is in fact no relationship between

�KL and �s, and that �s is chosen by nonlinear selection processes inherent primarily in

domain-front propagation which are not understood in detail and which are unrelated to

the linear instability.

C. The Pattern-Rotation and Domain-Switching Frequency !a at small 


We now consider the characteristic switching frequency. Since �s was found to be es-

sentially constant for 
 >
� 13, the average rotation rate in Fourier space !a is, to a good

approximation, proportional to the discrete inverse switching time �d when domains are

present. When there are no domains, !a is much smaller and represents pattern rotation

dominated by dislocations and other defects[21].
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was fairly constant for most of the sequence.

The two-dimensional auto-correlation function C(��; �t) of F (�; t) (see Sec. II B) en-

hances the angle-time plots in a manner that emphasizes the average domain switching. In

Fig. 9 we show C(��; �t) corresponding to Fig. 8. No discrete switching is seen in Fig. 9b

because no domains were present in real space. The other examples show di�ering degrees

of short-time correlations corresponding to the domain switching. It is possible to measure

both the average switching angle < �s > and the switching frequency !a as functions of �

and 
 over a signi�cant parameter range. However, the existence of multiple domains and

the mixing of the e�ects of KL fronts and defects generated by the skewed-varicose instability

(SV defects)[21] prevented the measurement of < �s > over some other parameter ranges.

In practice, the angle could only be determined for � � 0:06 and 
 � 12, and then only for

some image sequences. This is a shortcoming of the analysis method as visually the domains

still switched discretely even when the angle-time plot was unable to pick up these changes.

This di�culty precluded directly measuring the switching time �d for those sequences where

< �s > could not be determined. Thus we report instead the angular change !a per unit

time which can be measured from either the angle-time plots, e.g. Figs. 8, or from the

auto-correlation plots, e.g. Figs. 9. This could introduce a systematic di�erence between

the actual switching time and our measured angular rate of change if the switching angle

varied appreciably with � and 
. With that in mind we consider �rst the measurement of

< �s >.

B. The Domain Switching Angle < �s > for � = 40

The angle-time plots in Figs. 2a and 8d are good examples of sequences for which an

accurate value of < �s > could be easily obtained. In the auto-correlations, Figs. 2b and

9d, the constant angular change per KL switching is apparent as the distance between the

relatively evenly-spaced bright spots. The switching angles are plotted against � in Fig. 10

for the values of 
 and � where the technique was su�cient to extract them. The angles were
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IV. QUANTITATIVE IMAGE ANALYSIS

A. Angle-Time Plots and their Correlation Functions for � = 40

Figure 8a shows the angle-time plot of F (�; t) (see Sec. II B) for 
 = 8:8 and � = 0:04.

It corresponds to the same run as the image sequence in Fig. 5, but is composed of the

complete 257 images of the run. The total duration of this run was 9600�v. Most of the

time the cell contained primarily one domain, so there was a dominant roll orientation. This

led to the bright irregular clusters, some of which we identi�ed by plusses in the upper part

of the �gure. The clusters trace out a temporal sequence representing the time evolution

of the roll orientation. Lines drawn through them have a small positive slope equal to a

characteristic inverse frequency !�1
a . For this example the switching angle �s varied from

less than 40� to close to 90�. This wide distribution is characteristic of the range of 
 < 
c

where the domains are primarily wall-nucleated.

At the same 
 and higher � KL fronts became less frequent, and defect motion dominated

the dynamics. The angle-time plot of a 4800 �v sequence for � = 0:16 is shown in Fig. 8b. No

KL fronts were observed in these images. The dominant roll orientation changed smoothly

at a constant rate. The change was caused by defect nucleation and propagation and was

rather slow compared to the KL switching process shown in the other angle-time plots.

As 
 was increased, the average size of the KL domains became smaller, and a single

domain rarely dominated the pattern. At 
 >� 11, there was always more than one domain

in the cell. A typical angle-time plot at 
 = 12:1 and � = 0:11 is shown in Fig. 8c. This

run contained the image sequence shown in Fig. 6. Even though more than one domain

was present, there was usually a dominant orientation in the cell center (in the analysis the

center is emphasized by the use of the Hanning window). A dominant orientation remained

discernable from the angle-time plots even at higher � and/or 
. An example, at 
 = 16:5,

is shown in Fig. 8d which was produced from the complete image sequence corresponding

to Fig. 7. The light spots are arranged in regular intervals as the domain switching angle
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as shown in the time sequence in Fig. 6. In addition to fronts nucleated at the sidewall,

occasionally new fronts appeared spontaneously in the interior of the cell. With increasing �

the spontaneous front nucleation away from the wall became more frequent. One such front

is indicated by the arrow in Fig. 6d.

At higher 
, front motion continued to dominate the dynamics, although defects still

played a role. The rolls tended to terminate with their axes more nearly perpendicular to

the sidewall[21], as seen in Fig. 7. It is possible that this tendency inuenced the dynamics.

Defect nucleation in an otherwise uniform domain was sometimes observed as well, as shown

in Fig. 7g which contains a pair of such defects.
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the sidewall was still in the conduction state[21]. Consequently, for � <� 0:02, there were no

sidewall-nucleated domains and thus no KL dynamics. Thus the behavior of the � = 23

cell supports the idea that the KL dynamics for the � = 40 cell at onset and below 
c is

sidewall-mediated.

C. Dynamics for � = 40

We now return to the � = 40 cell and illustrate the KL dynamics in temporal sequences

of images. By 
 = 8:8, KL domains and fronts occurred at the onset of convection and were

responsible for much of the dynamics, as seen in the time sequence of Fig. 5. Here the images

are for � = 0:04 and were taken at time intervals of 80 �v. The fronts were nucleated at the

wall. Figure 5c illustrates a case where two fronts merge in the cell interior. The region

enclosed by the circle in Fig. 5d gave rise to the domain circled in Fig. 5e. From time to time

the cell was almost completely occupied by a single domain, as in Fig. 5g. Such occurrences

were never observed for 
 >� 12. Much defect movement occurred along the advancing

front between the stable and unstable rolls. This is illustrated by the well-de�ned front in

the upper right of Fig. 5f. The rolls behind this growing front joined with the unstable

rolls in Fig. 5g, and the defects that seperated the two sets of rolls propagated toward the

right, leaving behind joined rolls with kinks which gradually smoothed out. Even with

this smoothing process, the overall roll orientation still changed by discrete steps, but the

changes varied from 30 to 90 degrees. This is qualitatively di�erent from the smooth angular

changes induced by repeated dislocation-defect motion which dominated the dynamics for

5 <� 
 <� 10 at higher �[21]. There the orientation of the underlying roll pattern advanced

slowly in the direction of rotation. Although occasional KL fronts were initiated either by

the sidewall or by the clusters of defects next to the sidewall, these fronts only a�ected a

small portion of the cell and rarely propagated across the whole cell.

At 
 = 12:7 the KL fronts which originated near the sidewall remained dominant in the

dynamics, but the pattern always contained several domains with di�erent roll orientations
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as illustrated in Fig. 4. For 
 <� 10, KL fronts became less frequent. The patterns became

S-shaped, and two large sidewall foci usually appeared as shown in Fig. 4a. On the side

clockwise from the foci, rolls ended with their axes nearly perpendicular to the sidewall

whereas on the other side rolls terminated more obliquely. This is in contrast to the sidewall

foci seen for 
 = 0[32] which were highly symmetric. Dislocation defects appeared from the

side of the foci with rolls perpendicular to the wall and travelled across the cell, disappearing

on the opposite side. The direction of defect motion is determined by their topological charge

and the direction of cell rotation[21]. Compared to lower �, the rate of nucleation of defects

was higher, but no sidewall accumulation of defects was observed. As for lower �, KL domains

and fronts began to dominate as 
 increased, as seen in Fig. 4b-d. Again we found that the

domain size in the BE integration was larger than in the experiment at a given 
. Cellular

regions seemed less abundant than in the experiment, as was found at smaller �.

Although we do not yet have a quantitative comparison, it is apparent from Figs. 3 and

4 that the domains in the BE integration are generally larger than those in the experiment.

We do not know the reason for this di�erence, but note that the major di�erence between

experiment and simulation is to be found in the boundary conditions. Simulations with

realistic sidewall boundary conditions would thus be very desirable, but have not yet been

performed.

B. Patterns for � = 23

Except for their size, the patterns encountered in the smaller � = 23 cell were generally

similar to those of the � = 40 cell. A few examples were presented in Ref. [21], and we

will not discuss them any further. The major di�erence between the two existed close to

onset and for 
 < 12, where the small cell showed a bifurcation to a time-independent state

without any KL domains (see Fig. 16 of Ref. [21]). We believe that this is the result of

the small radial variation of the cell thickness mentioned above which caused a rounded

transition to convection, with rolls appearing �rst in the central region while the region near
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 � 8:8, representative patterns from the experiment and corresponding images from BE

integrations are shown in Figs. 3 and 4 for � = 0:06 and � � 0:17 respectively.

We �rst consider the small-� range represented in Fig. 3. For 8 <� 
 <� 11, the patterns

at onset were time dependent, with KL domains and fronts initiated by crossrolls at the

sidewall. The domains grew into the unstable central region of the cell. A typical front

generated in this manner is visible near the center of the cell in Fig. 3a. The phenomena

are similar to previous observations[10] for � = 10 and � = 6:4. Dislocation defects were

also abundant and active in the same parameter range; some of them can be seen in the

upper-left quarter of Fig. 3a. Qualitatively the same phenomena were found also in the

GL[13] and SH simulations[14,15], as well as in our BE integrations (Fig. 3e).

For 
 = 12:7 (Fig. 3b), a typical pattern looked very similar to those at 
 = 8:8, but

the dynamics showed an important di�erence: although most KL fronts were still initiated

at the sidewall, some fronts appeared spontaneously in regions away from the sidewall. The

smallest 
 at which nucleation of fronts in the cell interior was observed was 10.5. Cellular

regions where two sets of di�erently-oriented rolls co-existed began to appear, as seen in

Fig. 3b. The cellular regions were not �xed in space. As the domains evolved in both size

and shape via KL fronts, di�erent regions appeared cellular at di�erent times. The BE

integration yielded similar patterns, as shown in Fig. 3f, although cellular regions seemed to

be somewhat less abundant.

At 
 = 16:5, Fig. 3c, the average size of a domain was much smaller than for 
 <
� 12 and

cellular regions were more abundant. Here a noticeable di�erence between the experiment

and the BE integration becomes apparent. In the numerically generated image (Fig. 3g)

the domains are signi�cantly larger than in the experiment, and cellular regions are less

abundant. The trend in the experiment with increasing 
 of decreasing domain size and

increasing occurence of cellular regions persisted up to the highest 
 ' 20 investigated,

Fig. 3d. Although the BE integrations showed similar trends, the changes with 
 were less

pronounced.

As � was increased to about 0.17, there were some changes in the nature of the patterns
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for obtaining semiquantitative results. With respect to the horizontal directions a Fourier

expansion was used. By projecting on the linear eigenmodes the linear parts of Eqs. 1 and 2

are diagonalized; in the simulations usually three \ active " modes are kept (see Ref. [34]).

Within our approach, where a periodic regime is assumed, it is strictly speaking im-

possible to incorporate lateral boundary conditions as required in a circular cell. To deal

approximately with this situation we put all �elds to zero at each timestep outside the cell

radius. One recovers in simulations some features at the boundaries (e.g. small cross roll

patches) familiar from experiments. On the other hand, the tendency of rolls to terminate

with their axes perpendicular to the boundary is less pronounced.

All simulations in this paper are made on a 256� 256 horizontal grid for � = 1, with the

same aspect ratio � = 40 as in the experiments. Representative results from experiments

and simulations at the same parameter values are presented in Figs. 3 and 4.

III. QUALITATIVE DESCRIPTION OF PATTERNS AND THEIR DYNAMICS

Here we give a qualitative description of the patterns and their dynamics in the parameter

regimes where the KL instability was the dominant mechanism for time dependence. The

patterns and dynamics at smaller 
 and larger � were presented earlier[21]. Except for small


 and �, the patterns in the � = 40 and � = 23 cell were very similar and only the former is

described in detail. Recall that the � = 23 cell had a small radial variation in height which

had interesting e�ects near onset for 
 < 
c which we describe briey below in Sec. III B

(see also Ref. [21]).

A. Patterns for � = 40

For � = 40, no K�uppers-Lortz domains were observed for 
 <� 5 up to � � 1 where

spiral-defect chaos dominated. The �rst appearance of KL domains was at 
 = 6:6 and

� = 0:08 although there the main time dependence was still due to dislocation motion. For

12



are well-de�ned domains which form a temporal succession. Alternatively, one sees that

the temporal succession of the bright clusters in Fig. 2 de�nes a set of lines with a small

positive slope. We have drawn one such line (dashed) in Fig. 2b to guide the eye. Its

slope likewise characterizes the time scale of the KL dynamics, and we use its inverse !a

as the characteristic frequency. This has the advantage that !a can be determined even

for relatively small 
 where domain switching is absent and where �d thus is not de�ned.

In that parameter range !a represents an overall pattern rotation mediated primarily by

dislocation defects[21]. Presumably small contributions from defect nucleation and possibly

other processes which are di�cult to identify in complicated patterns also contribute to !a

in the KL parameter range; but domain switching seems to dominate there since it is faster

and more abundant.

C. Numerical Integrations

The nondimensionalizedBoussinesq equations (BE) for RBC with rotation read as follows

(see e.g. Ref. [3]):

��1

 
@u

@t
+ u � ru

!
= �r� +r2

u+ ê�+ 
ê� u (1)

@�

@t
+ u � r� = r2�+Rê � u (2)

where ê is the unit vector in the z direction. The velocity �eld u and the deviation � of

the temperature from the di�usive linear pro�le vanish at the horizontal boundaries of the

cell. Incompressibility ( r � u = 0) is assumed, which allows the introduction of poloidal

and toroidal velocity potentials [3] instead of the three velocity components. Moreover, the

pressure � can be eliminated. Numerical simulations of Eqs. 1 and 2 were performed by the

use of the techniques already described elsewhere in some detail [33,34]. With respect to the

vertical coordinate z, all �elds are expanded in a set of appropriate functions that vanish at

the boundaries (Galerkin method). We found that even two such functions were su�cient
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at numerous wave vectors as seen in Fig. 1c; but even then two or three orientations often

dominate the part of the sample emphasized by the window function. The major drawback

of this analysis is the loss of local spatial information. For instance, this method cannot

distinguish rolls with the same wave vector in several disconnected domains from rolls in a

single larger domain. Nonetheless, it has yielded abundant information on the evolution of

the \average" roll orientation of the patterns.

Examples of the computation of S(k) and its various moments have been given else-

where[28]. Here we illustrate the use of angle-time plots of F (�; t) and of the corresponding

C(��; �t). Figure 2a shows F (�; t) for 
 = 15:4 and � = 0:027. The horizontal axis spans

0 < � < �, and the vertical axis covers a time interval of 2080 �v, with time increasing

in the upward direction. Figure 2b is the corresponding C(��; �t). Here the origin is in

the center, the horizontal axis spans ��=2 < �� < �=2, and the vertical axis runs from

�1040 < �t < 1040tv. As expected, C(��; �t) has all the same features as F (�; t), except

that they are smoothed by the averaging involved in computing it. A noticeable feature

of F (�; t) is the temporal succession of bright clusters corresponding to large values. Each

cluster corresponds to a time when a domain with a particular roll orientation dominated

the central portion of the sample which is emphasized by the Hanning window. The angular

change �s between successive clusters yields the di�erence in domain orientation between

temporally successive domains. In C(��; �t) this angular distance is an average < �s >

over the distribution of such angular changes. Sometimes �s is apparent even in single

snapshots of F (k; t) such as the one in Fig. 1c. This happens when two domains contribute

signi�cantly near the center of the cell. Depending on the � and 
 range, we found that

�s could be very well de�ned or could have a broad distribution. When it had a narrow

distribution, then the bright clusters in F (�; t) tended to fall on lines which in Fig. 2 run

from the top left to the bottom right. In Fig. 2b we have drawn three such lines to guide

the eye.

The time interval between two temporally successive bright clusters de�nes a lifetime

of a KL domain, or a domain-switching time �d. �d is de�ned, however, only when there
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For the work discussed in the present paper, approximately 130,000 images were analyzed.

B. Image Analysis

We used the time evolution of the modulus F (k; t) of the spatial Fourier transform and

of the structure factor S(k; t) [the square of F (k; t), also known as the spatial power spec-

trum] to determine the spatial and temporal structure of KL-unstable states. Often it was

useful to average S(k; t) over time to give S(k). Although there may be some ambiguities of

interpretation because of the combination of inuences that determine the shape of S(k)[31],

this method allows the rapid, e�cient analysis of many images and is unambiguous in its

de�nition. We used the angular distribution F (�; t), 0 < � < �, obtained by averaging

S(k; t) over jkj in the upper half-plane ky > 0 [k = (kx; ky)], and made angle-time plots of

F (�; t)[10,11]. The auto-correlation function C(��; �t) of F (�; t) yielded averaged informa-

tion about the dynamics[12]. Alternatively, we averaged S(k) over � to obtain S(k). The

�rst moment of S(k) yielded a mean wave-number �k, and its second moment about �k gave

the inverse square ��2 of a length scale �[28]. We now illustrate these analysis methods with

examples.

For grey-scaled graphical representations of the Fourier transform we found F (k; t) to

be preferable to S(k; t) because a smaller grey-scale resolution was su�cient to convey the

nature of the structure in k-space. In Fig. 1 we show three examples of images and the

corresponding F (k; t). The Fourier transforms were done after multiplying the image by

a Hanning window as described elsewhere[32]. Thus the rolls near the center of the image

contributed primarily to F (k; t), and the rolls near the sidewall were de-emphasized. The

single-domain nearly-straight rolls in Fig. 1a yield contributions only at a nearly-unique

angle corresponding to the direction of the dominant k. For patterns containing multiple

domains of di�erent roll orientations or curved rolls near the cell center, as in Fig. 1b,

F (k; t) contains two or more pairs of arcs of greater angular extent. In the fully-developed

KL state, where many domains are present simultaneously in the cell, there are contributions
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II. APPARATUS, IMAGE ANALYSIS, AND INTEGRATION OF THE

BOUSSINESQ EQUATIONS

A. Apparatus

The apparatus is described thoroughly elsewhere[21,29,30]. Most of the data presented

here were obtained from a circular convection cell with a diameter of 86 mm and a height

of 1:06 � 0:002 mm (� = 40). The cell was �lled with CO2 at 33.1 bar. This pressure

was held constant within 0.005%. The temperature of the bath which cooled the top plate

was held constant within �0:0002�C near 33.7 �C. Under these conditions, the uid had a

Prandtl number of 0.93. The vertical thermal di�usion time �v = d2=� was 4.5 sec, and

the horizontal thermal di�usion time �h = �2�v was 7200 sec. The measured �Tc(
 = 0)

was 1:487� 0:004 �C, in good agreement with the value 1.47 �C calculated from the uid

properties and the cell thickness.

We also made measurements in a � = 23 cell with d = 0:201 cm and CO2 gas pressure of

16.6 bar. In this cell, a thinner sapphire window (3.2 mm) was used for the cell top, and the

small pressure di�erential between the gas sample and the water bath caused a slight bowing

of the cell in the middle, but left the cell pro�le approximately axisymmetric. Due to the

maximum height at the center[21], a convection pattern �rst appeared there at � = �0:015

and �lled the cell for � � 0:012. For this cell, �v was 6.7 sec and � was 0.83.

Each cell was placed inside a pressure vessel mounted on a turntable driven by a stepper

motor through a belt-and-pulley arrangement with one revolution of 360� completed in

50,000 microsteps. For the � = 40 cell, 1 Hz was equivalent to 
 = 30. The e�ect of

the centrifugal force at the highest rotation rate in the experiments of 0.7 Hz was small,

with (2�f)2 � �d=g = 0:09. The rotation direction was counterclockwise as viewed from

above. The convection patterns were observed by the shadowgraph-visualization method[30]

in the rotating frame. The contrast-enhanced images in this paper show black regions

corresponding to hot uid (upow) and white regions corresponding to cold uid (downow).
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by GL equations if they involve rapid spatial variations. On the other hand, the di�erence

between theory and experiment may possibly be found in the inuence of the experimental

cell sidewall, which seems to have a much larger inuence for a rotating system than for a

stationary one[21]. In particular, measurements for 
 < 
c have shown that defects and KL

domain walls tend to be injected into the sample interior in the rotating system. Although

(as described below) we have seen no aspect-ratio dependence of the KL dynamics above


c and no evidence for the importance of wall-nucleated defects or domain walls in the KL

state above 
c, it is di�cult to rule out completely that the cell walls play a role, except

perhaps by comparison with numerical integrations of the Boussinesq equations with realistic

sidewall boundary conditions. Such calculations have not yet been done.

In this paper, we present a detailed description of patterns and their dynamics in the

KL-unstable regime. A comparison is made between experimental patterns and patterns

generated by integration of the Boussinesq equations. We then concentrate on the time

scale of the dynamics and its dependence on system size and boundary conditions, and

present experimental results for a domain switching-angle �s and theoretical results for the

angle �KL of the KL perturbation with the maximum growth rate at onset. Characterization

of the pattern wave-number and the spatial correlation length over the entire range of 


encompassing the KL region were reported previously[21] but are re-examined here.

In Sec. II we briey describe the experimental apparatus, the image-analysis procedures,

and the integration of the Boussinesq equations. The overall pattern dynamics are discussed

in Sec. III. Quantitative analysis of the time and length scaling and results for �s are

presented in Sec. IV. Conclusions and future prospects are discussed in Sec. V.
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Perhaps most relevant to the present experiment are the simulations and pattern analysis

based on a SH model by Cross et al.[16]. As is done for experimental images[28], they

computed the structure factor S(k) (the square of the modulus of the Fourier transform)

corresponding to their numerical integrations of the SH model. From it they obtained a

correlation length equal to the inverse of the half-width of S(k). They concluded that the

main features of the KL dynamics are not substantially altered from that predicted using

the more restrictive 3-mode GL model[13]. They also found for the SH model that the

correlation length was approximately proportional to ��1=2. The data were not su�cient to

determine the dependence of !a on �.

The above summary shows that there are a number of properties of the system which

are found both in experiment and theory. At the linear level there is quantitative agreement

about Rc(
) and the critical wavenumber kc(
)[21]. At the weakly-nonlinear level both

theory and experiment yield a supercritical bifurcation. The main characteristic of the KL

state common to experiments and models is the existence of domains, with one domain

invading another by domain-wall motion. This feature suggests the name \domain chaos"

for the KL state. The existence of KL domains below 
c can be understood in terms of

domain walls emanating from the sidewall of the �nite experimental system and is consistent

with a �nite domain-wall speed found in the models below 
c.

There remain two major issues on which theory and experiment yield di�erent answers.

These are the typical length and time scales which describe the KL state. The experiment

�nds that they are approximately proportional to ��0:2 and ��0:5 respectively at small �,

whereas the theoretical models yield ��1=2 and ��1 in the limit as � vanishes. If one tries

to interpret the experiment by retaining the leading theoretical exponents, large corrections

to the asymptotic behavior at small � are required which do not seem to have a basis in

the theoretical models. The theoretical leading exponents are inherent in the structure of

GL equations, and it is not obvious how to change them. As one possible source of the

discrepancy between theory and experiment, we note that the dynamics of the KL state is

dominated by fronts. They are associated with lines of defects which may not be describable
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a range of 
 and �, and that it approaches[22] 59:7� for large � and 
 > 
c ' 27:4.

This led to the use by Busse and Heikes[6] of a three-mode model[23] with �s = �KL =

60�. The model consisted of three coupled amplitude equations, one for each of three roll

orientations. Since it did not include spatial variation, it is not suitable for the description of

the intricate patterns consisting of domains which were seen in the experiments[4{7,10,11].

In order to produce persistent chaotic dynamics, a noise term (presumably representing the

inuence of other modes which the model neglects) had to be added. More recently [13]

certain spatial-derivative terms have been added to this model, thus obtaining three coupled

Ginzburg-Landau (GL) equations. This model yielded persistent chaotic dynamics without

the addition of noise and produced domains of di�erent roll orientations in di�erent spatial

locations. The time dependence consisted primarily of domain-wall motion, as seen in the

experiments. The model also o�ered an explanation for the experimentally observed[10,4,11]

KL-like state below 
c: the domain-wall speed is non-zero below 
c, so if an interface exists,

it can propagate and cause roll-switching even for 
 < 
c. In the experiments the patterns

contained grain boundaries or defects near the sidewall, and fronts could be nucleated by

these structures.

Despite their successes, the 3-mode models just described can not capture e�ects asso-

ciated with departures of �s from 60 �, with the distortions of rolls such as roll curvature

and wavenumber variations, and with the inuence of large-scale circulation important for

small �. To investigate the qualitative inuence of these factors, the Swift-Hohenberg (SH)

equation[24] was extended to include terms associated with rotation[14{16]. This provided a

reasonable model for high-Prandtl-number uids. Numerical studies based on it[14,15] have

qualitatively reproduced experimental observations of sidewall-initiated front-propagation

caused by the KL instability. In addition to the KL dynamics, these simulations yielded

rigid pattern rotation, gliding defects, and defect-induced rotation at moderate 
 and �[25{

27]. These latter phenomena have been studied in recent experiments[21]. More recently,

mean ow[17] has been coupled to the SH equation, thus providing a model for �nite-Prandtl-

number e�ects.
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 less than the theoretically expected 
c. The angle �s between domains was found to

be generally greater than the predicted KL angle of about 60� [20]. Later experiments by

others[10], also using water and a cell with a radius-to-height ratio � = 15, recorded patterns

down to � � 0:1 and also found KL domains well below the predicted 
c. The measured �s,

however, agreed well with theoretical predictions for �KL. For smaller �, experiments using

liquid 4He and a cell with � ' 10 showed that the heat transport became time dependent at

the onset of convection for 
 � 9, fairly close to 
c ' 10 at their Prandtl number of 0.7[9].

There was, however, no ow visualization and thus no spatial information was obtained.

No experiments had provided the combination of large �, small �, and ow visualization

necessary for a quantitative study of the KL instability near onset.

Other issues addressed by the experiments were the length- and time-scales � and !�1
a

which characterize the KL-unstable patterns and their dynamics. Heikes and Busse[6,7,20]

found !�1
a / ��3=4 for their �-range well above the convective onset. In the liquid-helium

experiments[9] a broad-band non-periodic time dependence was observed in the heat trans-

port near onset which yielded a characteristic frequency proportional to �1=2; but without

ow visualization the interpretation of this global measurement for a relatively small cell

in terms of the KL state is uncertain because of other possible sources of time dependence.

Our previous measurements based on the patterns at small � showed[5,21] that the time

scale is approximately proportional to ��0:5, consistent with the helium experiments. They

also gave a length scale approximately proportional to ��0:2. As we will see below, these

results are di�cult to reconcile with various model equations which generally yield !a / �1

and � / ��1=2.

The theoretical work of K�uppers and Lortz [1,2] demonstrated that straight rolls are

unstable at the onset of convection when 
 > 
c, but the theory made no predictions about

the spatial patterns produced by the instability. Non-linear stability analysis by Clever

and Busse[3] provided additional details about the instability, including the dependence of

�KL on 
 and �. There was, however, relatively little information for � near one, which

is of interest in the present work. It is known that �KL varies between 10� and 60� over
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I. INTRODUCTION

The K�uppers-Lortz (KL) instability occurs in Rayleigh-B�enard convection (RBC) with

rotation about a vertical axis[1,2]. It is of interest for several reasons. One of these is that

one expects a supercritical bifurcation from the spatially-uniform conduction state directly

to a KL-unstable state of convection[3]. The instability produces spatio-temporal chaos

(STC) immediately above onset[4,5]. Thus the KL instability o�ers a rare opportunity to

study STC in a parameter range where weakly-nonlinear theories should be applicable. After

receiving only limited attention for several decades[1{3,6{9], there has been renewed interest

in it both among experimentalists[4,5,10{12] and theorists[13{17].

Without rotation, straight, parallel rolls are predicted just beyond the onset of RBC when

the temperature di�erence �T across the uid layer exceeds a critical value �Tc[18]. The

dimensionless control parameter for this system is the Rayleigh number R = g�d3�T=��

where g is the acceleration of gravity, � is the thermal expansion coe�cient, d is the layer

depth, � is the kinematic viscosity, and � is the thermal di�usivity of the uid. The critical

value Rc = R(�Tc) is equal to 1708[19]. With rotation, there is an additional control

parameter, namely the dimensionless rotation rate 
 � 2�fd2=� where f is the rotation rate

in Hz. As a function of 
, �Tc(
) (and thus Rc(
)) increases[19]. The critical Rayleigh

number Rc(
) is independent of the Prandtl number � � �=�. For 
 > 
c(�), the KL

instability is predicted[1{3] to occur at Rc(
). It is an instability of a set of parallel straight

rolls of a given orientation to a short-wavelength perturbation at an angle �KL relative to

these rolls. The angle �KL is advanced in the direction of 
.

The seminal experiments of Heikes and Busse[6,7] using water and shadowgraph ow-

visualization were for � � �T=�Tc�1 >� 0:5 and for large aspect ratios. They con�rmed the

existence of the KL-unstable state and showed that the patterns resulting from the instability

consisted of domains of rolls, characterized by a more or less uniform roll orientation within

a given domain. As a function of time, a replacement of one set of unstable rolls by another

occurred via domain-wall (front) propagation. At large �, the instability was observed for
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the systems were qualitatively similar. For 
 >
�

12 there was no qualita-

tive di�erence in the bahavior of the two cells at any �. The average size of

a domain containing rolls of approximately the same orientation decreased

with increasing 
, and the time dependence speeded up and became domi-

nated by domain-wall propagation. The numerical solutions were qualitatively

similar, although there was a tendency for the domains to be larger at the

same � and 
. The replacement of domains of one orientation by those with

another led to a rotation in Fourier space which was characterized by a rota-

tion frequency !a in the frame rotating at angular velocity 
. Quantitative

experimental measurements of !a, of a correlation length �, and of a domain-

switching angle �s as functions of � � �T=�Tc � 1 and 
 are presented. For

13 <
�

 <
�
18, �s was independent of 
 and close to 58�. We computed the

angle of maximum growth rate �KL of KL perturbations, and found it to

be 43�, distinctly di�erent from�s. The results for !a(�;
) over the range

13 <
�

 <
�
20 can be collapsed onto a single curve ~!a(�) � !a(�;
)=!r(
) by

applying an 
-dependent factor 1=!r . Similar collapse can be accomplished

for ~�(�) = �(�;
)=�r(
). An analysis of ~!a(�) and ~�(�) in terms of various

functional forms is presented. It is di�cult to reconcile the �-dependence of

~!a and ~� at small � with the theoretically expected proportionality to � and

��1=2 respectively.
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Abstract

The K�uppers-Lortz (KL) instability in Rayleigh-B�enard convection ro-

tated about a vertical axis was studied experimentally using optical-

shadowgraph imaging in the rotating frame for dimensionless rotation rates

6 < 
 < 20. Two cylindrical convection cells with radius-to-height ratios

� = 40 and 23 were used. The cells contained CO2 at 33.1 bar and 16.6 bar

with Prandtl numbers �=0.93 and �=0.83, respectively. Numerical solutions

of the Boussinesq equations with parameter values corresponding to the exper-

iments were obtained for comparison. For � = 40 and 8 < 
 < 10:5, the ini-

tial pattern above onset was time dependent. Its dynamics revealed a mixture

of sidewall-nucleated domain-wall motion characteristic of the KL instability

and of dislocation-defect motion. For 
 > 10:5, spontaneous formation of KL

domain walls away from the sidewall was observed. For 8 < 
 < 12 there

were di�erences between the two cells very close to onset, but for � >
�

0:02
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