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This paper reports on a theoretical analysis of the rich variety of spatio-temporal pat-
terns observed recently in inclined layer convection at medium Prandtl number when
varying the inclination angle γ and the Rayleigh number R. The present numerical in-
vestigation of the inclined layer convection system is based on the standard Oberbeck-
Boussinesq equations. The patterns are shown to originate from a complicated competi-
tion of buoyancy-driven and shear-flow driven pattern forming mechanisms. The former
are expressed as longitudinal convection rolls with their axes oriented parallel to the
incline, the latter as perpendicular transverse rolls. Along with conventional methods to
study roll patterns and their stability, we employ direct numerical simulations in large
spatial domains, comparable with the experimental ones. As a result, we determine the
phase diagram of the characteristic complex 3D convection patterns above onset of con-
vection in the γ −R plane, and find that it compares very well with the experiments. In
particular we demonstrate that interactions of specific Fourier modes, characterized by
a resonant interaction of their wavevectors in the layer plane, are key to understanding
the pattern morphologies.

1. Introduction
Pattern forming instabilities in macroscopic dissipative systems, driven out of equilib-

rium by external stresses, are common in nature and have been studied intensely over
the last decades (see e.g. Cross & Hohenberg (1993)). Prominent examples are found in
fluid systems (see e.g. Chandrasekhar (1961), Swinney & Gollub (1985)) where the pat-
tern formation is driven either thermally or by shear stresses. The general understanding
of pattern forming systems has benefited from numerous experimental and theoretical
investigations of the classical, thermally driven Rayleigh-Bénard convection (RBC) in
a layer of a simple fluid heated from below (Busse 1989; Bodenschatz, Pesch & Ahlers
2000; Lappa 2009). In the RBC system, the main control parameter is the Rayleigh
number, R, a dimensionless measure of the applied temperature gradient. At a critical
Rayleigh number, Rc, the quiescent heat-conducting basic state develops into the well-
known periodic arrays of convection rolls characterized by a critical wavevector qc. The

† Email address for correspondence: P.Subramanian@leeds.ac.uk
‡ Email address for correspondence: werner.pesch@uni-bayreuth.de

Page 1 of 26



2 P. Subramanian et al.

Figure 1: Inclined convection cell of thickness d which is heated from below and cooled
from above with temperature difference ∆T ≡ T1 − T2 > 0 for the inclination angle
0◦ 6 γ 6 90◦. Driven by gravity g the cold fluid flows downwards near the top plate and
the hot fluid flows upwards near the bottom plate in the form of a cubic velocity profile
(2.2). For the range 90◦ < γ < 180◦, the fluid layer is inverted and is heated from above.

stability of the rolls and their evolution towards characteristic 3D patterns via sequences
of bifurcations with increasing R has been investigated by Busse and coworkers (see e.g.
Cross & Hohenberg (1993); Busse & Clever (1996) and references therein). The present
paper analyzes a variant of RBC, the inclined layer convection (ILC) system, where the
fluid layer is inclined at an angle γ to the horizontal. Investigations of this system also
have a long tradition (see e.g. Vest & Arpaci (1969); Gershuni & Zhukhovitzkii (1969);
Hart (1971); Bergholz (1977); Ruth et al. (1980); Fujimura & Kelly (1992); Daniels et al.
(2000)).

In the ILC system, for γ 6= 0◦ gravity g has components both perpendicular and
parallel to the fluid layer, which leads to an important modification of the basic state
compared to RBC. The applied temperature gradient first produces stratified fluid layers
with continuously varying temperatures and densities. In addition, the basic state already
contains a flow field driven by the in-plane component of g: the heavier (colder) fluid will
flow down the incline and the lighter (warmer) fluid will flow upwards. Since the resulting
flow field creates a velocity gradient perpendicular to the fluid layer, both buoyancy and
shear stress driven instabilities of the basic state compete. Their relative importance
is governed by the Prandtl number Pr , the ratio of the thermal diffusivity, κ, to the
kinematic viscosity, ν, of the fluid. Furthermore, the strength of the shear stress can
be continuously increased by increasing γ. The orientation of the roll axes at onset of
convection allows for directly discriminating between buoyancy and shear driving. The
buoyancy driven rolls are aligned parallel to the incline (longitudinal rolls) while the
shear driven rolls are aligned perpendicular to the incline (transverse rolls). It should be
noted that the latter also bifurcate, when the fluid layer is heated from above and the
thermal stress is therefore stabilizing.

Our goal is not a representative parameter study of ILC with respect to R, γ,Pr ,
which would go beyond the scope of a single paper. Our theoretical investigations have
instead been motivated by recent ILC experiments in pressurized CO2 (Daniels et al.
2000; Bodenschatz et al. 2000) with a fixed value Pr = 1.07 of the Prandtl number. In
this work the R − γ parameter space has been systematically explored and a variety of
fascinating patterns have been described. As in all ILC studies mentioned above, our
theoretical analysis is based on the Oberbeck-Boussinesq equations (OBE). In contrast
to the extensively studied RBC, earlier results in the literature for the ILC system are
mostly limited to the linear regime and characterize the primary bifurcation of the con-
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Spatio-temporal Patterns in Inclined Layer Convection 3

vection rolls from the basic state at R = Rc (see e.g. Vest & Arpaci (1969); Gershuni
& Zhukhovitzkii (1969); Hart (1971); Ruth et al. (1980); Fujimura & Kelly (1992)). In
the nonlinear regime (R > Rc) Busse and Clever (Clever & Busse 1977; Busse & Clever
1992) investigated secondary and tertiary instabilities of the convection rolls for some
special cases. In contrast, the present work is devoted to a comprehensive theoretical
analysis of the patterns in Daniels et al. (2000) at Pr = 1.07.

In the present work we make use of the well-known arsenal of concepts to analyse
pattern forming instabilities in fluid systems (see e.g. Cross & Hohenberg (1993)). This
approach deploys its full power in large aspect ratio systems (lateral extension, L, of the
fluid layer much larger than its thickness, d) which were first realized experimentally in
Daniels et al. (2000). From a linear instability analysis of the basic state we determine the
critical values Rc, qc at the onset of convection. The properties of the rolls in the weakly
nonlinear regime, R & Rc, are then analyzed in the framework of amplitude equations,
which yield approximate roll solutions. Using these as starting solutions allows for the
iterative determination of the roll solutions in the nonlinear regime, where R > Rc.
Secondary instabilities of these roll solutions are then determined in a Floquet analysis.

We will demonstrate the agreement between experiments and theory with respect to
the onset of convection in the γ-R plane. For inclination angles γ below a codimension
2 angle γc2 ≈ 78◦ for Pr = 1.07 the destabilisation of the basic state is driven by
longitudinal rolls, while transverse rolls bifurcate for γ > γc2. Both bifurcations are always
stationary and continuous (supercritical). The subsequent secondary destabilisation of
the 2D rolls for γ 6= 0◦ at increasing R is driven by oblique roll solutions, whose axes are
not along the longitudinal or transverse roll directions. As a result, spatially periodic 3D
patterns are often observed. These are characterized by the nonlinear interaction of three
roll modes with wave vectors q1, q2 and q3, that fulfil a wavevector resonance condition
q1 + q2 + q3 = 0.

As common in other large aspect ratio convection experiments, one also finds imper-
fectly periodic, weakly turbulent patterns. For instance, the 3D motifs mentioned above
appear locally superimposed on the original the 2D roll pattern, where they burst and
vanish repeatedly in time (Daniels et al. 2000; Daniels & Bodenschatz 2002; Daniels et al.
2003). To test whether such dynamic states are caused by experimental imperfections
(e.g. lateral boundaries, spatial variations of the cell thickness, inclination of the cell in
two directions), we have performed the first comprehensive numerical simulations of the
OBE in ILC for large aspect ratio convection cells. While a conclusive assessment of the
underlying mechanism producing bursts remains elusive, the weakly turbulent dynamics
of the pattern have been well reproduced in our simulations. Since the shear stresses play
an important role in our system, there might be an analogy to the instabilities of the
laminar state in purely shear driven fluid systems like Couette or Poisseuille flow, which
also often appear in the form of localized events (for recent examples see e.g. (Lemoult
et al. 2014; Tuckerman et al. 2014)). We hope that our investigations will lead to the
revelation of deeper commonalities between ILC and such shear driven patterns in the
future.

The paper is structured as follows: a brief summary of the governing OBE for the
ILC system is given in §2. We then discuss the onset of convection in terms of qc, Rc
for Pr = 1.07 and the resulting periodic roll pattern in §3. The results of the stability
analysis of the rolls in the nonlinear regime and the resulting phase diagram are presented
in §4. In §5 we show direct simulations of the OBE for different R and γ, which compare
well with the experiments. A short summary of this work together with perspectives for
future work can be found in §6. In three detailed appendices we present first the detailed
OBE equations for the ILC system and discuss the numerical method to characterize the
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roll solutions above onset together with their secondary instabilities (Appendix A). Then
we address briefly our approach for solving the OBE in general using direct numerical
simulations (Appendix B). Finally we return to the linear stability analysis of the basic
state to give additional information regarding the properties of qc, Rc (Appendix C).

2. Oberbeck-Boussines equations for ILC
As shown in figure 1, we consider convection in a fluid layer of thickness d, which

is inclined at an angle γ (0◦ < γ < 180◦) with respect to the horizontal. Constant
temperatures T2, T1 with difference ∆T = T1 − T2 > 0 are prescribed at the upper and
lower boundaries (z = ±d/2) of the layer. Both cases, heating from below (0◦ < γ 6 90◦)
and heating from above (90◦ < γ < 180◦), will be considered in this paper.

The resulting ILC system is described by the standard Oberbeck-Boussinesq equations
(OBE) for incompressible fluids. As usual, the OBE are non-dimensionalized using d as
the length scale and the vertical diffusion time tv = d2/κ as the time scale. The velocity
u is measured in units of d/tv and the temperature T in units of Ts = νκ/αgd3 with α
the thermal expansion coefficient. Using a Cartesian coordinate system aligned with the
layer (see figure 1), the OBE read as follows:

[∂/∂t+ (u ·∇)]T = ∇2T +Rẑ · u, (2.1a)

Pr−1 [∂/∂t+ (u ·∇)]u = ∇2u− g
g
T −∇p , (2.1b)

where ∇ · u = 0 due to incompressibility and g = −g (cos γẑ + sin γx̂) describes the
effect of gravity with the gravitational constant g. All terms which can be expressed as
gradients are included in the pressure term ∇p. Equations (2.1) are characterized by the
angle of inclination γ along with two nondimensional parameters, the Prandtl number
Pr = ν/κ and the Rayleigh number R = ∆T/Ts.

In line with previous theoretical investigations of ILC in the literature (see in particular
Clever & Busse (1977); Busse & Clever (1992)), we idealize the system to be quasi-
infinite in the x− y plane. This is considered to be the appropriate description for large
aspect-ratio systems. Equations (2.1) then admit primary (basic) solutions (denoted with
subscript 0) of a linear temperature profile T0(z) and cubic shear velocity profile U0(z):

T0(z) = R

[
T1 + T2

2∆T
− z
]
, U0(z) = x̂ sin γR

z

6

[
z2 − 1

4

]
≡ x̂ sin γRUx0 (z). (2.2)

It is convenient to describe the secondary convective state in terms of the modifications
θ and v of the basic state as

T (x, z, t) = T0(z) + θ(x, z, t), u(x, z, t) = U0 + v(x, z, t), x = (x, y), (2.3)

where θ and v fulfill the boundary conditions θ(z = ±1/2) = v(z = ±1/2) = 0. Fur-
thermore, the solenoidal velocity field v is mapped by the well-known poloidal-toroidal
decomposition to two scalar velocity functions f,Φ(x, z, t) and a correction U(z, t) of
U0(z); for details, see Appendix A. The resulting coupled set of equations for θ, f,Φ,U
are analyzed in the following sections using standard Galerkin methods and direct nu-
merical simulations (DNS).

3. Finite-amplitude roll solutions
Spatially periodic convection roll solutions of the OBE (2.1) with wavevector q exist for

Rayleigh numbers R > Rc, where the homogeneous basic state (2.2) is unstable against
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Spatio-temporal Patterns in Inclined Layer Convection 5

infinitesimal perturbations which depend on x, y. The onset of convection in ILC system
at the critical Rayleigh number Rc, associated with the critical wavevector qc, has been
discussed in Gershuni & Zhukhovitzkii (1969); Birikh et al. (1972); Hart (1971). A very
useful overview can be found in Chen & Pearlstein (1989) and references therein. Some
additional general information is given in Appendix C.

Since the ILC system is anisotropic, we have to consider the linear stability of the basic
state against arbitrarily-oriented convection rolls with wavenumbers q = q(cosψ, sinψ).
For that purpose, we have to analyse (2.1) linearized about the basic state (2.2). For
details of the standard numerical method, see Appendix A.1. For γ = 0 (horizontal layer
with U0 ≡ 0) the system is isotropic and we have the standard Rayleigh-Bénard convec-
tion (RBC) where |qc| = qc0 = 3.1163 and Rc = Rc0 = 1707.762 (see e.g. Dominguez-
Lerma et al. (1984)) which depend on neither ψ nor Pr . This is distinct from finite γ,
since U0(z) defined in (2.2) yields a contribution proportional to cosψ sin γ/Pr in the
linear equations (see (A 4b)).

In the following we concentrate on the special case Pr = 1.07, where the bifurcation
of the basic state is always stationary; other Prandtl numbers are briefly discussed in
Appendix C.2. Figure 2 displays the rescaled critical Rayleigh number Rc/Rc0 and the
critical wavenumber qc as function of the inclination angle γ and different ψ. In general,
only two particular q−orientations turn out to be relevant (see e.g. Appendix C.2). The
convection solutions at onset are either buoyancy driven longitudinal rolls with their axes
along the incline, i.e. qc = qcŷ, ψ = 90◦ or shear driven transverse rolls with their axis
perpendicular to the incline where qc = qcx̂, ψ = 0◦.

Longitudinal rolls (ψ = 90◦) exist only in the range 0 < γ < 90◦ (heating from
below, see figure 1). Their critical wavenumber is given by qlc = qc0 for all γ and the
critical Rayleigh number, Rlc(γ), fulfils the relation Rlc(γ) cos γ = Rc0 (see Appendix
C.2), implying that Rlc diverges in the limit γ → 90◦. In contrast, a bifurcation to
transverse rolls exists in the whole interval 0 < γ < 180◦. The critical Rayleigh number
for transverse rolls, Rtc(γ), rises continuously as function of γ and diverges at γ = 180◦

(stable horizontal fluid layer, heated from above). In figure 2 the critical data have been
shown only for γ up to 120◦, where Rtc ∼ 105 involves large thermal gradients. Thus, the
use of the OBE becomes questionable for γ > 120◦, since non-Boussinesq effects due to
temperature variation of the various material parameters should be taken into account.

Inspection of figure 2 reveals the existence of a codimension-2 bifurcation point γc2 =
77.746◦ where Rlc = Rtc = 8046.420, such that for γ < γc2 longitudinal rolls bifurcate
at onset (Rc(γ) = Rlc(γ) < Rtc(γ)) while for γ > γc2 the transverse rolls prevail. As
first demonstrated in Gershuni & Zhukhovitzkii (1969) and detailed in Appendix C.2,
the threshold curves Robc (γ, ψ) for general oblique rolls (ψ 6= 90) can be constructed by
suitable transformations of the critical values Rtc(γ) and qtc(γ) of the transverse rolls. In
this paper, we will often use the reduced main control parameter ε defined as:

ε = (R−Rc(γ))/Rc(γ) (3.1)

as a measure for the relative distance from threshold Rc(γ) at ε = 0, instead of R.
The standard computational methods to construct finite-amplitude roll solutions with

wavevector qc for R > Rc, where exponential growth of the linear modes is balanced
by the nonlinear terms in the OBE, are sketched in Appendix A.2. The amplitudes of
the roll solutions grow continuously like

√
ε (see the discussion after (A 8)). Thus, the

primary bifurcation to rolls is continuous (forward).
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6 P. Subramanian et al.

Figure 2: Critical Rayleigh number Rc, normalized to the value Rc0 at γ = 0 (left panel)
and critical wave number |qc| (right panel) as function of the inclination angle γ for
Pr = 1.07 for different roll orientations ψ. Line styles for the different roll orientations
are: · · · for ψ = 90◦ (longitudinal rolls, Rlc(γ)), - - - for ψ = 60◦, -·- for ψ = 45◦ and
— for ψ = 0◦ (transverse rolls, Rtc(γ)). The codimension 2 point with γc2 = 77.746◦ is
marked by a star.

4. Secondary instabilities of roll solutions for Pr= 1.07
In this section we discuss the secondary destabilisation mechanism of rolls with wavevec-

tor qc, in a ILC system with Pr = 1.07 and inclination angle γ, that become unstable
when ε = εinst(γ) (i.e. when R = Rinst(γ) = (1+ εinst(γ))Rc(γ)) . Based on the methods
described in Appendix A.2, the stability diagram presented in figure 3 has been deter-
mined in the γ − ε plane.The solid lines mark the locations of the various secondary
instabilities of the finite amplitude roll solutions with q = qc(γ) at ε = εinst(γ). Thus
to the left of the line at γ ≈ 15◦ and below it at higher γ, stable roll solutions exist.
For details of the calculations we refer to Appendix A.3, according to which one has to
distinguish between stationary and oscillatory bifurcations, characterized by a frequency
ωinst.

According to figure 3 the type of secondary roll instabilities depends strongly on the
inclination angle γ. Our main interest in this paper are the various 3D patterns which
develop for ε > εinst. For an overview we show in figure 3 cutouts of different 3D patterns
observed in experiments (Daniels et al. 2000). Here, we aim to reproduce and interpret
such 3D patterns based on direct numerical simulations (DNS) of the OBE; for the
numerical details, see Appendix B.

We first consider small ε < εinst(γ). Starting from random initial conditions, modes
with wave vector qc(γ) prevail leading to perfect roll patterns, as shown in figure 4. The
DNS are performed on a square with side lengths Lx = Ly = 12λc with λc = 2π/qc(γ)
where we obtain, longitudinal rolls at γ = 10◦ and transverse rolls at γ = 85◦. Here, and
in the rest of this paper, we show snapshots of the vertical (z) average 〈θ(x, t)〉 of the
temperature field θ(x, z, t) (see (A 5)). Throughout this paper the height of the convection
cell increases from left to right, i.e. with increasing x with respect to the coordinate system
attached to the cell in figure 1. Such pictures, which we refer to as the temperature plots,
are typically used in the literature to compare with experimental convection patterns,
which are visualized via shadowgraphy (for examples, see Bodenschatz et al. (2000)). In
gas convection experiments of the type considered in this paper dark and bright regions
in figure 4 indicate positive (hot) and negative (cold) variations in the temperature
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Spatio-temporal Patterns in Inclined Layer Convection 7

Figure 3: Phase diagram of the convective roll patterns in the γ, ε plane for Pr = 1.07.
Solid lines (coloured online) indicate the secondary instabilities of the primary roll pat-
terns at ε = εinst, i.e. at R = (1+εinst)Rc(γ). The codimension 2 point with γc2 = 77.746◦

is marked by a star. For γ < γc2, we obtain longitudinal rolls (LR), and for γ > γc2,
transverse rolls (TR). Increasing ε in the interval 0 6 γ < γc2, we obtain the various
thresholds for the secondary instabilities of the LR: skewed varicose instability (SV)
shown in purple, longitudinal subharmonic oscillations (LSO) shown in light blue and
wavy rolls (WR) shown in dark red. Analogously, in the range γ > γc2 the thresholds
for instability of the TR are shown: the knot instability (KN) in black and the trans-
verse oscillations (TO) in brown. The graph is decorated with representative sections
of the corresponding experimental pictures (Daniels et al. 2000). In addition crawling
rolls (CR), transverse (TB) and the longitudinal bursts (LB) are shown, which cannot
be directly associated to the secondary instabilities. Black open circles indicate locations
in the γ− ε plane, where experiments and numerical simulations are compared in section
§5.

field around the basic linear temperature profile (de Bruyn et al. 1996). We use a 8-bit
grayscale to visualize 〈θ(x)〉; whose range increases monotonically as a function of ε.

In the following we discuss the secondary instabilities of the primary convection rolls
in detail. We examine inclination angles γ below γc2 and γ ≈ γc2 in §4.1, and γ > γc2 in
§4.2.

The various secondary instabilities are visualized by direct simulations of the underly-
ing OBE (see Appendix B.1). In general we use a minimal rectangular integration domain
in the x−y plane which is consistent with qc and the wavevectors of the dominant desta-
bilizing modes. For visualisation, the domain is periodically extended to a larger domain
with Lx = 12λc = Ly.

4.1. Secondary roll instabilities below γc2

In this section we will characterize in detail the secondary instabilities of longitudinal
rolls in figure 3.
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8 P. Subramanian et al.

Figure 4: Temperature plots 〈θ(x)〉, for Pr = 1.07 from direct numerical simulations of
the OBE (2.1): (a) buoyancy dominated longitudinal rolls (LR) oriented along the incline
at Pr = 1.07, ε = 0.01, γ = 10◦ with qc = (0, 3.1163) (left panel); (b) shear dominated
transverse rolls (TR) oriented perpendicular to the incline at ε = 0.02, γ = 85◦ with
qc = (2.82, 0) (right panel). See text for further details of the simulations. In the plane
the figures are oriented along the x-axis of local coordinate system in figure 1 (reproduced
at the right). All temperature plots in the rest of the paper are shown using the same
convention.

q1

q2q3

Figure 5: Subharmonic oscillatory instability of longitudinal rolls (LSO) for Pr = 1.07,
γ = 17◦ and ε = 1.3: temperature plot (left panel) together with the wavevectors q1 =
qc, q2, q3 (wavevector resonance q1 = q2 +q3) of the leading Fourier modes (right panel).

.

4.1.1. Skewed varicose instability (SV)
For small inclinations (γ . 5◦), we recover the well known skewed varicose (SV)

instability for planar RBC with γ = 0 (Busse & Clever 1979). This is a stationary long-
wavelength instability where the original longitudinal rolls are slowly modulated along
their axes but also with respect to their distance. The SV instability will not be further
discussed in this paper.

4.1.2. Logitudinal subharmonic oscillations (LSO)
In the range 5◦ < γ 6 21◦, the longitudinal roll pattern with q = qc = (0, 3.1163)

becomes linearly unstable to oscillatory subharmonic perturbations with wavevectors
q2,3 = (±qx, qc/2) and a finite frequency ωinst. For the representative case γ = 17◦, where
primary rolls get unstable at εinst = 1.044, we have qx = 1.279 and ωinst = 10.21. In figure
5, we show an excerpt from our simulation at ε = 1.3. performed on the minimal rectangle
with lengths Lx = 2π/qx and Ly = 2λc with λc = 2π/qc. The periodically extended
picture is six times larger. The pattern is characterized by periodic modulations of the
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Spatio-temporal Patterns in Inclined Layer Convection 9

Figure 6: The coefficients A (horizontal upper dotted line), B(t) (dash-dotted) and C(t)
(solid line) in (4.1) as function of time in units of Ts; B(t), C(t) are multiplied by a factor
of four for better visualisation.

longitudinal rolls, which are in phase on every second roll reflecting the subharmonic
nature of the instability. The resulting LSO pattern obeys the wavevector resonance
q1 − q2 − q3 = 0 as seen in the Fourier spectrum.

The temporal evolution of the pattern in the x− y plane takes the form

f(x, y, t) = A cos(qcy) +B(t) cos(qxx+ qcy/2) + C(t) sin(qxx− qcy/2) (4.1)

The coefficient A is independent of time while B(t) and C(t) are periodic with angular
frequency ω ≈ ωinst. The time evolution of these coefficients (given in units of Ts as
defined in §2) is shown in figure 6.

The LSO instability has been first described by Busse & Clever (2000) at the lower
Prandtl numbers Pr = 0.7, by solving (A 7) in the minimal integration domain. In
addition for certain parameter combinations of qx, qy an intermittent appearance of bursts
has been reported, which we have not reproduced for Pr = 1.07.

4.1.3. Wavy Roll (WR) instabilities

The next instability type, characterized by the appearance of longitudinal rolls undu-
lating like snakes along their axes, was described in Clever & Busse (1977) where the
notion wavy-instability has been coined. The resulting bifurcation to wavy rolls (WR)
is observed in a fairly large γ-interval between 21◦ < γ 6 γc2, very close to onset of
convection ( εinst = O(0.01)). In the framework of the Galerkin stability analysis in Ap-
pendix A.2, this instability is characterized by long-wavelength destabilizing modes with
wavevectors qmax = (±qx, qc) with |qx| � |qc|.

The WR have been discussed in detail in Daniels et al. (2008), to which we refer readers
for details. Here one finds representative experimental and theoretical pictures (see also
figure 13 in §5 below) as well as a Galerkin stability analysis of the 3D wavy roll patterns.
In fact, for ε > εinst stable WR with finite qx exist. They are spatially periodic in the
plane, characterized by the wavevector resonance q2 + q3 = 2qc with q2,3 = (±qx, qc). In
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q2

q1

q3

Figure 7: Knot instability of transverse rolls at Pr = 1.07, γ = 81.9◦ and ε = 0.055:
temperature plot (left panel); wavevectors of the leading Fourier modes q1 = qc, q2 =
(0, qc0) and q3 = q1 + q2 (right panel).

the x, y− plane the temperature pattern is described as

f(x, y) = A cos(qcy) +B sin(qcy) sin(qxx). (4.2)

For ε = 0.1 and qx = 1.28, we find for instance A = 48.1 and B = 12.8 in units of Ts.

4.2. Secondary roll instabilities above γc2
In this section we discuss the secondary instabilities of the transverse rolls bifurcating
for inclinations γ > γc2.

4.2.1. Knot (KN) instability
Just above the codimension 2 point, the shear dominated transverse rolls with q1 =

(qc, 0) and qc ' 2.82 (see figure 4(b)) are destabilized by the longitudinal rolls with
wavevector q2 = (0, qy) and qy = qc0 = 3.1163. The steeply rising stability line in
figure 3, starts at γ = γc2 with ε = 0. In the weakly nonlinear regime, the oblique mode
with wave vector q3 = (qc, qy) comes into play and the wavevector resonance q3 = q1+q2

is established. The pattern is well described by:

f(x, y) = A cos(qcx) +B sin(qyy) + C sin(qcx) cos(qyy) (4.3)

As a function of ε, the amplitudes B,C increase continuously above ε = εinst.
In figure 7 we illustrate an representative example for γ = 81.9◦ with εinst = 0.053,

where the minimal domain Lx = λc and Ly = 2π/qc0 is again periodically extended. At
ε = 0.055, we find A = 17.9, B = 1.95, C = 2.16 in (4.3). The resulting stationary pattern
(see figure 7, left panel) has some similarity to the knot patterns described in Busse &
Clever (1979) for the isotropic RBC system. However, in our ILC system the wavevector
resonance triggered by the oblique mode q3 plays an important role.

For completeness, it should be mentioned that the knot instability in ILC has been
previously investigated in Fujimura & Kelly (1992) for γ . 90◦ in the framework of two
coupled amplitude equations restricted to the amplitudes A,B in (4.3).

4.2.2. Transverse Oscillatory rolls (TO)
For γ > 83.2◦ the destabilization of the transverse rolls starts to be governed by the

transverse oscillatory rolls (TO) along an almost horizontal transition line as function of γ
in figure 3. Transverse oscillatory rolls (TO) are characterized by destabilizing modes with
a Floquet vector s of relatively small but finite modulus |s| ∼ qc/6 and by an oscillatory
time dependence of period about 3.5tv. In an analogy to the stationary SV instability of
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q2

q1q3

Figure 8: Transverse oscillatory rolls at Pr = 1.07, γ = 84.9◦ and ε = 0.07: temperature
plot (left panel); wave vectors of the dominant Fourier modes (right panel). In this case,
we use a square grid with qy = qc = 3.117.

longitudinal rolls (see §4.1.1), the rolls are expected to become slowly modulated along
their axis and also with respect to the spacing. Without a definitive resonance condition
among the dominant destabilizing modes, we do not expect periodic 3D patterns of the
kind discussed in the previous subsections. Thus, we have to solve the OBE on a larger
domain in the x−y plane, including modes with wave vectors |(qx, qy)| � qc. An excerpt
of representative DNS pattern for γ = 84.9◦ is shown in figure 8 (left panel) at ε =
0.07. This pattern results from a secondary instability of transverse rolls (Rc = 8282.64
and qc = 2.8023) at εinst = 0.063 with ωinst = 1.809. One observes the appearance
of localized patches with reduced amplitudes on top of the original slowly modulated
transverse rolls. Apparently, the pattern arises through a complex beating phenomena,
due to a superposition of oscillating modes with slightly different wave vectors. The most
prominent ones (q2, q3) together with q1 ≡ qc are shown in figure 8 (right panel).

Figure 9 shows the complicated time evolution of the oscillatory pattern during one
period given as 2π/ωinst. The localized patches of reduced amplitudes in figure 9(i),
evolve first into slanted lines of reduces amplitudes in (ii). As documented in figures
9(iii-vi) with progessing time, the undulations of the rolls become then first stronger
before they decrease until arriving again at the initial pattern.

According to our phase diagram in figure 3, the instability of the transverse rolls
towards the TO pattern remains relevant for larger γ and also governs the secondary in-
stability in the case of heating from above. A representative example of a time sequence is
shown in figure 10 for γ = 100◦, where the TO instability is characterized by εinst = 0.06
and ωinst = 1.48. The graph of the most relevant destabilizing modes looks practically
identical to the one in figure 8 and is thus not shown. The interaction of the modes leads,
however, to a much simpler time evolution, as compared to figure 9 for γ = 84.9◦. It is
possible that in the latter case the destabilizing modes triggering the knot instability for
slightly smaller γ in figure 3 come into play as well.

As will be discussed in §5, the regions of suppressed amplitudes become elongated and
are no longer periodically arranged in the plane when increasing the aspect ratio, i.e.
Lx, Ly in the DNS. As shown in figure 18 below, they compare well with the corresponding
experimental patterns in (Daniels et al. 2000) called switching diamond panes (SDP)
there.

4.2.3. Vertical convection
The case of a vertical convection cell (γ = 90◦) is of special interest since the pattern

formation is exclusively driven by the shear stress. So this system has motivated many
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(i) (ii) (iii)

(iv) (v) (vi)

Figure 9: A time sequence of transvese oscillatory (TO) patterns shown over one time
period for the case of heating from below. Consecutive panels are separated by 0.44tν .
System parameters are the same as figure 8 with Pr = 1.07, γ = 84.9◦ and ε = 0.07.

Figure 10: A time sequence of transverse oscillatory (TO) patterns shown over one time
period for the case of heating from above. Consecutive panels are separated by 0.4tν .
System parameters are Pr = 1.07, γ = 100◦ and ε = 0.08.

previous investigations, mainly in the linear regime and often with Pr & 12.45 where an
oscillatory bifurcation to transverse rolls takes place. For Pr = 1.07, however, we observe
stationary transverse rolls at onset, and their stability analysis yields always a secondary
bifurcation to the TO pattern for all γ near 90◦ (see figure 3 and our discussion in the
previous subsection).

This result is noteworthy, since in the previous literature (Clever & Busse 1995) for
Pr = 0.71 (air) a stationary secondary instability of the transverse rolls driven by the
effective subharmonic roll modes with wavevectors q2,3 = (qc/2,±p) was predicted. This
finding has been confirmed by our own calculations. The instability of the transverse rolls
with qc = 2.8123, Rc = 5701.2625 takes place at εinst = 0.0599 with p = 1.5898. These
numbers are consistent with those used for direct simulations of the OBE in Clever &
Busse (1995) (Rc = 5726.9, qc = 2.69, p = 1.7 and ε & 0.11).

In close analogy to the LSO (§4.1.2), the resonance conditions qc = q2 + q3 holds.
To confirm the results of stability analysis we have performed DNS of the OBE on the
smallest periodicity domain in the plane compatible with instability data above, i.e.
with Lx = 2λc, Ly = λc(qc/p) (see (B 1)). The resulting stationary temperature plot
(periodically extended to Lx = Ly = 12λc) for ε = 0.064 > εinst is shown in figure 11.
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q2

q1

q3

Figure 11: The subharmonic varicose instability of transverse rolls with Pr = 0.71, ε =
0.065 and γ = 90◦: temperature plot (left panel); wavevectors of the leading Fourier
amplitudes (right panel). See text for details.

Keeping the dominant Fourier modes, the pattern is represented as:

f(x, y) = A cos(qcx)−B sin(qcx/2) cos(py) (4.4)

with A = 131.23, B = 60.76 in units of Ts; the subharmonic instability of the transverse
rolls is is reflected in the argument of sine in the second term.

A closer look at the Pr -dependence of the secondary bifuraction of the transverse rolls
in this regime shows in fact that for Pr & 0.9 the secondary SHV bifurcation of the
transverse rolls is replaced by the TO bifurcation discussed in §4.2.2. This is consistent
with our stability analysis and experimental observations at Pr = 1.07.

5. Comparison with experimental results
In the previous section, we have discussed the various characteristic secondary insta-

bilities of the ILC roll patterns with increasing inclination angle γ. A number of basic
destabilization mechanisms have been identified by considering simulations in small pe-
riodic domains in the plane of linear dimension L, where L = O(2d) with d the cell
thickness. Our goal in this section is a comparison with the pressurized CO2 experiments
(Daniels et al. 2000; Daniels 2002) at Pr = 1.07. In these experiments a convection cell
with very small layer thickness d = (710 ± 7)µm could be realized together with quite
large lateral dimensions [(42 × 21)d2]. Thus, the dimensions of the convection cell are
such that the experiments are expected to be well described in simulations by periodic
boundary conditions in the plane. Also, these dimensions set the time scale in terms of
the vertical diffusion time to tv = d2/κ = 3.0s, which is very convenient for typical exper-
iments. The experimental shadowgraph pictures, shown in figure 3 as small cutouts, will
be compared in this section to direct numerical simulations (DNS) of the basic equations
(2.1) on large horizontal domains with lateral dimensions L = 20λc = O(40d); for the
numerical details, see Appendix B. We follow the same sequence of parameter combi-
nations as used in the preceding section, where γ was systematically increased. From
the simulations we obtain the average temperature plots, 〈θ(x)〉, discussed in §4, which
are shown side by side with the experimental shadowgraph pistures. We focus on the
generic features of the patterns when all transients have died out. A quantitative agree-
ment between theory and experiment is however, not to be expected, as along with the
complicated optics involved in shadowgraphy (Trainoff & Canell 2002), the experimental
pictures are typically digitally remastered to enhance their contrast.
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Figure 12: Snapshots of an longitudinal subharmonic oscillations (LSO) for Pr = 1.07,
γ = 17◦ and ε = 1.5 from experiments (left panel) and from our numerical simulation
(right panel).

Figure 13: Representative wavy roll patterns (WR) from experiments (left panel) in
comparison with simulations (right panel) for Pr = 1.07, γ = 30◦ and ε = 0.08.

5.1. Convection pattern for γ < γc2

We start with the subharmonic oscillatory patterns (LSO), in figure 5 which bifurcate
from longitudinal rolls. As shown in figure 12, experiments and theory match very well.
We observe patches of subharmonic oscillations, which were discussed in §4.1.2 using a
stability analysis of the longitudinal rolls and numerical simulations in a minimal domain
(containing only one roll pair). In large ILC systems, such patterns typically appear only
as localized patches that compete with moderately distorted rolls. Such patches expand
and shrink in time and their centers move erratically over the plane. The subharmonic
oscillations within the localized patches show an internal dynamics with a time scale of
1 to 3 cycles per tv which is of the same order as the period 2π/ωinst of the oscillatory
bifurcation in §4.1.2.

With increasing γ, the longitudinal rolls become unstable against undulations even
for very small ε; i.e. the instability line in figure 3 bends dramatically down. Typical
experimental and theoretical pictures of undulated (wavy) rolls (WR) shown in figure 13
again match very well with each other. However, instead of the stationary undulations
as predicted in §4.1.3, the patterns are characterized by patches of uniform undulated
rolls, separated by grain boundaries (Daniels et al. 2000; Daniels & Bodenschatz 2002).
In addition, the rolls are scattered with point defects that move at right angles to the
rolls. The wavy patterns have been discussed in detail in Daniels et al. (2008), where also
a weakly chaotic dynamics of the amplitudes A,B in (4.2) is analyzed in detail.

With increasing ε, the undulations become more and more disordered and the rolls are
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Figure 14: Crawling rolls (CR) from experiments (left panel) and from simulations (right
panel) at the same parameters as in figure 13 except at a larger ε = 0.4.

Figure 15: Knot pattern (KN) at γ = 80◦ and ε = 0.05 in experiments (left panel) and
in simulations (right panel).

Figure 16: Localized transverse bursts (TB) for the parameters Pr = 1.07, γ = 77◦ and
ε = 0.04 in experiments (left panel) and in simulations (right panel).

disrupted. A transition is observed to the dynamic state of the so-called crawling rolls
(CR) Daniels et al. (2000) as shown in figure 14. This state is reproduced in our numerical
simulations, which indicates that it is not caused by experimental imperfections.

5.2. Convection close to codimension 2 point
The vicinity of the codimension 2 point γc2 is of particular interest. According to figure
3 the wavy roll instability governs the secondary instability of the longitudinal rolls
up to γ = γc2. In contrast, for γ & γc2 the primary transverse rolls are predicted to
become unstable against cross rolls leading to the knot patterns (KN). This instability
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Figure 17: Localized longitudinal bursts (LB) for the parameters Pr = 1.07, γ = 79◦ and
ε = 0.1 in experiments (left panel) and in simulations (right panel)

mechanism is confirmed by the pictures shown in figure 15. It is remarkable that the
DNS on a large domain in the plane (Lx = Ly = 20λc) starting from random initial
conditions has led to perfect knot patterns. They are indistinguishable from those shown
in figure 7 generated on a small domain with Lx, Ly ≈ λc. The teeth-like structure on
the transverse rolls caused by a resonant interaction of the three roll modes (see figure 7)
is born out in the experimental picture. However, the transverse rolls are slightly oblique
here and undulated.

We now discuss two types of patterns which do not allow for a direct interpretation
by secondary instabilities of the basic rolls. First, we show in figure 16 the transverse
bursts (TB) for γ = 77◦ . γc2 and at ε = 0.04 slightly above the secondary wavy
bifurcation of the longitudinal rolls. Both in experiments and simulations, we observe a
background of slightly undulated rolls with some amplitude modulations. Intermittently,
localized transverse structures (bursts) appear, which contract, vanish and reappear at
other places. The longitudinal bursts in experiments have been analyzed in Daniels et al.
(2003), to which we refer for more details.

In contrast, for γ > γc2 and intermediate ε, longitudinal bursts (LB) are observed; rep-
resentative examples are shown in figure 17. They are characterized by localized loops of
longitudinal rolls superimposed on transverse rolls. The experimental picture shows more
of the bimodal knot pattern in the background than do the simulations. In the vicinity
of γc2, we do not expect simulations to reproduce all details of the the experiments at
the same parameters, as the system is very sensitive against small changes of γ and ε.
The material parameters in the experiments certainly have some inaccuracies. In addi-
tion, presumably non-Boussinesq effects lead to a slow drift of the experimental pattern.
Although the two burst phenomena are clearly reflected in our simulations, additional
efforts are necessary in the future to understand their underlying mechanism.

5.3. Shear stress dominated instabilities
Finally, we briefly address the heating-from-above case which is described in §3, for which
the inclination angle is γ > 90◦. As discussed before, the destabilization of the basic state
is due to the shear stress of the cubic flow profile U0 (2.2). In §4.2.2 we have described
the destabilisation of the primary transverse rolls to switching diamond pane patterns
shown in Daniels & Bodenschatz (2002). According to figure 3 the transition line to
the TO is almost horizontal and begins at γ slightly above γc2. In figure 18 we show a
representative example for γ = 100◦, where experiment and simulations agree very well.
The time evolution observed in the corresponding time sequence, presented in figure 19,
reflects the frequency ωinst = 1.48 given in §4.2.2 and documented in figure 10. Increasing
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Figure 18: Switching diamond panes (SDP) for the parameters Pr = 1.07, γ = 100◦ and
ε = 0.1 in experiments (left panel) and in simulations (right panel).

Figure 19: Patterns formed during a typical evolution of switching oscillatory rolls shown
in order, for the case of heating from above as in figure 18. Consecutive panels are
separated by 5 tν . System parameters are Pr = 1.07, γ = 100◦ and ε = 0.1.

Figure 20: Chaotic switching rolls at γ = 100◦, ε = 0.19 [experiments (left panel), simu-
lations (right panel)].

ε further causes the patches with enhanced amplitude to become smaller and to move
more erratically as shown in figure 20.

6. Conclusions
The recent experimental study of ILC for Pr = 1.07 by Daniels et al. (2000) has opened

a new path to a much better understanding of this dynamically rich system; for a recent
overview, see chapter 7 in Lappa (2009). In the present work, the convection instabilities
of the basic state, sketched in figure 1, have been systematically explored as function of
the inclination angle γ and the Rayleigh number R. Furthermore, the resulting patterns
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are visualized directly and the large variety of new pattern types are shown in the phase
diagram in figure 3.

For the theoretical analysis in this paper, the large lateral extent of the convection cell
in the experiment has been of particular importance. For large aspect ratio systems the
influence of the lateral boundaries of the cell is certainly highly suppressed, making it ap-
propriate to use periodic boundary conditions. A convincing agreement with experiments
by Daniels et al. (2000) has been obtained. The analysis of the primary bifurcation of
rolls at the onset of convection and their secondary bifurcations have revealed the compli-
cated interaction of buoyancy and shear driven destabilization mechanisms. Of particular
importance is the spatially resonant interaction between three roll systems with different
orientations in the plane (wavevector resonance, as detailed in §4).

A look at the experimental pictures and the pattern dynamics (see Daniels et al. (2000))
shows that they are not completely described by perfect periodic patterns either in one or
two dimensions in the fluid layer plane. One finds cases where a kind of clear periodicity
is expressed only in parts of the cell (figures 12, 13). One also observes defect lines; in
addition the patterns change in time. Further increasing R in these cases often leads to
turbulent patterns (see figures 14, 20). In addition, there are other cases where localized
patches of a different structure than the underlying, regular background patterns appear
intermittently. Two examples are the transverse bursts in figure 16 and the longitudinal
bursts in figure 17. The ability to reproduce such weakly turbulent patterns in direct
numerical simulations of the OBE validates their generic character.

To unravel the basic underlying mechanism that produce such weakly turbulent pat-
terns is a difficult task and we have been unable to interprete them in terms of instabilities
of the underlying roll patterns. One is sometimes faced with similar problems in standard
RBC. A prominent example is the so-called spiral defect chaos (Bodenschatz et al. 2000),
which is often observed for medium Pr and for Rayleigh numbers R slightly larger than
Rc though the rolls are linearly stable in this regime.

Further effort is thus needed to analyze and to quantify the dynamics of the turbulent
events in detail as has been done for the bursts in Daniels & Bodenschatz (2002); Daniels
et al. (2003) or for the wavy patterns in Daniels et al. (2008). Another issue is the weakly
turbulent convection states described by Busse and coworkers in ILC, appearing even
for very small systems containing only one roll pair (Busse & Clever 1992, 2000). Their
relation to the weakly turbulent events, which here cover considerably larger domains in
the plane, requires further investigation.

In this paper, we have restricted ourselves to the special case of Pr = 1.07. As part
of future work, it is planned to apply our methods in particular to fluids with large
Pr > 12.47, where the primary roll bifurcation is oscillatory.

The authors are highly indebted to Prof. F. Busse for his very useful comments and
fruitful discussions on the subject of this paper. TMS was supported by the Swiss National
Science Foundation under grant number 200021-160088.

Appendix A. Governing equations and stability of rolls
The poloidal-toroidal decomposition of the solenoidal velocity field v (2.3) in §2 reads

as follows:

v(x, y, z, t) = ∇× (∇× f ẑ) + ∇× Φẑ +U(z, t) ≡ χf + ηΦ +U(z, t). (A 1)

The explicit equations for θ, f,Φ are obtained by inserting (2.3) into (2.1) followed by
the application of the operators χ,η to (2.1b). The evolution equation for the secondary
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mean flow flow U(z, t) is obtained by averaging the velocity equation (2.1b) over the
x− y plane, leading to:

1
Pr

∂U(z, t)
∂t

= − 1
Pr

∂(vzv)
∂z

+
∂2U

∂z2
+ sin γ θ − (∂x, ∂y, 0)(Pxx+ Pyy), (A 2)

where the overbar indicates the horizontal average.
Except for minor changes, the resulting equations for θ, f,Φ can already be found

in Busse & Clever (1992); Daniels et al. (2008). The differences arise firstly from their
definition of the Rayleigh number as R = ∆T cos γ/Ts, whose explicit dependence on
cos γ is not convenient for the description of vertical convection cells when γ = 900. By
the transformation θ → θ/ cos γ and interchanging x and y we arrive at our formulation.
Secondly, our equations for the mean flow U (A 2) contain the additional pressure terms
Px(t), Py(t). They have been proposed in a different context in Busse & Clever (2000), to
guarantee mass conservation,

∫
dzU(z) = 0. Finite Px(t), Py(t) appear only in the DNS

of complex patterns in §5.
For the following discussions, a compact symbolic representation of the equations for

the fields θ, f,Φ is useful:

Ĉ ∂

∂t
V̂ (x, z, t) = L̂V̂ (x, z, t) + N̂ [V̂ +U , V̂ ] (A 3)

with x = (x, y) and the symbolic vector V̂ = [θ, f,Φ]T . The symbol N̂ stands for the
nonlinear terms which consist of quadratic forms in θ, f,Φ and U .

As an example, we show the explicit expressions for the linear terms of θ and f . This
allows us to immediately identify the corresponding components of the linear operators
Ĉ, L̂:

∂

∂t
θ = −R∆2f +∇2θ −R sin γ(Ux0 (z)∂x)θ, (A 4a)

1
Pr

∂t∇242f = ∇442f − cos γ42θ + sin γ ∂x∂zθ −
1

Pr
sin γRF [Ux0 ]f (A 4b)

with ∆2 = (∂xx + ∂yy). The term F [Ux0 ] ≡ [Ux0 (z)∇2 − ∂2
zzU

x
0 (z)]∂x∆2 originates from

the contribution of the basic mean flow U0 in (2.2) to the velocity u in (2.1b). Note that
θ, f are not coupled to Φ in (A 4).

In general, equations (A 3) are solved with the boundary conditions θ(z = ±1/2) = 0
and f = ∂zf = Φ = U = 0 at z = ±1/2 which derive from the no-slip boundary
conditions v(z = ±1/2) = 0. These conditions are automatically satisfied by the use of
Galerkin expansions with respect to z. As in Busse & Clever (1992) we use for θ the
ansatz:

θ(x, z, t) =
M∑
m=1

Sm(z)ϑm(x, t); Sm(z) = sin(mπ(z + 1/2)), (A 5)

since Sm(z = ±1/2) = 0. For Φ and the secondary mean flow U(z, t) in (A 2) also sine
functions are used, while f is expanded in terms of the Chandrasekhar functions Cm(z)
(Chandrasekhar 1961) with Cm(±1/2) = ∂zCm(z = ±1/2) = 0.

A.1. Linear Stability Analysis of the basic state
The primary convection instability of the basic state corresponds to exponentially grow-
ing solutions in time of (A 3) in the linear regime (N̂ = 0). We use the ansatz V̂ (x, z, t) =
eσteiq·xṼ (q, z, R) in (A 3) to arrive at the following linear eigenvalue problem for σ:

σC(q, ∂z)Ṽ (q, z;R) = LṼ (q, z;R) ≡ [A(q, ∂z) +RB(q, ∂z)]Ṽ , (A 6)
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where the operators C,L(q, ∂z) etc. in Fourier space derive from the corresponding ones
in position space (see (A 3)) carrying a hat symbol via the transformation ∂x → iq. In
this paper we make use of Galerkin expansions ((see (A 5)) to handle the z dependence.
Thus, for instance (A 4) is transformed into an algebraic linear eigenvalue problem of
dimension 2M in the Fourier-Galerkin space.

Given that σmax(R,Pr , γ, q) is the eigenvalue σ with the largest real part in (A 6),
rolls become unstable when Re[σmax(R,Pr , γ, q)] crosses zero. It is convenient to de-
termine first the neutral surface R = R0(Pr , γ; q) through the condition Re[σmax(R =
R0,Pr , γ, q)] = 0. Subsequently minimizing R0(q, γ) with respect to q yields the criti-
cal wavevector qc, the critical Rayleigh number Rc = R0(qc) and the frequency ωc ≡
Im[σmax(Rc, qc)] as function of Pr , γ. If ωc = 0, the bifurcation of the basic state is called
stationary otherwise oscillatory .

It turns out, that the relevant eigenvalues σ with Re[σmax] > 0 are obtained from the
eigenvalue problem (A 6) reduced to its θ, f part (A 4), since Re[σ] < 0 for all eigenvalues
of the separated Φ− equation. Thus, with the use of our Galerkin-expansions (A 5) we
arrive at an algebraic linear eigenvalue problem with 2M×2M matrices, which is analyzed
using standard linear algebra codes (LAPACK).

A.2. Secondary of instabilities of roll solutions
For intermediate Pr , considered in this paper, the primary bifurcation to rolls with
wavevector qc at R = Rc is stationary. To construct the evolving finite-amplitude solution
V̂ = V̂r for R > Rc from (A 3) we use the Fourier ansatz:

V̂r(x, z) =
k=N/2∑
k=−N/2

eikqc·xVr(kqc, z). (A 7)

With respect to z, we introduce an additional Galerkin expansion (see (A 5)) of the (N+1)
Fourier coefficients Vr(kqc, z). Furthermore, the Galerkin expansion of the mean-flow
U using sine functions leads to 2M additional equations. Thus, we arrive at a system
of 3M(N + 1) + 2M coupled nonlinear algebraic equations for all Galerkin expansion
coefficients. This system is solved by Newton-Raphson methods.

The iteration process is started from the weakly-nonlinear roll solution of (A 3) char-
acterized in Fourier space by the ansatz Vwnl(qc, z) = A(qc, R)V̄max(qc, z;R); V̄max is
given by the solution of (A 6) for σ = σmax at q = qc. For ε & 0, a systematic expan-
sion with respect to the small parameter ε determines the amplitude A of Vwnl via the
solution of the amplitude equation:

σmax(qc, R,Pr , γ)A− cA|A|2 = 0, with Re[σmax] ∝ ε . (A 8)

For stationary primary ILC bifurcations at intermediate Pr the cubic coefficient c is
always real and positive and the bifurcation is thus forward (supercritical) at onset, i.e.
|A|2 ∝ ε/c increases continuously beyond the threshold ε = 0.

To examine the linear stability of the roll solutions V̂r (A 7), we linearize (A 3) with
respect to an infinitesimal perturbation δV̂r(x, z, t) of V̂r. Then one switches to the
Fourier-Galerkin space using the standard Floquet ansatz:

δV̂r(x, z, t) = eΛ teis
′·x

k=N/2∑
k=−N/2

eikqc·xδVr(kqc, z), (A 9)

together with a Galerkin expansion of the components of δVr(kqc, z) with respect to z.
Thus we arrive at an algebraic eigenvalue problem of dimension 3M(2N+1) for the set of
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eigenvalues Λ(s′, qc, R). The eigenvalue Λ0 with the largest real part defines the growth
rate λ0(s′) ≡ Re[Λ0(s′)] of the respective perturbation δV̂r. Given that λ0(s′) assumes
its maximum λmax(R,Pr , γ) at s′ = s′max, we then determine the smallest Rayleigh
number R = Rinst(γ) = (1 + εinst(γ)Rc(γ) see (3.1) at which Re[λmax] crosses zero. In
other words at R = Rinst the secondary instability of the rolls with wavevector qc occurs
for given parameters Pr , γ. When ωinst = Im[Λ0(s′, Rinst)] 6= 0 the secondary bifurcation
is called oscillatory, otherwise stationary. This general method works well in the ranges
γ . 120 and γ & 170 in figure 3, where the rolls are stable for R < Rinst(γ). Between
12◦ < γ < 170, whereR0(q, γ) is not unique, we analyze σmax(R,Pr , γ, q) = 0 using scans
of γ, q at fixed R to determine the upward-bent threshold of the wavy roll instability,
which limits the stability of the longitudinal rolls. For an appropriate interpretation of
the instability, we have to determine for a given s′max the index kmax corresponding to the
largest modulus |δVr(kmaxqc, z)| of the expansion coefficients in (A 9). This yields then
the wavevector(s) qinst of the dominant destabilizing mode(s) as qinst = kmaxq + s′max.
It turns out that kmax is always governed by the temperature component of δVr and
that |kmax| 6 1 holds.

The stability of roll patterns along the method described above has been intensively
employed for the investigation of the standard isotropic RBC (γ = 0) by Busse and
coworkers also for q 6= qc in equations (A 7 - A 9). They have thus constructed the Busse
balloon (Busse & Clever 1979, 1996), which is the stability diagram of rolls in the |q|, R−
space with varying Pr . We have refrained from the very time consuming calculation of
the full Busse balloon in our anisotropic system by concentrating on q = qc, where
only finite s′ perturbations have been found to be relevant. This has been discussed
in detail in §4. In particular in several cases the same maximal value of |δV (kqc, z))|
is assumed at two different integers k2, k3 and thus two different dominant destabilizing
modes qinst = q2, q3 exist. The resulting 3D patterns for R > Rinst(qc, γ) are in addition
often characterized in Fourier space by wavevector resonances of the form q1 + q2 +
q3 = 0 between the wavevector q1 = qc of the basic roll pattern and the q2, q3. The
stability analysis yields also the relative phases of the three Fourier amplitudes. Because
of translational invariance of the system in the x− and the y− directions two phases can
be chosen to be zero without loss of generality; the third one is then determined by the
ratio of the components of δVr(k2qc, z) and δVr(k3qc, z) with the largest moduli.

A.3. Accuracy of the stability limits

The accuracy of all results presented in this paper depend on the choice of the truncation
parameter M of the Galerkin expansion with respect to z (see (A 5)) and the truncation
parameter N in Fourier space (see (A 7, A 9)). In this work we have always chosen M = 8
and N = 5. By systematically increasing these parameters (see below) we have tested
that this choice is sufficient to guarantee that the relative errors our results are below
0.1%. Even reducing the values to M = 6 and N = 3 does not change the curves shown
in figure 3.

In table 1 we give representative examples for linear threshold values Rc and qc and
their dependence upon increasing values for the Galerkin truncation parameter M . In
addition, the determination of the codimension 2 point varies as γc2 = 77.7857◦, 77.7462◦,
77.7544◦ and 77.7560◦ when varying M as M = 6, 8, 10, 12 respectively.

Analogous convergence checks have been performed for the secondary instabilities of
the convection rolls on the basis of (A 9). In general the data are more sensitive against
changes of M than of N . We did all calculations with M = 8, which guarantees the same
accuracy of the data as in the linear regime above. To guarantee an relative accuracy
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γ M qc Rc

0◦ 6 3.1159 1707.985
8 3.1162 1707.824
10 3.1163 1707.784
12 3.1163 1707.771

γ M qc Rc

90◦ 6 2.7920 8504.200
8 2.8076 8470.286
10 2.8059 8476.495
12 2.8056 8477.690

γ M qc Rc

100◦ 6 2.7723 9150.774
8 2.7985 9108.171
10 2.7877 9115.841
12 2.7871 9117.068

Table 1: Dependence of threshold values qc and Rc for Pr = 1.07 of longitudinal rolls
at γ = 0◦ (horizontal cell), transverse rolls at γ = 90◦ (vertical cell) and at γ = 100◦

(heating from above) upon different Galerkin truncation parameters M .

of better than 0.1% N = 3 is sufficient at small ε; for ε = O(1) one needs N > 4. This
conclusion is supported by the following representative data. The secondary instability
towards wavy rolls in figure 3 at εinst = 0.8 occurs at γ = 16.50◦ for N = 5 and at
γ = 16.5288◦, for N = 4. For N = 8 the LSO instability at γ = 17◦ is characterized
by εinst = 1.04423 with the oscillation frequency ωinst = 10.20808 and Floquet vector
s with components sx = 1.27929 and sy = qc0/2. At N = 4 we find only small changes
with εinst = 1.0436, ωinst = 10.2038 and sx = 1.278990, sy = qc0/2. Finally we mention
the knot instability of transverse rolls at γ = 83◦. For N = 5 we find εinst = 0.07134
with sy = 3.1179, which remain unchanged for N = 4.

Appendix B. Direct simulations of the OBE in ILC
Direct simulations of the OBE in (2.1) are in general confined to a rectangle in the x−y

plane with the lateral extensions Lx, Ly using periodic boundary condition V̂ (x, y, z) =
V̂ (x+ Lx, y + Ly, z). Thus, we transform to Fourier space by introducing a discrete 2D
Fourier transformation of V̂ on a Nf × Nf grid with mesh sizes ∆qx = 2π/Lx,∆qy =
2π/Ly in the x- and y-directions:

V̂ (x, z, t) =
∑

q

eiq·xV (q, z, t) where q = {(k∆qx, l∆qy)} with −Nf/2 6 (k, l) 6 Nf/2 .

(B 1)
Reality of V̂ (x, z, t) implies the condition V (q) = V (−q)∗. With respect to z, we use
Galerkin expansions with the truncation parameter M as before. The quadratic non-
linearities N̂ in (A 3) are treated by standard pseudospectral methods (see e.g. Boyd
(2001)). Substituting the Fourier ansatz (B 1) into (A 3) and projecting on the respec-
tive Galerkin modes one arrives at a system of 3M × N2

f coupled ordinary differential
equations for the evolution of all the combined Fourier-Galerkin expansion coefficients.
In addition, (A 2) is mapped into a system of 2M equations for the Galerkin coefficients
of the secondary mean flow U . Semi-implicit time stepping methods, as sketched in the
following subsection, are used to compute the time evolution of all our fields.

For all DNS shown in section §5, we have used Lx = Ly = nLλc with the critical
wavelength λc = 2π/qc and the truncation parameters Nf = 256,M = 8 and nL = 20.
Note that the number of roll pairs (black and white stripes) of the underlying 2D roll
patterns directly reflects nL.

As also evident from the previous section our Fourier coefficients decay quickly with in-
creasing |q|. The truncation parameter Nf = 256 in (B 1) corresponds to N = (124/20) >
5, as used for the stability analysis of rolls in Appendix A.2. Thus it is not surprising that
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the results of the Floquet stability analysis (A 9) are reproduced in the DNS. Increasing
Nf and/or decreasing nL corresponds to keeping Fourier modes with larger |q|. We have
checked that all the typical scenarios discussed in §5 are recovered.

The goal of most simulations in §4 was to validate the secondary instabilities of rolls
originally obtained on the basis of A.2, which lead to strictly-periodic 3D patterns. Thus,
we have performed the DNS on minimal domains in the plane, where one side length
was given as λc while the other was determined by the wavevectors of the dominant
destabilizing modes q2, q3 introduced in Appendix A.2. The data have then been mapped
to a larger square domain in the x − y plane by periodically extending the minimal
domains for visualization.

B.1. Exponential Time Differencing method
Our starting point is (A 3), where the components of V (q, z, t) in (B 1) are expanded
into the appropriate Galerkin modes like in (A 5). In the resulting Fourier-Galerkin rep-
resentation (A 3) can be written as:

d

dt
V (t) = AV (t)− Ñ with Ñ = C−1N , A = C−1L, (B 2)

since the matrix C is not singular. Equation (B 2) allows for the formal solution:

V (t+ dt) = eAdtV (t)− eA(t+dt)

∫ t+dt

t

e−At′Ñ(t′)dt′. (B 3)

Approximating Ñ(t′) by the leading terms of the Taylor expansion about the lower
limit t of the integral in (B 3) followed by the variable transformations t′ → τ ′ + t and
subsequently τ ′ = τdt one arrives at:

V (t+ dt) = eAdtV (t)− dt
∫ 1

0

e(1−τ)Adt

[
Ñ(t) + τ dt

Ñ(t)− Ñ(t− dt)
dt

]
dτ. (B 4)

In Koikari (2009) one finds for an arbitrary matrix M, the following definition of the
matrix functions φk(M):

φ0(M) = eM, φk(M) =
1

(k − 1)!

∫ 1

0

e(1−τ)M τk−1dτ ; k = 1, 2 . . . . (B 5)

Thus, (B 4) can be rewritten as:

V (t+dt) = φ0(A dt)V (t)− dt φ1(A dt) Ñ(t)−dt2 φ2(A dt)

(
Ñ(t)− Ñ(t− dt)

dt

)
. (B 6)

Both V and the secondary mean flow U (see A 2)) are calculated using the time
exponential method.

The time stepping scheme described in (B 6) incorporates the convergence to stationary
solutions Vs of (B 2) which have to fulfill AVs − Ñs = 0. This can be proven using the
recurrence identities of the matrix operators φk(M) as

φk(M) = M−1[φk−1(M)− I] . (B 7)

It should be remarked that the matrix exponentials could be also treated by using a
spectral representation of A (B 2) in terms of its direct and adjoint eigenfunctions, which
then becomes equivalent to the method used in Pesch (1996). While this procedure has
been successfully applied in a series of papers on complex patterns in standard RBC
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(Bodenschatz et al. 2000; Egolf et al. 2000), its application to ILC requires particular
care and is less robust, since the spectral properties of the operator A are complicated
(Rudakov 1967; Chen & Pearlstein 1989).

Appendix C. Additional remarks on the linear stability calculations
In §3, the linear instability of the basic state, against rolls with wavevector q =

q(cosψ, sinψ) was discussed. As already indicated in subsection A.1 only the θ, f part
of the eigenvalue problem (A 6) obtained from (A 4) in Fourier space needs to be consid-
ered. Since (A 4) are invariant against the transformations (x, z)→ −(x, z) and separately
(y → −y), it is sufficient to restrict ψ to the interval (0 6 ψ < 90◦). As already men-
tioned in §3, and documented in figure 2 for Pr = 1.07, it is sufficient to investigate only
the special cases either ψ = 90◦ (longitudinal rolls) or ψ = 0◦ (transverse rolls). A proof
can be found in Gershuni & Zhukhovitzkii (1969). In subsection C.2, we will present our
own very short version.

C.1. Linear stability results for small and large Pr
We have reproduced some of the earlier results in the literature as validation of our nu-
merical methods. In general, the codimension 2 point γ = γc2, where the critical Rayleigh
numbers Rlc(γ) of the longitudinal rolls and Rtc(γ) of the transverse ones are equal, moves
continuously towards γ = 0 for decreasing Pr . Below Pr < 0.264 (more precisely calcu-
lated in Fujimura & Kelly (1992)), the primary bifurcation leads to transverse rolls for
all γ > 0. On the other hand, for Pr > 1.07, the codimension 2 point moves continuously
towards γ = 900 and eventually the primary bifurcation to transverse rolls restricted to
the range 90◦ . γ < 180◦. In addition, this bifurcation becomes oscillatory at large Pr .
For the vertical case (γ = 90◦) this happens at Pr & 12.45, in agreement with Fujimura
& Kelly (1992). At a slightly larger Pr = 12.7 again at γ = 900, we find Rc = 88220,
ωc = 504.6 which is in excellent agreement with Bergholz (1977).

C.2. Bifurcation of oblique rolls
It is useful to exploit a certain form invariance of the linear equations (A 4a, A 4b) in
Fourier space using the transformation f → f/R. It turns out that the Rayleigh number
R, the inclination angle γ and the oblique roll angle ψ appear first in the combination
R sin γ cosψ due to the contributions of U0 (see (2.2)) and furthermore in (A 4b) as
R cos γ. In addition, these equations depend only on |q|. Thus, the critical Rayleigh
number Rlc(γ) of the longitudinal rolls (ψ = 90◦) is determined by Rlc(γ) cos γ = Rlc(γ =
0) = 1707.824. At the codimension 2 point γc2, we have Rlc(γc2) = Rtc(γc2), where
Rt(γ) denotes the critical Rayleigh number of the transverse rolls. Consequently, γc2 is
determined by the transcendental equation Rtc(γc2) cos(γc2) = Rc0 which has always a
unique solution 0 < γc2 < 90◦ for 0.246 < Pr < 12.45.

The form invariance of the θ, f equations implies a direct relation between the trans-
verse eigensolutions (ψ = 0) of (A 6) for given values of γ 6= 90◦, |q|, σ,Pr and an asso-
ciated set of oblique eigensolutions (ψ 6= 90◦) for the same values of |q|, σ,Pr but at a
different inclination angle Γ 6= γ and a different Rayleigh number R = Rt(Γ) 6= Rob. In
detail, we have:

Rob sin γ cosψ = Rt(Γ) sin Γ, Rob cos γ = Rt cos Γ =⇒ tan(γ) cos(ψ) = tan(Γ). (C 1)

In the special case Γ = γ = 90◦ equation (C 1) simplifies to Rob cosψ = Rt. In Gershuni
& Zhukhovitzkii (1969) the authors have arrived to analogous relations. As a general
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consequence an explicit analysis of linear oblique rolls is not necessary, since they can be
determined from the transverse rolls on the basis of (C 1).

At medium Pr , equations (C 1) are useful to characterize the stationary bifurcations
(σ = 0) to oblique rolls at the critical Rayleigh number R = Robc (γ, ψ). This curve crosses
the longitudinal threshold curve Rlc(γ) at the codimension 2 point γobc2(ψ) < 90◦, which is
thus determined by the relation Robc (γobc2 , ψ) = Rc0/ cos(γobc2). Thus, there exists according
to (C 1) a certain angle Γ′ which allows for expressing Robc (γoblc2 , ψ) by Rtc(Γ

′) as follows:

Robc (γobc2 , ψ) cos(γobc2) = Rtc(Γ
′) cos(Γ′) = Rc0; tan(γobc2) cos(ψ) = tan(Γ′). (C 2)

From the first equation in (C 2), we conclude Γ′ = γc2 and from the second one γobc2 > γc2
for (0 < ψ < 90◦), such that for γ > γc2 pure transverse rolls prevail at onset. From
(C 2) it is also obvious that the dip in the qc(γ)−curve in the transverse case (ψ = 0) is
mapped to corresponding ones for ψ 6= 0 with the same |qc|; this immediately explains
their equal heights in figure 4.

Though not relevant for the onset of convection, the sudden, strong increase of Rtc(γ)
curve at γ ≈ 26.5◦ in figure 2 is interesting. For Pr > 1.75 even discontinuous jumps
in Rtc and qtc at γ ≈ 30◦ develop. These are associated with the phenomenon of two
disconnected neutral curves as seen in figure 6 in Chen & Pearlstein (1989).
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