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Dynamics and Selection of Giant Spirals in Rayleigh-Bénard Convection
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For Rayleigh-Bénard convection of a fluid with Prandtl numbe+ 1.4, we report experimental and
theoretical results on a pattern selection mechanism for cell-filling, giant, rotating spirals. We show that
the pattern selection in a certain limit can be explained quantitatively by a phase-diffusion mechanism.
This mechanism for pattern selection is very different from that for spirals in excitable media.
[S0031-9007(98)07905-8]

PACS numbers: 47.54.+r, 47.52.+], 47.20.Lz, 47.27.Te

Spiral patterns are found in many pattern-forming sys- In this Letter, we present the first quantitative experi-
tems [1]. Famous examples include cardiac arrhythmiamental and theoretical analysis of giant rotating spirals
of the heart [2], the aggregation of starving slime moldin RBC. For axisymmetric, multiarmed spirals in large-
amoebae [3], and the Belousov-Zhabotinsky chemical reaspect-ratio cells we find good quantitative agreement
action [4]. Many of these systems can be classified abetween experimental measurements and theoretical
excitable media in which the core of the spiral, like apredictions. However, for the frequent case of non-
pacemaker, selects the temporal and spatial evolution @fxisymmetric spirals our measurements are in conflict
the outward traveling spiral waves [4]. In this Letter we with the proposed target selection mechanism and, as a
present a detailed experimental study of a driven, dissiconsequence, CTC’s invasive chaos idea as a tentative
pative system in which the formation of spirals can beexplanation of spiral defect chaos (SDC) [15] requires
attributed to a qualitatively different mechanism actingrefinement.
far away from the spiral’s core. In particular, we show Rayleigh-Bénard convection occurs in a horizontal fluid
for Rayleigh-Bénard convection (RBC) of a small Prandtllayer of heightd heated from below when the tempera-
number fluid that the rotation of giant, multiarmed spiralsture difference AT exceeds a critical valu&T,.. For
can be captured using concepts based on nonlinear phase= (AT/AT. — 1) > 0, a pattern of convection rolls
equations [5-10]. These concepts should be universalyith wave numbek = 7 /d develops [14]. Recent large-
and preliminary evidence indicates that similar reasoningspect-ratio experiments using pressurized gases revealed
may also apply to the spiral pattern formation in vibratinginteresting nonrelaxational pattern evolution. For moder-
granular layers [11] and in gas discharges [12]. ate e Bodenschatat al. [13] found giant rotating spirals

As stated earlier [13], the rigid rotation of a giant, similar to those described here, while Morss al. [15]
finite spiral of radius-; necessitates that the spiral wavesfound the spatiotemporal chaotic state of SDC.
which propagate from the spiral’'s core are annihilated at As shown in Fig. 1, our experiment consisted of six cir-
r = ry by a circular motion of the outer defect. Thus, cular convection cells filled with pressurized €@as. The
the pattern simply consists of stationary, concentric rollsconvective pattern was visualized with the shadowgraph
for r > r4. This balancing mechanism has been placedechnique [16]. The experimental setup including parame-
on a more precise theoretical framework by Cross anders is described in detail in Ref. [17]. In most experi-
Tu (CTC) [7,8]. They argue that the rotation of a spiralmental runs reported here we increagedquasistatically
requires the reconciliation of two competing selectionstarting from below onset of convectioa & 0). Upon
principles acting far away from the spiral’s core: (1) crossing onset, small amplitude axisymmetric target pat-
wavelength selection by climb of the outer defect anderns developed in all cells due to weak static sidewall
(2) the emission of radially traveling waves due to targefforcing. (We achieved this by a step in the cells’ side-
selection. These arguments have been successfully testedlls [17].) Abovee = 0.4 the initially axisymmetric tar-
within generalized Swift-Hohenberg (SH) models for get moved off-center, compressing the pattern on one side
axisymmetric spirals [7—10] and have also been extendedhile dilating it on the other. The appearance of this insta-
to multiarmed spirals [9]. However, the generalized SHbility is consistent with theoretical predictions [6]. Upon
model used in these studies contaéts hocparameters, further increases i the target moved farther off-center
and its stability regime deviates substantially from that foruntil the wave number in the compressed region increased
RBC [14]. As Cross [8] has pointed out in his concluding beyond the skewed-varicose (SV) instability [14] and a
remarks, serious conceptual uncertainties remain as welldefect pair would nucleate to decrease the wave number.
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FIG. 2. Average velocityw, of the outer defect ve for one-
armed spirals. The size of the on-center spirals is given in
Ref. [18]. The dashed line represents a linear fit to the on-
center data.

_ _ _ (The velocities are normalized in termsdyfrr, whererr
FIG. 1. Shadowgraph image of the six convection cells forjs the vertical thermal diffusion time scale.) Note that the

e = 0.98. Dark corresponds to warm up-flow, while light : ; ; ;
corresponds to cold down-flow. The cells used in the analysisSplrals had a variety of different sizes. We measured

are numbered from 1 to 4. Cell 3 contains a “PanAm” patternVd by track_ing the p_ath of the outer defect with a I_:ourier
and cell 2 contains spiral defect chaos. demodulation technique [19,20]. For on-center spirals the

averaged defect velocities of spirals in cells 1-3 obeyed

) the same linear relationship, = 0.64(e — 0.09). For
One of the defects then moved to the center while thgayes ofe with off-center spiralsp, changed abruptly.

other glided radially outward before coming to rest at &The spiral in cell 4 showed deviations from this behavior,
distancer,; from the geometrical center. _The pgttern the_npossibly due to its small size.) We also measured the
relaxed to an on-center, one-armed rotating spiral of radiugytation frequency» of the spirals and found that the data
rq. (While tr_ns mstal_mhty was observe_d far= 0.5inthe  5re well described bys = vy/ra. This dependence on
largest cell, it was slightly postponed in the smaller cells.)spira| size differs markedly from the size independence of
Above € =~ 0.55 we observed a behavior reminiscent of ,; ypserved for spirals in excitable media [4].

the target instability in which the spiral’s core would move  The first part of CTC’s argument is that the behavior
off-center. Fore < 0.64 we observed stable, rotating, off- o the outer defect of a spiral can be considered as a
center spirals (see Fig. 3 below) which with each increasgjsjocation climbing in a (slightly curved) roll pattern with
ine wou_ld move further off—center._ Eventually, the wave 5 radial wave numbeg(r) in analogy to the simpler case
numb(_e_r in the compress_ed region increased beyond the S¥ 3 dislocation climbing with the velocity, in a straight
mstablllty and defect pairs nucleated._ Th(_e pattern then dey| pattern with background wave number This latter
veloped into a three- or four-armed spiral, into the so-calle¢ase was considered theoretically in the framework of the
PanAm” pattern, or into spiral defect chaos. Examples ofsyyift-Hohenberg model [5]. Based on the phase diffusion
the latter two are shown in Fig. 1 in cell 3 and cell 2, re-gqyation which captures the behavior far from the defect,

spectively. We note that st_ability properties of spirals hadpe defect velocitw, was found to obey the relation [21]
not been addressed experimentally nor theoretically prior

to our investigations. va = Ble)lg = qale)], 1)
For a few additional runs, we jumped the controlwhereg, is the zero-velocity wave number.
parameter from below the onset of convectien<( 0) to In order to compare with this theoretical prediction one

above € > 0). As the jump was increased, we observedfirst needs a sensible definition of a background wave
targets, one-armed spirals, multiarmed spirals, PanAmumberg(r). Crucial to this was the observation that
patterns, and SDC. Interestingly, we observed twothe time average of am-armed spiral (when performed
armed spirals only when we employed this procedureover a duration equal to a multiple of the rotation period)
Otherwise, the general trend with observed using the vyielded a target pattern. This is exemplified in Fig. 3(B)
two methods was similar. We note that whenwas for the one-armed off-center spiral shown in Fig. 3(A).
guasistatically decreased starting from SDC or PanAnAs shown below, choosing the radial wave numbér)
patterns, we observed PanAm patterns, not targets, evaf the target pattern as the background wave nurghier
close to onset. This shows that the static sidewall forcind=q. (1) appeared to work quite well.
was very weak. The occurrence of a target pattern after averaging over
Let us initially focus on the one-armed spiral. Figure 2a rotating spiral can be rationalized by the following
shows the average velocitieg; of the outer defects for approximate calculation. A one-armed, finite spiral can be
an experimental run with one-armed spirals in cells 1-4described satisfactorily by a modified Archimedean spiral,
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FIG. 3. (A) Off-center one-armed spiral and (B) the average

over one rotation period overlaid with the defect positions Eon

at constant time intervalsAr = 8. 77y for € = 0.62 and )

o = 138. ~24-
& L
o

ie., f(7,1) = A(r)codgr — ¢ + ¢p4 — wt), wWhere g
is the wave number of the underlying target without
defectsA(r) is the amplitude, and is the radial distance
from the spiral’'s center. The phasés= arctarfy/x)
and ¢, = arcta(y — y;)/(x — x4)] are polar angles FIG.4. (A) B and (B)g, vs € for single-armed, off-center
centered about the spiral’s corerat= (0,0) and the outer spirals, compared with numerical simulations of defects in a
defect positiony(r) = (xa, ya), respectively. It is not Straightroll pattern.
difficult to show that the time average of such a rigidly
rotating spiral givesl(r,ry) = 2wA(r)J (r/rqy)codqr), wave numberg,(e) [6], and that a target with a wave
whereJ; is the first Bessel function of the first kind. We number differing fromg,(e) will attempt to adjust its
note that the corresponding average of an Archimedeawave number by emitting circular waves of frequency
spiral (¢, = 0) would vanish. w;(€). Using the nonlinear Cross-Newell phase-diffusion
Using the above definition of the background waveequation [6], one finds
number g(r), we tested Eq. (1) using experimental ve- _
locities obtained from off-center, one-armed spirals over o = a(e)lg(e) = ql/r. (2)
a wide range of values oé. The slower defect mo- wherea = 2D)(q;), D|(q) is the parallel diffusion con-
tion in the dilated regions and the faster motion in thestant, andr is the distance from the center of the target.
compressed regions seen in Fig. 3B are consistent witfihe numerical value of the parametercan be calculated
Eqg. (1). For a quantitative test we measurgd) at the  from the growth rater(g;, K) of a longitudinal modula-
defect positions by fitting small regions to concentric rolltion with wave numbeK of a pattern with wave number
patterns [20]. (The method of Ref. [23] produced simi-g, asa = [—20(q,, K)/K*]|x—0 [6].
lar values.) We then plotted, versusg for each value Using geometrical arguments, CTC showed that a one-
of € and found that the data were well described by aarmed spiral requires
linear relationship, allowing us to determine the parame-
ters B(e) andg,(e) using a least-squares fitting procedure
[24]. These data are shown in Fig. 4. Using simulationsvhere, againy, is the velocity of the defect at radius
of the three-dimensional Boussinesq equations [25], we,. We used Egs. (3) and (2) and the generalization
also measured defect velocitieg as a function of back- to multiarmed spirals [9] to determine. From the
ground wave numbey for defects moving in straight roll investigations above and a similar analysis foarmed,
patterns. Again, we found a linear relationship betweeron-center spirals, we measured the average defect velocity
vy andg and determineqB(e) andg,(e). As shown in wv,;. For each cell we determineq, by extrapolating
Fig. 4, the numerically determined values f8fe) and the azimuthal average of;(e) at the defect positions
qa(e) are in excellent agreement with the experimentfrom on-center targets at lower to the largere where
Using the simulations, we also analyzed off-center, onewe observed ther-armed, on-center spirals. We found
armed spirals [26] and found excellent agreement betweethat (3, — g.) ~ € [20]. The data forg, was in good
experiment and theory [27]. agreement with the numerical predictions by Buell and
The second part of CTC’s argument—selection byCatton [28]. The remaining unknown background wave
circular traveling waves—relies on the fact that awaynumberg was measured from the underlying target, again
from the core of the spiral the wave fronts deviate onlyazimuthally averaged over the defect positions. With this
slightly from circular and are thus well approximated asinformation we determined for one-, two-, three-, and
targets. It has been shown that targets prefer a speciffour-armed on-center spirals. The data are summarized

Vg — Wly, (3)
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