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We study a new variant of electroconvection using a homeotropically aligned nematic liquid crys-
tal. The novelty of this system is a direct transition to roll- or square-type patterns controlled
by the frequency of the applied voltage with a rich crossover scenario and strong influence of the
ZigZag instability even at onset. From the weakly nonlinear theory and simulations of an adapted
Swift-Hohenberg model one can understand essential features of the phase diagram. In particular
we find a quasiperiodic pattern with square symmetry.
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Nonequilibrium transitions in spatially extended con-
tinuum systems lead to a wide variety of fascinating pat-
terns. The basic elements are stripes (or rolls), squares
and (under some proviso) hexagons, which are the only
simple periodic patterns that appear directly via a su-
percritical bifurcation in isotropic quasi-twodimensional
systems [1]. In rare cases there is a direct (supercritical)
transition to a disordered state. To our knowledge a di-
rect transition to a long-wave modulated quasiperiodic
pattern has never been described before.

The common framework for the description near
threshold is given by universal amplitude equations,
which are governed by the symmetries of the problem,
while largely independent of physical details [2]. The un-
derlying concepts have been mainly developed and tested
in Rayleigh-Bénard convection (RBC) driven by a tem-
perature gradient in a horizontal layer of a simple fluid
[1, 3, 4]. The competition between the prevailing stripes
(rolls) and hexagons near threshold is well understood [1].
Although squares are observed in quite diverse systems
[5, 9] studies of their nonlinear aspects are scarce.

Here we study electroconvection (EC) near threshold
in a homeotropically aligned nematic liquid crystal ex-
hibiting a direct transition to EC, which represents a
new model system for isotropic pattern formation. Un-
like in other systems, here the competition between rolls
and squares can be systematically investigated at small
amplitude in the same cell with large-aspect ratio [10]
by merely changing the frequency of the applied voltage.
Since the system is driven by an ac voltage there is an
intrinsic reflection symmetry about the mid plane. Thus
the quadratic resonance coupling leading to competing
hexagons is absent.

The patterns in the experiment and in large-aspect ra-
tio simulations near threshold exhibit modulations with
a slow dynamics. The global orientation of the patterns
is random. The modulations are of ZigZag (ZZ) type in
the roll regime (see Fig. 1) and undulated in the regime of
squares (”soft squares”, see Fig. 2). The ZZ modulations
are always manifestly disordered. The undulations of the

soft squares are initially irregular (see [11], Fig. 3). In the
experiments they become after long time nearly periodic
in space (see Fig. 2a) with a very slow persistent dynam-
ics, in agreement with most simulations. The simulations
are based on a suitably chosen Swift-Hohenberg equation
(SHE), which is a standard approach in isotropic pattern
formation.

FIG. 1: Snapshots of ZZ roll patterns in experiment (a)
(ε = 0.038, ω/ω∗

exp = 0.18) and in simulation (b) of the SH-
equation (ε = 0.006, ω/ω∗

theo = 0.16). Definitions are given
later in the text.

FIG. 2: Snapshots of “soft” square patterns slightly above ω∗

(a) experiment (ε = 0.038, ω/ω∗exp = 1.16) and (b) simula-
tions of the SH-equation (ε = 0.022, ω/ω∗

theo = 1.07).

Interestingly, for some parameters, and then for large
classes of initial conditions, all defects are pushed out in
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the simulations and the undulations become completely
regular, i.e. the soft squares settle into a static, spatially
quasiperiodic attractor (see Fig. 2b; the regular pattern
at this ω was found for ε ≤ 0.022).

The scenario originates in particular from the well-
known transverse modulational ZZ instability of rolls,
which is present in squares as well, since it acts on
each roll system individually (in contrast to resonant
hexagons, where the ZZ instability is suppressed) [9]. It
is driven largely by the mean flow, which here acts dif-
ferently than in RBC and is crucial already at threshold.

Thus we have the unique case of a direct transition
to a stationary pattern that is destabilized by long-wave
instabilities leading either to disorder or to an ordered,
quasiperiodic pattern. Other experimentally accessible
direct transitions to long-wave destabilized patterns in-
volve Hopf bifurcations to travelling waves [12, 13] or the
presence of an additional Goldstone mode [14]. Alterna-
tively, destabilisation of rolls at onset can be prompted
by a short-wave instability, as in rotating RBC [15]. In
all these cases the destabilization leads to disorder only.

Nematics are characterized by the mean orientation of
their rod-like molecules along the director n̂ [16]. The
anisotropy is reflected in the material parameters such
as the conductivity tensor σij = σ⊥δij + σaninj , where
σa = σ‖ − σ⊥ and σ‖, σ⊥ are the conductivities par-
allel and perpendicular to n̂ and analogously the di-
electric permittivity tensor εij . Studying isotropic con-
vection in these substances might look surprising since
EC is a favorite model system for anisotropic convec-
tion. However, then the internal anisotropy of the ma-
terial is expressed by external coupling as in the stan-
dard planar setup by anchoring the director along an
axis parallel to the bounding plates [17]. In contrast,
our experiments on isotropic EC employ homeotropically

aligned cells, where the director is oriented perpendicular
to the confining plates and thus parallel to the applied
ac-voltage U cos(ωt). We use a new nematic with σa < 0
and εa = ε‖ − ε⊥ > 0 which exhibits a direct transi-
tion to EC at a critical voltage Uc (for details see [18]).
The frequency ω is kept below a cutoff frequency with
ωcutτq ≈ 0.7 (“conduction regime”), where τq = ε0ε⊥/σ⊥
is the charge relaxation time.

The stability diagram of the rolls obtained from the
linear and the nonlinear analysis of the full nematohy-
drodynamic equations (NHDE) is consistent with the ex-
periments [18]. We find a direct transition to squares at
threshold for frequencies above ω∗

theoτq ≈ 0.60, which cor-
relates well with the experimentally observed crossover
to squares at ω∗

expτq ≈ 0.55 (for ω ≥ ω∗
exp the cell is

filled only with squares at onset). In Fig. 3 we show
the full stability diagram in the ε, q plane (q = |~q|) for a
frequency slightly below ω∗

theo. Rolls with wavenumber
q exist above the neutral curve N, which near threshold
has the form εN (q) = ξ2(q−qc)

2 where ξ is the coherence
length. Outside the region limited by the line R(q) the
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FIG. 3: Stability diagram of rolls with wavenumber q below
the transition frequency to squares at ω/ω∗

theo = 0.82. Above
the neutral curve (N, dashed) the Eckhaus (E, thin dashed)
and ZZ instability (ZZ, thick solid) are shown. The line R
shows the cross-roll instability. To the right of the SQ line
there exist amplitude-stable squares. The inset shows the
merging of the R with the SQ line (cross) at higher values of
ε and the regions where one may expect rolls, rolls+squares
(r+s), and squares.

rolls become unstable to growth of transverse rolls with
wavenumbers qtr. To the left of the line SQ, which meets
the neutral curve at (εSQ, qSQ), q is not contained in
the band of qtr. Then the perturbations do not saturate
to stable rectangles, but initiate a wavelength-changing
process of the roll system. To the right of the line SQ
there exist destabilizing cross-roll processes with qtr = q,
which lead to amplitude-stable square patterns. When
increasing ω the point (εSQ, qSQ) moves down along the
neutral curve, meets at ω∗

theo the threshold (ε = 0, q = qc)
and moves again upwards the neutral curve to the left for
ω > ω∗

theo. Also, as ω reaches ω∗
theo the stable roll region

inside the line R(q) collapses to zero. For ω > ω∗
theo a

similar, parabolic stable region of squares opens up lim-
ited by the ”rectangular instability” [9]. The ZZ line per-
sists for squares, but at ω∗

theo its slope jumps to a higher
value. This then describes fully the transition between
the roll and square regimes.

Moreover, the ZZ line, which emerges linearily from
the onset point (ε = 0, q = qc), as is generic for isotropic
systems, is tilted strongly to the right, see Fig. 3. Thus,
already at onset the rolls become unstable against long-
wavelength (transverse) ZZ modulations. This feature
holds for all ω < ω∗

theo. By contrast, in RBC in simple
fluids the ZZ line tilts to the left (except for large Prandtl
number, where it is essentially vertical [1]). In both cases
the tilt results mainly from mean-flow effects, which are
generated by roll curvature. Whereas in EC the mean
flow tends to reinforce the curvature, it acts stabilizing
in RBC. The sign reversal in EC can be traced back to
the influence of the Coulomb body force appearing in the
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NHDE flow equation.
In the weakly nonlinear regime 0 ≤ ε = (U2 −

U2

c )/U2

c < 0.1 the stability diagram and salient features
of the experimental patterns can be reproduced very well
by the following generalized SHE model

τ0∂tψ =
[

ε−
ξ2

4q2c
(∆ + q2c )2 −

e3
q2c
ε(∆ + q2c )

]

ψ− (1)

[

ψ3 +
γ

q2c
ψ(∇ψ)2

]

+
β

q4c
∂i

[

(∂iψ)(∂jψ)2
]

−
1

q2c
(U · ∇)ψ,

(1 − c∆/q2c )∆ζ = −
g1
2q2c

(∇(∆ψ) ×∇ψ) · ẑ (2)

with U = (∂yζ,−∂xζ) , c = 0.5. Here ψ(x, t) portrays
the pattern in the plane. Equations (1,2) are a general-
ization of the ”simple SHE” where e3 = γ = β = g1 = 0.
The linear term ∝ e3 describes a correction to the neu-
tral curve which to cubic order in q − qc is given by
εN = ξ2(q − qc)

2(1 + 2e3(q − qc)) and the additional cu-
bic nonlinearity ∼ β was introduced by [19] to capture
bifurcations to squares. The term ∼ γ is well-known in
the literature [2]. The description of the mean flow U

is also well established [20]. Since the U derives from
a Poisson equation it is of long range and acts without
retardation. The term ∝ c is introduced to filter out
short-scale contributions to U [21].

The coefficients of the SHE were related to the mate-
rial parameters and to the frequency ω by mapping the
stability diagram of the NHDE onto that of the SHE.
The critical wavenumber qc, the correlation time τ0 and
the correlation length ξ are known from the linear anal-
ysis [18]. With the Ansatz ψ = Aeiqcx + Beiqcy + c.c.
Eqs. (1,2) can be reduced to coupled amplitude equa-
tions for A, B. In the A-equation we arrive at the cubic
nonlinearity (−µ|A2|A−ν|A2|B) with µ = 3+3β+γ and
ν = 2(3 + 2β+ 2γ). The corresponding stability analysis
in the NHDE shows that the cross coefficient ν/µ varies
from 2.5 at ω = 0.1 to 0.9 at ω = 0.7 (it passes through
1 at ω∗

theo). This range can be covered in the SHE by
varying continuously the coefficients β and γ. We fixed
the ratio γ/β by the requirement that the SHE should
reproduce the values for qSQ, εSQ of the NHDE. Simi-
larly, the strength g1 of the mean flow coupling is fixed
by equating the slope of the ZZ line εZZ(q) at ε = 0 from
the NHDE (see Fig. 3) to that of the SHE which is given
by εZZ(q) = ξ2(q− qc)qc/(G+ e3) with G = (g1 − 3β)/µ
for rolls (for squares one has G = (g1−9β)/(µ+ν)). The
contribution in G due to g1 is about ten times larger than
those due to β and e3. Note that in the simple SHE the
ZZ line is vertical and that g1 is negative in RBC. For a
parameterization of g1, β, γ for ω ≤ 0.7, see [22].

Equations (1,2) have been solved by a standard
pseudo-spectral code typically on a 256 × 256 grid with
periodic boundary conditions on a domain which covers
25λc with λc = 2π/qc. The relevant time scale is set
by the horizontal diffusion time tH = 252τ0. Starting

with random initial conditions we let the system evolve
at least for 5tH which was sufficient to reach the steady
states described below.

A representative simulation of the SHE immediately
above threshold for ω well below ω∗

theo (ν/µ well above 1)
yields the ZZ roll pattern shown in Fig. 1b. The patches
in the corresponding experiment (Fig. 1a) show a varia-
tion in brightness since the underlying director field, not
contained in the SHE, influences the optics. The struc-
ture is reminiscent of patterns found in the simple SHE
at comparable ε only as transients when starting a simu-
lation from a ZZ unstable roll pattern (q < qc) or signifi-
cantly above threshold as frozen states. There the q band
has widened and certain resonance processes involving
modes with q < qc become active [23]. In our case there
is persistent slow dynamics. In RBC sharp structures in
the roll pattern are smoothed out by mean flow, whereas
in our system grain boundaries remain sharp despite the
strong mean flow. We note that in Fig. 1 the value of ε
is smaller in the simulation than in the experiment. The
larger ε was needed to obtain sufficient contrast, but the
pattern remains essentially the same in the experiments
at the lower ε.

With increasing ω (still ω < ω∗) at small ε one ob-
serves in the simulations and in experiment an increase
in the fraction of regions with crossed rolls, which gives
the impression of a mixed state of rolls and squares. In-
creasing ε in the experiments (at ω < ω∗

exp) one finds
a discontinuous transition to a state of perfect (”hard”)
squares with sharp boundaries between differently ori-
ented domains [18]. In the simulations, upon increase of
ε above εcr, the system tends to settle in a state of al-
most perfect, slightly undulated stationary squares with
a somewhat larger wavenumber (q > qSQ).

We have checked that by reducing g1 in Eq. (2) this
crossover to squares is suppressed. Thus, interestingly,
the mean flow, which destabilizes the roll pattern, gen-
erates a selection process towards squares, which, if per-
fectly ordered, do not excite mean flow.

For ω > ω∗
theo the simulations at small ε give soft

squares except in the immediate vicinity of the thresh-
old, where the long-wave ZZ instability is suppressed by
finite-size effects and we find perfect squares. This is
consistent with experiments (Fig. 2a) where one does not
expect finite-size effects due to the large aspect ratio. We
mention that no difference of the wavenumbers in the two
directions (no rectangularity) could be observed within
the experimental error of about 5%. In some simulations
(for a class of parameters and initial conditions) the soft
squares ended up in a pattern with perfectly periodic
undulations, see Fig. 2b. This represents a quasiperiodic
solution of Eqs.(1,2) with an exact cubic symmetry, i.e.
invariance under rotation by π/2. Stationary solutions
of this type are indeed expected to exist quite generally.
Since the modulations are of long wavelength, an approx-
imate description is given by the nonlinear phase equa-
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tion for the rectangular instability proposed in [9] with
equal modulation wavenumbers in the x and y direction.
Quasiperiodic solutions are usually expected to be un-
stable, representing saddle points which separate stable
periodic solutions with different wavevectors. When the
periodic solutions themselves are destabilized, as is the
case here, the quasiperiodic solutions may become sta-
ble. An analogous situation arises in roll patterns un-
dergoing the ZZ instability. In anisotropic systems one
then has stable undulated roll structures in the ZZ un-
stable regime [24]. Similar effects have been predicted for
isotropic convection [25]. For ε→ 0 the allowed modula-
tion wavenumbers should tend to zero.

The transition to hard squares in our experiments with
increasing ε (for ω > ω∗

exp already at a fairly small
ε ∼ 0.1) are not captured appropriately by the SHE
model. We suggest that the hard squares represent a
superlattice structure where several wavevectors inter-
act to suppress the ZZ instability. Such superlattices,
which often represent quasiperiodic structures, have been
of considerable interest recently [26, 27]. They have been
investigated experimentally in particular in the Faraday
instability in cells with aspect ratio below about 50 [28].

In conclusion, we demonstrated that EC in
homeotropic cells using a new nematic with σa < 0 and
εa > 0 can give valuable insight into novel scenarios for
isotropic pattern formation. A particularly intriguing
feature is that mean flow, which in RBC is responsible
for the skewed varicose instability and spiral defect
chaos [29], here leads to a very mild form of disorder
or even to the generation of an unconventional ordered
pattern. In the future we plan to extract from weakly
nonlinear theory a quantitative understanding of the
soft square attractor, in particular its quasiperiodic
manifestation. From simulations we hope to charac-
terize better its occurance in parameter space and its
regions of attraction. Also, a detailed description of
the hard square pattern and the transition from soft
to hard squares appears of interest. We expect similar
phenomena in other systems provided the aspect ratio
can be made comparably large. The ZZ instability may
be replaced by some other long-wave destabilisation, e.g.
the skewed-varicose instability.
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