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Chapter 4

The role of flexoelectricity in pattern formation
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In this chapter the influence of flexoelectricity on pattern formation in-
duced by an electric field in nematics will be summarized. Two types
of patterns will be discussed in the linear regime, the equilibrium struc-
ture of flexoelectric domains and the dissipative electroconvection (EC)
rolls. In a separate section, recent experimental and theoretical results
on the competition and crossover between the flexoelectric domains and
EC patterns will be described.
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4.1. Introduction

Patterns, i.e. regular spatio-temporal structures, can easily be generated

in liquid crystals via a large variety of external stresses, e.g., by mechan-

ical shear, temperature or pressure gradients, electric or magnetic fields,
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etc.; representative examples are found in Ref. 1. Here we concentrate

on patterns induced by electric fields in nematics and in particular on the

implications of flexoelectricity.

Nematics are uniaxial fluids; the preferred axis is defined by a unit vector

n, the director.2 We consider a thin nematic layer of thickness d confined

between two plates (parallel to the x, y-plane), which impose the initial

direction n0 of n in the basic state. The plates also serve as electrodes for

the application of an electric field E along the z-axis.

As a consequence of the uniaxial symmetry all material properties of

nematics have to be represented by tensors. For instance, the dielectric

displacement D and E are connected by the dielectric susceptibility tensor

ǫ as D = ǫ0ǫE ≡ ǫ0[ǫ⊥E + (ǫ‖ − ǫ⊥)(n ·E)n]. Thus ǫ depends in general

on the local director orientation and is specified by the two dielectric con-

stants, ǫ‖ and ǫ⊥ (for E parallel and perpendicular to n, respectively). An

analogous representation applies to the electric conductivity tensor σ.

Any spatial distortion of n leads to elastic restoring torques, which are

determined in the standard continuum description of nematics (exclusively

used in this review) by the three elastic constants K1 (splay), K2 (twist),

and K3 (bend).2 In addition, the electric field E gives rise to an electric

torque on the director. The balance of these torques, reflected in the result-

ing equilibrium director configuration, corresponds to the minimum of the

orientational free energy F(n). In the case of positive dielectric anisotropy

(ǫa = ǫ‖ − ǫ⊥) the dielectric torque (∝ |E|2) is destabilizing in the pla-

nar director configuration (n0 ‖ x). With increasing |E| above a certain

threshold EF the electric torque becomes obviously larger than the stabi-

lizing elastic torque (determined by the elastic constants). Thus an initial

planar director configuration will experience a splay distortion in the form

of an out-of-plane rotation of n. This process, the Freedericksz transition,2

is a prominent example of an orientational transition in nematics under the

influence of an applied electric field. Since F(n) of the distorted state be-

comes lower than that of the basic state at EF , the notion of an equilibrium

phase transition is common in analogy to standard thermodynamics.

In most cases the stationary director configuration resulting from the

Freedericksz transition in planar geometry is uniform in the plane of the

layer and varies only in the z-direction. However, in some exceptional cases,

when the splay elastic constantK1 is much larger than the twist elastic con-

stant K2 (e.g., in liquid crystal polymers), a spatially periodic out-of-plane

director distortion becomes energetically favourable. The resulting splay-

twist (ST) Freedericksz state is manifested in the experiments in the form
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of a “longitudinal” stripe pattern,3 running parallel to the initial director

alignment n0 ‖ x.

Besides the elastic and the electric torques the so called flexoelectric (or

flexo) torques on the director play an important role as well. Their impact

on pattern forming instabilities in nematics is the main issue of the present

review. Flexo torques originate from the fact that typically (in some loose

analogy to piezoelectricity) any director distortion is accompanied by an

electric “flexo” polarization Pfl (characterized by the two flexocoefficients

e1, e3).
2,4 From a microscopic point of view finite e1, e3 naturally arise,

when the nematic molecules have a permanent dipole moment.4 But also

in the case of molecules with a quadrupolar moment finite e1, e3 are pos-

sible5 (see also Chapter 1 in this book6). The flexo polarization has to be

incorporated into the free energy F(n) for finite E. It is not surprising

that this leads to quantitative modifications of phenomena already existing

for e1 = e3 = 0. Though, for example, the Freedericksz threshold field

EF is not modified, the presence of flexoelectricity leads to considerable

modifications of the Freedericksz distorted state for |E| > EF .
7

Much more exciting is the possibility of qualitatively new phenomena,

which are generically related to the flexo polarization. A prominent example

is provided by the so called flexo-domains. They appear as the result of an

equilibrium transition from the basic planar state if the applied electric field

strength exceeds a certain threshold, Efl. Flexo-domains are stripe patterns

parallel to the imposed preferred direction n0 ‖ x, i.e. with a wave vector

qc ⊥ x.8–12 In contrast to the standard Freedericksz transition, the sign of

ǫa plays no role, but the difference |e1 − e3| has to be large enough.

More frequently than the equilibrium pattern sketched so far, one ob-

serves electroconvection (EC) patterns in nematics, which present dissi-

pative structures characterized by director distortions, space charges and

material flow. A necessary requirement for their existence is the presence

of charge carriers in the nematic. In a distorted nematic, where n is neither

parallel nor perpendicular to E, the generation of a nonzero space charge,

ρel, by charge separation is then inevitable. The resulting Coulomb force

in the flow equations (generalized Navier-Stokes equations) drives a flow

which in turn exerts a destabilizing viscous torque on the director. Under

favourable conditions stabilizing elastic and electric torques may be over-

compensated leading to a non-equilibrium phase transition from the basic

quiescent state. As a result a periodic array of convection rolls appears if

the strength of E is above the EC threshold.13–16 To understand the ma-

jority of EC convection patterns investigated in the past it has been suffi-
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cient to analyze the standard nemato-electrohydrodynamic model,15 where

flexoelectricity is not included. More recently a specific class of nematic

materials has been studied,17,18 where the interpretation of the observed

EC patterns (“nonstandard EC”) definitively requires the inclusion of flex-

oelectricity into the theoretical description.19

Patterns in nematics are easily observed by optical means, where the

anisotropy of the refractive index is exploited. In this way the stripe pat-

terns in electroconvection in the planar geometry are easily discriminated

from flexo-domains: the angle α between the wave vector q of the EC

stripes and the preferred direction n0 ‖ x is small (normal or oblique rolls),

in contrast to α = 90◦ (longitudinal stripes) in flexo-domains.

In the following we will exclusively concentrate on the final states, which

are reached by the system in an applied field when all transients have died

out. To resolve these transients in experiments and to analyze them in the-

ory is a highly demanding task, but certainly gives important additional

insights. For instance in the development of the homogeneous splay Freed-

ericksz state one observes two kinds of transient patterns.21 For nematics

with small (positive) ǫa the stripes are oriented almost perpendicular to the

initial director alignment n0 (α ≈ 0) while for large ǫa the stripes are par-

allel to n0 (α ≈ 90◦). In these stripe patterns flow is present until the final

equilibrium structure is established; thus the theoretical analysis has to be

based on the full electrohydrodynamic equations. The stripes perpendicu-

lar to n0 have been explained in the framework of a linear stability analysis

of the basic planar state.21 The appearance of parallel stripes has been

captured by a non-linear analysis taking into account the time evolution of

the Freedericksz state.20 Here the effect of field inhomogeneity due to the

large ǫa plays an important role, that favours stripes parallel to n0. An-

other example of transients is the decay of an EC pattern when turning off

the applied electric field.22,23 In these cases one has indeed obtained deeper

insights into the complex interplay of the various mechanisms responsible

for patterns in nematics, which also opens additional routes to determine

some material parameters. As far as we know, the effect of flexoelectricity

has not yet been studied for these transient patterns. It would be certainly

rewarding to study other situations where flexoelectricity might become

more important during the transients than in the final state.

In this review we focus in particular on recent theoretical and experi-

mental investigations in the planar geometry, which are mostly restricted to

the linear regime, i.e. to applied electric field strengths |E| slightly above

the respective threshold fields. We put some emphasis on the rather unique
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aspect of nematics, that they allow to study in the same experimental setup

the competition between the (equilibrium) flexo-domains, and the dissipa-

tive EC patterns by changing the circular frequency ω of the applied AC

electric field.

The review is organized as follows: Sec. 4.2 is devoted to the flexo-

domains in the planar geometry. Particular emphasis is put on most recent

theoretical results, where for the first time arbitrary ratios of the elastic

constants K1,K2 are considered as well as the driving by an AC electric

field. Section 4.3 deals with the impact of the flexoelectricity on the dissi-

pative EC patterns. Focus is in particular on qualitatively new phenomena

which are not covered by the standard model of EC. Then in the following

Sec. 4.4 we analyse the competition between flexo-domains and EC pat-

terns at low AC driving frequencies. The review will be completed by a

discussion and some concluding remarks in Sec. 4.5.

4.2. Equilibrium structures: flexo-domains

As already noted in the introduction, the flexo torques in the presence of an

electric field in nematics can lead to spatially periodic, equilibrium direc-

tor distortions, the flexo-domains. The characteristic static, “longitudinal

stripes” of flexo-domains oriented parallel to n0 ‖ x have been first ob-

served more than 40 years ago under the action of a DC electric field8,9 in

the planar geometry (for an example, see Fig. 4.1). As first described in

the work of Bobylev and Pikin,10 flexoelectricity indeed provides a natural

mechanism (independent of the sign of ǫa) to explain these stripes. Here

the well known fact has been exploited that splay and/or bend director

distortions are generically associated with the flexo polarization

Pfl = e1n(∇ · n) + e3(n · ∇)n , (4.1)

where e1, e3 are the splay and bend flexoelectric coefficients, respectively.4

Thus in the presence of an electric fieldE the free energy density of nematics

contains, in addition to the elastic and electric contributions, the flexo term

Ffl = −Pfl ·E , (4.2)

which results in the flexoelectric torque n×(δFfl/δn). It turns out that the

flexoelectric torque depends only on the difference (e1 − e3) and favours,

as will be shown below, flexo-domains for sufficiently large |e1 − e3| if the
strength of E is above a certain threshold |E| = Efl.
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Fig. 4.1. Snapshot of the flexo-domains in a planar nematic Phase 4 with the preferred

axis parallel to n0 ‖ x.

The theoretical analysis of flexo-domains in planar nematics, which is

briefly reviewed in the following, exploits the balance of torques by mini-

mizing the total free energy F(n). If not otherwise stated, the assumption

of a strong anchoring of the director n at the confining plates is used; i.e.

the director at the boundaries remains parallel to n0 ‖ x, irrespective of

director distortions in the bulk of the nematic layer.

Let us start with the case of DC driving. In the one-elastic-constant

approximation (isotropic elasticity, i.e. K1 = K2 = K3 = Kav) the director

equations originating from the torque balance can be solved analytically in

the linear regime of small distortions of the planar basic state. One arrives

at a closed threshold formula for the critical voltage Uc = Efld and the

critical wave number qc of the longitudinal rolls:10,11,24,25

Uc =
2πKav

|e1 − e3|(1 + µ)
, qc =

π

d

(

1− µ

1 + µ

)1/2

, (4.3)

where

µ =
ǫ0ǫaKav

(e1 − e3)2
. (4.4)

According to Eq. (4.3) the flexo-domains exist only (qc has to be finite!) if

|µ| < 1, i.e.,

|ǫa| <
(e1 − e3)

2

ǫ0Kav
. (4.5)

As a function of µ both Uc and qc rise monotonically from µ = 1 on until

they diverge in the limit µ→ −1.

The distortions of the basic director orientation n0 ‖ x in the flexo-

domains are characterized by an out-of-plane component (nz 6= 0) and
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an in-plane rotation (ny 6= 0), which are periodic in the y−direction and

depend on z.

The analysis of flexo-domains in the general case of anisotropic orien-

tational elasticity (K1 6= K2) is in principle straightforward.26 One arrives

quite easily at a transcendental equation for the “neutral curve” U0(q) (first

given in Ref. 24) at which the bifurcation of flexo-domains with wave num-

ber q from the basic planar state takes place. Solving numerically for U0(q)

and subsequently minimizing U0(q) with respect to q yields the critical wave

number qc and the critical voltage Uc ≡ U0(qc).

One of the central results of the analysis in the case of anisotropic elas-

ticity at DC voltage driving is presented in Fig. 4.2. It shows the range of

existence of the flexo-domains (marked as the grey region) in the (µ, δk)

plane, where µ has been defined in Eq. (4.4). The elastic constants K1, K2

have been parameterized in terms of the average value Kav = (K1 +K2)/2

of the elastic constants, and by the relative deviation δk from Kav in the

following manner:

K1 = Kav(1 + δk) , K2 = Kav(1− δk) . (4.6)

Obviously |δk| < 1 is required. The case δk > 0 (i.e., K2 < K1) cor-

responds to rod-like nematics like MBBA (N-(4-metoxybenzylidene)-4-

butylaniline), while δk < 0 (i.e., K2 > K1) holds for discotic nematics.

The (µ, δk) range of flexo-domains is limited from above by the upper

limiting curve, µmax(δk) > 0 (dashed line in Fig. 4.2). At larger µ, e.g.

at larger ǫa, the homogeneous Freedericksz state takes over. Note that

µmax(δk) diverges at δk ≈ 0.53. This divergence is closely related to the

existence of the spatially periodic splay-twist (ST) Freedericksz stripes for

δk & 0.53 in the absence of the flexo torque (e1 − e3 = 0) for ǫa > 0.3,27,28

Actually, the ST director state (known for more than two decades, and

shown as ST in the upper right corner of Fig. 4.2) expands into the existence

range of flexo-domains for nonzero flexoelectricity as has been discussed in

more detail in Ref. 26.

On the other hand, the existence regime of flexo-domains is limited from

below by the lower limit curve µmin(δk) < 0 (the solid line in Fig. 4.2).

Since the electric torque is stabilizing for ǫa < 0 (µ < 0) in the planar

geometry such a line must exist, at which the destabilization of the basic

state by the flexo torque becomes impossible. Since with decreasing δk

the relative strength of the flexo torque increases,26 µmin(δk) bends down

leading to µmin(δk) → ∞ for δk → −1. Fig. 4.2 also demonstrates that

in the one-elastic-constant approximation (δk = 0, K1 = K2) the limits
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µmin(0) = −1, µmax(0) = 1 in Eq. (4.3) are recovered.
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Fig. 4.2. Upper and lower limit curves, µmax(δk) (dashed line) and µmin(δk) (solid
line), respectively, determining the range of existence of flexo-domains (grey region) in
the (δk, µ) plane. The rectangular region marked as ST shows the range of existence of
the spatially periodic splay-twist Freedericksz structure for δk & 0.53, e1 − e3 = 0 and

ǫa > 0. The double arrow indicates in the one-elastic-constant approximation (δk = 0)
the range of existence of flexo-domains (|µ| < 1).

Rigourous closed expressions for Uc and qc, as given in Eq. (4.3) for

the special case δk = 0, do not exist for the general case of anisotropic

orientational elasticity (K1 6= K2). Some characteristic curves for typical

material parameter sets of nematics are given in Ref. 26, to which we point

for details. Qualitatively the Uc, qc curves as function of µ look very similar

to the ones in Eq. (4.3) for δk = 0, except that they are supported on a

larger interval µmin(δk) < µ < µmax(δk). As long as |δk| < 0.3 and

|µ| < 0.3, the deviations of Uc(µ) and qc(µ) from the values for δk = 0

[Eq. (4.5)] are quite small. This applies, for instance, to the nematic Phase

4 where δk = 0.21 and µ = −0.3, as follows from Ref. 29.

For completeness we would like to mention that a recent approximate

numerical analysis31 of the flexo-domains in the DC case taking into account

anisotropic elasticity reproduces the general features of the rigourous calcu-

lations.26 Note, however, that an analytical treatment of the problem32,33

suffers from a methodological error as has been pointed out recently.26,34

Therefore the expressions for Uc and qc shown in32,33 for δk 6= 0 are not
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correct.

For an AC driving voltage flexo-domains have been analyzed as well by

means of numerical solutions of the linear director (torque balance) equa-

tions.26 In general, the existence of flexo-domains for a specific material

parameter set in the DC case seems to be a necessary prerequisite for their

existence when an AC voltage is applied. The analysis has been restricted

to the low frequency range ωτd < 20, which corresponds to frequencies

f = ω/2π up to 20 Hz for a 10 µm thick MBBA layer.26 (The director

relaxation time τd is defined in the following section.) It seems to be need-

less to study flexo-domains for larger ω, since in all situations studied so

far they are replaced either by the equilibrium Freedericksz state or by EC

pattern.

The solutions of the linear equations for the director distortions

nz(y, z, t), ny(y, z, t) are periodic in the y−direction as in the DC case,

but depend explicitly on time as well. Since the linear equations are in-

variant against a time shift by half a period, T : t→ t+ π/ω, we have two

classes of solutions characterized by T nz(t) = pnz(t) with p = ±1. Which

symmetry class is realized at the onset of flexo-domains depends on ω. The

case p = 1 defines the solutions with the so-called “conductive symmetry”,

where the time average of nz over one period is finite; the complementary

case p = −1 corresponds to solutions with the “dielectric symmetry” where

the time average of nz(t) vanishes. The time symmetry of the in-plane

director component is opposite, i.e. T ny(t) = −pny(t) holds.

As a consequence the limit ω → 0 is not smooth, since in the DC case

(ω = 0) the time average of both nz and ny are finite. A closer look at

the director dynamics in the AC case shows that nonzero values of nz(t)

and ny(t) appear only during a very small fraction of the period T = 2π/ω.

This means, that the patterns appear in the experiments only for very short

time intervals as a flash. This phenomenon has indeed been observed in

experiments to be discussed in Sec. 4.4.

The dependence of Uc and qc of flexo-domains on the strength of the

flexocoefficients, on the frequency ω, and on the elastic constants has been

discussed in Ref. 26 as well. In general both Uc (see Fig. 4.5 below) and qc
rise very steeply as function of ω. Thus for µ > 0 (ǫa > 0) the bifurcation

to the homogeneous Freedericksz state (with an ω−independent critical

voltage) will prevail already at very small ω. The competition with standard

EC will be discussed in Sec. 4.4. In view of the discontinuities of nz(t) and

ny(t) at ω → 0 discussed before it is not surprising that Uc(ω) and qc(ω)

are also discontinuous at ω → 0.26 Note, that this has not been anticipated
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in earlier investigations. As a caveat, however, it is worth mentioning that

these discontinuities are much less expressed, when using a square waveform

instead of a sinusoidal one.

There exists only one investigation of flexo-domains in the weakly non-

linear regime for U & Uc in the DC case.35 Based on a clever variational

ansatz for the director distortion it has been demonstrated, that the direc-

tor amplitudes grow continuously as (U −Uc)
1/2 (forward bifurcation). As

a byproduct an approximate expression for the µmax(δk) shown in Fig. 4.2

has been obtained.

So far we have restricted ourselves to strong anchoring of the director

at the confining plates. The case of weak anchoring, where the director

orientation at the plates is sensitive to the distortions in the bulk, has

been considered as well36,37 for K1 = K2. No qualitatively new scenarios,

but only quantitative corrections of Uc and qc have been predicted. These

depend on two additional material parameters to describe the “surface po-

tential” of the director, which in most cases have not been measured.

Experimental observations of the flexo-domains have been made in pla-

nar geometry for various nematics either with ǫa < 0 (where the Freeder-

icksz transition is excluded),11,12,29,41,42 or with ǫa > 0.11,12,35,43 Precise

comparison of the theory of flexo-domains with experiments requires at first

a knowledge of the material parameters ǫa, K1, K2. These have been mea-

sured independently for some nematics like MBBA, Phase 4, Phase 5.

However, since these parameters are typically not measured in situ (in the

same cell), some scatter of their values in different experiments cannot be

excluded: the compounds may come from different manufactures, could be

contaminated, etc. The situation with the flexocoefficients is much more

unsatisfactory (see, e.g. Chapter 2 in this book44). First of all their di-

rect measurements are quite complicated and are thus rare. In addition

the results of different measurements deviate substantially in almost all

cases. Thus the flexocoefficients are often used as fitting parameters in the

comparison of theory and experiments. We will postpone a more detailed

discussion of the flexocoefficients to Sec. 4.5, after having discussed EC

patterns and their possible competition with flexo-domains at low ω.

Flexo-domains have also been observed and analyzed in the

twisted geometry (with a twist angle π/2) in BMAOB (p-n-butyl-p-

methoxyazoxybenzene) in DC electric fields.38 The flexo-domains are then

oriented almost parallel to the initial director orientation in the midplane

of the cell (i.e. at an angle of π/4). The threshold voltage was found to

be slightly higher than for the planarly oriented sample. In addition the
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instabilities for twist angles in the range 0 . . . 5π/2 have been studied by

adding a small amount of a cholesteric compound to BMAOB. The onset

characteristics of the flexo-domains in twisted geometry are well described

by the theory.38

Flexoelectric patterns exist also for nematic layers with asymmetric

boundary conditions, i.e. with homeotropic anchoring on one surface and

planar anchoring on the other one (hybrid aligned nematics – HAN).39,40

The critical voltage and the critical wave number obtained within the one-

elastic-constant approximation are in a good agreement with the experi-

mental results.39

Besides the flexo-domains, Hinov and his coworkers have promoted the

existence of another flexoelectrically driven stripe pattern in nematics for

which the notion flexo-dielectric walls has been coined.45–47 Though these

patterns, which have mostly been investigated in MBBA and also in

BMAOB, are also oriented parallel to the preferred director alignment,

they seem to differ substantially in other respects from the flexo-domains

discussed above.46 The flexo-dielectric walls have been observed under

special boundary conditions, e.g. pretilt of the director, weak surface an-

choring. A finite electrical conductivity and apparently a negative dielec-

tric anisotropy of the nematics used in the experiments seems to be crucial.

Moreover, it is reported that the flexo-dielectric walls are more concentrated

near one of the electrodes depending on the polarity, in clear contrast to

the standard flexo-domains residing in the bulk of the nematic layer. Since

the experimental data are so far insufficient to clarify the origin of the

flexo-dielectric walls and convincing theoretical models are still missing,

flexo-dielectric walls will not be discussed in detail.

4.3. Dissipative structures: electroconvection

Electroconvection (EC) in nematics is certainly a prominent paradigm for

non-equilibrium pattern forming instabilities in anisotropic systems. As

already mentioned in the introduction, the viscous torques induced by a

flow field are decisive, which is caused by an induced charge density, ρel,

when the director varies in space. The electric properties of nematics with

their quite low electric conductivity [∼ 10−8 (Ω m)−1] are well described

within the electric quasi-static approximation, i.e. by charge conservation

and Poisson’s law. Thus ρel is determined by the equations:

d

dt
ρel +∇ · jel = 0 , ρel = ∇ · (ǫ0ǫE + Pfl) , (4.7)
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where the current density is given as jel = σE. In analogy to ǫ the electrical

conductivity tensor σ is characterized by the two conductivities σ‖, σ⊥.

The physical phenomena involved in electroconvection are characterized

by three different time scales, the director relaxation time τd = γ1d
2

K1π2 , the

charge relaxation time τq = ǫ0ǫ⊥
σ⊥

, and the viscous relaxation time τv = ρd2

α4/2
.

Here d is the layer thickness, ρ is the mass density, γ1 is the rotational vis-

cosity, and α4/2 is the isotropic viscosity. Typically τd ≫ τq ≫ τv,
16 such

that the flow dynamics follows adiabatically the dynamics of the director

and of the electric charges. As in most studies in this field, our focus is on

the EC instability driven by a sinusoidal AC electric field, where the cir-

cular frequency ω = 2πf serves as an important control parameter besides

the voltage amplitude. We will exclusively concentrate on anisotropic EC

in the planar geometry, which has been discussed in a number of reviews

in the last years (see, e.g. Refs. 1,16,48,49). According to the inseminating

ideas of Carr and Helfrich the mechanism underlying EC becomes most

transparent in the planar geometry when the electric anisotropies fulfil the

conditions ǫa < 0 and σa = (σ‖ − σ⊥) > 0. In this case and for ωτd ≫ 1

the “standard model” without flexoelectricity is sufficient to understand

the main features of EC. The roll patterns are usually oriented perpen-

dicular [normal rolls, Fig. 4.3(a)], or nearly perpendicular [oblique rolls,

Fig. 4.3(b)] to the preferred direction n0 ‖ x. The latter appear usually

at low frequencies below the so called Lifshitz frequency ωL and are re-

placed by the normal rolls above ωL. Oblique rolls come in two symmetry

degenerate species: zig and zag. They appear either in separated patches

as in Fig. 4.3(b) or superimposed leading to rhomboidal grid patterns50

(not shown here). In analogy to the flexo-domains, we find EC pattern

both with the conductive temporal symmetry (finite time average of nz)

and with dielectric symmetry (zero time average of nz). The conductive

symmetry is observed at ω below a cut-off frequency, ωc, above which the

dielectric symmetry prevails at onset.

Regarding the impact of flexoelectricity, the first theoretical investiga-

tions have basically focused on the conductive regime51,52 in planar elec-

troconvection for ǫa < 0 and σa > 0. It has turned out that the resulting

changes arising in the AC threshold voltage Uc are small, in contrast to the

DC threshold voltage of EC, which changes by about 25% for the material

parameters of the nematic MBBA.51 The wave number |qc| of the pat-

terns is not much influenced by the inclusion of flexoelectricity in contrast

to considerable changes with respect to the direction of the wave vector.
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Fig. 4.3. Snapshots of (a) normal rolls, (b) oblique rolls and (c) squares.

In the high frequency (dielectric) regime, however, the flexo-effect be-

comes much more important, as has been demonstrated more recently. It

modifies considerably the threshold and the critical wave vector.26,30,53 In

general, the inclusion of the flexo-effect breaks also the temporal symmetry,

in the conductive regime contributions of the dielectric symmetry appear

and vice versa in the dielectric regime. In Sec. 4.3.1 we will give more

details. In addition, it will be discussed why flexoelectricity is really cru-

cial to understand EC for very low frequencies (ωτd . 1) and thin cells

(d < 10 µm).

For the parameter combination ǫa < 0, σa < 0 that can be found in

some nematic compounds, electroconvection is definitely excluded within

the standard model. Nevertheless, EC has surprisingly been observed in

this case (for recent examples see, e.g. Refs. 17,18). The theoretical anal-

ysis has proved, that flexoelectricity is crucial to understand this nonstan-

dard EC.19 The point is that in Eq. (4.7) the contribution ∇ · Pfl to ρel
becomes dominant. It is interesting that the flexo torque on the director is

determined by the difference (e1− e3) of the flexocoefficients while the sum

(e1 + e3) governs the flexo charge and thus its contribution to the viscous

torque. Further details will be sketched in Sec. 4.3.2.

So far we have discussed EC instabilities driven by a sinusoidal AC volt-

age. When the AC driving voltage U(t) with a period T is “asymmetric”,

i.e. U(t + T/2) 6= −U(t), one finds besides the conductive and the dielec-

tric a “subharmonic” pattern where the director dynamics is 2T -periodic in

time.54 The impact of flexo polarization on standard and nonstandard EC

in the case of an asymmetric driving voltage has been analyzed as well.55,56

One recovers in principle the scenarios with symmetric driving described

before, except the appearance of subharmonic patterns in the standard EC

case.
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For completeness we would like to mention that the impact of flexo-

electricity has not been analyzed for all material parameter combinations,

where EC has been observed in nematics. An overview of the various cases

has been given in a recent review,57 which contains a systematic discussion

of the sensitive influence of the sign of the anisotropies ǫa, σa, and of the ba-

sic director configuration on the patterns. For instance in the homeotropic

configuration with ǫa > 0, σa < 0, isotropic convection (where the roll axis

is spontaneously chosen in the EC bifurcation) has been experimentally

observed and theoretically analyzed.58–60 In particular the appearance of

square patterns [see Fig. 4.3(c)], which are typical for isotropic convection,

is well understood. In general, one finds satisfactory agreement between

theory and experiment for this interesting EC scenario without including

flexoelectricity.

4.3.1. Standard electroconvection

This section deals with the influence of flexoelectricity on electroconvection

with planar geometry and the most studied material parameter combination

ǫa < 0 and σa > 0. The analysis makes use of the common nemato-

electrohydrodynamic equations,2,15 where in addition the flexo polarization

is included. This leads to modifications in the electric torques and influences

also the charge density ρel [Eq. (4.7)].
19,48

In order to have a definite situation, we mainly have used in our anal-

ysis the material parameters of Phase 5.30 However, in order to study

specifically the impact of the flexoelectricity, a “theoretical” scaling factor

ξ has been introduced to tune the strength of flexoelectricity, i.e. we use

ξ−(e1 − e3) instead of (e1 − e3) and ξ+(e1 + e3) instead of (e1 + e3). In

Fig. 4.4 the calculated critical voltage Uc(f) as a function of the AC fre-

quency f is shown for three different values of ξ = ξ+ = ξ−. In line with

the standard model, EC with conductive symmetry at low ω switches to

“dielectric” EC at a certain crossover frequency ωc for ξ = ξ+ = ξ− = 0

(i.e. in the absence of flexoelectricity).

For a finite flexoelectric contribution of realistic magnitude (ξ = ξ+ =

ξ− = 1), the dielectric threshold and the crossover frequency ωc decrease,

while the conductive threshold is not affected significantly. The results of

the experiments on Phase 5 shown in Fig. 4.4 as circles agree very well

with the theory. Measuring frequencies in units of the director relaxation

time τd the range 0 < ωτd < 140 is covered in the figure. A closer look re-

veals a further consequence of the flexoelectricity: the slope of Uc(f) versus
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Fig. 4.4. Threshold voltage Uc as a function of the frequency f calculated for Phase 5

material parameters and for different values of the flexoelectric strength ξ. Circles and
bullets represent the experimental data for conductive and dielectric EC, respectively.

f increases quite strongly at small f < 100 Hz.30 If the flexo strength is

further increased the dielectric Uc branch expands further towards small fre-

quencies, until the conductive range totally vanishes and EC with dielectric

symmetry bifurcates in the whole frequency range. This is documented in

Fig. 4.4 for ξ = ξ+ = ξ− = 2. Similar theoretical curves for Uc as in Fig. 4.4

have been also obtained when choosing MBBA material parameters.26 In

contrast to Phase 5 we find, however, oblique rolls in the dielectric regime

(for further details see Ref. 26).

The onset characteristics of planar EC with ǫa < 0, σa > 0 depend

strongly on the magnitude of σa. In the absence of flexoelectricity the

crossover frequency ωc between EC with conductive and dielectric symme-

try moves towards ω = 0 when decreasing σa. At the same time the critical

voltage Uc diverges. For finite e1, e3 the shift of ωc is observed as well but

Uc remains finite. This scenario is documented in the upper panel of Fig. 4.5

for MBBA material parameters19 except that a larger flexo strength with

ξ = ξ+ = ξ− = 2 is used and σa is varied. Time is measured in units of the

charge relaxation time τq = 4.7 × 10−3 s. For σa = 0.5 we have dielectric
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Fig. 4.5. Threshold voltage of EC as a function of the dimensionless frequency ωτq
calculated with MBBA material parameters and ξ = ξ+ = ξ− = 2 for five different
values of σa/σ⊥ between 0.5 and −0.5. The corresponding critical voltages for the flexo-

domains with conductive symmetry (fl, cond) and with dielectric symmetry (fl, diel) are
included as well. (a) Sample thickness d = 40 µm; (b) d = 10 µm.

rolls for ωcτq > 2 and conductive rolls for ωcτq < 2, while ωcτq ≈ 1 for

σa = 0.2. For σa = 0 we find dielectric rolls in the whole frequency range.

On the other hand Uc has monotonically moved up with decreasing σa. The
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discussion of the cases σa < 0 is postponed to the following section.

Besides σa the cell thickness d of the nematic layer, which has almost

no effect in the case e1 = e3 = 0, reveals a strong influence on EC for finite

flexocoefficients. This is demonstrated in the lower panel of Fig. 4.5, where

for d = 10 µm the conductive branch is totally absent. Then, similarly to

the conductive regime, one can find a transition from oblique to normal

dielectric rolls above a Lifshitz frequency ωL. In a recent experiment the

oblique dielectric rolls at small ω have indeed been observed.29 The thresh-

old characteristics Uc, qc and obliqueness angle α could be well reproduced

by a theoretical analysis of the nematohydrodynamic equations including

flexo polarization.29

Finally we would like to point out, that also the magnitude, σ0, of the

electrical conductivity in nematics plays an important role. In Fig. 4.5 we

have chosen σ0 = 10−8 (Ω m)−1, which is the typical scale of the electrical

conductivities in nematics commonly used in the experiments. A closer look

at the linear nemato-electrohydrodynamic equations (see the Appendix of

Ref. 19) shows that the thickness d as well as σ0 appear only through the

dimensionless parameter Q ∝ τd/τq ∝ σ0d
2. Thus decreasing σ0 by a

factor 16 would have been equivalent to the reduction of d by a factor of 4

[compare Fig. 4.5(a) and Fig. 4.5(b)].

In Fig. 4.5 we have also included the (σa−independent!) critical voltage

curves for flexo-domains of conductive and of dielectric symmetry. They

exist for the standard MBBA material parameters26 except that the flexo

strength is increased by a factor of two (ξ = ξ+ = ξ− = 2). Obviously, for

finite frequencies the flexo-domains play no role compared to the EC rolls

with their much lower Uc values. However, in the limit ω → 0 both critical

voltages decrease and approach each other, which will become important

in Sec. 4.4.

4.3.2. Nonstandard electroconvection

As already stated before, electroconvection is not explained by the stan-

dard model for σa < 0 and ǫa < 0. Surprisingly, EC has been observed

also for this parameter combination in certain calamitic nematics.17,18,61–64

These EC patterns differ clearly from the standard EC patterns: the rolls

are dominantly parallel to the initial director alignment [see Fig. 4.6(a)].

They are not observable by the common shadowgraph technique (single

polarizer) but by using crossed polarizers (plus sometimes an additional

λ/4 plate). The investigation on these “nonstandard EC” rolls has been re-
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cently intensified.18,19,26,30,53,65 Of particular importance are materials for

which the conductive anisotropy σa changes from negative values to positive

ones as function of temperature, whereas the other material parameters do

not change much and, in particular, the sign of ǫa does not change. Thus

simply increasing the temperature gives the excellent opportunity to move

continuously from nonstandard EC (ns-EC) to standard EC (s-EC).

In Fig. 4.5 it has been demonstrated that a finite threshold can be ob-

tained for σa < 0 and ǫa < 0, when the standard electrohydrodynamic

description of nematics is extended by including flexoelectricity; thus non-

standard EC can in fact be explained. According to the theory ns-EC

is characterized by the dielectric symmetry and the ns-EC rolls have the

orientation almost parallel to the preferred direction n0 ‖ x, in distinct con-

trast to the s-EC rolls. The critical voltage is predicted to increase almost

linearly with ω in contrast to a rise roughly ∝ √
ω in standard dielectric

electroconvection. These general trends are in satisfactory agreement with

the recent experimental findings. Even quantitatively theory and experi-

ments in the standard as well as in the nonstandard regime match very well

in some cases.19 The material parameters are mostly measured in this case

and the flexocoefficients e1, e3 have been used as fit parameters. It is worth

mentioning that in some cases also a Hopf bifurcation to travelling ns-EC

rolls has been observed.18 To describe this scenario flexoelectricity should

be incorporated into the weak electrolyte model (WEM),66 which was able

to capture travelling s-EC rolls. This is certainly a demanding task, which

would involve a detailed description of the electric conductivity in terms of

the participating ions, their mobility and their recombination rates.

Nonstandard EC has been also observed in bent-core nematics,67–70

where σa < 0, ǫa < 0 is also realized and where flexoelectricity is strong.

A detailed theoretical description is missing so far. One has to cope with a

strong frequency dependence of σa,
67 as well as with the unusual viscosity

and elastic properties; they might indicate smectic cluster formations not

only in the nematic, but even in the isotropic phase.70–74

Convective patterns have also been observed long time ago for the ǫa > 0

and σa > 0 parameter combination in the case of an initial homeotropic

director orientation.41,75–78 They are observed in a polarizing microscope

(crossed polarizers) as an arrangement of “Maltese crosses”. The so called

isotropic mechanism has been proposed to explain this instability. Alterna-

tively, “Maltese crosses” have been interpreted to be driven by the so called

surface polarization mechanism.79,80 However, the theoretical treatments

of both mechanisms are not worked out in detail to allow for comparison
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Fig. 4.6. Snapshots of two types of nonstandard EC patterns in planar nematics (n0 ‖

x) with (a) ǫa < 0, σa < 0, and (b) with ǫa > 0, σa > 0.

with experiments.

It is unclear so far why instead of “Maltese crosses” convective cellu-

lar and subsequently roll patterns resulting from a secondary instability

have been detected in a recent study.81 Note that these patterns have

been observed both in the homeotropic and in the planar geometry [for the

rolls, see Fig. 4.6(b)]. A theoretical analysis is missing so far. In case of

a homeotropic alignment the inclusion of flexo polarization into the stan-

dard model of EC does not provide mechanisms to drive electroconvection.

First, there is no direct flexoelectric torque on the director in this geometry.

Second, the flexo charge contribution is too small such that the originat-

ing viscous torque cannot overcome the strong stabilizing electric torque,

since the substances are characterized by a large ǫa > 0. In the planar

case the electric torque leads at first to the Freedericksz transition from

the planar to the homeotropic orientation of the director, except in a thin

boundary layer. So we are essentially back to the homeotropic case where

flexoelectricity does not support EC.

4.4. Crossover between flexo-domains and electroconvection

From a basic point of view it is very interesting, that even a crossover be-

tween the equilibrium flexo-domains and the dissipative EC patterns can

be observed in the same experiment (planar geometry) by just increasing

the AC frequency ω. Inspection of Fig. 4.5 already reveals that at very

small ω and for suitable material parameter combinations of the nemat-

ics, the critical voltage of the equilibrium flexo-domains and that of the

dissipative electroconvection patterns might approach each other. In fact,

very recent theoretical and experimental studies on the calamitic nematic
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Phase 4, have demonstrated the existence of a crossover between these

two qualitatively different patterns at a very low transition frequency ft.
29

Before discussing these previous experiments we will present new mea-

surements82 using the nematic Phase 5 which show a similar crossover at

ft . 0.1 Hz. Thus for f < ft one has flexo-domains as a first instabil-

ity while for f > ft one observes usual EC roll patterns with conductive

symmetry. Above the Lifshitz frequency fL ≈ 40 Hz one finds normal rolls

which are replaced by oblique rolls in the region ft < f < fL. The cell

thickness was d = 11.3 µm. Roughly speaking the frequency dependence of

Uc is analogous to the lowest curve in Fig. 4.5(a). Detailed studies regard-

ing the main characteristics [such as Uc(f) and qc(f)] of both patterns are

in progress.

Regarding the temporal evolution of the pattern, the contrast C(t) is

in general time periodic with a frequency twice the external AC frequency

f . It was, however, not expected that the functional form of C(t) would

become increasingly spiky when decreasing f [see Fig. 4.7(d)]. In a recent

theoretical study it has been shown that such a behaviour is generic for

flexo-domains and also for EC rolls at frequencies ωτd < 1.26 Both patterns

are indeed expressed in Fig. 4.7(d), where C(t) is shown over one period

T = 1/f = 10 s. In the interval T/2 < t < T the first maximum (a) of

C(t) corresponds to the longitudinal flexo-domains [Fig. 4.7(a)], then the

contrast decays and remains on a flat plateau (b) value [Fig. 4.7(b)], i.e.

the nematic is in the quiescent state. Afterwards oblique EC rolls appear

which is reflected in a second steep maximum (c) of C(t) [Fig. 4.7(c)]. The

whole sequence repeats itself periodically. At the moment it is unclear, why

in particular the flexo-domain peak in the interval 0 < t < T/2 is much less

expressed than in the interval T/2 < t < T . Asymmetries in the boundary

conditions (e.g. pre-tilt) come immediately into mind. Moreover, even a

small DC offset in the applied AC voltage, which practically would not

change the threshold values of Uc and qc, could lead to a strong asymmetry

of the C(t) peaks over one AC period in the spiky regime.

The transition between the flexo-domains and the conductive oblique

EC rolls within the period T has also been confirmed in Fourier space by

light diffraction experiments.82 The incoming light beam had nearly normal

incidence and the fringes have been recorded on a screen at a distance

of about 0.6 m from the sample. Flexo-domains [Fig. 4.7(a)], which are

oriented along n0 ‖ x, produce obviously a set of fringes along the y-axis

as shown in Fig. 4.8, left panel. The zig and zag oblique roll patches visible

in Fig. 4.7(c) are directly responsible for the set of fringes along the two
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Fig. 4.7. Flexo-domains (a), quiescent state (b), and conductive oblique EC rolls (c) in

Phase 5. The initial director is horizontal. (d) Temporal evolution of the contrast C
within a period T of the driving voltage above the onset of instabilities at f = 0.1 Hz,
close to the transition frequency ft. Arrows indicate the time instant when the snapshots
in the corresponding subfigures were taken.

lines through the origin that include an angle 2α; here α denotes the angle

between the wave vector of the rolls and the x−axis (Fig. 4.8, right panel).

The fringes along the x, y−axes in Fourier space (Fig. 4.8, right panel) are

due to nonlinear effects; they correspond to the sum and difference of the zig

and zag wave vectors.50 A detailed theoretical analysis of the competition

between flexo-domains and the conductive EC rolls is missing so far.

The competition of dielectric oblique EC rolls and flexo-domains has

recently been studied by using the nematic Phase 4,29 which had a low

electric conductivity σ0. The cell thickness was d = 11.4 µm. Obviously

the constellation of the various material parameters is such, that the sce-
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122 Á. Buka, T. Tóth-Katona, N. Éber, A. Krekhov, and W. Pesch

Fig. 4.8. Light diffraction patterns for flexo-domains (left) and for conductive oblique
EC rolls (right) at different instants within the same period of the driving voltage, slightly
above the onset of the instabilities and at f = 0.1 Hz (close to the transition frequency

ft).

nario in Fig. 4.5(b) is realized, where only dielectric EC rolls exist near

onset for positive values of σa/σ⊥. For frequencies above the Lifshitz fre-

quency, fL = 50 Hz, one finds normal dielectric rolls and for f < fL oblique

ones. The transition to flexo-domains is observed at ft ≈ 0.1 Hz. It has

been demonstrated in a recent theoretical analysis26 that such a scenario is

possible within the nemato-electrohydrodynamic equations including flexo

polarization.

In Fig. 4.9 we present the critical voltage Uc, the critical wave length

λ and the angle of obliqueness α of the rolls at onset. The latter quantity

reflects in particular the transition from the longitudinal flexo-domains (f <

ft) with α = 90◦ to the oblique EC rolls (f > ft) with much smaller α.

Since not all material parameters are known for Phase 4, certain fitting

procedures have been used in the theoretical analysis. In particular the

flexocoefficients have been chosen in such a way, that the theoretical curves

for the critical data (Uc, qc) at larger f , i.e. for 5 Hz < f < 200 Hz have

agreed very well with the experimental ones (not shown here). It has then

been very satisfactory to see an internal consistency: the experimental and

the theoretical DC critical voltage for flexo-domains calculated with the

same parameters agreed very well.

It should be stressed that the curving up of Uc for the EC rolls in

Fig. 4.9(a) when approaching ft, cannot be described by the existing theo-

ries. It seems to be very plausible, that at very small f the measured Uc has

to be corrected by contributions due to alignment coatings on the confining

electrode plates and from Debye screening layers at the boundaries. Some
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Fig. 4.9. The threshold voltage Uc (a), the wavelength λ (b), and the angle of oblique-
ness α (c) as a function of driving frequency f for flexo-domains (�) and for oblique
dielectric EC rolls (•) in Phase 4.

additional remarks are postponed to the following section 4.5.

4.5. Discussions and conclusions

Convection instabilities in simple isotropic fluids, like Rayleigh-Bénard con-

vection (for a recent review see Ref. 83), are completely understood near

onset, also because the number of relevant material parameters is fairly

small. In contrast, pattern-forming instabilities in nematic liquid crystals

are very rich as also documented in this review; their detailed exploration,

however, requires the demanding numerical analysis of the complex nemato-
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electrohydrodynamic equations and therefore the knowledge of much more

material parameters. Some of them, like the dielectric permittivities or the

electric conductivities are relatively easy to measure, which does not apply,

however, to all the five viscosity coefficients αi in nematics.2 Most difficult

is the determination of the flexocoefficients, which play a central role in

this chapter. In general, the flexocoefficients have been obtained only for

few substances by purposefully directed measurements. Therefore we will

discuss here, how the analysis of the pattern-forming instabilities described

in this chapter can contribute to the determination of flexocoefficients.

We note first that according to Eqs. (4.1) and (4.2), simultaneously re-

versing the signs of e1, e3, and E does not change the flexoelectric torque

on the director. The same holds for the total torque too, as the elastic and

viscous contributions are independent of E, while the dielectric one de-

pends only on E2. Consequently, the resulting patterns are also invariant

with respect to the same transformation. On the other hand, inspection of

the general electrohydrodynamic equations shows that at least the thresh-

old characteristics of the flexo-domains (and also of the electroconvection

patterns) are independent of the sign of E and hence these characteristics

would also remain unaltered if the signs of both flexocoefficients are in-

verted together. Consequently only the relative signs of e1 and e3 can be

extracted from analysing the flexoelectric or EC patterns.

Let us now first concentrate on the flexo-domains. With the help of

the general theory26 |e1 − e3| can be determined from the measurements of

Uc and qc of the flexo-domains if the elastic coefficients K1, K2, and the

anisotropy ǫa are known. In this way the value of |e1 − e3| = 5.7 pC/m has

been obtained11,12 for BMAOB. Note that this value has been confirmed

in the case of a twisted cell geometry.38 In a later study BMAOB doped

with a “swallow-tail” compound in concentrations up to 4.55 mole% has

been analyzed.84 The value of |e1 − e3| for the mixture has been found

to be slightly increased with increasing concentration of the “swallow-tail”

compound (see Fig. 6 in Ref. 84).

It is interesting that flexo-domains have also been detected in a metallo-

organic nematic liquid crystal which has been obtained by complexation

with palladium.85 The value of |e1 − e3| has been found of the same order

of magnitude as in usual nematics.25,78

As already indicated in Chapter 2 of this book,44 different measure-

ments may show large discrepancies in the values of flexocoefficients. This

becomes evident when one considers for instanceMBBA, one of the mostly

used nematics in our context. According to the “standard” data set19,51
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where e1−e3 = 4 pC/m, δk = 0.23, one does not expect flexo-domains since

µ = −1.6 < µmin(δk) = −0.8 in Fig. 4.2. In fact flexo-domains have not

been reported in most experiments. In few cases, however, flexo-domains

have been observed for MBBA both in the standard planar geometry47,86

as well as in the hybrid (planar-homeotropic, HAN) configuration,39 where

they should be excluded as well. Would one increase, however, the dif-

ference |e1 − e3| by a factor of about two, flexo-domains are immediately

allowed (µ = −0.4 > µmin in Fig. 4.2). A look at the report comparing the

various measurements of the e1, e3 in MBBA,87 as well as at Table A.1

in Appendix A, shows that the smallest values of |e1 − e3| and the largest

ones differ even by a factor of about 4.5 there.

For completeness we would like to mention some studies on flexo-

domains in BMAOB under the combined action of DC and high frequency

AC voltages.33,88 It has been found that the critical DC voltage and the

critical wave number of the patterns are increased when increasing the AC

voltage. On the basis of the standard director equations these findings are

very plausible. The quantitative analysis in Refs. 33 and 88, however, suf-

fers from the same mistake as reported recently for the pure DC case.34

Thus the estimation of the flexocoefficients in these papers is not convinc-

ing.

Another complication is the finite, though very small electric conduc-

tivity of most nematics, which easily leads to material flow. This has been

systematically measured for flexo-domains in the HAN geometry39 above

onset by following the trajectories of tracer particles. In general we ex-

pect, that the existence of flow will lead to perturbations of the ideal flexo-

domain patterns for instance by the generation of defects, like dislocations

and disclinations.

As we already mentioned, measurements of the critical voltage Uc and

the critical wave number qc of flexo-domains in the DC case allow to obtain

an estimate of the magnitude of e1− e3, but not its sign. In principle much

more information is contained in the EC pattern, since the frequency serves

as an important secondary control parameter besides the voltage amplitude,

and the sum e1 + e3 can also be tested. As documented in Sec. 4.3.1 for s-

EC, the location of the Lifshitz frequency or the sensitive dependence of the

Uc, qc curves on ω in the dielectric regime give valuable insights. Moreover,

materials, where a transition between flexo-domains and EC exists, are of

particular interest, since both the difference and the sum of e1 and e3 can

be extracted.

For instance from fits (based on the extended standard model of EC in-
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cluding flexoelectricity) to the experimental EC threshold voltages Uc(ω),

for Phase 4 one finds e1 − e3 = −4.7 pC/m and e1 + e3 = −31.5 pC/m.29

The difference e1 − e3 corresponds to µ = −0.3 (δk = 0.21) which is inside

the existence regime of the flexo-domains (see Fig. 4.2) and indeed flexo-

domains were seen. From independently measuring their Uc and qc values,

|e1− e3| = 4.7 pC/m and |e1− e3| = 4.1 pC/m have been obtained, respec-

tively; they match nicely with the EC fit value. From similar EC fits one

finds for Phase 5 the values e1− e3 = −2.9 pC/m, e1+ e3 = −50.1 pC/m,

and for MBBA e1 − e3 = 6.0 pC/m, e1 + e3 = −35.0 pC/m.30 In this

latter case the difference e1−e3 for MBBA corresponds to µ = −0.6 which

is slightly larger than µmin = −0.8; thus we would be inside the existence

regime of the flexo-domains (see Fig. 4.2). Note, that Uc and qc of the EC

pattern are insensitive against the sign inversion of both flexocoefficients,

as already mentioned earlier in this section. Thus the EC fits can provide

only the relative signs of e1 − e3 and e1 + e3.

Finally, we mention that the longitudinal rolls observed in a bent-core

nematic have been associated in Ref. 67 with ns-EC patterns. In a recent

paper,89 however, similar patterns have been interpreted as flexo-domains

and in this way the value of |e1 − e3| ≈ 6 pC/m has been estimated. This

value is of the same order of magnitude as in calamitic nematics. Similarly,

for the flexocoefficients of another bent-core nematic a value of O(10 pC/m)

has been obtained by studying the instability due to the surface polarization

mechanism.90

In any case, EC measurements should be used as a test bed and a

consistency check for the various methods described in Chapter 2 of this

book44 where the flexocoefficients are directly measured by appropriate

deformations of a homogeneous nematic layer.

While the linear description of flexo-domains which yields qc and Uc

is quite well worked out in theory, the weakly nonlinear regime and the

secondary bifurcations from the flexo-domains have not yet been explored.

This is certainly a rewarding problem in view of the interesting patterns

observed for instance in experiments in a DC electric field. In addition,

the secondary bifurcations are much more sensitive to the values of the

material parameters as the first instability. If the nematic is practically

an insulator, the flexo-domains are reported to be stable for applied DC

voltages U considerably larger than Uc.
8 For higher electric conductivities,

however, flexo-domains have been found to be destabilized by EC rolls

in MBBA when increasing DC voltage.39,45,86 As it should be, the EC

rolls are oriented perpendicular to the preferred director orientation, i.e.



December 20, 2011 13:15 World Scientific Review Volume - 9in x 6in flexobook

The role of flexoelectricity in pattern formation 127

perpendicular to the orientations of the flexo-domains (see, e.g. Fig. 9

in Ref. 45). Without detailed calculations this scenario allows for a simple

qualitative explanation. The optimal action of the Carr-Helfrich mechanism

is prohibited by the distortions of the underlying director structure in the

flexo-domains where nz and ny vary periodically along the y−direction.

The ny modulations are considered to be less prohibitive for EC, as also

evident from the existence of the so called abnormal EC rolls.49,91 They

are characterized by the common, spatially periodic nz distortions in the

presence of a spatially homogeneous ny distortion. Thus it is not surprising,

that the transverse EC rolls are restricted to the regions where |ny| > |nz|
and thus would not run continuously through the flexo-domains. Note, that

the same scenario has also been observed in the secondary bifurcations of

the flexo-domains in the HAN geometry.39

The analysis in the case of an alternating appearance of flexo-domains

and EC patterns at low AC frequencies discussed in Sec. 4.4 is much more

complicated. For frequencies f ≈ ft, where the threshold voltages of both

patterns are near to each other, one expects them to flash up independently

at onset. With increasing voltage flexo-domains and rolls will start to

interact, apart from the fact that each pattern type might develop its own

secondary instabilities. To disentangle these processes is certainly a very

demanding task, both in theory and in experiments.

In the theoretical analysis of electrically driven pattern formation in ne-

matics one deals only with the “theoretical” AC voltage Utheo which drops

over the nematic layer. Utheo differs, however, from the “experimental”

voltage Uexp applied to the whole LC-cell and recorded in the experiments.

Thus a quantitative comparison between the experiments and the theory

is far from trivial, as it has been emphasized for instance in Ref. 26. Typ-

ical liquid crystal cells consist of a nematic layer confined between ITO-

or SnO2-coated glass plates covered with a thin film of an aligning poly-

mer. As the polymer is a quite good insulator, this sandwich possesses

fairly complicated electric properties. In particular, at low frequencies the

whole system has to be represented by a complex equivalent electric circuit

model.92,93

Furthermore, the ionic character of the electric conductivity of nemat-

ics, which in many cases is satisfactorily described through a simple ohmic

conductivity, becomes certainly important at low ω. Debye screening lay-

ers build up in the nematic near the electrodes, where part of the applied

voltage drops as well. This happens only if the ions are able to follow the

external driving. It is easy to see that a new characteristic time τmig ∝ d2,
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which is needed to form the Debye layer, comes into play.66 The Debye

layer and the voltage drop across it are considered to be important only

for frequencies ωτmig < 1. This additional voltage drop is most probably

relevant in explaining the curving up of the measured Uexp at low frequen-

cies and small d.29,30 Given that Utheo mostly decays monotonically with

decreasing ω (for an exception see the next paragraph below), a minimum

of Uexp at ωmin ∼ τ−1
mig ∝ d−2 is expected. In fact a minimum and a sub-

sequent curving up of Uexp(ω) has been observed in the experiments.29,30

For thin cells the proportionality ωmin ∝ d−2 has been confirmed as well.

The question remains whether this thickness dependence originates really

from τ−1
mig or from the inverse director relaxation time (τ−1

d ∝ d−2) as pro-

posed in Ref. 30. There the relation ωmin ≈ 2πτ−1
d has been found for

2 µm ≤ d ≤ 10 µm in Phase 5. In Ref. 29, however, a much smaller

proportionality factor has been measured in Phase 4 since ωmin ≈ 0.2τ−1
d

for d = 11.4 µm.

Note that in Ref. 30 the curving up of Uexp has tentatively been as-

sociated with increase of Utheo at low ω. Such a dependence of Utheo has

been found in simulations only for small ratios σa/σ⊥ . 0.1, however, the

nematic used in Ref. 30 had σa/σ⊥ = 0.7.

In summary, we have shown that the flexo polarization has a strong

impact on the pattern-forming instabilities in nematics subjected to the

action of an electric field. This applies not only to flexo-domains but also

to EC patterns. In the present stage the theoretical analysis of the nemato-

electrohydrodynamic equations in the linear regime allows to calculate the

critical voltage and the critical wave vector of the patterns. For better

quantitative comparison with the experiments one would need a more pre-

cise knowledge of the various material parameters, in particular, of the

crucial flexocoefficients e1 and e3. For that purpose more experiments with

stable nematics, that show both flexo-domains and EC patterns, are most

welcome. In particular systematic studies with respect to the frequency,

the thickness, and electric conductivity dependencies of the patterns are of

great importance. Certainly finding chemically stable nematics with small

dielectric anisotropy and low electric conductivity would allow a big step

forward.
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