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t 
haos (SDC) in Rayleigh{B�enard 
onve
tion is a well established spatio{temporal
omplex pattern, whi
h 
ompetes with stationary rolls near onset of 
onve
tion. The 
hara
ter-isti
 properties of SDC are a

urately des
ribed on the basis of the standard three{dimensionalBoussinesq{equations. As a mu
h simpler and attra
tive two{dimensional model for SDC general-ized Swift{Hohenberg (SH) equations have been extensively used in the literature from the earlybeginning. Here we show that the SH{des
ription of SDC has to be 
onsidered with 
are, espe
iallyregarding its long{time dynami
s. For parameters used in previous SH-simulations SDC o

urs onlyas a transient in 
ontrast to the experiments and the rigorous solutions of the Boussinesq equa-tions. The small{s
ale stru
ture of the vorti
ity �eld at the spiral 
ores, whi
h might be 
ru
ial forpersistent SDC, is presumably not perfe
tly 
aptured in the SH{model.PACS number(s): 47.27.Te, 47.20.-kConve
tion in a horizontal 
uid layer heated from be-low, known as Rayleigh-B�enard 
onve
tion (RBC), is oneof the best studied examples of pattern forming systems[1{3℄. At threshold 
onve
tion rolls bifur
ate and remainstable in a fairly wide parameter range, 
oined as theBusse{Balloon. Thus the re
ent observation of spiral{defe
t 
haos (SDC) in a parameter regime where it 
om-petes with rolls was rather surprising [4,5℄. The 
om-plex spatio{temporal dynami
s of SDC involves rotatingspirals, targets, dislo
ations et
. Most of 
hara
teristi
properties of SDC are well reprodu
ed in high pre
isionab initio solutions of the standard Boussinesq equations[6{8℄ in three spatial dimensions. A

ording to the ex-periments and the numeri
al solutions SDC is a robustgeneri
 state of thermal 
onve
tion observed in re
tangu-lar, square and 
ir
ular 
ells as well [9,10,6,3℄.Our general understanding of the universal aspe
ts ofpattern formation has been signi�
antly promoted bythe analysis of two{dimensional models like the varioustypes of Ginzburg{Landau and Swift{Hohenberg equa-tions [1,11,12℄. This applies also to SDC where simu-lations of generalized Swift{Hohenberg (SH) equations[15,16℄ have provided important insight into the under-lying me
hanism [13,20,14℄. Nevertheless, one should re-main open to possible limitations of su
h models. Onthe 
on
rete example of SDC we show in this paper, thatthe long-time dynami
s of the SH equations might beproblemati
.In the following we dis
uss simulations of SDC in a setof widely used SH equations, whi
h 
ouple two real �elds and � [13,14℄.h�t + gmU � ri = h"� (1 +�)2i �  3; (1a)h���t �P(�r2 � 
2)i�� = h(�y )�x � (�x )�yi� : (1b)

Here  (r; t) des
ribes the planar spatial variationsof 
onve
tion patterns (e.g. the temperature �eld),whi
h 
onsist lo
ally of 
onve
tion-roll pat
hes. �(r; t)is a velo
ity potential determining the mean 
owU = (�y�; ��x�). The 
ontrol parameter " =2:78 (�T � � T
)= � T
 serves as a dimensionless mea-sure for the applied temperature di�eren
e �T a
ross the
uid layer. [17℄. The time is s
aled in su
h a way thata time lapse of t = 5 in Eqs.(1) 
orresponds to � 1 tv,with the 
ommon verti
al di�usion tv � O(se
) in exper-iments.Any 
urvature of the rolls produ
es a verti
al vorti
ity�eld ���(r; t) (see Eq. (1b)), whi
h in
reases with de-
reasing Prandtl number P . In 
ontrast to the 
laimsexpressed in several papers by Gunton and 
oworkers(see e.g. [27℄, only the dominant term � 
2 on the left-hand side of Eq. (1b) 
an be dire
tly tra
ed ba
k tothe Boussinesq equations. The two other terms / �g ; �,respe
tively, are in prin
iple phenomenologi
al (see thedis
ussion in [?℄). In Eq. (1a) the relevan
e of � is 
on-trolled by the 
oupling 
onstant gm. The value of gm
an be found to be gm = 12:2 for 
2 = 2 and Pr = 1 by
omparing with the known zig-zag stability boundary of
onve
tion rolls [18℄.The 
oupling to the mean 
ow, whi
h be
omes moreimportant either at small P or large gm is 
ru
ial forpersistent SDC. In the limit of large Prandtl numbers Pwhere � is hardly ex
ited the dynami
s of  be
omespurely relaxational and approa
hes a low dimensionalstationary state of the 
orresponding Lyapunov fun
-tional. Note, however, that any strongly disordered pat-tern before it equilibrates generates virtually instante-neously a strong, long-range mean-
ow U a

ording toEq. (1b and 
an thus easily lead to transient SDC, evenif Pr is not small.In our simulations we have 
hosen the same set of1



parameters as in the previous works [13,27,?℄, namely
2 = 2; gm = 50; �� = � = Pr = 1; � = 0:7. Mostlywe 
onsider an aspe
t ratio of � = L=2d = 32 where Ldenotes the lateral extension of the 
ell and d its thi
k-ness. At �rst we have performed simulations in a squaredomain with periodi
 boundary 
onditions in order toavoid an arti�
ial bias from the sides. Starting from ran-dom initial 
onditions yields a typi
al snapshot as shownin Fig. (1a) at 800tv. This initial pattern 
ompares wellwith planforms already shown in Refs. [13,14℄ at the sametime lapse; it has also great similarity to 
hara
teris-ti
 SDC snapshots observed 
ontinuously in experiments[4,5℄ or during numeri
al solutions of the fundamentalBoussinesq equations [6℄.However, when 
ontinuing the runs beyond 8000tv thes
enario 
hanges qualitatively and the pattern 
oarsenstowards a "big spiral", whi
h rotates slowly about anearly immobile 
enter. Only at the boundaries of thespiral one �nds remnants of the previous persistent gen-eration and annihilation of small spirals. For P � 1 the
oarsening to big spirals is neither observed in exper-iments nor during simulations of the Boussinesq equa-tions.The transient behaviour of SDC followed by 
oarsenigto a big spiral reminds to re
ent experiments at P = 4[9℄. After a sudden quen
h strongly disorderd patterndeveloped whi
h due to the strong vorti
ity �eld let tothe SDC transient. Afterwards SDC 
oarsend to a bigspiral as well whi
h eventually disintegrated after a longtime towards a stationary pattern. Apparently for P = 4the vorti
ity �eld is to weak to sustain SDC.
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FIG. 1. The �eld  (r; t) is plotted a di�erent times afterstarting with random initial 
onditions. The parameters are� = 32 (aspe
t ratio), " = 0:7, gm = 50, 
2 = 2, P = 1 and�v = 1.

Unlike the experiments and the solutions of the Boussi-nesq equations the SDC attra
tor in the SH-simulationsshows a remarkable sensitivity to the boundary 
on-ditions. This feature be
omes evident, when the SH-equations, Eq.(1), are simulated on a 
ir
ular domain,similar as in the original work in Ref. [13℄. Initially weobserve a similar 
oarsening pro
ess as in the 
ase of asquare domain with periodi
 boundary 
onditions lead-ing to a big spiral about the 
ell 
enter whi
h is ratherlong living (on the average 500 � 1000tv). Possibly be-
ause of the fo
us instability [23,24℄ the spiral 
ore moveso� 
enter and the spiral arms may be 
ompressed and re-a
t in a sudden pro
ess by the generation of dislo
ationpairs, inevitably asso
iated with a strong vorti
ity �eld.The dislo
ation tips wind up in a dynami
s, that hasbeen loosely des
ribed as "invasive 
haos" by Cross et.al [14,22℄ . During that period one observes SDC that
oarsens again to a quite big spiral whi
h be
omes againunstable and so on. The periodi
 dynami
s due to thegeneration of dislo
ations in 
ompressed roll pat
hes istypi
al for 
ir
ular 
ells and has been des
ribed in other
omparable situations as well (see e.g. [25℄).The di�eren
e between the latter s
enario of "inter-mittent SDC" and persistent generi
 SDC is apparentfrom Fig.2, where we 
ompare the normalized heat 
ur-rent jn as obtained from simulations of Eqs. (1) for a
ir
ular geometry with jn obtained for simulations of thefull Boussinesq equations [6℄ in a 
ir
ular geometry too.In both 
ases the heat 
urrent is only shown on a smallrepresentative time window taken out of a very long runswhi
h lasted up to tv = 40000. In the upper panel wesee rather rare but violent events, when the 
oarsenedbig spirals breaks up at the downward spike [28℄. In 
on-trast, the heat 
urrent in the the Boussinesq 
ase (lowerpanel), shows only small 
u
tuations.A rather small aspe
t ratio of � = 32 is suÆ
ient toobtain persistent SDC in the experiments [3℄ and hasfa
ilitated the extensive simulations of the Boussinesqequations des
ribed before, Nevertheless we have testedin some runs, whether persistent SDC possibly requiresa larger � in the SH simulations. However, we observedno qualitative 
hanges for � = 64 (the other parametersin Fig. 1 remained �xed), though not unexpe
tedly the
oarsening set in at later times.With respe
t to some de�
ien
ies of the SH alludedto above we have several spe
ulations. The fa
t thatthe Busse balloon is not 
orre
tly reprodu
ed in the SH-des
ription [6,19,?℄ and that long SDC periods require afour times larger gm value than the theoreti
al one (seeabove and [?℄), might be of minor importan
e. How-ever, already when Manneville introdu
ed generalized SHequations [15℄ he dis
ussed in detail the intri
ate roll ofthe mean 
ow and some very long transients before hissimulations settled down to a steady attra
tor. In addi-tion, the general SH-equations rest a long wave{lengthapproximation for �(r; t). On 
onstrast, the pronoun
edshort{s
ale stru
tures in the vorti
ity whi
h exist for in-stan
e at a spiral 
orei (see e.g. Fig. 18 in [?℄ ) are not2



systemati
ally 
aptured. They might in reality perma-nently "stir" the system keeping a persistent weak tur-bulen
e alive.
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FIG. 2. The 
onve
tive heat 
ux j(t) = 1S RS d2ru2(r; t)normalized to its time average < j >, i.e. jn = j= < j >, isshown for the SH{model (upper part) with the same param-eters as in Fig.1 and for the Boussinesq equations [6℄ (lowerpart).In 
on
lusion, for many purposes generalized SH-models are 
ertainly very valuable tools to study the SDCs
enario, even if it would exist only as a long transient.However, our investigations shed some light on the gen-eral problem of understanding the long{time behaviorof hydrodynami
 systems by using SH models. A

ord-ingly, their appli
ation to 
oarsening studies [26℄ or tothe analysis of statisti
al properties of SDC [27℄ mightbe questionable.
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