Spiral-Defect Chaos: Swift-Hohenberg model versus Boussinesq equations
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Spiral-defect chaos (SDC) in Rayleigh-Bénard convection is a well established spatio—temporal
complex pattern, which competes with stationary rolls near onset of convection. The character-
istic properties of SDC are accurately described on the basis of the standard three-dimensional
Boussinesq—equations. As a much simpler and attractive two—dimensional model for SDC general-
ized Swift-Hohenberg (SH) equations have been extensively used in the literature from the early
beginning. Here we show that the SH-description of SDC has to be considered with care, especially
regarding its long-time dynamics. For parameters used in previous SH-simulations SDC occurs only
as a transient in contrast to the experiments and the rigorous solutions of the Boussinesq equa-
tions. The small-scale structure of the vorticity field at the spiral cores, which might be crucial for
persistent SDC, is presumably not perfectly captured in the SH-model.

PACS number(s): 47.27.Te, 47.20.-k

Convection in a horizontal fluid layer heated from be-
low, known as Rayleigh-Bénard convection (RBC), is one
of the best studied examples of pattern forming systems
[1-3]. At threshold convection rolls bifurcate and remain
stable in a fairly wide parameter range, coined as the
Busse—Balloon. Thus the recent observation of spiral—
defect chaos (SDC) in a parameter regime where it com-
petes with rolls was rather surprising [4,5]. The com-
plex spatio—temporal dynamics of SDC involves rotating
spirals, targets, dislocations etc. Most of characteristic
properties of SDC are well reproduced in high precision
ab initio solutions of the standard Boussinesq equations
[6-8] in three spatial dimensions. According to the ex-
periments and the numerical solutions SDC is a robust
generic state of thermal convection observed in rectangu-
lar, square and circular cells as well [9,10,6,3].

Our general understanding of the universal aspects of
pattern formation has been significantly promoted by
the analysis of two—dimensional models like the various
types of Ginzburg-Landau and Swift—Hohenberg equa-
tions [1,11,12]. This applies also to SDC where simu-
lations of generalized Swift-Hohenberg (SH) equations
[15,16] have provided important insight into the under-
lying mechanism [13,20,14]. Nevertheless, one should re-
main open to possible limitations of such models. On
the concrete example of SDC we show in this paper, that
the long-time dynamics of the SH equations might be
problematic.

In the following we discuss simulations of SDC in a set
of widely used SH equations, which couple two real fields
¥ and (¢ [13,14].
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Here t(r,t) describes the planar spatial variations
of convection patterns (e.g. the temperature field),
which consist locally of convection-roll patches. ((r,t)
is a velocity potential determining the mean flow
U = (8y¢, —9z¢). The control parameter ¢ =
2.78 (AT — A T.)/ AT, serves as a dimensionless mea-
sure for the applied temperature difference AT across the
fluid layer. [17]. The time is scaled in such a way that
a time lapse of ¢ = 5 in Egs.(1) corresponds to ~ 1%,,
with the common vertical diffusion ¢, ~ O(sec) in exper-
iments.

Any curvature of the rolls produces a vertical vorticity
field —A((r,t) (see Eq. (1b)), which increases with de-
creasing Prandtl number P. In contrast to the claims
expressed in several papers by Gunton and coworkers
(see e.g. [27], only the dominant term ~ ¢* on the left-
hand side of Eq. (1b) can be directly traced back to
the Boussinesq equations. The two other terms o 74,7,
respectively, are in principle phenomenological (see the
discussion in [?]). In Eq. (1a) the relevance of ¢ is con-
trolled by the coupling constant g¢,,. The value of g,
can be found to be g, = 12.2 for ¢ =2 and Pr = 1 by
comparing with the known zig-zag stability boundary of
convection rolls [18].

The coupling to the mean flow, which becomes more
important either at small P or large g, is crucial for
persistent SDC. In the limit of large Prandtl numbers P
where ( is hardly excited the dynamics of ) becomes
purely relaxational and approaches a low dimensional
stationary state of the corresponding Lyapunov func-
tional. Note, however, that any strongly disordered pat-
tern before it equilibrates generates virtually instante-
neously a strong, long-range mean-flow U according to
Eq. (1b and can thus easily lead to transient SDC, even
if Pr is not small.

In our simulations we have chosen the same set of



parameters as in the previous works [13,27,?], namely
> =2,gn = 50,7c =n = Pr = 1,¢ = 0.7. Mostly
we consider an aspect ratio of I' = L/2d = 32 where L
denotes the lateral extension of the cell and d its thick-
ness. At first we have performed simulations in a square
domain with periodic boundary conditions in order to
avoid an artificial bias from the sides. Starting from ran-
dom initial conditions yields a typical snapshot as shown
in Fig. (1a) at 800t,. This initial pattern compares well
with planforms already shown in Refs. [13,14] at the same
time lapse; it has also great similarity to characteris-
tic SDC snapshots observed continuously in experiments
[4,5] or during numerical solutions of the fundamental
Boussinesq equations [6].

However, when continuing the runs beyond 8000¢, the
scenario changes qualitatively and the pattern coarsens
towards a ”big spiral”, which rotates slowly about a
nearly immobile center. Only at the boundaries of the
spiral one finds remnants of the previous persistent gen-
eration and annihilation of small spirals. For P ~ 1 the
coarsening to big spirals is neither observed in exper-
iments nor during simulations of the Boussinesq equa-
tions.

The transient behaviour of SDC followed by coarsenig
to a big spiral reminds to recent experiments at P = 4
[9]. After a sudden quench strongly disorderd pattern
developed which due to the strong vorticity field let to
the SDC transient. Afterwards SDC coarsend to a big
spiral as well which eventually disintegrated after a long
time towards a stationary pattern. Apparently for P = 4
the vorticity field is to weak to sustain SDC.
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FIG. 1. The field ¢(r,t) is plotted a different times after
starting with random initial conditions. The parameters are
I' = 32 (aspect ratio), € = 0.7, gm = 50, ¢ =2, P =1 and
Ty = 1.

Unlike the experiments and the solutions of the Boussi-
nesq equations the SDC attractor in the SH-simulations
shows a remarkable sensitivity to the boundary con-
ditions. This feature becomes evident, when the SH-
equations, Eq.(1), are simulated on a circular domain,
similar as in the original work in Ref. [13]. Initially we
observe a similar coarsening process as in the case of a
square domain with periodic boundary conditions lead-
ing to a big spiral about the cell center which is rather
long living (on the average 500 — 1000¢,). Possibly be-
cause of the focus instability [23,24] the spiral core moves
off center and the spiral arms may be compressed and re-
act in a sudden process by the generation of dislocation
pairs, inevitably associated with a strong vorticity field.
The dislocation tips wind up in a dynamics, that has
been loosely described as ”invasive chaos” by Cross et.
al [14,22] . During that period one observes SDC that
coarsens again to a quite big spiral which becomes again
unstable and so on. The periodic dynamics due to the
generation of dislocations in compressed roll patches is
typical for circular cells and has been described in other
comparable situations as well (see e.g. [25]).

The difference between the latter scenario of "inter-
mittent SDC” and persistent generic SDC is apparent
from Fig.2, where we compare the normalized heat cur-
rent j, as obtained from simulations of Egs. (1) for a
circular geometry with j, obtained for simulations of the
full Boussinesq equations [6] in a circular geometry too.
In both cases the heat current is only shown on a small
representative time window taken out of a very long runs
which lasted up to ¢, = 40000. In the upper panel we
see rather rare but violent events, when the coarsened
big spirals breaks up at the downward spike [28]. In con-
trast, the heat current in the the Boussinesq case (lower
panel), shows only small fluctuations.

A rather small aspect ratio of I' = 32 is sufficient to
obtain persistent SDC in the experiments [3] and has
facilitated the extensive simulations of the Boussinesq
equations described before, Nevertheless we have tested
in some runs, whether persistent SDC possibly requires
a larger I" in the SH simulations. However, we observed
no qualitative changes for I' = 64 (the other parameters
in Fig. 1 remained fixed), though not unexpectedly the
coarsening set in at later times.

With respect to some deficiencies of the SH alluded
to above we have several speculations. The fact that
the Busse balloon is not correctly reproduced in the SH-
description [6,19,?] and that long SDC periods require a
four times larger g,, value than the theoretical one (see
above and [?]), might be of minor importance. How-
ever, already when Manneville introduced generalized SH
equations [15] he discussed in detail the intricate roll of
the mean flow and some very long transients before his
simulations settled down to a steady attractor. In addi-
tion, the general SH-equations rest a long wave-length
approximation for {(r,¢). On constrast, the pronounced
short—scale structures in the vorticity which exist for in-
stance at a spiral corei (see e.g. Fig. 18 in [?] ) are not



systematically captured. They might in reality perma-
nently ”stir” the system keeping a persistent weak tur-
bulence alive.
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FIG. 2. The convective heat flux j(t) = %fs d*ru®(r,t)
normalized to its time average < j >, i.e. j, = j/ < j >, is
shown for the SH-model (upper part) with the same param-
eters as in Fig.1 and for the Boussinesq equations [6] (lower
part).

In conclusion, for many purposes generalized SH-
models are certainly very valuable tools to study the SDC
scenario, even if it would exist only as a long transient.
However, our investigations shed some light on the gen-
eral problem of understanding the long—time behavior
of hydrodynamic systems by using SH models. Accord-
ingly, their application to coarsening studies [26] or to
the analysis of statistical properties of SDC [27] might
be questionable.
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