
Spiral{Defet Chaos: Swift-Hohenberg model versus Boussinesq equationsRainer Shmitz1;�, Werner Pesh2 und Walter Zimmermann1;31 Institut f�ur Festk�orperforshung, Forshungszentrum J�ulih, D-52425 J�ulih, Germany2 Theoretishe Physik II, Universit�at Bayreuth, D-95440 Bayreuth, Germany3 Theoretishe Physik, Universit�at des Saarlandes, D-66041, Saarbr�uken, Germany(April 17, 2001)Spiral{defet haos (SDC) in Rayleigh{B�enard onvetion is a well established spatio{temporalomplex pattern, whih ompetes with stationary rolls near onset of onvetion. The harater-isti properties of SDC are aurately desribed on the basis of the standard three{dimensionalBoussinesq{equations. As a muh simpler and attrative two{dimensional model for SDC general-ized Swift{Hohenberg (SH) equations have been extensively used in the literature from the earlybeginning. Here we show that the SH{desription of SDC has to be onsidered with are, espeiallyregarding its long{time dynamis. For parameters used in previous SH-simulations SDC ours onlyas a transient in ontrast to the experiments and the rigorous solutions of the Boussinesq equa-tions. The small{sale struture of the vortiity �eld at the spiral ores, whih might be ruial forpersistent SDC, is presumably not perfetly aptured in the SH{model.PACS number(s): 47.27.Te, 47.20.-kConvetion in a horizontal uid layer heated from be-low, known as Rayleigh-B�enard onvetion (RBC), is oneof the best studied examples of pattern forming systems[1{3℄. At threshold onvetion rolls bifurate and remainstable in a fairly wide parameter range, oined as theBusse{Balloon. Thus the reent observation of spiral{defet haos (SDC) in a parameter regime where it om-petes with rolls was rather surprising [4,5℄. The om-plex spatio{temporal dynamis of SDC involves rotatingspirals, targets, disloations et. Most of harateristiproperties of SDC are well reprodued in high preisionab initio solutions of the standard Boussinesq equations[6{8℄ in three spatial dimensions. Aording to the ex-periments and the numerial solutions SDC is a robustgeneri state of thermal onvetion observed in retangu-lar, square and irular ells as well [9,10,6,3℄.Our general understanding of the universal aspets ofpattern formation has been signi�antly promoted bythe analysis of two{dimensional models like the varioustypes of Ginzburg{Landau and Swift{Hohenberg equa-tions [1,11,12℄. This applies also to SDC where simu-lations of generalized Swift{Hohenberg (SH) equations[15,16℄ have provided important insight into the under-lying mehanism [13,20,14℄. Nevertheless, one should re-main open to possible limitations of suh models. Onthe onrete example of SDC we show in this paper, thatthe long-time dynamis of the SH equations might beproblemati.In the following we disuss simulations of SDC in a setof widely used SH equations, whih ouple two real �elds and � [13,14℄.h�t + gmU � ri = h"� (1 +�)2i �  3; (1a)h���t �P(�r2 � 2)i�� = h(�y )�x � (�x )�yi� : (1b)

Here  (r; t) desribes the planar spatial variationsof onvetion patterns (e.g. the temperature �eld),whih onsist loally of onvetion-roll pathes. �(r; t)is a veloity potential determining the mean owU = (�y�; ��x�). The ontrol parameter " =2:78 (�T � � T)= � T serves as a dimensionless mea-sure for the applied temperature di�erene �T aross theuid layer. [17℄. The time is saled in suh a way thata time lapse of t = 5 in Eqs.(1) orresponds to � 1 tv,with the ommon vertial di�usion tv � O(se) in exper-iments.Any urvature of the rolls produes a vertial vortiity�eld ���(r; t) (see Eq. (1b)), whih inreases with de-reasing Prandtl number P . In ontrast to the laimsexpressed in several papers by Gunton and oworkers(see e.g. [27℄, only the dominant term � 2 on the left-hand side of Eq. (1b) an be diretly traed bak tothe Boussinesq equations. The two other terms / �g ; �,respetively, are in priniple phenomenologial (see thedisussion in [?℄). In Eq. (1a) the relevane of � is on-trolled by the oupling onstant gm. The value of gman be found to be gm = 12:2 for 2 = 2 and Pr = 1 byomparing with the known zig-zag stability boundary ofonvetion rolls [18℄.The oupling to the mean ow, whih beomes moreimportant either at small P or large gm is ruial forpersistent SDC. In the limit of large Prandtl numbers Pwhere � is hardly exited the dynamis of  beomespurely relaxational and approahes a low dimensionalstationary state of the orresponding Lyapunov fun-tional. Note, however, that any strongly disordered pat-tern before it equilibrates generates virtually instante-neously a strong, long-range mean-ow U aording toEq. (1b and an thus easily lead to transient SDC, evenif Pr is not small.In our simulations we have hosen the same set of1



parameters as in the previous works [13,27,?℄, namely2 = 2; gm = 50; �� = � = Pr = 1; � = 0:7. Mostlywe onsider an aspet ratio of � = L=2d = 32 where Ldenotes the lateral extension of the ell and d its thik-ness. At �rst we have performed simulations in a squaredomain with periodi boundary onditions in order toavoid an arti�ial bias from the sides. Starting from ran-dom initial onditions yields a typial snapshot as shownin Fig. (1a) at 800tv. This initial pattern ompares wellwith planforms already shown in Refs. [13,14℄ at the sametime lapse; it has also great similarity to harateris-ti SDC snapshots observed ontinuously in experiments[4,5℄ or during numerial solutions of the fundamentalBoussinesq equations [6℄.However, when ontinuing the runs beyond 8000tv thesenario hanges qualitatively and the pattern oarsenstowards a "big spiral", whih rotates slowly about anearly immobile enter. Only at the boundaries of thespiral one �nds remnants of the previous persistent gen-eration and annihilation of small spirals. For P � 1 theoarsening to big spirals is neither observed in exper-iments nor during simulations of the Boussinesq equa-tions.The transient behaviour of SDC followed by oarsenigto a big spiral reminds to reent experiments at P = 4[9℄. After a sudden quenh strongly disorderd patterndeveloped whih due to the strong vortiity �eld let tothe SDC transient. Afterwards SDC oarsend to a bigspiral as well whih eventually disintegrated after a longtime towards a stationary pattern. Apparently for P = 4the vortiity �eld is to weak to sustain SDC.
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FIG. 1. The �eld  (r; t) is plotted a di�erent times afterstarting with random initial onditions. The parameters are� = 32 (aspet ratio), " = 0:7, gm = 50, 2 = 2, P = 1 and�v = 1.

Unlike the experiments and the solutions of the Boussi-nesq equations the SDC attrator in the SH-simulationsshows a remarkable sensitivity to the boundary on-ditions. This feature beomes evident, when the SH-equations, Eq.(1), are simulated on a irular domain,similar as in the original work in Ref. [13℄. Initially weobserve a similar oarsening proess as in the ase of asquare domain with periodi boundary onditions lead-ing to a big spiral about the ell enter whih is ratherlong living (on the average 500 � 1000tv). Possibly be-ause of the fous instability [23,24℄ the spiral ore moveso� enter and the spiral arms may be ompressed and re-at in a sudden proess by the generation of disloationpairs, inevitably assoiated with a strong vortiity �eld.The disloation tips wind up in a dynamis, that hasbeen loosely desribed as "invasive haos" by Cross et.al [14,22℄ . During that period one observes SDC thatoarsens again to a quite big spiral whih beomes againunstable and so on. The periodi dynamis due to thegeneration of disloations in ompressed roll pathes istypial for irular ells and has been desribed in otheromparable situations as well (see e.g. [25℄).The di�erene between the latter senario of "inter-mittent SDC" and persistent generi SDC is apparentfrom Fig.2, where we ompare the normalized heat ur-rent jn as obtained from simulations of Eqs. (1) for airular geometry with jn obtained for simulations of thefull Boussinesq equations [6℄ in a irular geometry too.In both ases the heat urrent is only shown on a smallrepresentative time window taken out of a very long runswhih lasted up to tv = 40000. In the upper panel wesee rather rare but violent events, when the oarsenedbig spirals breaks up at the downward spike [28℄. In on-trast, the heat urrent in the the Boussinesq ase (lowerpanel), shows only small utuations.A rather small aspet ratio of � = 32 is suÆient toobtain persistent SDC in the experiments [3℄ and hasfailitated the extensive simulations of the Boussinesqequations desribed before, Nevertheless we have testedin some runs, whether persistent SDC possibly requiresa larger � in the SH simulations. However, we observedno qualitative hanges for � = 64 (the other parametersin Fig. 1 remained �xed), though not unexpetedly theoarsening set in at later times.With respet to some de�ienies of the SH alludedto above we have several speulations. The fat thatthe Busse balloon is not orretly reprodued in the SH-desription [6,19,?℄ and that long SDC periods require afour times larger gm value than the theoretial one (seeabove and [?℄), might be of minor importane. How-ever, already when Manneville introdued generalized SHequations [15℄ he disussed in detail the intriate roll ofthe mean ow and some very long transients before hissimulations settled down to a steady attrator. In addi-tion, the general SH-equations rest a long wave{lengthapproximation for �(r; t). On onstrast, the pronounedshort{sale strutures in the vortiity whih exist for in-stane at a spiral orei (see e.g. Fig. 18 in [?℄ ) are not2



systematially aptured. They might in reality perma-nently "stir" the system keeping a persistent weak tur-bulene alive.
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FIG. 2. The onvetive heat ux j(t) = 1S RS d2ru2(r; t)normalized to its time average < j >, i.e. jn = j= < j >, isshown for the SH{model (upper part) with the same param-eters as in Fig.1 and for the Boussinesq equations [6℄ (lowerpart).In onlusion, for many purposes generalized SH-models are ertainly very valuable tools to study the SDCsenario, even if it would exist only as a long transient.However, our investigations shed some light on the gen-eral problem of understanding the long{time behaviorof hydrodynami systems by using SH models. Aord-ingly, their appliation to oarsening studies [26℄ or tothe analysis of statistial properties of SDC [27℄ mightbe questionable.
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