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This paper reports on a theoretical analysis of convection in an inclined layer of mercury,
a common low-Prandtl-number fluid (Pr = 0.025). The investigation is based on the
standard Oberbeck-Boussinesq equations, which are explored as function of the inclina-
tion angle γ and for Rayleigh numbers R in the vicinity of the convection onset. Along
with the conventional Galerkin methods to study convection rolls and their secondary
instabilities, we employ direct numerical simulations for fluid layers with quite large
aspect ratios. It turns out that even for small γ . 6◦ the secondary instabilities of the
basic rolls lead either to oscillatory 3D patterns or to stationary ones, which appear
alternately with increasing γ. Due to the competition of these instabilities the patterns
may show a complex dynamics.

1. Introduction
Thermal convection in fluids driven by spatial temperature variations has been inves-

tigated during the last decades in many theoretical and experimental studies (see e.g.
Lappa (2009)). The most studied example is Rayleigh-Bénard convection (RBC), where
a fluid layer is heated from below and cooled from above. The standard theoretical
description is based on the Oberbeck-Boussinesq equations (OBE), which couple the
temperature and the velocity field. The main control parameter is the Rayleigh number
R, a dimensionless measure of the applied temperature gradient. Theoreticians have
extensively analyzed the OBE as a model system in order to explore a wide variety of
different flow patterns and the transition to turbulence (see e.g. Verma (2018)). Besides
R the Prandtl number, Pr , as the ratio of the kinematical viscosity, ν, and the thermal
diffusivity, κ, plays an important role for the solution manifold of the OBE. To simplify
the calculations, one considers often fluid layers of large aspect ratio, i.e. with a height
much smaller than the lateral extensions. The layer is then idealized as quasi-infinite and
one switches with respect to the planar spatial coordinates into Fourier space. In this
way the interpretation of the numerical results becomes much easier, apart from saving
a lot of computer time.

For R below the critical Rayleigh number, Rc, the system is in most cases, as also in the
present paper, characterized by a uniform heat-conducting basic state. At R = Rc this
state becomes linearly unstable and Rayleigh-Bénard convection (RBC) sets in frequently
in form of a stationary 2D periodic array of counter-rotating convection rolls described
by the critical wave vector q = qc. At a sufficiently large R secondary and tertiary
bifurcations of the roll patterns appear which lead to 3D patterns characterized by the
impact of additional Fourier modes in wavevector space and possibly by a periodic time
dependence as well.
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2 O. Zier et al.

The construction of the corresponding stability diagrams in the R−q space for R > Rc
but not too large R (typically less than 5Rc), has been promoted since the sixties of
the last century in particular by Busse and coworkers (see e.g. Busse (1989)). Their
general concept, which deploys its full power in Fourier space has then been permanently
extended and refined in many ways (for a general review, see Cross & Hohenberg (1993)).
It will be described in the following by the notion bifurcation approach, which still serves
as the common starting point to explore new aspects in pattern-forming systems. In
particular in gases with Pr ∼ 1 and not too large R the bifurcation approach has led
to a very convincing description of many experiments (for a recent review see, e.g.
Bodenschatz et al. (2000) and references therein). It is obvious that the bifurcation
approach cannot work for turbulent convection at large R & 103Rc, which in addition is
mostly explored in cylindrical geometries. Consequently we will typically not refer to the
related papers; for a very recent and quite general discussion including many references
we point to the monograph of M.K. Verma (Verma (2018)).

In the present paper we investigate a variant of RBC, namely inclined layer convection
(ILC), where the fluid layer is tilted by an angle γ with respect to the horizontal
orientation. In contrast to the planar case (γ = 0◦) isotropy is broken by a shear flow,
since already in the basic state the fluid flows downwards at the colder upper part of
the fluid layer and upwards along the warmer lower one. Thus it is not surprising, that
ILC has attracted also theoretical studies for decades, mainly for medium and large Pr .
In particular we refer to a recent paper for Pr∼1 and references therein (Subramanian
et al. 2016) for not too large R, where the bifurcation approach predicts already near Rc
as function of γ, a large variety of different 3D pattern types in excellent agreement with
the experiments.

Motivated by recent papers on ILC with liquid metals, which are characterized by very
small Pr < 0.1, in the turbulent regime with large R & 106 (Shishkina & Horn 2016;
Teimurazov & Frick 2017) we found it attractive to perform a complementary study
of this system using the bifurcation approach and direct numerical simulations (DNS)
at small R slightly above Rc. For definiteness we have restricted ourselves to mercury
with Pr = 0.025. First we found oscillatory secondary instabilities of the basic rolls,
well known already for γ = 0◦ (see e.g. Rossby (1969)), which lead to time dependent
oscillatory (OS) patterns in the form of waves along the roll axes. On the other hand
already even for small γ competing stationary instabilities have been identified. They
lead to specific, so called subharmonic (SH), 3D patterns, which are time-independent.
The detailed analysis of the competition between the OS and the SH patterns sets the
frame of the present work.

The paper is organized as follows: After introducing the OBE for ILC in §2, we sketch
the linear instability of the basic state leading to transverse rolls. The critical Rayleigh
number Rc and the critical wavenumber qc are given as function of γ. Then Galerkin
methods are applied to characterize the secondary instabilities of the transverse rolls as
function of γ. In the following section (§3) DNS of the OBE for different γ and R > Rc
are presented, which confirm the Galerkin stability diagram. It is demonstrated, that
the arising 3D patterns, either oscillatory or stationary, can be understood in terms of
simple analytical expressions. In §4 a number of complex patterns are discussed, which
appear in particular near the various codimension-2 points with respect to γ, where
the bifurcation switches from oscillatory to stationary. A short summary of the paper
together with perspectives for future work can be found in the conclusions (§5). Finally,
two appendices are devoted to the numerical methods used in this paper and in particular
to a quite detailed discussion of the OS and SH patterns.
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Figure 1. Fluid layer of thickness d inclined with an angle γ, heated from below and cooled
from above with temperature difference ∆T ≡ T1 − T2 > 0. Driven by gravity g the cold fluid
flows downwards near the top plate and the hot one flows upwards near the bottom plate leading
to a cubic velocity profile across the fluid layer (see (2.2)).

2. Roll solutions and their stability
As sketched in figure 1 we consider in this paper ILC as function of the inclination angle

γ (0◦ 6 γ 6 90◦). The convection cell is cooled from above (at z = d/2) with the fixed
temperature T = T2 and heated from from below (at z = −d/2) with fixed T = T1, where
∆T = T1 − T2 > 0. As already indicated before we concentrate on mercury as working
fluid, i.e. exclusively on Pr = 0.025. In the following we discuss first the basic equations.
Their linear analysis yields the primary instabilities of the basic state in form of 2D
convection rolls with the wavevector q = qc at the critical Rayleigh number R = Rc. For
R > Rc the amplitudes of the rolls continuously grow until at a secondary instability,
depending on γ, different 3D patterns bifurcate.

2.1. Basic equations
The interaction of the temperature and velocity field in our system is described by the

standard Oberbeck-Boussinesq equations (OBE) for incompressible fluids. As usual, the
OBE are non-dimensionalized using d as the length scale and the vertical diffusion time
tv = d2/κ as the time scale. The velocity u is measured in units of d/tv, the pressure
p in units of κ/(νd2). Temperatures are measured in units of Ts = νκ/αgd3 with α the
thermal expansion coefficient. Using a Cartesian coordinate system aligned with the layer
(see figure 1), the nondimensional OBE read as follows:

[∂/∂t+ (u ·∇)] T̃ = ∇2T̃ +Rẑ · u, (2.1a)

Pr−1 [∂/∂t+ (u ·∇)]u = ∇2u− g
g
T̃ −∇p , (2.1b)

with the temperature, T̃ , and the velocity field, u, where ∇ · u = 0 due to incom-
pressibility. The vector g = −g (cos γẑ + sin γx̂) describes the effect of gravity with the
gravitational constant g. All terms which can be expressed as gradients are included in
the pressure term −∇p. Equations (2.1) are characterized by the angle of inclination γ
along with the two nondimensional parameters, the Rayleigh number R = ∆T/Ts and
the Prandtl number Pr = ν/κ.

In line with previous theoretical investigations of ILC on the basis of the bifurcation
approach in the literature (see in particular (Clever & Busse 1977; Busse & Clever 1992))
we use periodic boundary conditions with respect to x and y. At the vertical boundaries
z = ±1/2 (in dimensionless units) the temperatures are kept fixed and the velocity
is assumed to vanish (rigid boundary conditions). Equations (2.1) then admit primary
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(basic) solutions (denoted with subscript 0) of a linear temperature profile T̃0(z) and
cubic shear velocity profile U0(z):

T̃0(z) = R

[
T1 + T2

2∆T
− z
]
, U0(z) = x̂ sin γR

z

6

[
z2 − 1

4

]
≡ x̂ sin γRUx0 (z). (2.2)

In the presence of convection T̃0 is modified by θ(x, y, z, t) and U0 by v as follows:

T̃ (x, z, t) = T̃0(z) + θ(x, z, t), u(x, z, t) = U0 + v(x, z, t), x = (x, y), (2.3)

which fulfil the boundary conditions θ(z = ±1/2) = v(z = ±1/2) = 0.
It is convenient to map the solenoidal velocity field v by the well-known poloidal-

toroidal decomposition to two scalar velocity functions f, Φ(x, z, t) and a correction
U(z, t) = (Ux, Uy, 0) of U0(z):

v(x, y, z, t) = ∇× (∇× f ẑ) + ∇× Φẑ +U(z, t) ≡ χf + ηΦ+U(z, t). (2.4)

The equations for f, Φ are obtained by inserting u in (2.3) with v in (2.4) into (2.1b)
followed by the application of the operators χ,η. The equation for θ results from inserting
the ansatz for T̃ (2.3) into (2.1a). The explicit expressions for the linear equations are
thus given as:

∂tθ = −R∆2f +∇2θ −R sin γ(Ux0 (z)∂x)θ, (2.5a)
1

Pr
∂t∇242f = ∇442f − cos γ42θ + sin γ ∂x∂zθ −

1

Pr
sin γRF [Ux0 ]f , (2.5b)

1

Pr
∂t∆2Φ = ∇2∆2Φ+ sin γ∂yθ −

1

Pr

[
(U0∂x)∆2Φ+

(
[∂zU0]∂y

)
∆2f)

]
, (2.5c)

with the operators ∆2 = (∂xx + ∂yy) and F [Ux0 ] ≡ [Ux0 (z)∇2− ∂2zzUx0 (z)]∂x∆2. It should
be noted, that the pressure has dropped out in (2.5).

For the following, a compact symbolic representation of the OBE (2.1) transcribed to
θ, f, Φ,U using (2.3) and (2.4) is convenient:

Ĉ ∂

∂t
V̂ (x, z, t) = L̂V̂ (x, z, t) + N̂ [v +U , V̂ ] (2.6)

with x = (x, y) and the symbolic vector V̂ = [θ, f, Φ]T . The linear operators Ĉ, L̂ are
given in (2.5). The symbol N̂ stands for the nonlinear terms which consist of quadratic
forms in θ, f, Φ and U and their spatial derivatives. The components of N̂ are given as:

N̂θ = (v · ∇)θ, N̂(f ;Φ) = (χ;η)[(v · ∇)(χf + ηΦ)]. (2.7)

The evolution equation for the secondary mean flow U(z, t) results from averaging the
velocity equation (2.1b) over the x− y plane, leading to:

1

Pr
∂U(z, t)

∂t
= − 1

Pr
∂(vzv)

∂z
+
∂2U

∂z2
+ sin γ θ x̂− (∂x, ∂y, 0)(Px(t)x+ Py(t)y), (2.8)

where the overbar indicates the horizontal average. Note that (2.8) contains a special
pressure term first proposed in Busse & Clever (2000) in a different context. The functions
Px(t), Py(t) have to be chosen to guarantee mass conservation, i.e.

∫
dzU(z) = 0; nonzero

Px,y, however, appear only in the DNS of complex patterns in §4.
In general (2.6) is solved with respect to x, y on a rectangle with the lateral extensions

Lx, Ly using periodic boundary condition, i.e. V̂ (x, y, z) = V̂ (x + Lx, y + Ly, z) holds.
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Figure 2. Linear instability of the ILC basic state for Pr = 0.025 (see (2.2)) as function of the
inclination angle γ with respect to rolls of wave vector q = (qx, qy) = q̄c(γ, ψ)(cosψ, sinψ) at
R = R̄c(γ, ψ). Left panel: Reduced critical Rayleigh number R̄c(γ, ψ)/Rc0 (logarithmic scale)
with Rc0 = 1707.8. Right panel: Critical wave number q̄c(γ, ψ). The solid lines correspond to
the transverse rolls, where R̄c(γ, ψ = 0◦) is minimal. For the other ψ the following line styles are
used: dotted for longitudinal rolls (ψ = 90◦), dashed for ψ = 75◦ and dash-dotted for ψ = 60◦.

That is guaranteed by using the following discrete Fourier representation:

V̂ (x, z, t) =
∑
q

eiq·xV (q, z, t)with q = (k∆qx, l ∆qy);−N/2 6 (k, l) 6 N/2, (2.9)

where ∆qx = 2π/Lx, ∆qy = 2π/Ly. Thus the simulations run in Fourier space on a 2D
grid of N2 wavevectors. Since V is real the condition V (q, z, t) = V (−q, z, t)∗ has to be
fulfilled.

The boundary conditions like θ(z = ±1/2) = 0 are automatically satisfied by the use
of truncated Galerkin expansions with respect to z. For example, θ is represented by the
ansatz:

θ(x, z, t) =
M∑
m=1

Sm(z)ϑm(x, t); Sm(z) = sin(mπ(z + 1/2)), (2.10)

which is analogously used also for Φ and U(z, t). The rigid boundary conditions for
v require that f has to be expanded in terms of the Chandrasekhar functions Cm(z)
(Chandrasekhar 1961). Consequently our OBE are finally mapped to a system of ordinary
differential equations in time for the Fourier coefficients of ϑm(x, t) and the corresponding
ones for f, Φ and U . The Galerkin expansions with respect to the z−direction (see e.g.
(2.10)) have been always truncated at M = 8 modes. In line with the Appendix of
Subramanian et al. (2016) we have tested by increasing M that the numbers given in the
present paper are afflicted with a relative error of less than 0.1%.

2.2. Linear stability analysis of the basic state
The primary convection instability of the basic state corresponds to exponentially grow-

ing solutions in time of the linear equations (2.5). Thus, using the common convection-roll
ansatz V̂ (x, z, t) = eσteiq·xṼ (q, z, R) in (2.6) with N̂ = 0, we arrive from (2.6) at the
following linear eigenvalue problem for σ:

σC(q, ∂z)Ṽ (q, z;R) = LṼ (q, z;R), (2.11)

where the operators C,L(q, ∂z) etc. in Fourier space derive from the corresponding ones
in position space (see (2.5)) via the transformation ∂x → iq. As indicated before (see e.g.
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6 O. Zier et al.

γ qc Rc ε0
0◦ 3.1162 1707.8 0
10◦ 2.8894 777.22 -0.5449
20◦ 2.8091 468.23 -0.7258
30◦ 2.7740 341.32 -0.8001
40◦ 2.7536 274.90 -0.8390

γ qc Rc ε0
50◦ 2.7396 236.06 -0.8618
60◦ 2.7288 212.45 -0.8756
70◦ 2.7197 198.61 -0.8837
80◦ 2.7116 191.91 -0.8876
90◦ 2.7037 191.27 -0.8880

Table 1. Critical Rayleigh number Rc(γ) and critical wavenumber qc(γ) of transverse rolls
together with ε0 = (Rc(γ)−Rc0)/Rc0 (2.12) for increasing γ.

(2.10)) the z−dependence of Ṽ (q, z;R) is captured by Galerkin expansions with M = 8
modes. It turns out that it is sufficient to confine the analysis to the θ, f equations in
(2.5). Thus, one arrives finally at an algebraic linear eigenvalue problem of dimension 2M
in the Fourier-Galerkin space, which is analyzed using standard linear-algebra packages
(LAPACK). Let σmax(R,Pr , γ, q) define the eigenvalue σ with the largest real part in
(2.11); then rolls become unstable when σmax(R,Pr , γ, q) crosses zero. For each q we have
to determine the smallest solution R = R0(q) of Re[σmax(q)] = 0 (the fixed parameters
Pr , γ are suppressed for the moment). The minimum of R0(q) with respect to q defines
the critical wave vector qc and the critical Rayleigh number Rc = R0(qc) at which the
basic state becomes unstable against convection rolls with wavevector qc. The bifurcation
turns out to be always stationary since Im[σmax(Rc, qc)] ≡ 0; otherwise one would speak
of an oscillatory bifurcation.

It is convenient to parameterize the orientation of a wavevector q in the x− y plane as
q = q̄(ψ)(cosψ, sinψ). Thus we obtain from Re[σmax] = 0 the critical data q̄c(ψ), R̄c(ψ),
which depend on γ. At γ = 0◦ we deal with the standard isotropic RBC, where q̄c =
qc0 = 3.116 and R̄c = Rc0 = 1707.8 depend neither on ψ nor on Pr .

In figure 2 one finds representative plots of q̄c(γ, ψ) and R̄c(γ, ψ) as function of γ
for different ψ at fixed Pr = 0.025. One sees that the convection onset is realized by
transverse rolls (ψ = 0◦) for all γ. This is in contrast to the case of medium Pr . There
exists a so called codimension-2 point, γc2, such that for 0◦ < γ < γc2 longitudinal rolls
with ψ = 90◦ bifurcate at onset in contrast to transverse rolls (ψ = 0◦) for γ > γc2.
With decreasing Prandtl number γc2 moves continuously downwards to zero until for
Pr < 0.264 indeed only transverse rolls bifurcate at onset for 0◦ < γ < 90◦ (for a
detailed discussion, see Appendix C in Subramanian et al. (2016)). It is further evident,
that Rc(γ) = R̄c(γ, ψ = 0◦) decreases strongly with γ. This applies also to the critical
wavenumber qc(γ) = q̄c(γ, ψ = 0◦), though the decay is much weaker.

To measure directly the relative distance of R from Rc we use in the following two
definitions of a reduced control parameters, either ε or ε0, which are defined as:

ε =
R−Rc(γ)

Rc(γ)
; ε0 =

R−Rc0
Rc0

; Rc0 ≡ Rc(γ = 0◦) = 1707.8. (2.12)

Selected numerical values of Rc and qc as function of γ which correspond to the bold
lower curves in figure 2 have been listed in table 1. When gradually increasing R beyond
Rc(γ) finite-amplitude transverse roll patterns with wavenumber qc(γ) develop. Their
stability analysis will be discussed in the following subsection.

2.3. Secondary instabilities of transverse rolls
The finite-amplitude stationary transverse rolls which develop with wave vector

qc(γ) = (qc(γ), 0) for R > Rc(γ) (see table 1) are represented as a special case of (2.9)
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Figure 3. Stability diagram of transverse rolls for Pr = 0.025 with 0◦ 6 γ 6 10◦(left panel)
and 10◦ 6 γ 6 90◦(right panel). The basic state in (2.2), stable for ε < 0 ((2.12)), becomes
unstable against the transverse rolls for ε > 0. These are stable below the lowest of the two
lines, which determine either the OS instability at ε = εos (solid line) or the SH instability at
ε = εsh (dashed). The three crossing points of the two curves define the codimension-2 points
γ1,2,3.

as follows:

V̂r(x, z) =

Nr/2∑
k=−Nr/2

eikqcxVr(kqc, z) (2.13)

where a cutoff Nr = 10 was found to be sufficient in the present context. With respect to
z, we introduce again a Galerkin expansion (see (2.10)) of the (Nr+1) Fourier coefficients
Vr(kqc, z). Thus we arrive at (3M)Nr coupled nonlinear algebraic equations for the
expansion coefficients in the resulting Fourier-Galerkin representation. Furthermore, the
Galerkin expansion of the mean-flow U using sine functions leads to 2M additional
equations. The whole system is then solved by Newton-Raphson methods. Nontrivial
solutions exist only for R > Rc(q). Thus the bifurcation to transverse rolls is continuous
(supercritical). To examine the linear stability of a transverse-roll solution we linearize
our general equations about V̂r(x, z) with respect to an infinitesimal perturbation δV̂r
in the form of the standard Floquet ansatz:

δV̂r(x, z, t) = eΣ teis·x
k=N/2∑
k=−N/2

eikqcxδVr(kqc, z). (2.14)

Thus, we arrive at a linear eigenvalue problem for the eigenvalues Σ(s, qc, R) at fixed R;
the γ−dependence will be typically suppressed in the following. The eigenvalue Σ with
the largest real part, Σ0(s, qc, R), determines the growth rate of the perturbation δV̂r in
(2.14). The condition Re[Σ0(s, qc, R)] = 0 indicates thus a secondary instability of the
transverse rolls with wavenumber qc at R = R0(s, qc). The minimum of R0(s, qc) with
respect to s gives the Floquet vector sin(qc) of the most effective perturbation δV̂r(x, z, t)
driving the instability of the transverse rolls at Rin(qc) = R0(sin, qc). The frequency at
onset is determined by ωin = Im[Σ0(sin, qc, Rin)]. For |ωin| > 0 the secondary instability
is oscillatory, otherwise stationary. The corresponding Fourier coefficient δVr(kqc, z) in
(2.14) takes its maximum for a value k = kmax with |kmax| 6 1. The most effective
destabilizing modes are thus characterized by the wavevectors qin = (kmax qc, 0) + sin.
In the present system we find a twofold degeneracy of the eigenvalues σ0(sin, qc, R), since
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oscillatory instability [C1]

γ εos sosy ω0 qc
0◦ 0.104 2.171 1.394 3.116

0.5◦ 0.111 2.147 1.376 3.114
1.0◦ 0.132 2.075 1.318 3.106
1.5◦ 0.160 1.952 1.201 3.094
2.0◦ 0.181 1.839 1.007 3.080
2.5◦ 0.063 1.987 0.467 3.064
5.0◦ 0.049 1.961 0.401 2.986
6.0◦ 0.051 1.929 0.402 2.961
10.0◦ 0.057 1.831 0.406 2.889
50.0◦ 0.073 1.642 0.410 2.740
90.0◦ 0.077 1.602 0.409 2.704

subharmonic instability [C2]

γ εsh sshy qc
1◦ 0.139 1.640 3.106

1.5◦ 0.093 2.241 3.094
2.0◦ 0.108 2.436 3.080
3.0◦ 0.177 2.538 3.047
5.0◦ 0.410 2.659 2.986
7.0◦ 0.040 1.680 2.940
10.0◦ 0.035 1.688 2.889
30.0◦ 0.036 1.604 2.774
50.0◦ 0.037 1.574 2.740
90.0◦ 0.039 1.543 2.704

codimension-2 points [C3]

γ εin sosy ω sshy
1.023◦ 0.133 2.070 1.314 1.672
2.183◦ 0.117 1.898 0.662 2.468
6.169◦ 0.051 1.923 0.402 1.621

Table 2. Secondary instabilities of transverse rolls with wavevector qc(γ) at ε = εin with
Floquet vector sin = (sinx , s

in
y ) for selected values of γ. C1: OS instability at εin = εos with

sin = (0, sosy ) and frequency ω0. C2: SH instability at εin = εsh with sin = (qc/2, s
sh
y ). C3:

Codimension-2 data (osc./sh.) for γ = γi, (i = 1, 2, 3) at εin = εos = εsh with sosy , ω0 and sshy .
As always in this paper, sin is given in units of 1/d and ω in units of 1/tv.

they take the same values for s = (sx,±siny ). Depending on γ we find either oscillatory or
stationary secondary instabilities. For the first one, with kmax = 1, the dominant Fourier
coefficients in (2.14) belong to the wavevectors q2,3 = (qc,±sosy ), while for the second one
with kmax = 0 the dominant modes belong to q2,3 = (qc/2,±sshy ). In figure 3 we show the
whole secondary-bifurcation diagram in the γ, ε plane for Pr = 0.025. The well known
oscillatory (OS) instability at γ = 0◦ remains dominant up to the first codimension-2
point γ1 = 1.023◦. Then the stationary subharmonic (SH) instability takes over in the
interval γ1 < γ < γ2 = 2.183◦ with the second codimension-2 point γ2. Up to the third
codimension-2 point γ3 = 6.169◦ again the OS instability dominates, which is then finally
replaced again by the subharmonic one for γ3 < γ < 90◦. The detailed data for the two
instabilities are contained in table 2 for a representative set of inclination angles γ.

3. Regular OS and SH patterns
According to the previous section (see table 2) one finds as function of γ either the OS

secondary instability of transverse rolls at εin = εos or the SH instability at εin = εsh. For
ε & εin the amplitudes of the corresponding destabilizing modes, characterized by the
Floquet vectors sin, start growing exponentially. They are found to saturate eventually
into steady regular 3D patterns in the nonlinear regime with finite complex amplitudes.
As obvious from the stability diagram in figure 3 and the discussion before, the most
spectacular γ−regime is found for γ . γ3 = 6.169◦, on which we will mainly concentrate
in this paper. In the whole interval γ3 < γ 5 90◦, where the SH instability prevails, it is
sufficient to consider only few representative examples.

The nonlinear evolution of the system for ε > εin is studied in the present section by
DNS of the OBE. In the x− y plane we use periodic boundary conditions on a rectangle
of area Lx × Ly and consequently the calculations are performed in Fourier space (see
(2.9)) using a pseudo-spectral method. The z−dependence of the fields is captured by
Galerkin expansions. For the time integration we use the semi-implicit ’exponential time-
differencing method’ as in Subramanian et al. (2016) (for some details see Appendix A).
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On low-Prandtl-number convection in an inclined layer of liquid Mercury 9

a) b) c)

y

x
Figure 4. Midplane temperature plots in ILC for Lx = Ly = 8λc(γ):
a) Transverse rolls for γ = 3◦. b) Stationary SH pattern for γ = 1.5◦. c) Snapshot of an OS
pattern for γ = 6◦ (for details see text).

The results are typically visualized in this paper by the temperature field at the midplane
z = 0, i.e. by the function θ(x, y, z = 0, t). We use individually scaled 8-bit grayscale
images, where lighter areas correspond to positive values and darker ones to negative
ones. Thus here and in the following a white stripe stands for a roll pair. In figure 4
we show representative stable steady-state snapshots of θ(x, y, z = 0, t) for different γ
calculated with the periodicity lengths Lx = Ly = 8λc(γ). They result from DNS started
from random initial condition after the transients have died out. For ε < εin(γ) with
γ > 0◦ we arrive always at stable transverse rolls as shown in figure 4a). In line with
their stability diagram in figure 3 we arrive for ε > εin(γ) either at stationary 3D SH
patterns (see figure 4b)) or at OS patterns in the form of travelling waves along the
y−axes (see a snapshot in figure 4c)). The frequency ω of the oscillatory patterns is
easily obtained by analyzing the periodicity in time of θ(x, y, z = 0, t) at fixed x, y. It
should be noted, that our system, as a consequence of the periodic boundary conditions
in the plane, is invariant against translations along the x− and the y−direction. Thus
using different random initial conditions one arrives at different patterns which, however,
can be mapped on each other by shifting the origin of the coordinate system with respect
to x and y.

Inspection of such pictures yields immediately the dominant wavelengths λx and λy
characterizing the spatial periodicity of the patterns in the x − y plane. Note that as a
consequence of our periodic boundary conditions in the plane the wavelengths λx, λy must
be integer fractions of Lx and Ly, respectively. In the x−direction all DNS have obviously
locked into λx = Lx/8 = λc(γ), corresponding to 8 roll pairs. The critical wavelength
λc(γ) = 2π/qc(γ)∼2 is determined by qc(γ) from the tables 1 or 2. The theoretical value
of λc must be reflected in the experimental roll patterns observed in large aspect ratio
systems, when slowly increasing R until it crosses Rc. Further increasing R should then
reveal the secondary instabilities of the rolls as well. This has been indeed confirmed for
instance in RBC with Pr ≈ 1 (see Bodenschatz et al. (2000) and references therein).

The wavelength λy has also to lock into a value λy = Ly/m with an integer m. Not
really surprising we find in all our simulations that m is chosen by the system such
that λy is in the vicinity of λiny = 2π/siny , where the values of siny are given in table 2.
This selection process has been validated by DNS with different Ly. In general, larger
values of Ly give the system more flexibility in selecting m. Thus we have performed
some even more time-consuming simulations for larger periodicity areas in the x − y
plane with Lx = Ly = 16λc(γ). As demonstrated in figure 5 we arrive indeed, starting
from random initial conditions, at the common basic patterns already shown in figure
4. The SH pattern (see figure 5b) for γ = 50◦ has locked into λy = Lx/9, such that
sy = 2π/λy = 1.541 matches very well sshy = 1.574 in table 2. In figure 5c) we show an
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a) b) c)

Figure 5. Basic patterns like in figure 4 for larger Lx = Ly = 16λc(γ):
a) Transverse rolls for γ = 50◦, ε = 0.03, ε0 = −0.8576 with λc = 2.293. b) SH pattern for
γ = 50◦, ε = 0.045 > 0.037 = εsh ε0 = −0.8556. c) Snapshot of an OS pattern for γ = 5◦,
ε = 0.055 > 0.049 = εos, ε0 = −0.2859 with λc = 2.104 (for details, see text).

OS pattern for γ = 5◦, which has locked into λy = Lx/11 corresponding to sy = 2.053
near to sosy = 1.961 in table 2. Though in this context choosing large values of Lx, Ly
would be desirable, this is in general hardly possible in practice due to the fast increase
of computer time.

Finally it is obvious that the values of qc and Rc depend on the real lateral boundary
conditions for systems with smaller lateral extensions or different geometries. Typically
in analyzing experiments one uses thus the experimental value of Rc to calculate the
relative distance ε (2.12) of R from onset and measures the wave vectors q in units of
|qc|. In this way the results obtained via the bifurcation approach match much better
the experimental ones.

In the following sections we will discuss the regular SH- and OS patterns in more
detail.

3.1. SH patterns
The SH patterns bifurcate from the transverse rolls for γ in the intervals 1.023◦ <

γ < 2.183◦ and 6.169◦ < γ < 90◦. In line with the discussion of the SH instability in
section 2.3 their dominant Fourier coefficients belong to the wavevectors ±qi, i = 1, 2, 3
in Fourier space where q1 = (qc, 0), q2,3 = (qc/2,±sy), with sy ≈ sshy given in table 2.
In figure 6 we show for three values of γ = 1.5◦, 50◦, 90◦ representative examples of the
time independent midplane temperature field θ(x, y) in (3.1), where we used Lx = Ly =
8λc(γ). The subharmonic nature of the patterns, where the teeth are shifted by λy/2
after moving by λc(γ) in the x−direction is obvious. In all our simulations the teeth of
the SH patterns have pointed to the right for 1.023◦ < γ < 2.183◦ opposite to their
orientation for 6.169◦ < γ < 90◦.

In the following we discuss the 3D character of the SH patterns in more detail using
γ = 10◦ and ε = 0.05 as a representative example. All pictures have been produced
with Mathematica. First we show a 3D contour plot of the temperature field θ(x, y, z)
in figure 7, according to which the SH instability leads to a y−periodic bulging out of
the original transverse rolls. In figures 7b) and 8a) we show the corresponding 2D plots
of θ(x, y, z = 0) at the midplane and of θ(x, y = 0, z) in the x, z−plane at y = 0. Due to
the subharmonic character of the bifurcation the spatial periodicity of the pattern in x
corresponds to the wavelength 2λc(γ).

The velocity field (see (2.4)) is much more complex and we have been unable to produce
appealing 3D plots. So we show in 8b) a streamplot of (vx, vz) obtained from (2.4)
in the (x, z) plane. According to figure 8a) we expect a buoyancy driven upstream at
x = 1/4, where θ is maximal at z = 0 and analogously a downstream at x = 3/4.
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a) b) c)

Figure 6. Temperature plots of SH patterns for Pr = 0.025 and different γ: a)
γ = 1.5◦, ε = 0.12, ε0 = 0.0522, b) γ = 50◦, ε = 0.05, ε0 = −0.85487, c), γ = 90◦, ε = 0.06,

ε0 = −0.88128.

a) b)

Figure 7. DNS for γ = 10◦, ε = 0.05, ε0 = −0.522145, λx = λc(γ) = 2.175d with the periodicity
lengths Lx = Ly = 8λx: a) 3D contour plot of θ(x, y, z) for 0 5 x 5 2λx, 0 5 y 5 2λy = 2(8/5)λx.
b) 2D contour plot of the midplane temperature θ(x, y, z = 0) from panel a).

This applies analogously to x = 1.25 and x = 1.75. For standard RBC the flow would
be y−independent and parallel to the z−axis at those x− values between z = 1/2 and
z = −1/2. In contrast, the streamlines turn here towards the x−direction and develop
even small vortices. The additional temperature variations in the x, y− plane (see figure
7b)) drive also a flow with vy 6= 0. This is documented by the (vx, vy) streamlines in
figure 9a), The clearly visible vortices are immediately identified by the contour plot of
the vertical vorticity (∇ × v)z in figure 9b). Note that the subharmonic nature of the
bifurcation is here also reflected in the difference between the velocity vector field in the
intervals 0 < x < λx and λx < x < 2λx and also in a small opposite rotation about the
z− axis of the white and black ’lenses’ in the vorticity plot.

In the following we will demonstrate that the temperature field θ(x, y, z = 0) at the
midplane shown in figure 7b) is very useful to characterize the SH pattern in more detail.
Our starting point is the 2D Fourier representation of θ(x, y, z = 0) and the basic vectors
q1 = (qc, 0) and q2,3 = (qc/2,±sy) with sy ≈ sshy responsible for the secondary instability
of the transverse rolls with wavevector q1 as already discussed in subsection §2.3. It is
to be expected that the Fourier coefficients with the wavevectors qi, i = 1, 2, 3 dominate
the patterns. In fact, when calculating θ(x, y, z = 0) using only this wavevector subset,
one obtains a function h(x, y), which yields a very useful and accurate approximation of
θ(x, y, z = 0): a plot of h(x, y) looks practically identical to figure 7b) for not too large ε.

The phases of the Fourier coefficients associated with the wavevectors q1,2,3 defined
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a) b)

Figure 8. Same parameters as in figure 7: a) 2D contour plot of the temperature field
θ(x, y = 0, z) at y = 0 from figure 7a). b) Corresponding streamplot of the velocity components
vx(x, y = 0, z), vz(x, y = 0, z) (see (2.4)) at y = 0.

a) b)

Figure 9. Same parameters as in figure 7: a) Streamplot of the velocity components
vx(x, y, z = 0), vz(x, y, z = 0) (see (2.4)) in the midplane z = 0. b) The z component of the
vorticity, (∇× v)z, with v from panel a).

above fulfil always a special relation detailed in Appendix B.1, which we use as the
general signature of SH patterns. As a consequence the function h(x, y), after a suitable
shift of the x, y− coordinate system can be always written in a form which depends only
on two real amplitudes A0 > 0, B0 > 0,

h (x, y) = A0 cos (qcx) +B0 cos (syy) cos (qcx/2 + aπ/4) , with a = ±1. (3.1)

There is a discrete symmetry breaking involved; for a = −1 the ’teeth’ point to the right
as in the figure 4b and for a = 1 to the left.

The SH solutions exist for ε > εsh (see table 2). The amplitude B0 depends on γ and
rises continuously with increasing ε−εsh, while for 0 < ε < εsh we have simple transverse
rolls with B0 = 0 and A0 ∝

√
ε. Some characteristic data of our DNS have been collected

in table 3 for different γ, where always Lx = 8λc(γ) was chosen. In contrast, we have used
different periodicity lengths Ly in the DNS, which then have locked into different values
of the wavelength λy = Ly/m, i.e. of the wavenumber sy = 2π/λy (see table 3). Here
for each γ two data sets have been emphasized: The first set (γ in bold) corresponds to
DNS with our standard choice Ly = Lx while in the second one (γ underlined) values of
Ly, slightly different from Lx, have been chosen, such that sy = sshy . In vicinity of these
sy values the amplitude B0 is found to be maximal, which means that the secondary SH
instability is most effective.
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Subharmonic patterns

γ ε sy A0 B0

1.5◦ 0.12 1.900 35.1 6.69
1.5◦ 0.12 2.100 29.4 9.31
1.5◦ 0.12 2.241 26.7 10.6
1.5◦ 0.12 2.300 25.9 11.2
1.5◦ 0.12 2.320 25.7 11.2

10◦ 0.05 1.400 4.14 1.21
10◦ 0.05 1.688 3.81 1.70
10◦ 0.05 1.700 3.73 1.69
10◦ 0.05 1.810 3.80 1.66
10◦ 0.05 2.000 4.40 0.91

30◦ 0.05 1.400 1.61 0.52
30◦ 0.05 1.604 1.56 0.59
30◦ 0.05 1.700 1.57 0.60
30◦ 0.05 1.730 1.58 0.59
30◦ 0.05 2.000 1.80 0.34

50◦ 0.05 1.300 1.15 0.28
50◦ 0.05 1.574 1.08 0.38
50◦ 0.05 1.600 1.08 0.38
50◦ 0.05 1.710 1.10 0.37
50◦ 0.05 1.900 1.18 0.29

90◦ 0.05 1.300 0.92 0.22
90◦ 0.05 1.543 0.87 0.28
90◦ 0.05 1.600 0.88 0.28
90◦ 0.05 1.690 0.89 0.27
90◦ 0.05 1.900 0.97 0.18

Travelling waves

γ ε sy ω ω0 A0 B0 D0

0◦ 0.108 2.171 1.393 1.394 67.8 9.16 0
0◦ 0.108 2.190 1.400 1.394 67.6 9.35 0
0◦ 0.108 2.337 1.482 1.394 68.4 7.29 0

0◦ 0.127 2.083 1.354 1.394 67.2 24.4 0
0◦ 0.127 2.171 1.395 1.394 67.6 22.5 0
0◦ 0.127 2.181 1.386 1.394 66.7 23.0 0
0◦ 0.127 2.224 1.402 1.394 66.7 22.3 0
0◦ 0.127 2.259 1.417 1.394 66.7 21.8 0
0◦ 0.127 2.337 1.454 1.394 67.0 20.5 0

0.5◦ 0.130 1.946 1.313 1.376 68.8 22.0 0.30
0.5◦ 0.130 2.147 1.373 1.376 67.3 20.0 0.29

4◦ 0.060 1.884 0.392 0.403 8.89 2.54 0.67
4◦ 0.060 1.992 0.398 0.403 8.80 2.47 0.69
4◦ 0.060 2.035 0.399 0.403 8.74 2.46 0.68

5◦ 0.055 1.866 0.393 0.401 7.70 1.53 0.39
5◦ 0.055 1.961 0.398 0.401 7.65 1.52 0.40
5◦ 0.055 2.053 0.405 0.401 7.68 1.41 0.39

5◦ 0.060 1.866 0.392 0.401 7.60 2.18 0.56
5◦ 0.060 1.961 0.396 0.401 7.59 2.08 0.55

6◦ 0.070 1.850 0.386 0.402 6.71 2.59 0.64
6◦ 0.070 1.929 0.393 0.402 6.69 2.49 0.64

Table 3. Left table: Amplitudes A0, B0 of SH-patterns (see (3.1)) for different γ, ε and sy in the
DNS. Near the bold/underlined γ values with the corresponding wavenumbers sy the amplitudes
B0 are maximal (for details see text). Right table: The analogous data for travelling waves; in
addition their frequency ω is listed in comparison with ω0 at the onset of the OS instability (see
table 2).

3.2. OS patterns
In our DNS, starting from random initial conditions, we arrive eventually always at

stable travelling-wave patterns. In figure 4c) we have shown a representative snapshot for
γ = 6◦ at ε = 0.058 which originates from the oscillatory instability at εos = 0.051 with
sosy = 1.929 and ω0 = 0.402 (see table 2). The simulations have locked into λy = 8/5λc,
i.e. into sy = 1.850, with ω = 0.4002, which is near ω0. In general, we are confronted in
our DNS with very long transients often of the order of 1000tv and more. During that
time interval the oscillatory patterns resemble, however, standing-wave ones, to which
we return later in this section.

Our basic equations are invariant against the reflection y → −y. This symmetry is
spontaneously broken in travelling wave patterns which move either upwards along y
with a phase velocity vphas or downwards with -vphas. When transforming the basic
equations with y → y − (+)vphast for the first (second) case into the comoving frame,
the resulting DNS produce essentially equivalent stationary patterns. According to the
3D contour plot of θ(x, y, z) in figure 10a) we deal again with deformed convection rolls.
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a) b)

Figure 10. DNS for γ = 6◦, ε = 0.07, ε0 = −0.33836, λx = λc(γ) = 2.175d with the periodicity
lengths Lx = Ly = 8λx: a) Snapshot of a 3D contour plot of the temperature θ(x, y, z) for
0 5 x 5 2λx, 0 5 y 5 2λy = 2(8/5)λc and −d/2 < z < d/2. b) 2D contour plot of θ(x, y, z)
obtained from panel a) for y = 0.

a) b)

Figure 11. Same parameters as in figure 10: a) 2D contour plot of the temperature field
θ(x, y = 0, z) at y = 0 from figure 10a). b) Corresponding streamplot of the velocity components
vx(x, y = 0, z), vz(x, y = 0, z) (see (2.4)) at y = 0.

In contrast to the SH patterns they bulge out symmetrically to the left and to the right
along the x direction when moving along y. The wavelength λx is given as λc(γ), while
λy = 8/5λx holds as evident from the plot of θ in the x, y plane in figure 10b). We leave
out a detailed discussion of the velocity field shown in figures 11 and 12 since one finds
only quantitative differences compared to the SH patterns in the previous section.

In analogy to the discussion of the SH patterns before, it is very useful to approximate
the midplane temperature field θ(x, y, z = 0, t) by a function h(x, y, t) (see Appendix B.2).
That is based on the leading Fourier coefficients with the wavevectors q1 = (qc, 0), q2,3 =
(qc,±sy) describing the basic transverse rolls (q1) and their destabilizing oscillatory
modes (q2,3). In addition the Fourier coefficient with wavevector q4 = (0, sy) is also
of interest. Exploiting certain relations between the phases of these Fourier coefficients
(see Appendix B.2) one arrives finally at:

h(x, y, t) = A0 cos (qcx) +B0 sin (qcx) cos[sy(y − vphast)] +D0 cos[sy(y − vphast) + ψC ],
(3.2)

with the phase velocity vphas = ω/sy. The amplitudes A0, B0, D0 obtained in our various
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a) b)

Figure 12. Same parameters as in figure 10; a) Streamplot of the velocity components
vx(x, y, z = 0), vz(x, y, z = 0) (see (2.4)) in the midplane z = 0. b) The z component of the
vorticity, (∇× v)z, for v in panel a).

Figure 13. Time evolution of standing waves over one time period T = 16.0tv, i.e. with
ω = 2π/T = 0.39237 again for γ = 6◦, ε = 0.07, ε0 = −0.33836.

DNS with different γ and ε have been listed in table 3; in addition one finds there the
frequency ω of the travelling waves together with the corresponding ω0 at the onset of
the OS-instability (see table 2). The amplitude D0, always considerably smaller than
A0, B0, vanishes for γ = 0◦ and describes a x−independent contribution to h(x, y, t)
which is, however, practically not visible in DNS snapshots. Inspection of (3.2) shows
that D0 lifts the reflection symmetry y → −y in the comoving frame (vphas = 0) due
to the constant positive phase shift ψC = π/4(1 + δψC) with a positive δψ < 0.05.
The representation of the downwards travelling waves is obtained from (3.2) by the
transformations vphas → −vphas and δψC → −δψc.

Oscillatory standing-wave patterns appear typically when starting our DNS using
restricted initial conditions (see Appendix A). A representative time sequence is shown in
figure 13, where the sidewise distortion amplitude of the rolls varies in time periodically
between a maximum and a minimum. The corresponding function h(x, y, t) for standing
waves (see Appendix B) reads as follows:

h(x, y, t) = A(t) cos (qcx) +B(t) sin (qcx) cos(sy y) +D(t) cos(syy); (3.3a)
A(t) = A0 +A1cos(2ωt− α), B(t) = B0 cos(ωt), D(t) = D0 cos(ωt− β). (3.3b)

The amplitude factors A1 and D0 (zero at γ = 0◦) are small and are practically not
visible in the DNS snapshots of h(x, y, t). For the representative example, γ = 6◦ and
ε = 0.07, our DNS were characterized by ω = 0.39237, A0 = 6.80, A1 = 0.15, α =
2.86, B0 = 3.58, D0 = 0.90, β = 0.71. As already mentioned, the standing waves were,
however, never stable and developed after superimposing arbitrary noise into travelling
waves.

In the planar case, γ = 0◦, we have compared our DNS with a previous one in the
literature (Meneguzzi et al. (1987)), which was performed for a small-aspect-ratio system
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Figure 14. Heteroclinic cycle with subharmonic, transverse and oblique patterns from a
DNS at γ = 1.5◦ with Lx = Ly = 8λc(γ) at ε = 0.165 (ε0 = 0.0945). The pictures
are sorted with increasing time t from left to right and top to bottom and correspond to
t = 0, 68, 195, 278, 702, 755, 788, 873tv.

(!) at ε = 0.127 , where Lx = λc = 2π/qc = 2.016 and Ly = 2π/sy = 2.79 for sy = 2.5.
According to figure 10 in this paper the frequency of the resulting standing wave was
about ω = 1.6. For comparison we have performed a DNS with restricted initial conditions
using a larger aspect ratio with Lx = 8λc and Ly = 6(2π/sy) = 0.935Lx and obtained
also ω = 1.6, which is, however, larger than ω0(γ = 0◦) = 1.394 in table 2. However, this
pattern was not stable, when continuing the DNS after superimposing arbitrary noise.
We arrived at a travelling-wave pattern with a much smaller sy = 2.083, which compares
well with sosy = 2.172. Also the frequency ω = 1.35 fits much better ω0(sy) = 1.394.

Note, that in the literature for γ = 0 also the less realistic free-slip boundary conditions
with respect to the velocity field have been applied (see e.g., Mishra et al. (2010); Dan
et al. (2017)). Though in this way the numerics is considerably simplified, one should be
aware of profound qualitative differences to rigid boundary conditions in particular with
respect to the vertical vorticity (Clever & Busse 1974).

The following section §4 is devoted to some complex patterns to be found near the
codimension-2 points or at larger ε.

4. DNS of complex patterns
In the previous section we have described the OS and the SH patterns for γ away

from the codimension-2 points. In their vicinity the patterns should show a tendency to
become more complex, as indeed demonstrated in §4.1 on the basis of some characteristic
examples. In addition we expect more complicated patterns at larger ε, which is confirmed
in §4.2.
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Figure 15. Coefficients A0(t) (solid line) and 3B0(t) (dashed line) in (3.1) as a function of time
(in units of tv) for the heteroclinic cycle in figure 14. The black bullets correspond to the times
of the images shown there.

4.1. Patterns in the vicinity of the codimension-2 points
According to figure 3 and table 2 the first codimension-2 point appears at γ1 = 1.023◦

with εos = εsh = 0.133, where λc(γ1) = 2.083. However, our DNS at a larger ε = 0.14
for Lx = Ly = 8λc(γ1) have always produced travelling waves with wavelengths λx = λc
and λy = Ly/5 = 3.237 where sy = 2π/λy = 1.94 differs not too much from sosy = 2.070.
In contrast, the frequency ω = 1.26 is not well approximated by ω0 = 1.314. There was
no trace of the competing SH instability, maybe because sshy = 1.672 deviates too much
from sosy . These general features remain robust, when increasing the horizontal size of
the system to Lx = Ly = 16λc(γ1) using 256×256 Fourier modes in the x−y plane. The
system produces again an OS pattern with λx = λc but a smaller λy = Ly/11 = 2.843
where sy = 2.14 > sosy . The frequency ω = 1.35 was now larger than ω0.

An analogous scenario was observed at the codimension-2 point γ2 = 2.183◦ where
εsh = εos = 0.117 (see table 2) and λc(γ2) = 2.044 . Here the DNS have always produced
at ε = 0.125 with Lx = Ly = 8λc(γ2) perfect SH patterns without any trace of OS motifs.
The DNS have locked into λx = λc(γ)2 = 2.043 and λy = (8/6)λx, which corresponds
to sy = 2.306 considerably different from sshy = 2.468. For larger Lx = Ly = 16λc(γ2)
and again with ε = 0.125 the DNS had more freedom and locked into λy = 16/13λc
corresponding to sy = 2.496 much nearer to sshy . The fact that sosy = 1.898 is considerably
smaller than the sy values selected in the DNS, might explain why the competing OS
instability has played no role.

Inspection of table 2 shows immediately that sosy monotonically decreases with γ while
sshy increases as long γ < 5◦. Thus there was the chance that in a DNS for γ between
γ1 and γ2 both stationary SH- and oscillatory motifs might appear. That was indeed the
case: In a DNS at γ = 1.5◦ for Lx = Ly = 8λc(γ2) with λc(γ2) = 2.03 and for ε = 0.165
slightly larger than the εin of both the SH and OS instabilities we found a persistent
heteroclinic cycle as shown in figure 14. One starts with a transverse roll pattern with
8 roll pairs, which first transforms into a SH pattern. Later we find a pattern with 7
oblique roll pairs which first become transverse, before the original 8−roll-pair pattern
is recovered. This scheme repeats itself every 873tv. We concentrate on SH-type pictures
in figure 14 and the corresponding Fourier modes with wavevectors q1,2,3 which describe
according to (3.1) a SH pattern. Thus generalizing the representation of stationary SH
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Figure 16. Heteroclinic orbit between OS, SH and transverse-roll patterns for γ = 6.169◦,
ε = 0.08 and ε0 = −0.3419 with Lx = Ly = 8λc(γ). The snapshots of h(x, y, t) are shown at
times t = 0, 140, 690, 890, 1130, 1300, 1360, 1490tv increasing from left to right and from top to
bottom.

a) b) c)

Figure 17. Domain chaos in a system with Lx = Ly = 20λc(γ) and the same parameters as in
figure 16 (γ = 6.169◦, ε = 0.08). Snapshots of the midplane temperature from a DNS started
with random initial conditions at consecutive times t = 3080(a), 3948(b) and 4198tv(c).

patterns in (3.1) (see also (B.1)) we use the time dependent amplitudes A0(t), B0(t)
shown in figure 15 to describe the SH motifs in figure 14. The times t, at which the
pictures are presented in figure 14, are marked with the black bullets on the time axis
of the figure 15. For the perfect transverse roll pattern at t = 0 the amplitude A0 is
maximal, while B0 = 0. Then A0 decreases and B0 grows for the following SH pattern.
Afterwards both A0, B0 essentially become zero for the oblique roll patterns, before the
transverse rolls appear again. It took approximately 10000tv for the cycle to become
stable and we followed it over 15 cycles in our simulation.

Finally, we address the codimension-2 point at γ3 = 6.169◦ for ε = 0.051, where a SH
instability with sy = 1.62 competes with an OS instability with sy = 1.92. A simulation
with ε = 0.08 led to a weakly chaotic sequence of patterns, which are shown in figure 16.
It took approximately 10000tv in our DNS before that characteristic pattern sequence
appeared for the first time, which then persisted afterwards. However, the time lapse
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Figure 18. Complex travelling wave pattern for γ = 0.5◦, ε = 0.172, ε0 = 0.163, Lx = 8λc(γ),
Ly = 0.906Lx. The pictures are sorted increasing in time from left to right at t = 3728, 3741,
3779, 3804, 3851tv. For the travelling waves we find ω = 1.62.

3500 3750 4000
t

10

20

30

40

Figure 19. Same parameters as in figure 18:The coefficients A0(t)/2 (upper line) and B0(t)
(lower line) in (3.2) as a function of time (in units of tv) The black bullets corresponds to the
times of the images in figure 18.

between the re-appearance of the transverse -roll pattern was not constant and varied
between 1000tv and 1600tv.

However, for the larger aspect ratio Lx = Ly = 20λc(γ3) with otherwise the same
parameters as before, we observed a different scenario. One finds a kind of domain chaos
as exemplified by the three snapshots in figure 17 taken at increasing time. The pictures
show a background of transverse rolls superseded by SH patches and some dislocations,
whose locations change with time.

4.2. Complex patterns at larger ε
In this section we discuss two very time-consuming simulations, to obtain a first

impression of the pattern dynamics for larger ε. The first example deals with OS patterns
for ε = 0.172 > εos = 0.111 and for γ = 0.5◦, where the system is slightly anisotropic. The
periodicity lengths have been chosen as Lx = 8λc(γ) and Ly = 5λy with λc(γ) = 2.018
and λy = (2π)/sy where sy = sosy = 2.147. First, using restricted random initial
conditions (see Appendix A) a standing wave pattern has been constructed, which was
stable after 350tv It is perfectly described by (3.3) with the amplitudes A0 = 71.4,
A1 = 3.7, B0 = 52.4. The frequency ω = 1.45 was comparable with ω0 = 1.376. Then we
superimposed noise and continued the run. In figure 18 we show representative snapshots.
Their inspection clearly demonstrates that besides the basic modes q1,2,3 additional
modes come into play. Nevertheless the contribution of the basic modes is still well
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Figure 20. Oblique SH pattern for γ = 50◦, ε = 0.15, ε0 = −0.8410, Lx = 8λc,
Ly = 1.087Lx. For the subharmonic pattern we find sy = 1.575. The simulations were
started with random noise. The pictures are sorted increasing in time from left to right at
t = 120, 440, 1800, 2540, 4800tv.

described by (3.2) except that we need time-dependent coefficients A0(t), B0(t), which
are presented in figure 19. They vary periodically in time with a period of about 123tv
much larger than the fast period τ = (2π)/ω = 3.9tv, where ω = 1.62 is now considerably
larger than the value ω = 1.45 for the standing waves above.

Finally we consider a complex SH-pattern for γ = 50◦ and ε = 0.15 > εshin = 0.05. Here,
according to figure 3b) the transverse rolls are also linearly unstable against oscillatory
modes. Inspection of figure 20 shows that these are indeed reflected in the transients of
a DNS starting with general random noise. But finally we arrived at a slightly oblique
stationary SH-pattern, which was stable.

5. Concluding remarks
In this paper we have presented a theoretical analysis of ILC for a low-Prandtl-number

fluid (mercury, Pr = 0.025), where the fluid layer includes an angle (90◦ + γ) with the
gravity vector g (see figure 1). The focus has been on large-aspect-ratio systems with
Rayleigh numbers R slightly above the critical values Rc(γ) in the spirit of a previous
study of ILC with Pr = 1.07 (Subramanian et al. 2016), where an excellent agreement
with the corresponding experiments has been achieved. In close analogy to that paper
our calculations are based on a bifurcation approach to determine the critical data Rc, qc
and the secondary instabilities of the primary roll patterns. In addition direct numerical
simulations (DNS) have been used to characterize the pattern evolution.

Inclining the fluid layer breaks isotropy and convection rolls with a definite orientation
are seeded at R = Rc. For instance, the uniform roll patterns produced at small γ have
been used to provide the appropriate initial conditions for experiments at γ = 0◦. This
procedure has been shown to be crucial to match the stability diagram of standard,
non-inclined RBC with experiments for Pr∼1 (Cakmur et al. 1997).

In general, the pattern types bifurcating at onset and their secondary instabilities
vary with γ. For not too small Pr > 0.264 (see e.g Subramanian et al. (2016)) there
exists a codimension-2 angle, γc2. It separates the regime of longitudinal roll patterns
at onset with their axes parallel to the incline from the regime of transverse ones with
perpendicular orientation. In particular for γ ≈ γc2 one observes then complex patterns
in experiments in agreement with the theory.

Convection in low-Prandtl number fluids for γ = 0◦ and R & Rc has also attracted con-
siderable interest in the past (see e.g. Rossby (1969); Libchaber et al. (1982); Meneguzzi
et al. (1987); Clever & Busse (1990); Thual (1992)). Here the primary bifurcation is
always to transverse rolls for arbitrary γ. However, an oscillatory secondary bifurcation,
leading to travelling waves, appears already very close to Rc, which has in particular
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motivated the theoretical studies. It seemed thus natural to investigate low-Prandtl ILC
for finite γ.

In general, the resulting patterns turned out to be more complex than anticipated. For
instance the secondary bifurcation of the transverse rolls leads either to oscillatory (OS)
travelling-wave patterns or to 3D stationary subharmonic (SH) ones, which alternate
three times with each other already in the fairly small interval 0◦ 6 γ 6 6◦. That
explains the appearance of complex patterns near the corresponding three codimension-
2 points in §4. In the spirit of an amplitude-equation approach the SH and OS patterns
are described by only three leading Fourier modes with a characteristic relation between
their phases (see §3).

For completeness it should be mentioned, that a strong sensitivity of the bifurcations
at small γ and small R & Rc has been also described recently in a theoretical analysis of
ILC in binary fluids (Mercader et al. (2019)). However, this system qualitatively differs
from ours: Already the primary bifurcation of the basic state is typically not continuous
and leads to travelling waves already at γ = 0◦ at R = Rc. Depending on γ a whole zoo
of different pattern types develops, which often are in particular confined to a small part
of the fluid layer.

Already decades ago it has also been demonstrated in convection experiments with
mercury (Libchaber et al. 1982) for γ = 0◦, that an additional magnetic field applied
parallel to the fluid layer has an important impact. This has been confirmed in many
theoretical studies (see e.g. Busse & Clever (1989)) and also continuously extended to
the turbulent regime (see e.g. Vogt et al. (2018) and references therein). In general, the
magnetic field leads to a preferred orientation of the roll axes parallel to the magnetic
field. Thus for instance a magnetic field along the incline exerts a kind of torque on
the standard transverse rolls for γ 6= 0◦ and small Pr. Thus one expects novel complex
convection patterns and their secondary bifurcations in this case already near onset,
which we plan to investigate in near future.

Appendix A. On the time integration of the OBE
The DNS in this paper is based on a pseudo-spectral code already used in Subramanian

et al. (2016). Thus according to (2.9) the simulations run in Fourier space on a discrete
set of N2 wavevectors q = (k∆qx, l∆qy) with −N/2 6 (k, l) 6 N/2 − 1. For the
periodicity lengths in this paper we use typically Lx = Ly = nλc(γ) with n = 8, 16, 20
and N = 128, 256, 320, respectively. In some cases we allow for Lx 6= Ly, which implies a
corresponding small difference between ∆qx and ∆qy. In this way it is possible to produce
periodic patterns with a prescribed wavelength λy that matches in Fourier space the
corresponding Galerkin Floquet vectors s with the y−component sy = (2π)/λy.

For the time integration we use an ’exponential time differencing method’ also de-
scribed in Appendix B1 of Subramanian et al. (2016). We found in general time steps of
dt = 0.002tv to be sufficient to resolve the dynamics of the patterns and to guarantee
robust results. In all cases we made sure that the secondary instabilities according to
the Galerkin analysis are perfectly reproduced in our DNS. In view of typical transients
of 1000tv and more before the patterns would become steady (see e.g. §3.2), our DNS
are in general very time consuming. Using κ = 4.62 ∗ 10−6m2/s for mercury the thermal
diffusivity time takes the value tv = d2/κ = 21.6s for d = 1cm. Thus our DNS needed
typically more than 5× 105 time steps in particular for the OS patterns.

Note, that in view of the periodic boundary conditions, the origin of the coordinate
system in the x− y plane can be arbitrarily shifted, when analyzing a single run. Thus a
shift by x0 = (x0, y0) with arbitrary x0, y0 leads to a phase factor exp[ix0 ·q] multiplying
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the original Fourier coefficients V (q, z, t) in (2.9). Consequently the amplitudes A0, B0

of the leading Fourier coefficients in (3.1) and in (3.2), (3.3) could be made real.
Usually our simulations have started with general random initial conditions. To save

computer time, in particular to construct standing waves, alternatively a kind of restricted
initial conditions has been used. First they are based only on the Fourier coefficients with
the wave vectors q1,2,3 which represent the functions h(x, y) in Appendix B. Furthermore
the Fourier coefficients had to fulfil the phase restriction in (B 3) and (B 10b). It was also
helpful, for smaller changes of parameters to use already existing results.

Appendix B. Signature of subharmonic and oscillatory patterns in
the DNS

The first impression of SH and OS patterns is simply obtained by looking at the
corresponding DNS pictures and their time evolution as done in §3 and §4. In this section
we discuss in more detail the SH and OS patterns in terms of the function h(x, y; t) which
derives from θ(x, y, z; t) at the midplane z = 0, when keeping only the leading Fourier
coefficients. These are directly provided by our pseudo-spectral code and the their analysis
gives an important clue to analyze SH and OS as discussed in the following subsections.

B.1. The function h(x, y, t) for SH patterns
The SH patterns are spanned by the dominant wavevectors q1 = (qc, 0) and

q2,3 = (qc/2,±sy). Thus h(x, y), the leading approximation of the midplane temperature
θ(x, y, z = 0) introduced in section 3.1 is in general given as:

h(x, y) = Re
{

exp(iqcx)Â+ exp(iqcx/2)
(

exp(isyy)B̂ + exp(−isyy)Ĉ
)}
, (B 1)

Â = |Â| exp(iφA), B̂ = |B̂| exp(iφB), Ĉ = |Ĉ| exp(iφC). (B 2)

It turns out that h(x, y) describes a perfect SH pattern, when the phases of the Fourier
coefficients allow the following representation:

φB = φA/2− ψ + aπ/4;φC = φA/2 + aπ/4 + ψ (B 3)

with a = ±1 and the phase shift ψ. Obviously (B 3) is equivalent to:

φB + φC = φA + aπ/2 (B 4)

The system is then only characterized by the moduli A0, B0 of the Fourier coefficients as
follows:

|Â| = A0, |B̂| = |Ĉ| = B0/2. (B 5)
The phase shifts φA and ψ can be put to zero by a shift of the origin of the x, y

coordinate system and one arrives at the most simple representation of h(x, y) in (3.1).
We found that the procedure described above works also when a SH pattern appears

only for finite time as in figure 14. One arrives then at time dependent amplitudes
A0(t), B0(t) as shown in figure 15.

B.2. The function h(x, y, t) for OS patterns
The discussion of the OS patterns follows closely the one for SH patterns, though it

is slightly more complicated since already the regular OS patterns oscillate in time. The
OS patterns are spanned by the dominant wavevectors q1 = (qc, 0) and q2,3 = (qc,±sy).
In addition it is useful to keep also the mode with wavevector q4 = (0, sy) as a small
correction.
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Thus in analogy to (B 1) we use the following ansatz for h(x, y, t):

h(x, y, t) = Re
{

exp[iqcx]
[
|Â(t)| exp[iφA] + |B̂(t)| exp[isyy + iφB(t)]+ (B 6)

+|Ĉ(t)| exp[−isyy + iφC(t)]
]

+ |D̂(t)| exp[isyy + iφD(t)]
}
.

For travelling waves the phases of the Fourier coefficients have to fulfil the condition

φB = ψ − ωt+ π/2 + φA;φC = −ψ + ωt+ π/2 + φA, φD = −ωt+ φ0D (B 7)

with the frequency ω. In analogy to (B 4) we arrive at:

φB + φC = 2φA + π (B 8)

The system is then mainly characterized by the moduli A0, B0 of the Fourier coefficients
as before and in addition by the small correction D0 as:

|Â| = A0, |B̂| = |Ĉ| = B0/2, |D̂| = D0 (B 9)

The amplitude D0 vanishes at γ = 0◦ and increases then slowly with increasing γ. Again
after a suitable shift of the origin of the coordinate system, φA, and ψ can be put to zero
and one arrives for h(x, y, t) in (3.2). The amplitudes A0, B0, D0 are time independent
for regular OS patterns as discussed in section 3.2. However, also intermediate travelling
wave patterns as in figures 18 are very well described by time dependent amplitudes
A0(t) and B0(t) (see figure 19).

Finally we come to the standing waves, which are represented as the travelling ones in
(B 6) except some minor modifications in the complex amplitudes as follows:

|Â| = A0 −A1 cos(2ωt+ α), |B̂| = |Ĉ| = B0/2 cos(ωt), |D̂| = D0 cos(ωt− β); (B 10a)
φB = ψ + π/2 + φA;φC = −ψ + π/2 + φA;φD = ψ. (B 10b)

Eliminating then ψ, φA as before yields h(x, y, t) given in (3.3).
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