
Electrohydrodynamic Convection in NematicsW.Pesch1, U.Behn21 Universit�at Bayreuth, D-95447 Bayreuth, Germany2 Universit�at Leipzig, D-04109 Leipzig, GermanyAbstract. The purpose of this review is to present a status report on the elec-trohydrodynamic convection in nematic liquid crystals. The considerable progressachieved in the past two years is emphasized.1 IntroductionPattern formation in uid systems driven away from equilibrium is a commonphenomenon in nature [1, 2]. A famous canonical example is the Rayleigh-B�enard convection (RBC) in simple isotropic uids which continues to bethe subject of numerous experimental and theoretical studies (see e.g. [3]).More recently the rich variety of dynamical structures found in liquid crystals(LCs) has attracted considerable and still growing attention.LCs are materials made up of highly anisotropic organic molecules in astate that reects the anisotropy [4, 5]. Thus LCs have become a prime modelfor the study of pattern formation in anisotropic systems. There are severalclasses among which nematic LCs (nematics) play a dominant role in thisarticle. Nematics are fully liquid without long-range translational, but withlong-range uniaxial orientational ordering of the molecules. As a result ofthe coupling of the molecular alignment axis (described by the director n̂)with mass ow, electric and thermal currents, the hydrodynamic equationsinvolve numerous nonlinearities (see Sect.2), which easily lead to instabili-ties when a state of nonequilibrium is maintained (see e.g. [6]). Convectiveows can be driven either electrically through space charges that naturallyarise in an anisotropic conductor in the presence of spatial variations (elec-trohydrodynamic convection, EHC) or thermally through buoyancy forces(Rayleigh-B�enard convection, RBC).EHC has attracted most of the attention and will be exclusively discussedin this review. In the typical thin-layer geometry shown in Fig.1a the nematicis sandwiched between glass plates (separation d � 10 � 100�) with trans-parent electrodes. The surfaces are treated to provide uniform anchoring ofthe director, in most cases along the x direction ("planar" or "homogeneous"alignment), but sometimes also in the z direction ("homeotropic" alignment).



2 W.Pesch, U.BehnAbove an applied (critical) voltage Vc � 10V (typically low-frequency ac)convection rolls appear with associated director distortions, which are easilydetected optically. The spacing of the rolls is of order d except in the higher-frequency "dielectric range". Fig.1b shows a typical pattern with normal rolls,i.e. normal to the undistorted director in the x direction.
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y ^ Fig.1a. Cell geometry with section ofa roll pattern for EHC (planar con-�guration). E = electric �eld, v= ve-locitey. Fig.1b. Normal roll pattern for EHCwith a dislocation.From the experimental point of view EHC is attractive because of theeasily accessible control parameters like electric and magnetic �elds. Thecharacteristic times are typically short (� sec) and the extension of the pat-terns large (up to 1000 perfectly aligned convection rolls). For the theory itis important that spatio-temporal complexity appears quite often already inthe vicinity of the convection onset. Thus common perturbational schemes,like the order parameter approach can be put on a sound basis and theirreliability can easily be evaluated.Liquid crystals are complicated and an intuitive understanding of all themechanisms hidden in the nematohydrodynamic equations is not easy. In fact,the remarkable progress in the last two decades is not imaginable without theparticularly close collaboration between experimental and theoretical groupsin this �eld. There are numerous examples (only some of which we will men-tion explicitly) where experimental �ndings have motivated the theoreticale�orts and vice versa. For a classical review of convective instabilities in LCs,see [7] and for EHC one may consult the books of Blinov [8] and Pikin [9] andthe review articles [10, 11, 12, 13, 14]. In recent overviews [15, 16] in particular



Electrohydrodynamic Convection in Nematics 3the progress achieved in the years from 1984 - 1996 was emphasized.The investigation of convection scenarios in LCs is also a problem ofmaterials. In experiments the standard reference materials MBBA (4-meth-oxybenzylidene-4'-n-butyl-aniline) or a mixture, Merck Phase 5, have typi-cally been used (sometimes doped with an ionic substance). These are theonly room-temperature nematics with dielectric anisotropy, �a < 0, where vir-tually all the material parameters have been measured (for tabulated values:see e.g. [17] for MBBA, [18] for Phase 5 and references therein). Since thesenematics are similar in their properties, the investigation of other classes ishighly desirable and promising. A recent successful example is the new verystable material I52 (4-ethyl-2-uoro-4'-[2-(trans-4-n-pentylcyclohexyl)-ethyl]-biphenyl) doped with iodine [19, 20]. Even at onset qualitatively new localizedstructures (\worms") [21] have been detected, which provide a new challengefor the theory. This applies also to materials where one can switch continu-ously from the nematic to the smectic phase by decreasing the temperature[22].In the present article we will concentrate on the most recent results invarious realizations of EHC. In addition we will focus on an interesting topicin detail which could be addressed only briey in the previous reviews [15, 16]because of space limitations. The restoring forces on the director in LCs arenot very strong and its dynamics is susceptible to very weak external bias.In hindsight it is therefore not too surprising that for the �rst time the inu-ence of thermal noise on a continuous nonequilibrium phase transition wassuccessfully analyzed in nematics [23, 24]. In this paper it will be demon-strated that a controlled application of noise is very attractive both from theexperimental and theoretical point of view.After the introduction and explanation of the basic equations (Sect.2)the theoretical concepts (the linear and weakly nonlinear analysis) will besketched in Section 3. Section 4 deals with various new aspects of EHC inthe planar con�guration and in Section 5 the homeotropic con�guration isdiscussed. Section 6 is devoted to the noise-driven EHC near threshold. Fi-nally, in the General Conclusions (Sect. 7), we shall mention some perspec-tives for future work. Furthermore a brief connection to other hydrodynamicinstabilities in nematics is made.2 Basic equations and instability mechanismsThe dynamics of liquid crystals is described by a well accepted set of macro-scopic equations (see e.g. [4, 5, 25, 26]). Here we will sketch only the mostsimplest version pertaining to nematic LCs.In the nematic state the isotropy is spontaneously broken and the averagedmolecular orientation is described by the director n, i.e. a unit vector where�n are equivalent. The dynamical balance of torques on the director n isdetermined by: 1n� _n = n� (hel + hvis) (1)



4 W.Pesch, U.Behnwhere the dot stands for the material derivative ddt + v � r. In Eq. (1), theelastic molecular �eld, hel , derives from the elastic free energy density fel:fel = 12 [ k11(r �n)2 + k22(n � r � n)2 + k33(n�r� n)2 ] (2)�12�0�a(n �H)2 � 12�0�a(n �E)2according to the relationship(hel)i = �@fd@ni + @j @fd@(@jni) : (3)The k11; k22; k33 terms are associated with splay, twist and bend distortionsof the director �eld. The importance of electric (E) and magnetic (H) con-tributions is determined by the anisotropy of the magnetic and electric sus-ceptibilities �a = �k � �? and �a = �k � �?, respectively.The viscous part of the molecular �eld, hv, can be written as:hv = ��2D � n� �3n � D (4)where the tensor D characterizes the velocity shear (Dij = @vi=@xj). Since�2 < 0, and 1 = �2��3 > 0 (see Eq.(1) with j�2j � �3) the torque tends torotate the director in order to avoid the director-transverse velocity gradientsn� Dn.Themomentumbalance results in the (generalized) Navier-Stokes equa-tion for the velocity �eld �m dvdt = fB +r �T (5)with the bulk force fB to be discussed below and the stress tensorTij = �p�ij � @fel@nk;ink;j + tij (6)where �m denotes the mass density and p the pressure. The viscous contri-bution tij contains the six Leslie shear viscosity coe�cients �i [27]tij = �1nknmAkmninj+�2niNj+�3njNi+�4Aij+�5ninkAkj+�6njnkAki:(7)with the positional strain tensor Ai;j = 1=2(Di;j +Dj;i). There exists also anorientational strain (� �2; �3, cf Eq.(7)) which is associated with the directordynamics relative to the local solid body rotation (with the rate 12curlv):N = dndt � 12(curlv � n): (8)With the use of an Onsager relation �6 � �5 = �2 + �3 the number ofindependent parameters can be reduced [28]. Incompressible ow is assumed



Electrohydrodynamic Convection in Nematics 5(r � v = 0), which is guaranteed by the introduction of the toroidal andpoloidal velocity potentials (see [29]).Crucial for the occurrence of EHC is the bulk force fB in the Navier-Stokesequation (5): fB = �elE+ (P � r)E; P = (�� 1)E: (9)The �rst term in fB is the classical Coulomb force on the charge density �el.Much less important is ponderomotive force in the second term which con-tains the macroscopic polarization P (for the dielectric tensor � see Eq.(11)).In principle there exist also exoelectric contributions to P [30, 31]. Theyseem to be negligible except for very thin cells and for not too large ac fre-quencies [32, 16, 26]. The equation determining �el is obtained from chargeconservation and Poisson's lawd�eldt +r � (� �E) = 0; �el = r � (� �E): (10)Here the dielectric and conductivity tensors � and � (typical for uniaxialanisotropy) are given by:�i;j = �? + �aninj; �i;j = �? + �aninj: (11)The assumption of an anisotropic, but �xed ohmic conductivity is character-istic for the standard model. A more general ansatz (the \weak-electrolyte"model, WEM [33]) is discussed in Section 4.2.According to the standard model (SM) described above one can distin-guish between three relaxation-time scales for the director (�d), the velocity(�visc) and the charge (�q). The following expressions are easily derived:�d = 1d2=(�2k11); �visc = 2�md2=(�2�4); �q = "0"?=�?: (12)�d is typically the longest time (1 � 10 sec) followed by �q (� 10�3s). Evenshorter is �visc ( 10�5s). Thus the velocity �eld can usually be treated adia-batically (neglect of "inertial terms").Now we are in a position to discuss the basic driving mechanism forEHC. The important point is that in almost all nematics �a is substantiallypositive (typically �a=�? � 0:3 � 1). Choosing materials with negative oronly slightly positive dielectric anisotropy �a (here the materials show greatdiversity) one easily sees that in the presence of an applied �eld E and witha (small) spatial uctuation of the director n a space charge �el results (nosolution of Eqs. (10) with �el = 0). Roughly speaking the charges are focusedat locations where the director bends. The bulk force in the Navier-Stokesequation (5) may then overcome viscous stresses and drive a velocity �eld v.Via the viscous coupling (see Eq.(1)) this may enhance the spatial variationof the director and thus generate an instability. For low frequencies and formaterials with not too large dielectric anisotropy the threshold voltage is ofthe order Vc � p�2k11=(�?�q) and the introduction of the reduced controlparameter R = V 2 �?�q�2k11 is often useful.



6 W.Pesch, U.Behn3 Elements of the Theoretical AnalysisThe theoretical methods for analyzing pattern forming instabilities are quiteextensively discussed in the literature (see e.g. [2, 34, 35] and [36] in particularfor nematics) The set of macroscopic equations as presented in the previoussection can be written in the following symbolic form:LV +N2(VjV) +N3(VjVjV) + � � � = (B0 + B1(V) + B2(VjV))@V@t : (13)V = (�;n;v; ::::) stands for the collection of �eld variables involved inEHC; they are choosen in such a way that V = 0 corresponds to the noncon-vecting ("basic", "primary") state. The components of the vector operatorsN2, N3 : : : are quadratic, cubic: : : in V and its spatial derivatives, whereasthe quantities L and Bi represent matrix di�erential operators of the order inV indicated. A reformulation of Eq.(13) in Fourier space is often appropriatewith respect to the horizontal directions x = (x; y) of "in�nite" extent. In thetransverse direction (z) the boundary conditions are satis�ed by expandingVwith respect to a suitable complete set of test functions (Galerkin method).The onset of the instability is obtained from a standard linear stabilityanalysis of the basic (primary) state. For a certain Fourier mode U(q) withthe wave vector q = (q; p) one arrives from Eq. (13) at an eigenvalue problem:�B0(iq; @z; R)Uq(z) = L(iq; @z; R)Uq(z); (14)where R denotes the main control parameter (e.g. the squared voltage in thecase of EHC).The eigenvalue �(q; R) = �(q; R) � i
(q; R) with the largest real part,determines the growthrate � and the frequency 
 of planforms near onset.The condition �(q; R) = 0 de�nes the neutral surface R = R0(q). MinimizingR0(q) with respect to q gives the threshold Rc = R0(qc) with the criticalwavevector qc = (qc; pc) and the critical frequency 
c = 
(qc), which van-ishes for a stationary bifurcation (the more common case) but di�ers fromzero for a Hopf (oscillatory) bifurcation.In an axially anisotropic system like planar EHC, one speaks of \normal"rolls (see Fig.1a) if qc is parallel to the preferred direction (pc = 0). If qc isat an oblique angle, one speaks of "oblique" rolls (see Fig.2a below). Clearlyone then has the two symmetry-degenerate directions ("zig" and "zag") whichmay superpose to give rectangles. In the case of a Hopf bifurcation one hasa degeneracy between waves traveling in opposite directions, which may alsosuperpose to give standing waves. In the oblique-roll case even four degeneratemodes are involved.In EHC, for the usual case of driving with a pure ac �eld of angularfrequency ! = 2�f , the eigenvector Uq of Eq.(14) inherits the additionalperiodic time dependence and the eigenvalue � becomes a Floquet coe�cient.Then there is an additional discrete symmetry (z; t)! (�z; t+ 1=(2f)) and



Electrohydrodynamic Convection in Nematics 7each component ofUq has a de�nite parity: Generally the "conductive" mode(nonvanishing time average of all �elds except the induced electric potential�) destabilizes �rst at low frequencies f . Above a "crossover frequency" fdthe "dielectric" mode with the opposite parity determines the threshold. Theexistence of these two regimes planar EHC was �rst pointed out by the Orsaygroup [37, 38] (for further details see [12, 13, 16]).A good understanding of the regime slightly above threshold is conven-tionally achieved by the weakly nonlinear analysis [39, 40, 1, 34]. The basicidea in its rather general form (for a recent more detailed presentation see[41, 42, 36]), is to reduce the phase-space dimension of the system by expand-ing V in an appropriate basis of states, characterized as the "dynamicallyactive" ones [34]. At �rst the linear modes in Eq. (14) of positive or slightlynegative growthrate are included in this set. Their expansion coe�cients A(q)correspond to order parameters, which vanishes at threshold. By a systematicexpansion up to cubic order in A one arrives at the order parameter equa-tions for the A(q) [36, 43, 41], which permit the calculation of roll solutionsand their stability at threshold. In particular the universal features becomemore transparent when the order parameter equations are reformulated inreal space in terms of amplitude (envelope) or Ginzburg-Landau equations(GLE), for which the fast spatial variations (� q�1c ) are separated out. Thisreal-space formulation is essential when it comes to the description of morecomplex spatio-temporal patterns with disorder and defects, which have beenstudied extensively in EHC slightly above threshold (see Fig.1b). One endsup with the famous (slightly generalized) Ginzburg Landau equation [44]@tA = �(qc � ir; �)A� jAj2A (15)where � is the linear growth rate of Eq.(14). Clearly � is zero at threshold� = (R�Rc)=Rc = 0, r = 0 and should be expanded in both arguments. Atthreshold it is su�cient to keep the following terms�(qc � ir; �) � �+ �21@2x + 2a�1�2@x@y + �22W@2y � iZ�1�22@x@2y � �42@4y : (16)The various constants in Eq.(16) determine the curvature of the neutral curveat � = 0.On this level the expansion can be cast into an overall expansion schemein terms of �1=2, or equivalently A. In the anisotropic case, where there isno continuous degeneracy of the critical mode(s), one may in general assume� � A2 � @t � @2x � @2y , so that the higher order terms � @x@2y and @4y dropout (W = O(1)). The terms in Eq. (15) thus become uniformly of order �3=2.Going back to Eqs.(15, 16) with a = 0 it is easy to see that a decreaseof W from positive to negative value owing to the change of some secondarycontrol parameter, like the frequency in EHC describes a transition fromnormal to oblique rolls. Details of this transition, which is the analog ofa Lifshitz point in the theory of equilibrium phase transitions, have been



8 W.Pesch, U.Behndiscussed elsewhere [45, 17, 46, 47]. The corresponding uniform scaling � �3=2as in Eq.(15) is recovered with W � �1=2 � @x and now @y � �1=4. Thiscorresponds to the scaling adopted in isotropic media. In fact the well-knownNewell-Whitehead-Segel amplitude equation for isotropic systems [48, 49]can now be obtained as the special case W = 0 and Z = �2 in Eq.(16).In the case of a Hopf bifurcation (as observed in EHC) all the coe�cientsof Eq.(15,16) become complex. The resulting celebrated "complex Ginzburg-Landau equation" (CGLE) exhibits transitions (e.g. at the Benjamin-Feirinstability) to various forms of spatio-temporal chaos and is presently studiedintensely (for general reviews see e.g. [2, 34]).The general structure of GLE's can be deduced a priori from the sym-metries in a system as for instance the invariance properties with respectto space- and time translations or suitable reections. The symmetries alsomanifest themselves in the linear growth-rate function (16). In simple casesvery few coe�cients determine the GLE, which can be extracted by com-parison with the experiments. But in general for a quantitative comparisonwith experiments the often tedious calculation of the coe�cients is inevitable[17, 12, 41, 50, 33, 16].The GLE(15) determines only the stability of rolls with respect to dis-turbances of the generalized Eckhaus type, i.e. slow modulations of the rollspacing and undulations along the roll axis [45]. For the description of sec-ondary bifurcations and modulated roll patterns away from threshold theweakly nonlinear analysis must be extended through the consideration of ad-ditional modes. For instance nonanalytic \mean ow " contributions of theorder � A2 have been included [43, 51].In the simplest version the equation for the mean-ow amplitude B as-sumes the form:�c1@2x + c2@2y�B = q1@x@yjAj2 + q4@y �iA�@2yA + c:c:�+ ::::: (17)Eq.(15) is supplemented by a coupling term term � A@yB. The mean ow isexcited by long-wavelenght modulations of the pattern A(x; y; t). Since the�eld B satis�es an anisotropic Poisson equation, its long-range character isevident. In nematics the mean ow turns out to enhance transverse modula-tions (q4 > 0) in distinct contrast to isotropic uids in most cases (q4 < 0)[43].Very recently is has been emphasized that in EHC other slowly dampedmodes have to be included in the set of active modes besides mean ow.Their inclusion leads to additional equations, which have a structure similarto Eq.(17). Most important are the twist modes of the director n, which cor-respond to a rotation of n in the plane of the layer. They are weakly dampedand can easily be excited near threshold. In the case of homeotropic aligne-ment with rotational invariance this is obvious [52]. Any con�guration with a�nite in-plane component of the director spontaneously breaks a continuoussymmetry, namely the isotropy. The growthrate of the associated Goldstone



Electrohydrodynamic Convection in Nematics 9modes, which tend to restore the isotropy by a rotation of the in-plane di-rector approaches zero in the homogenous case and is consequently small forslow modulations. But in the planar case inspite of the elastic torques due toanchoring of the director at the boundaries the damping of the twistmode isalso weak [56].The coupling of a short-wavelength patterning mode to a weakly dampedlong-wavelength one (like a Goldstone mode) readily leads to complex-spatiotemporal patterns at threshold. One should mention a 1d model for seismicwaves, where a spontaneous symmetry breaking is also important[53] or thecoupling to a concentration mode in binary uids [54]. The occurence oflocalized "worm" structures [21] and their modelling by a slow "charge-mode"[55] will be discussed in Sect.4.2.An order-parameter approach for the regime further above threshold iscertainly less systematic than the derivation of Eq.(15) since for instancethe �-scaling is no longer beni�cial. Therefore fully nonlinear calculations areindispensable. One follows the approved method in isotropic RBC: Galerkinexpansions are applied and the resulting coupled highly nonlinear equationsfor the expansion coe�cients are solved by Newton methods. Afterwards thesolutions are tested for stability.On the basis of numerical results and of comparison with experimentsit has been demonstrated that EHC in nematics is one of the very fewcases where secondary (and even higher bifurcations) can be captured semi-quantitavely by an order-parameter approach (see e.g. [56]). A further veryuseful simpli�ed description makes use of a suitable phase-di�usion equa-tion ([57]), which allows for a transparent description of the quite intricatebifurcation scenarios in EHC [58]. Convection instabilities in nematics aretherefore an important paradigm for the validation of a reduced dynamicaldescription of pattern forming systems in general.4 EHC in the planar con�guration4.1 General backgroundThe mechanism for the instability in EHC is based mainly on space chargesgenerated by preferential conduction along n̂ ("charge focusing", see Sect.2).The basic idea has been suggested by Carr [59] and incorporated into a �rstone-dimensional model by Helfrich [60]. A �rst generalization to include thecommon case of ac driving followed almost immediately [37, 38]. It becameclear that one has to distinguish between the low-frequency "conductive"and the "dielectric" regime above a certain transition frequency fd. In thefollowing sections we will �rst concentrate on the conductive regime.For example, the need to go beyond one dimensional models became evi-dent on the basis of the observation of speci�c three-dimensional structures,called oblique rolls [61, 62, 63, 64]. At low frequencies they can nucleatealready at threshold, but otherwise appear at a secondary bifurcation. A



10 W.Pesch, U.Behnrepresentative pattern is shown in Fig.2a. One observes domains with twosymmetry-degenerate directions ("zig" and "zag") separated by walls. Notethat such a kind of spontaneously broken chiral symmetry is unique foranisotropic systems. In fact, the fully three dimensional linear stability anal-ysis of the standard nematohydrodynamic equations (see Sect.2 and ,e.g.,[17, 16] for references) has yielded the properties at onset of the instability:the threshold voltage and the wavevector of the twodimensional patterns. Theagreement between experimental and theoretical results is typically quite sat-isfactory (see Fig.2b).
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Fig.2a. Zig-zag pattern after increas-ing the voltage in Fig.1b. Fig.2b. Threshold curve for EHC asfunction of frequency. Experimentalpoints from [65].However the \standard model",SM, as described in Sect.2 ,where LCs aretreated as ohmic conductors is incapable of explaining the Hopf bifurcationleading to travelling waves, which are often observed in su�ciently thin layers(below about 50�) and clean materials (low conductivity) [63, 66, 67, 68]. Anextension (the "weak-electrolyte model", WEM), where electric transportin the nematic is described in terms of two mobile ion species (of oppositecharge) which are coupled via a slow dissociation-recombination reaction[69,33] has proven to be successful (see Sect.4.2).In the further progress of the theory the weakly nonlinear analysis interms of Ginzburg-Landau amplitude equations [17, 12] have provided in-formation on the Eckhaus stability boundaries of periodic roll patterns, ingood agreement with experiments [70, 71, 72]. An even more sensitive testis the analysis of the dynamics and interaction of defects (dislocations) inideal patterns, which compares well with experiments [73, 74, 75, 76] too.It was realized that mean-ow e�ects are very important in the transition



Electrohydrodynamic Convection in Nematics 11from ordered periodic to weakly turbulent patterns [47, 77, 78, 43] (for aphenomenological treatment, see [79, 80, 81, 82]).Fully nonlinear theoretical studies have followed [83], which put the con-cept of abnormal rolls, at �rst observed in homeotropic EHC, [84] on asound basis. At low frequency their bifurcation is usually preceded by along-wavelength zig-zag instability; at higher frequency they appear aftera secondary bifurcation of normal rolls. The wave vector of abnormal rollsis parallel to the preferred x -direction, but the underlying director �eld hasexperienced a spontaneous rotation in the x�y plane. Previous experimental�ndings in EHC in di�erent geometries are now understood for the �rst timeand new experimental activities have been motivated. The abnormal rollswill be discussed in detail in Sect.4.3. Very recently the dielectric regime hasattracted considerable attention. For instance a �rst convincing explanationfor the common chevron pattern has been given (see Sect.4.4).4.2 The weak electrolyte model (WEM)The WEM model [33, 69] has provided the basis for the understanding ofthe Hopf bifurcation observed quite frequently at threshold [85, 86]. For aHopf bifurcation two processes that compete on a comparable time scale arenecessary. One might think of the director and charge relaxations, but theydo not compete. Instead they support each other usually; in addition the timescales (12) are very di�erent; the director relaxation is much slower than allother processes, and thus determines the dynamics.According to the WEM model it is assumed that a slow process is con-nected with the relaxation of the mobile ion densities n+ and n� on the timescale �rec, which may results from a dissociation-recombination reaction. Onethus obtains for singly charged ions�el = e(n+ � n�); � = ��0; (18)where � = e(�+?n+ + ��?n�); �0ij = �ij + �a�?ninj : (19)Here ��?; ��jj are the ionic mobilities perpendicular and parallel to the di-rector, respectively. For simplicity the anisotropies have been assumed to bethe same for both types of ions so that �a=�? = ��jj =��? � 1. Thus � is anadditional variable now. From the balance equations for n+ and n� one easilyrecovers Eq.(10) and in addition one obtainsd�dt +r � ��(�+? + ��?)� + �+?��?�el�� (20)= �eq2�rec h1� (�+��?�el)(���+?�el)�2eq i � 1�rec h(� � �eq) + �+?���?2 �eli ;where �eq = e(�+? + ��?)neq contains the equilibrium ion density neq. Thelast expression is obtained by linearization in the quantities n+ � neq and



12 W.Pesch, U.Behnn�� neq. In this model the e�ect of ion accumulation on the conductivity isthus included, whereas ionic di�usion is neglected as in the SM. The chargeaccumulation counteracts the standard (Helfrich) mechanism of generation ofspace charges. If the time scale �rec is su�ciently slow one can expect to �ndan oscillatory behavior of the system at threshold, i.e. a Hopf bifurcation.The detailed linear stability calculations for the WEM model have beenperformed [69, 33] using the same approximations that led to the analyticthreshold formulas within the SM [87, 17, 12, 16]. It is found that there isan upward shift in the stationary threshold, which may be quite small, andmore importantly, that indeed a Hopf bifurcation occurs [85, 18] with criticalfrequency !H�d = 2�fH�d = Rc~�C1 + !02s1� �(1 + !02)���dRc~�C �2; (21)when the expression under the square root is positive. Here R = V 2 �?�q�2k11 isthe reduced control parameter (see Sect.2), ~�2 = �+?��?1�2=(�?d2) is pro-portional to the geometric means of the mobilities and !0 = !�q� with � =(�jj=�?)q02+p02+1(�jj=�?)q02+p02+1 is a reduced frequency. Moreover �� = �[��1rec+���1d R~�2�=(1+!02)] (< 0) is the damping rate of the (new) WEM mode. Its dominant con-tribution is usually just determined by the ion recombination rate 1=�rec. Thefactor C [33] contains only SM quantities and is about one (see Ref. (28) in[86] for a misprint in [33]).For the Hopf bifurcation to occur, i.e. for a positive argument of thesquare root in Eq.(21), the quantity �d=(~��rec) must be su�ciently small.This requires that the recombination of ions is su�ciently slow and that thelayer is su�ciently thin and clean. Note, however, that for materials withnegative dielectric conductivity, where Rc diverges at the cuto� frequencyfd (in the approximation used), the Hopf condition is always satis�ed nearthe cuto�, and the Hopf frequency, which is then just given by the prefac-tor of the square root in Eq.(21), becomes large there. This appears to beconsistent with the experiments [63, 66, 67]. Moreover, the prediction of thetheory, that for materials with vanishing dielectric anisotropy the Hopf fre-quency becomes essentially independent of the external frequency, has beenveri�ed experimentally using the material I52 [85]. I52 has the property that�a changes from negative to positive values when the temperature is increasedthrough T � 60�C.A quantitative test of Eq.(21) with experiments has been performed re-cently for the nematic Phase 5, where (almost) all material parameters havebeen measured. In Fig.3a the Hopf frequency (21) is shown as function ofthe ac frequency (solid line). The units are chosen according to the predictedtheoretical scaling behavior: !h � d�3��1=2? is easily obtained from Eq. (21),if the d�dependencies of the director relaxation time �d, the threshold Rc



Electrohydrodynamic Convection in Nematics 13and of ~� are combined; the proportionality � ��1=2? is due to ~�. The ac-frequency scale in !0 is set by �q. The agreement with the WEM theory isvery convincing.
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14 W.Pesch, U.BehnThe theoretical analysis of the worms is challenging. One-dimensionalpulses have been experimentally discovered in binary uids [89, 90] and havebeen obtained as solutions of the one-dimensional CGL [91] (for further refer-ences, see [55]). Two-dimensional localization in such hydrodynamic pattern-forming systems is not well documented in experiments. From theoreticalstudies (see e.g. [92, 93]) one expects that 2d-localized structures can be ob-tained in the case of a subcritical Hopf bifurcations. Thus an ad hoc model[94] has been proposed in the form of an anisotropic Swift-Hohenberg equa-tion with adjustable complex coe�cients and a quintic nonlinearity to cap-ture the subcritical bifurcation. It is not too surprising that indeed localizedstructures similar to the experiments could be produced. However, the basicassumption of the subcritical Hopf bifurcation in planar EHC is in conictwith theory and experiments [95].
Fig.4. Localized worm structures for � = 0:012 left and for � = 0:057 (right) (CourtesyG. Ahlers)Therefore a more realistic model was recently proposed [55] where twoamplitude equations for oblique travelling rolls were coupled to a slow mode,which might be identi�ed with the charge-accumulation mode. Even details ofthe experiments could be reproduced satisfactorily. From a theoretical pointof view the model is also very interesting, since it involves a new mechanismfor the localized states. One has a forward Hopf bifurcation for extended cell-�lling patterns in agreement with the \microscopic" theory [86]. However,the transition to localized states is predicted to be hysteretic in line with therecent experimental results [95]. The �nal step, i.e. the derivation of the newequations from the WEM model, has not yet been accomplished.While the localized worms are certainly spectacular in EHC for I52, thecell �lling-states developing from the supercritical Hopf bifurcation are alsovery interesting. The system is below a Lifshitz point, obviously with a bifur-cation of four degenerate oblique-roll solutions (zig-zag, left-right traveling).



Electrohydrodynamic Convection in Nematics 15Their interaction can easily lead to various types of spatio-temporal chaos(STC) near threshold [96], which can be controlled through a variation ofthe conductivity of the nematic. The experimental have stimulated e�orts oftheoretical modeling [97].4.3 Abnormal rollsConventional normal rolls (NR) can only exhibit point defects (dislocations).Oblique rolls (OR) break the reection symmetry y ! �y and thus canshow in addition line defects (grain boundaries) separating domains withwavevectors (q; p) (\zig") and (q;�p) (\zag") [98, 99]. In Fig.5a,b typicalgrain boundaries along x̂ and ŷ are shown for the nematic Phase 5.Surprisingly, in an apparently NR structure, line defects have been ob-served as well. With increasing voltage (i.e. �) the angle between the roll axisand ŷ is found to systematically decrease and may even reach zero. In thisprocess the grain boundary of Fig.5b is transformed into the wall of Fig.5c.That the two domains on either side of the wall are not equivalent becomesmore evident as � is further increased. Indeed, one then observes the branch-ing of an additional wavevector (kx;+ky) on the right side, and (kx;�ky) onthe left side (see Fig.5d).
a b

x

y

c dFig.5. Representative snapshots of the experimental evolution of electroconvection ina cell of thickness 5�m, at !�0 = 0:3. a, b: zig-zag structures near threshold (� � 0:02),with \horizontal" and \vertical" grain boundaries. c: wall at � � 0:40 originatingfrom the grain boundary of b. d: varicose structures at � � 0:70, originating from thestructure c. The two modulation directions are indicated by the white lines.The existence of a two-variant state of normal rolls indicates a new sym-



16 W.Pesch, U.Behnmetry breaking. Those rolls have been named \abnormal rolls" (AR), a termintroduced in the context of homeotropically aligned cells [84] for rolls withan optically detected symmetry breaking, see Sect.5 below.AR cannot be understood by the standard weakly nonlinear approachwhere the roll structure is characterized unambiguously by its wavevectorand the linear eigenvector at threshold (see Sect.3).
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18 W.Pesch, U.Behn!�0 ' 2:8 (see the cross in Fig.7), the varicose instability thus becomes along-wavelength modulational instability of the skewed-varicose type [101].The substance MBBA has no Lifshitz point. Therefore the part of the stabilitydiagram for ! > !L in Fig.7 is shifted to lower !.The detailed bifurcation sequences can be discussed with the help of Fig.8at a representative frequency !�0 = 0:5 for patterns with wave vectors q =(qc; p). In contrast to Fig.6 the amplitude nHy is not shown. For � � �zz � 0:05normal rolls (p = 0) are stable. Above �zz a bifurcation to oblique rollswith �nite p takes place, where a whole p band is available except for theunstable " bubble" marked by the dashed line. At �ARstab (in the ZZ-unstableregime within the bubble) abnormal rolls bifurcate. They become ZZ-stableat �ARstab.It seems that in experiments when slowly increasing � beyond �ZZ the pat-terns follow at �rst more or less the boundary curve of the unstable bubble.Thus the angle � = arctan(q=p) of the wavevector with respect to the x-axisdoes not become too large. The pattern appearing beyond the ZZ-instabilitycan be described at �rst as rolls with a smooth undulation along their axis.If � is increased further (presumably above �AR) zig-zag patterns with sharpboundaries as shown in Fig.2a develop. The sequence NR-undulated rolls-ORhas been �rst described in Ref. [62]. For higher � � �BV it is a pattern selec-tion problem whether the system actually uses the opportunity to return toAR patterns with p = 0 or not. In most experiments reported up to now pdecreases but p = 0 is not reached (except in the case of a wall as in Fig.5c).However, there is a new very promising approach to map the stability dia-gram in Figs. 7,8. directly. A strip-like cell is used where straight rolls alongthe long side seem to be strongly preferred such that above �AR perfect ARare recovered. The whole scenario is quite complicated and involves modu-lated roll patterns, which can exist in the unstable bubble when decreasing� starting from above �ARstab. There exist already �rst results based on aphase di�usion equation which seem to explain the rather intricate phenom-ena [58, 57].In Ref. [83] further examples are given which prove that the concept ofabnormal rolls is very important for EHC in nematics. There exists semi-quantitative agreement with experiments, which now allow for a new in-terpretation. This applies for instance to various kinds of (dynamic) defectstructures [98, 99, 102], which are presumably triggered by the SV-instabilitesin Fig.7. The bifurcation phenomena in particular associated with abnormalrolls appear to be generic for planar nematic convection, since they are alsofound in Rayleigh-B�enard convection of nematics [56].Finally one might ask why abnormal rolls have escaped the attention ofexperimentalists until quite recently. The direct observation of a homoge-neous ny distortion in the planar con�guration is di�cult. The optical axisof the uniaxial nematics is the director. Maximal optical contrast is achievedin extraordinary light, when the polarization of the light is parallel to the
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20 W.Pesch, U.Behnspace charge remains time independent in leading order. The theoretical anal-ysis of the patterns follows in principle the techniques already approved inthe conduction regime.With respect to the linear regime it is not di�cult to determine numeri-cally the critical wavevector and the onset voltage. The salient features arehowever already contained in an approximate analytic threshold formula,which can be derived with the help of appropriate lowest-order test functions[16, 104]. In comparison with the conductive regime convection sets in at ahigher voltage, which increases continuously with the ac-frequency !. In or-der to overcome the stabilizing dielectric torque larger in-plane gradients arerequired for the convection destabilisation and thus the wavelength increasesa function of !. Unless the critical wavelenght becomes comparable to the cellthickness the dielectric instability is a "bulk instability" which is insensitiveto the boundary conditions. The wavelenght is determined by the di�usionlength of the bend deformation k33=(1!), i.e. by material parameters andnot by the vertical distance d of the cell boundaries. The convection rolls arevery thin and the pattern looks like a planar lamellar structure. Consequentlythe appropriate order parameter in the dielectric regime is the d-independentelectric �eld instead of the voltage as in the conductive regime.In addition one �nds from the analytical formulation that the thresholdstays �nite for �a ! 0, and in fact remains so when �a becomes positive. Thisappears to be in conict with early treatments [38], but improved formulashave been developed later [105, 7]. Very recent and particularly careful mea-surements of the linear properties in the nematic Phase 5 agree very wellwith the theory [106]. In MBBA the measured threshold exceeds typicallythe theoretical prediction. The reason might be, that MBBA is a quite un-stable nematic and thus its conductivity increases with time due to moleculardissociation processes. In addition dopants are often added to increase theconductive frequency range. It has never been tested systematically whetherthe commonly used material parameter may not have to be modi�ed ac-cordingly. Also the exoelectric e�ects could be more important than in theconduction regime [104]. On the other hand it is reassuring that quite subtleproperties like the phase shift of the director oscillations with respect to theapplied voltage compare favourably with experiment [107].Passing to the weakly-nonlinear dielectric regime the lamellar-type struc-ture is only weakly anchored at the boundaries and it should be easily desta-bilized by (slow) transverse modulations. Thus it is not surprisising thatagain the twist mode is found to be responsible for a secondary bifurcationto abnormal rolls, typically at a very small � � 10�2 [104]. The results areconsistent with recent experiments in Phase 5, where the dielectric regimestakes over at a small frequency (fd = 26Hz) [108]. The secondary instabilityis found at a rather small �sb � 0:08. As already stated abnormal rolls at avery small � were also found directly in an particularly designed experimentalsetup [103].



Electrohydrodynamic Convection in Nematics 21With increasing � the situation becomes simpler at least from the exper-imental point of view. We again refer to the recent experiment [108]; above�sb the rolls become slightly undulated and a persistent dynamics is intro-duced by the appearance of well separated dislocations. The number of thesedislocations increases continuously and above � = 0:24 one observes periodi-cally ordered chains of dislocations oriented along the normal-roll direction.The polarity of the defects is the same along each chain and alternates fromchain to chain. The defects move in alternating directions (for a snapshotsee Fig.9). The name "chevron structure" has been coined for this pattern,which is known for many years (see e.g [109]).
Fig.9. Chevron pattern at � = 0:26 in Phase 5 [108]Recently a �rst theoretical explanation has been proposed for the chevrons[110]. The starting point are Eqs.(24, 25) (see Section 5) originally derivedfor homeotropic EHC. They describe the coupling of the patterning modeA to the order parameter of the abnormal rolls (i.e. the in-plane director cwith an angle � relative to the x axis). In the dielectric as well as in thehomeotropic case the convection starts in a situation where the electric �eldis perpendicular to the in-plane director c, which is subject to a very weakexternal torque. The boundary e�ects in the dielectric case can be identi�edwith the action of a small magnetic �eld H parallel to x in the homeotropiccase. In some parameter regimes defect-chaotic solutions (see Figs.12, 13)are indeed observed in simulations of Eqs.(24, 25), when h2 = H2=(�2��)



22 W.Pesch, U.Behndrops below a critical value O(1) (corresponding to small anchoring). Withincreasing � the defects become then ordered in chevron-like stripes as in Fig.9 [111].The quite regular chevrons at larger � can then be captured theoreti-cally by a coarse-grained description in terms of reaction-di�usion equations[111, 110]. The key to the formation of chevrons is the \anomalous" torqueon c, which already leads to the abnormal-roll bifurcation at small � andto defect chaos with increasing �. When the density of defects is su�cientlyhigh a topological charge �eld can be de�ned as the di�erence between thedensities of defects with positive and negative polarity. The chaotic motionof the defects leads to a �nite di�usivity of the topological charge density. Inthe theoretical description the angle � plays the role of an activator, whichenhances the (local) topological charge imbalance. The reason is that the rollstend to follow the rotation of c. The resulting reorientation of the roll patternentails the motion of defects with oppositely charges in opposite directions,which then play the roll of an inhibitor. Elastic e�ects are responsible for dif-fusion in �. Once having arrived at the level of a reaction-di�usion systemsthe possible scenarios are well known: One can have either oscillatory insta-bilities or a steady spatially periodic Turing pattern, which, in the presentsystem, is identi�ed with the chevron structure.5 EHC in the homeotropic con�gurationIn this chapter we will discuss in some detail the electrohydrodynamic insta-bilities in the homeotropic con�guration. The general setup is very similar toFig.1a except that the director is initially oriented parallel to the electric ac�eld E k z by an appropriate surface treatment of the con�ning plates. Thesystem is now isotropic in the plane of the nematic layer. We will address thecase of negative dielectric anisotropy �a < 0, where, for energetic reasons, thedirector has the tendency to orient perpendicular to E in order to minimizethe electric torque. For the case of positive �a, see e.g. [112, 113, 16]. If E(or the applied voltage V = jEjd) is strong enough to overcome the opposingelastic torque at �rst the homogeneous Fre�edericksz transition [4, 5] showsup, which is a equilibrium transition. The isotropy is then spontaneously bro-ken and a de�nite orientation of the in-plane director component is singledout, which we call the x� axis. In some cases an additional magnetic �eldH k x is applied perpendicular to E to lift the rotational invariance and tosingle out a de�nite orientation. Under the combined action of H and V theFre�edericksz transition takes place if� VVF �2 + � HHF �2 � 1: (22)



Electrohydrodynamic Convection in Nematics 23is full�lled [4]. VF and HF are de�ned as:VF = �s k33j�aj�0 ; HF = �ds k33j�aj��10 (23)where �a and �a are the dielectric and diamagnetic anisotropies, respectively,and k33 is the elastic bend constant (see Sect.2). By testing experimentallythe transition lines according to the inequality (22) one can check for imper-fections in the anchoring of the director at the cell boundaries [106].Above the Fre�edericksz transition a planar layer develops in the centralregion of the cell. In view of the obvious analogy to the planar con�gurationit is not too surprising that it can become unstable against a convectioninstability above a second threshold. The transitions are sketched in Fig.10.
a b

c dFig.10 a) Homeotropic groundstate, b) Director con�guration after the Fre�edericksztransition c) Modulated director con�guration in the EHC state. d) Velocity �eld inthe EHC state.The theoretical analysis of the bifurcations is more complicated than inthe planar con�guration due to the inhomogeeous ground state. It has beenachieved with the use of Galerkin-expansions [112] which are numericallydemanding. The linear analysis reproduces the scenarios already known fromplanar EHC. At low frequencies oblique rolls, at higher frequencies, above aLifshitz point !L, normal rolls are found. By further increasing the frequencyone switches at ! = !f from the conductive to the dielectric regime. Theagreement with experiments is very satisfactory [106].In Fig.11a the secondary destabilisation of normal rolls at !�0 = 1 isshown as function of an imposed planar magnetic �eld H on the basis ofa full Galerkin calculation (GAL). For a su�ciently strong magnetic �eld a



24 W.Pesch, U.Behnlong wavelength zig-zag instability is obtained. The details become clearerfrom Fig.11b, where the secondary destabilisation �sb is shown as function of!�0 for a �xed magnetic �eld (H = 1). Starting from the Lifshitz point (near!�0 = 0.6) the zig-zag line increases continuously. Near !�0 = 1:5 there is anabrupt change to the homogeneous abnormal-roll bifurcation. The bifurcationscenario is in perfect analogy to the planar case (see Figs.7,8). The bifurcationlines do not join smoothly at the Lifshitz point. This is explained by the factthat the stability of patterns with the critical wavevector qc = (qc; pc) isshown. Approaching !L from above ithe bifurcation point �ZZ (the lowestpoint of the bubble in Fig.8), moves down until it vanishes at !L. Below !Lthe bubble is deformed and increasingly less important for increasing p; thepatterns remain stable up to much higher �.
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Fig.11 a) Secondary destabilisation �sb of normal rolls at bandcenter for !�0 = 1:0(GAL: Full Galerkin analysis; WNL: weakly nonlinear analysis. b)Secondary destabil-isation of normal rolls at bandcenter as function of the frequency !�q for the reducedmagnetic �eld hx = 1, from [112].However, in the limit of zero magnetic �eld, when the preferred axis, i.ethe in-plane director ĉ, is not �xed externally, the analogy to the planar casebreaks down. This is already evident from Fig.11a where normal rolls becomeunstable immediately at threshold. The reason is that transverse modulationslead to a torque on ĉ which cannot be compensated. Oblique roll solutions donot even exist because of this torque [114]. Even with a �nite magnetic �eldthe standard weakly nonlinear analysis breaks down (see the curve WNL inFig.11a) because the rotation of ĉ becomes too large.The important di�erence between the homeotropic and the planar casehas been explained in Sect.3 in terms of the Goldstone mode associated withthe spontaneously broken isotropy due to the Fre�edericksz transition. Theaction of the Goldstone mode corresponds to a rotation of the director in theplane, i.e. to a �nite ny component, with a nonvanishing z-average. There is



Electrohydrodynamic Convection in Nematics 25iin fact a close analogy to the AR bifurcation and the abnormal rolls havebeen identi�ed at �rst in the homeotropic case [84].The absence of stable roll patterns has led to the conjecture of a newtype of spatio-temporal chaos at onset [114]. A convincing experimental con-�rmation is shown in Fig.12. On the right side the oblique-roll pattern fora frequency below the Lifshitz point (upper panel) and normal rolls (lowerpanel) for the frequency above the Lifshitz point are stabilized by a magnetic�eld. Switching o� the magnetic �eld leads within seconds to the disorderedpatterns shown on the left hand side.
Fig.12 Experimental pictures from [115]. Typical convection patterns with (leftpanel) and without magnetic �eld (right panel) are shown at two di�erent frequencies,60 Hz (above) and 300 Hz (below) .A clear understanding of the disordered patterns near threshold has beenachieved from a novel weakly nonlinear description that incorporates thecritical convection mode together with the Goldstone mode [52].The general form of the equations is governed by symmetry considerations(we write ĉ? = ẑ� ĉ):�@t ~A = h" + �2xx(ĉ � @r � iqc)2 + �2yy(ĉ? � @r)2 (24)� gj ~Aj2 + i�y ĉ? � r'i ~A;1@t' = K3ĉ? � r2ĉ+ (K1 �K3)ĉ? � r(r � ĉ) (25)+ �a(ĉ �H)(ĉ? �H) + �4 (�iqc ~A�(ĉ? � @r) ~A+c.c.):



26 W.Pesch, U.BehnThe various coe�cients in Eqs.(24,25) can be obtained from the Galerkincode used for Fig.11.At �rst one recognizes a generalized Swift-Hohenberg equation for thepattern amplitude A in Eq.(24) where the local coordinate system is deter-mined by the (local) anisotropy axis ĉ = (cos(�); sin(�)). The torque due tospatial modulations exerted on the in-plane director is included in Eq. (25).where in addition the magnetic torque is taken into account.These equations have been used for numerical simulations. In Fig.13 a rep-resentative snapshots of  = ~A+c:c: (left side) is compared with experimentalobservations (right side) for " = 0:02,H = 0 [116]). Material parameters as in[114] have been used used to calculate the coe�cients of (24,25) (for detailssee [52]). Evidently the patterns in experiments and simulations look verysimilar. Though in the normal roll regime some defects appear, the rolls arelocally aligned along a main direction. The oblique roll regime is dominatedby a superposition of zig and zag. Again the preferred axis changes only overlarge distances. A persistent time dependence is observed in the simulationsin agreement with the experiments in the oblique roll case. However, the ex-periments in the normal roll regime at higher frequency reveal two di�erentregimes near threshold [106, 117, 118]. First a frozen-in disordered pattern isobserved which looks like the one shown in Fig.13 (lower left panel). Whenthe control parameter is increased a crossover to a time dependent disorderedpatterns is found. It is not yet clear whether an important term is missingin Eqs. (24,25), or whether small inhomogeneities in the experimental cellsuppress a persistent dynamics at threshold.Equations (24,25) represent normal-form equations for quasi-2D pattern-forming systems with a novel kind of symmetry, and thus should be of gen-eral interest. Other realizations might be found in convection instabilities insmectic-C liquid crystals, where a ĉ-director exists ab initio , and in Rayleigh-B�enard convection of homeotropically aligned NLCs with an additional elec-tric �eld. In this case the �elds that drive the Fre�edericksz transition andthe convection instability, respectively, can be varied independently, whichshould permit access to a large parameter range of Eqs. (24,25).For H = 0 and � < 0 Eqs. (24,25) yield STC at onset. Other exam-ples are the K�uppers-Lortz instability in rotating Rayleigh-B�enard convec-tion [119, 120] and systems undergoing a Hopf bifurcation. An example forthe latter is the Benjamin-Feir destabilisation mechanism (see e.g. [2]) or theso-called dispersive chaos [19], where a description by a simple Ginzburg-Landau equation should be possible [121]. The origin of chaotic behavior isof course very di�erent in the various systems and their detailed comparisonwill be fruitful.
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Fig.13 Simulations of Eqs. (24,25) (left) vs. experiment [116] (right) for normal (top)and oblique (bottom) rolls (see text).6 EHC driven by multiplicative noise6.1 Experimental situation and motivationThe inuence of stochastic temporal modulation of external parameters inspatially extended systems is an interesting topic of current research [123].Among the possible e�ects of the external noise are: shifts of thresholds,the appearance of new bifurcation types, modi�cations of the bifurcation se-quences (e.g. a direct transition towards chaos), or a change from a continuousto hysteretic onset of the pattern-forming instabilities.The understanding of the various phenomena has been considerably pro-moted by the investigation of the electrohydrodynamic instabilities in ne-matic liquid crystals (EHC). The starting point is the common planar con-�guration (see Fig. 1a), however the applied electric �eld across the nematiclayer is now a superposition of a deterministic component Edet and a stochas-tic one, Estoch. In the experiments a low-frequency periodic Edet was used,i.e. in a regime where the deterministic threshold curve as a function of fre-quency is almost at (see Fig. 2b). This justi�es to use in the theoreticaldescription almost exclusively a time-independent Edet [124, 125, 126, 127,128, 129, 130, 131, 132, 133, 134, 135, 136, 137, 138, 139, 140], cf. however



28 W.Pesch, U.Behn[141]. The stochastic �eld Estoch is mainly characterized by its strength andthe correlation time �stoch of its auto-correlation function.In the �rst experiments a 'fast' stochastic component was superimposed[124, 125, 126], then subsequent work was also devoted to 'slow' stochasticdriving [127, 128, 129]. Slow and fast refer here to the relation of �stoch tothe characteristic times of the liquid crystal, which govern the relaxation ofspace charge and director in absence of external electric �elds.In these early experiments [124, 125, 126, 127, 128, 129] a highly dopednematic MBBA was used, where the electric conductivity is quite large. It hasbeen demonstrated that adding a fast stochastic �eld Estoch with its strengthbelow a certain critical value Ec leads to a stabilisation of the homogeneousstate, i.e. the threshold increases in comparison to a pure deterministic case.However beyond Ec the stochastic component is destabilizing and a discon-tinuous behaviour of the threshold curve as a function of stochastic-�eldstrength is found (direct transition). With increasing stochastic driving theplanforms at the convection threshold changed as well from normal rolls to agrid pattern and �nally to a chaotic state (the dynamical scattering mode).The direct transition towards chaos at very high strength of the external noisewas described to occur via intermittent bursts of spatially incoherent struc-tures embedded in a homogeneous background [126]. The frequency of thebursts, as well as their duration and the area �lled with spatially disorderedstructures increase with increasing deterministic voltage until the whole cellis �lled with a strongly uctuating spatially disordered structure. The super-position with a slow stochastic �eld on the other hand would always decreasethe deterministic threshold. There were also some indications that the tran-sition might be slightly hysteretic [129, 130]. For a comprehensive review see[129].In later experiments undoped MBBA (low conductivity) [136, 137] anda di�erent, chemically more stable nematics (Mischung 5) [138] was used. Itwas at �rst con�rmed that slow external noise was destabilizing, in contrastto a not too strong, fast external noise, which was stabilizing.With increasingstrength destabilizing e�ects take over, i.e. the threshold was eventually foundto decrease continuously with the strength of the stochastic �eld.In these experiments, for pure stochastic driving (Edet = 0), a new sce-nario was revealed: With decreasing correlation time a transition from a\conductive" to a \dielectric" regime was observed at a critical �stoch. Inthe latter regime the threshold was no longer sharp, since stripe patternwould appear and disappears randomly in time [137, 138, 140]. The pat-tern exhibits a characteristic blinking which corresponds to the phenomenonof on-o�-intermittency, recently discussed for low-dimensional systems ran-domly driven just below their threshold of stability, cf. e.g. [142]. The prob-ability distribution for the duration of the laminar phases, i.e., o�-periods isgoverned by a power-law over several orders of magnitude [140].An important issue for the following is the appropriate description of the



Electrohydrodynamic Convection in Nematics 29stochastic process. A common approximation is Gaussian white noise, whichapplies to situations, where the correlation time of the driving stochastic �eld,�stoch, is kept much shorter than all characteristic time scales in the system.One might argue, that due to the critical-slowing-down the time scale at theonset of EHC is always long, but in fact it turns out that the dynamics ofother important processes is not well separated in time from �stoch. Sincethe system couples to the square of the �eld strength there is another -moreformal- reason which forbids to use a Gaussian white noise: The square ofsuch a process is not a well de�ned mathematical quantity.For these reasons the modelling of the stochastic process by a white noiseis excluded: One has to use a stochastic model process with �nite correlationtime, such as the Ornstein-Uhlenbeck process or the dichotomous Markovprocess. The latter one allows a rigorous treatment of linear problems andcan easily be generated in the experiment.An interesting mathematical problem is posed by the stability of a stochas-tic trajectory. Di�erent criteria have been discussed in the literature such asthe bifurcation of the maximum of the probability density [143], the stabil-ity of the �rst or higher moments [144], or the asymptotic stability of thestochastic trajectory with a probability one (sample stability) [145, 146]. Itis plausible that as long as the noise is fast compared to the time scales ofthe system these stability criteria should give similar results. However, aswill be demonstrated for EHC, the correlation time �stoch is not in all casesshort. Thus the di�erent criteria give indeed di�erent results except in somelimits. Typically, for a �xed noise strength, the tendency towards a desta-bilisation increases with increasing order of the moments. This feature canbe understood, since large but rare uctuations of a stochastic process areprogressively enhanced in the high-order moments. In any case, the sample-stability criterion is consistent with numerical simulations and appears as thenatural proper choice [139].The standard tool to describe the convection instability of the quiescentstate is the linear stability analysis. For a deterministic driving voltage theprocedure is not di�cult to carry through and is well understood (see Sect. 3).However, for stochastic driving already the linear regime presents a strongchallenge. Due to the inherent di�culties of the problem further approxi-mations have to be introduced, which amount to a simpli�ed treatment ofall convection �elds with respect to their vertical (z-) dependence, whichis captured by one single mode. This treatment leads to the so called two-dimensional model [148, 134, 135] and its simpli�ed one-dimensional version[38, 105]. In the case of deterministic driving it has been shown in detail thatthe exact critical properties can thus be satisfactorily reproduced within afew percent [17, 16].In the sequel at �rst the model for stochastically driven EHC is presented(Sect. 6.2), before the criteria for stochastic stability are discussed in Sect.6.3. The detailed results of the linear analysis in comparison with experiments



30 W.Pesch, U.Behnare presented in Sect. 6.4. It will turn out, that the theory can explain well avariety of di�erent experimental �ndings. A discussion of related topics anda outlook to future work can be found in some Concluding remarks.6.2 Modelling of stochastically driven EHCIn the following at �rst the basic equations and its formal solutions are pre-sented. Furthermore several criteria of stochastic stability are discussed.The linearized equations of the two-dimensionalmodel. The stabilityinvestigation of the quiescent state against the formation of normal rollsfollows the standard method (see Sect. 3). The anisotropy axis of the systemis parallel to x, and all �eld variables vary only in x and z. The starting pointare the basic equations as discussed in Sect. 2. In the horizontal directionswith in�nite extent a Fourier transformation (wavenumber kx) is applied;with respect to the transverse direction one Galerkin mode (with wavenumberkz) for each �eld (velocity, director etc) is used. Their choice is dictated by theboundary conditions at the con�ning horizontal plates. We have used stress-free boundary conditions, which simplify the calculations and are known togive satisfactory results [17, 149]. The director distortions, the induced spacecharge, and the quantities vz, @zvx(z) have to vanish at the boundaries,where vx, vz denote the velocity components parallel and perpendicular tothe con�ning plates, respectively. The velocity �eld can then be adiabaticallyeliminated because of the small viscous time scale.One ends up with a system of two coupled ODE's, which describe thedynamics of the space charge q and the spatial variation of the angle � betweenthe director and electrode plates,  = @x� [148], given as:_z = C(t)z; (26)where z = (q;  )T , andC(t) = �� 1=Tq �HEtaEt �1 � �2E2t � : (27)The total driving electric �eld Et = Edet + Estoch is the superposition of aconstant component Edet and a dichotomous Markovian component Estoch =EDMPt which takes randomly the values �E and has the autocorrelation< EDMPt EDMPt0 >= E2 exp[�2�(t� t0)]. � determines the inverse correlationtime (i.e. �stoch = 1=2�) and describes the mean number of jumps in unittime. One sees immediately that the square of the stochastic �eld enters,which excludes the use of Gaussian white noise as already mentionned in theintroduction.The parameters Tq , �H , a, �1=2 are explicitely given by:Tq = "0("kk2x + "?k2z)=(�kk2x + �?k2z); (28)



Electrohydrodynamic Convection in Nematics 31�H = (�k"? � "k�?)(k2x + k2z)=("kk2x + "?k2z) ; (29)a = 1f "12 � (1 � 2)k4x + (1 + 2)k2xk2z�1k2xk2z + (k2x + k2z)(�1k2x + �2k2z) � "ak2x"kk2x + "?k2z # ; (30)�1 = �K33k2x +K11k2z� =f ; (31)�2 = "0"a"?(k2x + k2z)= �f("kk2x + "?k2z)� : (32)where �1=2 = [�4 � 2 + �5 + �3] =2 are the well-known Miesowicz coe�-cients constructed from the viscous constants �i; i = 1; 5 (1 = �3��2; 2 =�3 + �2, see e.g. [17]). For the sake of brevity we have introducedf = 1 � 14 � �(1 � 2)k2x + (1 + 2)k2z�2�1k2xk2z + (k2x + k2z)(�1k2x + �2k2z) : (33)The coe�cients depend on the wavenumber kx, which is to be deter-mined by minimizing the threshold voltage. From the vertical boundary con-dition kz = �=d holds (odd solutions with kz = 2�=d play no role like inthe deterministic case). Note that both 1=Tq and �H are proportional to�k if �k=�? = const: The one-dimensional model is readily obtained set-ting kz = 0, i.e. by neglecting the inuence of the vertical boundaries. Asthe characteristic length �x of the pattern in the low frequency conductionregime is set by the width of the nematic layer, the 1d theory fails to predict�x; one has to insert �x � d as a �t parameter to obtain reasonable valuesfor thresholds. However note, that in the high-frequency dielectric regime thecritical wavelength becomes an intrinsic bulk property [147, 16] and is alreadydetermined within the one-dimensional approach.For a deterministic driving the undistorted state remains stable againstthe formation of normal rolls if the solution of (26) converges to zero. Forstochastic driving there exist several stability criteria to be discussed below.Formal solution. To obtain a formal solution of Eq. (26) for a given real-ization of EDMPt with jumps at times t� , � = 0, 1, : : : , n, where tn > tn�1 >� � � > t1 > t0 we �rst consider a time interval between two jumps whereC(t) = C� = const; � = � and diagonalize C� by a unitary transformationU�C� (U�)�1 = ���1 00 ��2 � � diag (��i ) : (34)Introducing W� = U�z one �nds _W� = diag (��i )W� which is solved byW�(t) = diag fexp [��i (t � t0)]gW�(t0). The inverse transformation leads toz�(t) = T�(t� t0)z�(t0); (35)



32 W.Pesch, U.Behnwhere T� is the time evolution matrixT�(� ) = (U�)�1 diag[exp(��i � )]U�: (36)For a given realization of the driving process with jumps at the random timest� iteration of (35) gives the formal solution [139]z�n(t) = T�n (t� tn) � � � T�1 (t2 � t1)T�0 (t1 � t0)z�0(t0): (37)The stability of the stochastic trajectory z�n(t) is determined by thelargest Lyapunov exponent �1 of the product of random matrices in (37)in the limit n ! 1. If this exponent has a positive real part the trajectorydiverges, otherwise it converges to zero. The evaluation of in�nite productsof random matrices is a notorious di�cult problem, which appears also in anumber of di�erent �elds in statistical physics [150] (for further references seee.g. [139]). Eq. (37) is used for the numerical simulations in order to deter-mine stability thresholds (to be compared with analytical results) [139] andalso the probability density of the duration of quiescent periods just belowthe threshold [140].6.3 Stochastic stability criteriaIn the following we will present and compare several stability criteria.Mean �eld decoupling. We �rst describe a simple approximation [125]which rests on the assumption that the characteristic time of the drivingstochastic process is fast compared to all other characteristic times. Thenthe system will "feel" only the average value of the stochastic �eldEt !< Et >= Edet; E2t !< E2t >= E2det + E2: (38)This physical picture corresponds to a simple mean-�eld type decoupling ofthe averages < Etz >!< Et >< z > : (39)With the above replacements in (27) one obtains from detC = 0 the thresholdE2det;th = �1 � �2E2�HaTq + �2 ; (40)which increases (�2 < 0) in a linear way with the strength of the stochastic�eld E2. In the mean �eld approximation it is therefore impossible to explainneither the experimentally found discontinuous behaviour of the threshold[126, 127, 128] nor the dependence on the correlation time of the noise [128].



Electrohydrodynamic Convection in Nematics 33Stability of moments. The equations of motions for the �rst momentsform a closed system for < z > and < EDMPt z >. One uses a theorem ofShapiro and Loginov [151](@=@t + 2�) < EDMPt z >=< EDMPt _z >; (41)and exploits in addition (EDMPt )2 = E2 = const. The quantity _z on theRHS of Eq. (41) is replaced by Eq. (26). (Similar equations hold for thehigher moments.) The exact threshold condition for the stability of momentsis nonlinear in the �eld strength thus opening the possibility for a qualitative(though not quantitative) understanding of the behaviour of the threshold.The standard model in its one-, two- and three-dimensional versions andthe 1d model including exoe�ect have been extensively studied within thisapproach [132, 133, 134, 135].Sample stability. For the following it is crucial that one is able to reducethe complicated dynamics of EHC to a system of two coupled stochastic equa-tions (Eqs. (26)). In that case there exists a standard method to analyze theasymptotic stability of the trajectory (Eq. (37)) for almost all realizations ofthe driving process (sample stability) [145]. The �rst step is a transformationfrom (q;  ) to polar coordinates (r; '), which leads from (26) to the pair ofequations _r = g(Et; ')r; (42)_' = h(Et; '): (43)Equation (43) depends only on ' (the system is skew symmetric) and it ispossible to �nd the stationary solution P�(') of the associated Kolmogorovforward equation for the joint process (Et; ')_P� = dd' (h�P�)� �(P�� � P�); � = �; (44)where h� is a shorthand notation for h(E�; '). Equation (42) is linear in rand can be solved for a given trajectory of the driving process. This leads toan expression for the leading Lyapunov exponent [145]�1 = limt!1 1t Z t0d� g(E� ; ') = Zsuppd'X�=�P�(')g(E� ; '): (45)The second equality holds due to the multiplicative ergodic theorem of Os-eledec [152] with Prob 1, i.e., for almost all trajectories.For the nondegenerate (the matrices C+ and C� do not have an eigen-vector in common) and nonrotational (the eigenvalues of C� are real and



34 W.Pesch, U.Behndistinct) case which is of interest here, �1 can be found up to quadratures[145] 4�1 = �X�=� Sp C� � Rsupp d'F � dd' ln jh+=h�jRsupp d'F=h+ ; (46)where F ('; '0) = exp ��� Z ''0d'� 1h+ + 1h��� ; '0 2 supp: (47)The two Lyapunov exponents of the system �1 > �2 are related by�1 + �2 = 1=2X�=� SpC�: (48)For pure stochastic excitation (Edet � 0), the quadratures in (46) and(47) have been evaluated explicitly in terms of generalized hypergeometricfunctions both for the 1d [134] and 2d model [139]. Also for a constant, �nite�eld Edet analytical results exist for the 1d model, whereas for the 2d modelthe integrals in (46) and (47) were evaluated numerically [139].Numerical simulations. The numerical simulation folloes trajectories z�n (t)starting from a nonzero but small initial value z(0) for a given realization ofthe driving stochastic process, cf. Eq. (37). A trajectory with N jumps (cor-responding to an average time N=� with constant Et intervalls) is consideredas diverging if  = @x� � k� = (��)=d > �2=(4d), i.e. for � > �c � �=4.This critical value for � is choosen, because for � >� �=4 the linearization ofsin � � � on which Eq. 27 is based becomes invalid. The thus determinedthresholds are virtually independent of N and  c for N >� 104, i.e. they varyonly within a limit of less than one percent when N and  c are varied bothover a range of several orders of magnitude [139].In the following the theoretical results are exempli�ed in detail and alsocompared with experimental results.6.4 ResultsComparison of di�erent stability criteria. The thresholds for the ap-pearance of normal rolls calculated in the one-dimensional model accordingto the di�erent criteria discussed above are compared in Fig. 14. The totalvoltage is the superposition of a constant deterministic part (U1 = Edet) anda stochastic one (U = Estoch) with fast and slow stochastic driving frequency�, respectively. In this part the material parameters are taken in general from[153] (referred to as MBBA I in [139])), but we allow for modi�cations of theelectrical conductivities. The cell thicknes is �xed to 100� in all calculations.For small values of the stochastic voltage U the thresholds from all criteriacoincide as must be expected irrespective of �. The insert in Fig.14 addressesthe case of slow driving calculated for �k = 1:5 � 10�8
�1m�1 and �k=�? =
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Fig. 14. Thresholds for the appearance of normal rolls calculated in theone-dimensional model for a superposition of constant voltage U1 and a fast stochas-tic dichotomous voltage U (� ' 1000 s�1). The thresholds are obtained from:mean-�eld decoupling (dashed line), stability of �rst moments (dash-dotted line),sample stability (solid line), and numerical simulation (�). The insert shows the caseof a 'slow' stochastic voltage (� ' 100 s�1) for which all criteria (besides the mean�eld decoupling) give the same result (from [139]; for the material parameters: seetext).1:3. This corresponds to a cut-o� frequency fd � 62Hz in the case of anapplied deterministic ac voltage, which is comparable with � = 100Hz. Theresults for fast driving are shown (for �k = 6 � 10�9
�1m�1 and �k=�? =1:3) are shown in more detail. The stochastic frequency is now much largerthan the corresponding cut-o� frequency fd = 26Hz. For a wide range ofU the threshold from the mean �eld decoupling is very close to that of thesample stability, but for U beyond the threshold (� 240V ) for pure stochasticexcitation (U1 = 0) they are drastically di�erent.The results can be understood through an comparison of the characteristictimes of the system and of the noise, cf. Fig. 15. The characteristic times ofthe stochastically driven system are given by the modulus of the inverseof the Lyapunov exponents �1 and �2. At the threshold we have �1 = 0,the corresponding time �1 diverges and is thus well separated from �stoch.The second characteristic time for the electric �elds at the threshold can bedetermined exactly [139]�2 = j1=�2j = �1=Tq + �1 � �2(E2det +E2)��1 ; (49)it decreases with increasing values of the threshold �elds and may reach theorder of �stoch. In this case the mean-�eld decoupling is not justi�ed and thethreshold obtained from the stability of the moments di�ers quantitativelyfrom the sample-stability threshold. If instead �stoch is clearly separated from
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Fig. 15. The characteristic time �2 = j1=�2j at the sample stability threshold shownin 14 decreases with increasing voltage [139]. The initially clearly separated timescales of �2 and �stoch = 1=2� become of the same order at su�ciently high stochas-tic voltage. The insert shows the case where the time scales are well separated.at least one of the characteristic times of the system, both moment's andsample stability criteria give similar results, see inserts in Figs. 14 and 15.The numerical simulations con�rm the results obtained from the criterion ofsample stability, which was therefore used in [139, 140].The region describing the stability of the moments is always smaller thanthat for sample stability since the divergence of the trajectories is su�cientfor the divergence of the moments: For large times one �ndsrt = e<�[E� ]>t � < e�[E� ]t >=< rt >; (50)where the inequality holds due to the convexity of the exponential function.Finally one should mention that the thresholds for stochastic excitation arealways below that for deterministic excitation (for otherwise identical pa-rameters and wave numbers). This is plausible since generally the thresholdsincrease with the increasing frequency and a stochastic trajectory with agiven mean number of jumps always contains lower Fourier components.Pure stochastic excitation. The stability diagram for pure stochastic ex-citation shows a topological di�erence between 'slow' and 'fast' driving, cf.Fig. 16. In the former case we have an unstable island in the left lower cornerof Fig. 16a. The corresponding mode (low threshold and small wavenumber)is called conductive. With increasing mean frequency � of the driving �eldthis island shrinks continuously. There is a sharp transition if it disappears:The instability is now towards a mode with a higher threshold and a muchlarger wave number as it is typical for the dielectric regime, cf. Fig. 16b.



Electrohydrodynamic Convection in Nematics 37We remark that also for deterministic driving the stability diagram hasanalogous properties. Note, that the di�erent temporal symmetries of dielec-tric and conductive mode in the deterministic case (see Sect. 3) are not crucialhere.
Fig. 16. Mode selection for pure stochastic excitation [139]. Shown are the neutralcurves for the two-dimensional model in (a) the conductive regime (� = 100 s�1)and in (b) the dielectric regime (� = 400 s�1). The unstable region in the left lowercorner of (a) corresponds to the conductive mode and shrinks with increasing meanfrequency of the driving process and is then absent in the dielectric regime (b).The \critical" wave number kx increases as function of the mean frequency� with a slope much smaller than for deterministic driving. This is also foundin experiments [138], cf. Fig. 17, and can be qualitatively understood by anargument similar to that given above according to which stochastic drivingcontains always contributions of lower Fourier modes.For stochastic driving one observes in the region indicated in Fig. 17 byopen rectangles phenomena which resemble on-o�-intermittency: Normal rollpatches appear and disappear in an irregular way at voltages already belowthe sample stability threshold [137, 138, 140]. The frequency of the burstsincreases with the strength of the stochastic �eld, their duration depends onthe characteristic time �stoch of the noise. Since the undistorted state is welldescribed by the linear theory this phenomenon can be captured by simu-lations based on Eq. (37). We have found when approaching the threshold(�1 = 0) from below that the probability distribution for the duration �off ofthe undistorted state (i.e the laminar or o�-periods) is governed by a power-law p(�off ) � ��3=2off over several orders of magnitude, in good agreementwith the experiment [140].Superposition of deterministic and stochastic �eld. The superpositionof a deterministic voltage U1 with a 'fast' stochastic voltage U with increas-



38 W.Pesch, U.Behn
Fig. 17. Theory versus experiment: Thresholds and selected wave numbers of nor-mal rolls depending on the (mean) frequency of the driving �eld [138]. As explainedin the text, the curves for stochastic driving are always below those for deterministicdriving. Experimentally determined thresholds (� deterministic driving, triangles:stochastic driving) are compared with those obtained from the two-dimensional the-ory (sample stability criterion for the stochastic case). The experiment is performedwith the nematic \Mischung 5". The open rectangles indicate the range where forstochastic driving phenomena were observed which resemble on-o�-intermittency(see text).ing strength stabilizes at �rst the undistorted state. This is shown in Fig.18, where the threshold increases initially with increasing U . This remainstrue up to a certain \critical" value of U beyond which the threshold curvebends down (U becomes destabilizing). The threshold curves are determinedexperimentally following a suitable protocol involving changes in U;U1 insidethe stable regime until a point on the linear stability curve is hit.The region where the undistorted state is stable may extend beyond thethreshold values of deterministic or stochastic driving alone, thus forminga stable tongue in the U -U1 plane (i.e. the upper curve in Fig. 18 bendsback at large U ). This explains why in experiments [126, 127, 128, 129] adiscontinuous behaviour of the threshold was observed, when a stochasticvoltage U of a given strength was applied �rst and then the deterministicvoltage U1 was increased up to the instability of the homogeneous phase. Inother words, below a certain value Uc (� 230V in Fig. 18) the threshold isfound at a �nite deterministic voltage U1th, whereas for U > Uc convectionsets in immediately at U1th = 0.The appearance of the stable tongue depends on the material parame-ters. Roughly speaking, the tendency towards its formation decreases withincreasing Helfrich parameter �2 (independent of the stability criterion, i.e.for moment's stability [132] as well as for sample stability [139]. The Hel-



Electrohydrodynamic Convection in Nematics 39
3 433 533

3

:8

483

 

X4�^Y`

X�^Y`

 

 

Fig. 18. Comparison of sample stability thresholds for di�erent values of the con-ductivity at �xed � = 1000s�1 in the one-dimensional model [139]. The tendency to-wards formation of a stable tongue increases with increasing conductivity. Shown arethe cases �k = 1:11 � 10�10
�1 cm�1 and �k = 2:22 � 10�10
�1 cm�1, �k=�? = 1:5.In the latter case there is a stable tongue so that, following the measuring proce-dure described in the text, the threshold curve appears discontinuous. The meannumber of jumps is � = 1000s�1 (Material parameters MBBA II from [148, 139]).frich parameter (which alone determines fd in units of the charge relaxationtime �q (see Eq. (12)) depends only on the ratio �k=�?. A further importantparameter is in fact the absolute value of the conductivity �k which maydi�er from sample to sample considerably and which can be changed easilyby doping. The tendency towards formation of a stable tongue increases withincreasing �k while �k=�? is kept constant (cf. Fig. 18). Note that fd � �kin physical units.The early experiments [126, 127, 128, 129] were performed presumablywith highly doped MBBA (fd = 360Hz in [129]). In later experiments withundoped MBBA [136, 137] (fd � 170Hz) and a di�erent, chemically morestable nematics (Mischung 5) [138] no stable tongue and correspondingly nodiscontinuous behaviour of the threshold was found.As already mentioned the superposition of a deterministic �eld with a'slow' stochastic one leads always to a monotonous decrease of the thresh-old with increasing stochastic �eld (see insert in Fig. 14) in agreement withexperiments.The di�erence of the thresholds for the one-dimensional and two-dimensionalversions of the standard model are in general small. The selected wave num-bers, however, di�er signi�cantly, cf. Fig. 19. This is evident, since kx isalways chosen to be �=d in the one-dimensional version, whereas it increasesin fact with increasing strength of the stochastic �eld. This is consistent with
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Fig. 19. Thresholds and selected wave numbers for the superposition of a con-stant voltage U1 with a stochastic dichotomous voltage U obtained for theone-dimensional (dashed line) and the two-dimensional model (solid line) from thesample stability criterion and from numerical simulation (�) [139]. Material param-eters from [148], � = 1000 s�1.experimental �ndings [136, 137, 138]. A detailed quantitative comparison oftwo-dimensional theory and experiment is in preparation.6.5 Concluding remarks and outlookThe theoretical treatment presented in this review has obviously the capa-bility for a convincing explanation of a variety of experimental �ndings. Thishas been demonstrated for the following phenomena: (i) The discontinuousbehaviour of the threshold at a critical strength of the noise, (ii) the changefrom discontinuous to continuous behaviour of the threshold with increasingcorrelation time of the noise, (iii) the change from continuous to discontinu-ous behaviour of the threshold with increasing conductivity, (iv) the changefrom stabilizing to destabilizing e�ect of the noise if its correlation time be-comes comparable to the correlation time of the system, and (v) the on-o�intermittency observed in very recent experiments. In the following we willmention some issues that certainly need further investigation.In the numerical simulations of the two-dimensionalmodel it was observedthat the uctuations in the distribution of Lyapunov exponents for trajec-tories of �nite length (which mean uctuations of the threshold) increase ifthe characteristic times of noise and system become comparable, cf. Fig. 19.Fluctuations of thresholds were also observed in experiment for su�cientlylarge noise [136, 137, 138, 140]. The theoretical treatment of these uctua-tions leads to the problem of generalized Lyapunov exponents [150, 154].The conductivity enters the standard model considered here as a mate-rial parameter. Recently, Treiber and Kramer [33] have developed a moresophisticated model (WEM, see Sect. 4.2), where ionic migration, di�usion



Electrohydrodynamic Convection in Nematics 41and dissociation-recombination processes are included. Thus the electric con-ductivity becomes a variable which introduces new time and length scales.In the deterministic case the primary bifurcation phenomena become muchricher (Hopf, subcritical). and the analysis of stochastic driving within thismodel will be certainly rewarding.In the present work the stability of the undistorted state against onemode describing roll patterns of a �xed wave number was considered. If thecharacteristic time of the noise is of the order of the inverse growth rate of atypical mode, the process of mode selection will not be completed until thenext jump of the noise. Thus a band of wave numbers might be involved.This could lead to a sort of dynamical pattern as observed in experiments.At least in a conceptually di�erent system (of Hamiltonian or dissipativegradient type) it has been recently shown, that a continuous band of wavenumbers might remain relevant for the long-time behaviour [162].The inherent di�culties of stochastically driven EHC substantially in-crease if it comes to the description of the nonlinear regime. A numericaltreatment of the full set of nonlinear electrohydrodynamic equations seemsat present not to be feasible even in the deterministic case. However, a reli-able description is possible in the weakly nonlinear regime in terms of orderparameter equations (see Sect. 3). The general problem of systematicallyderiving amplitude equations in the stochastic case has been addressed infew investigations, see e.g. [157, 158, 159, 160, 161]. However, it is an openquestion, which approach applies to the case of multiplicative noise in EHCwith not always well separated time scales and �nite correlation time of thenoise. One might speculate that for su�ciently fast driving a kind of orderparameter equations with \averaged" coe�cients could result, while in theopposite case the coe�cients might be stochastic quantities. One should alsobe aware of the fact, that a deterministic supercritical bifurcation can changeto a subcritical one under the inuence of noise [155, 156].At the moment nonlinear partial di�erential equations, e.g. of Ginzburg-Landau or Swift-Hohenberg type, with additive or multiplicative Gaussianwhite noise (introduced ad hoc) are a subject of intense studies [163, 164,165, 166, 167, 168, 169, 170, 171, 172, 173, 174]. In this context, Beckerand Kramer [175, 176] found a controllable approximation to determine thethreshold of sample stability without knowledge of the stationary distribu-tion. A zero-dimensional version, the Stratonovich model, was solved rigor-ously for Gaussian white noise [177, 178] and dichotomous noise [179]. Morerecently, a 1d model with multiplicative noise that is a product of a Gaussianwhite noise in time and a spatial periodic function was considered [180].Here we have concentrated on the case of stochastically driven electro-hydrodynamic convection, i.e. a multiplicative, parametric, external noise.One should note that the very interesting and intriguing problem of thermaluctuations, i.e. the case of additive, internal noise has also motivated manyexperimental and theoretical activities [24].



42 W.Pesch, U.Behn7 General ConclusionsIn this review we have described to some extent the present status of researchin EHC. In near future it is to be expected, that the combined application ofelectric and magnetic �elds will be explored in more detail. Any additionalcontrol parameter is obviously very useful to enfold bifurcation scenarios andto accentuate speci�c mechanism (for a recent example see [181]). But alsovery unexpected and not yet understood phenomena can show up like thedendritic growth of EHC patterns (see [182]). Many other problems ask forfurther investigation. Among them are the properties of the abnormal rolls,in particular the defect and wall structures in this state, which certainlydetermine the patterns not too far from threshold. EHC is a nice paradigmfor the formation of chevrons, i.e. an super-structure of particle-like defects,which develops out of a gas of \free" defects. The formation of defect chainsis also observed in other cases for instance in simulations of the complexGinzburg-Landau equation [183].Another issue is the characterization of spatial temporal chaos (STC),which is the subject of current research in general. STC can easily be pro-duced in EHC experiments by increasing the driving voltage. The system isapparently well suited to study such statistical issues, because of the shortcharacteristic timesi and large aspect ratios. For example it has been stressedrecently that time-averages of the patterns unlike a single snapshot mightcontain useful information about characteristic times and length of a system[184] as function of the control parameter. This has been con�rmed in recentexperimental studies [185], where the transition and the possible origin of theSTC has been characterized.Furthermore one should keep in mind, that typical bifurcation scenariosin EHC can be found as well in RBC of nematics [186]. It is for instance easyto �nd a Hopf bifurcation at threshold in the homeotropic case (for recentexperiments see e.g. [187]). The close analogy between EHC and RBC is alsoreected in the theoretical analysis [56].Though not directly related, one should mention �nally that interestinginstabilities in nematics can also appear under the inuence of shear ow[188]. Then a viscous torque is exerted on the director, which was part of thedestabilisation loop in EHC, where the director is situated in the shear plane.The ow instabilities in this geometry are currently under investigation, underthe application of oscillatory ows. The scenarios are unexpectedly rich. One�nds spatially homogeneous oscillations of the director in Couette ow [189]as well as the bifurcation to convection-roll patterns under Poisseuille ow[190].Acknowledgements We have bene�tted a lot from discussions with G.Ahlers, H. Brand, A. Buka, S. Kai, I. Rehberg and W. Zimmermann. Excep-tional is the role of L. Kramer, who has been always strongly involved in the
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