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For many years it has been commonly accepted that electroconvection (EC) as primary instability
in nematic liquid crystals for the “classical” planar geometry requires a positive anisotropy of the
electric conductivity, σa, and a slightly negative dielectric anisotropy, εa. This firm belief was sup-
ported by many experimental and theoretical studies. Recent experiments, which have surprisingly
revealed EC patterns at negative conduction anisotropy as well, have motivated the new theoretical
studies in this paper. It will be demonstrated that extending the common hydrodynamic description
of nematics by the usually neglected flexoelectric effect allows for a simple explanation of EC in the
“nonstandard” case σa < 0.

PACS numbers: 61.30.Gd, 47.54.-r, 64.70.Md

I. INTRODUCTION

In the last decades electroconvection (EC) in nematic
liquid crystals (nematics) has developed into an attrac-
tive model system to study generic aspects of pattern-
forming non-equilibrium phase transitions in extended
systems [1, 2]. Nematics are anisotropic liquids with-
out translational but with long-range uniaxial orienta-
tional order of their elongated molecules, which is de-
scribed by the director field n [3, 4]. EC occurs when
an electric voltage above a critical threshold is applied to
a layer of a nematic, which is sandwiched between two
supporting transparent electrodes of distance d (typically
5 µm < d < 50 µm). At onset usually periodic arrays
of stripes with wave vector q are observed. The pat-
terns are associated with periodic spatial modulations in
the director and the flow field (“convection rolls”) and
also in the charge and current density. Due to the in-
trinsic uniaxial anisotropy of nematics EC is more di-
verse than for instance the canonical, thermally driven,
isotropic Rayleigh-Bénard convection. It is also an ex-
perimentally convenient system: the patterns are easy to
visualize by exploiting the birefringence of nematics and
contain usually many well ordered convection rolls. The
main control parameters (amplitude and frequency of the
applied voltage) can be varied over a wide range.

In the mostly used nemato-hydrodynamical descrip-
tion of EC, (called henceforth the standard model, SM)
the fluid flow, v, is described by the Navier-Stokes equa-
tions, coupled to the Maxwell equations for the electric
properties, the director dynamics is determined by elas-
tic, electric and viscous torques [1–6]. The main ingre-
dients of EC have been elucidated by Carr [7] and Hel-
frich [8]: any spatial director fluctuation leads to a finite
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charge density, ρel, and consequently in the presence of
electric fields to Coulomb forces and thus to flow (mass
transport). If the resulting viscous torques reinforce the
initial director fluctuation the EC instability is triggered.

Whether the positive feedback loop leading to EC is re-
ally excited depends first on the material parameters and
their anisotropies. Most of them (e.g., elastic constants,
viscosities) do not change significantly from substance to
substance; thus they are not decisive. The key quantities
are the dielectric and conductivity anisotropies, which
may considerably vary in their magnitude and may even
change sign. Furthermore the initial director alignment
in the nematic layer, which is imposed by a suitable sur-
face treatment of the confining electrodes, plays an im-
portant role. A recent comprehensive overview of the
EC onset behavior considering all these aspects is given
in [9].

In this paper we concentrate on the mostly studied pla-
nar configuration, where the director in the basic state,
n0, is oriented in a direction parallel to the confining
plates (our x-axis). In the context of the standard model
EC requires in this case a positive anisotropy of the elec-
tric conductivity σa = σ‖ − σ⊥, where σ‖ and σ⊥ denote
the conductivities parallel and perpendicular to the direc-
tor, respectively. Furthermore the dielectric anisotropy
εa = ε‖ − ε⊥ has to be negative or only slightly positive.
Theory is in excellent agreement with numerous exper-
iments on various nematic compounds (see, e.g., [1, 10]
and references therein).

Electroconvection in the familiar case of an applied ac
voltage with frequency f is a parametrically driven sys-
tem; consequently n and v oscillate in time as well. It
turns out, that in general, depending on f , two different
solution types of the basic equations can be identified: in
the “conductive regime” at low f below the crossover fre-
quency, fc, the time average of the induced charge density
is practically zero, while the time averages of the other
fields (director, flow) are finite. In the high-frequency
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“dielectric regime” (f > fc) the situation is reversed.
Our motivation to reconsider EC from a theoreti-

cal point of view stems from experiments in the pla-
nar geometry carried out on some members of the 4-n-
alkyloxy-phenyl-4-n’-alkyloxy-benzoates homologous se-
ries [11], which show a nematic order between the
nematic-isotropic transition temperature TNI and the
nematic-smectic C transition temperature TNS < TNI .
Whereas εa < 0 in the whole nematic range and σa > 0
near TNI , the sign of σa changes somewhere between TNI

and TNS . This sign inversion is attributed to strong pre-
transitional nematic-smectic fluctuations.

First experiments on these substances have indeed re-
vealed the expected standard EC roll patterns for the
temperature range where σa(T ) > 0 [12]. In the range
σa(T ) < 0, where the SM does not predict any convection
instability, a new kind of a localized structure has been
described, which has reminded to the “worms” discussed
in [13]. These experiments have been recently repeated
more systematically [14, 15] and the main features of the
patterns described in [12] have been reproduced for the
temperature range σa(T ) > 0. Surprisingly, however,
when σa(T ) < 0 extended roll patterns have been found
as well. This phenomenon, which is not explained by
the SM, has been coined as nonstandard EC (ns-EC) in
contrast to standard EC (s-EC) for σa > 0.

The ns-EC patterns have been found to differ signif-
icantly from the standard ones [2, 15]. A most salient
feature of ns-EC rolls is the angle, α, between n0 and
the wave vector q. While α is typically zero or at least
small (< 30◦, say) in standard EC, it is large (> 60◦) in
ns-EC and approaches even 90◦ in some cases.

Instead of speculating about some new, fancy EC
mechanism we have found it reasonable to look for “min-
imal” extensions of the SM. In view of the importance
of the charge separation within the Helfrich mechanism,
it has been suggestive to analyze the impact of the well
known flexoelectric (shortened to flexo in the following)
polarization [3, 4, 16]. It appears in the presence of direc-
tor distortions even in the absence of an external electric
field and produces an additional contribution to ρel. An
additional motivation to consider in more detail the flexo
effect was the unusual roll orientation mentioned before.
In fact, it has been described already many years ago
[17, 18], that the flexo effect produces a torque on the
director in the presence of a dc voltage, which may lead
to striped (though non-convective) patterns with the ex-
treme roll orientation α = 90◦.

Earlier investigations of the flexo polarization in pla-
nar EC with σa > 0 have basically focused on the low
frequency (conductive) regime [19, 20]. They have led to
the general impression that the flexo polarization plays a
minor role, since only small quantitative changes of the
critical voltage and the critical wave vector have been re-
ported. Consequently the flexo mechanism has typically
been neglected in the theoretical analysis of EC. More-
over, the two additional material parameters, the flexo
coefficients e1 and e3, which come into play are not easy

to measure. In contrast, it will be demonstrated in this
paper, that the flexo polarization seems to play a crucial
role in the planar geometry when σa < 0 and εa < 0: It
allows in fact for an EC instability, which is otherwise
excluded in the SM.

The paper is organized as follows. Sect. II is devoted
to the implementation of the linear stability analysis of
the basic state, which is characterized by the uniform
planar director configuration n0 in the absence of mate-
rial flow and electrical space charge. From the nemato-
hydrodynamic equations one arrives at a linear eigen-
value problem for the growth rate of perturbations in
form of convection rolls, from which we obtain the crit-
ical data at onset. We concentrate in particular on the
flexo effect and exploit certain spatial and temporal in-
variance properties of the linear equations to classify the
patterns with respect to their symmetries. In Sect. III we
present and discuss the results of the linear analysis, i.e.,
the critical voltage and the critical wave vector. Instead
of extended parameter studies we focus on the qualitative
features of the positive feedback loop leading to EC and
especially on the σa-dependence. Sect. IV is devoted to a
discussion of the theoretical results in the light of exper-
iments. Some concluding remarks are added in Sect. V.
In the Appendix we present in detail the formulation of
the linear eigenvalue problem discussed in this paper, also
in order to introduce the notation.

II. BASIC THEORETICAL DESCRIPTION

In this paper we follow the main route in describ-
ing nematic liquid crystals in the framework of nemato-
hydrodynamics including the flexo effects (see, e.g., [3–
6]). We confine ourselves to the onset of EC, i.e. to the
determination of the critical voltage, Uc, and the critical
wave vector qc. Their determination requires an analysis
of the nemato-hydrodynamic equations linearized about
the basic state (see Appendix). They can be found al-
ready in [6] except the flexo-terms ∝ e1, e3.

Let us consider in more detail the flexo polarization
Pfl, which appears at first in the Maxwell equations
within the quasi-static approximation, where ρel is ob-
tained from charge conservation and Poisson’s law:

∂ρel

∂t
+∇ · (σE + ρelv) = 0 , ρel = ∇ ·D . (1)

The dielectric displacement D is given as

D = ε0εE + Pfl (2)

and the dielectric tensor ε and the conductivity tensor σ
read as

εij = ε⊥δij + εaninj , σij = σ⊥δij + σaninj . (3)

The flexo polarization Pfl, which is finite in the presence
of spatial variations of n, is defined as follows [3, 4, 16]

Pfl = e1n(∇ · n) + e3(n · ∇)n (4)
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with the flexo coefficients e1, e3. Because of curl E = 0 it
is convenient to rewrite Eq. (1) in terms of the electric po-
tential. The resulting equation contains in its linearized
version only the sum (e1 + e3) of the flexo coefficients
[see Eq. (A.11)]. The flexo polarization contributes also
to the electric torque on the director, but for EC this
is of minor importance. Here the parameter combination
(e1−e3) comes into play [see Eqs. (A.6) and (A.7)]. Note
that the so called dynamic flexoelectric effect [5] does not
contribute to the linearized nemato-hydrodynamic equa-
tions.

It is convenient to parameterize the strength E0 of the
applied electric ac field or the rms value U of the ap-
plied voltage, respectively, in terms of the dimensionless
control parameter R:

R =
ε0E

2
0d2

k0π2
≡ ε02U2

k0π2
, (5)

with ε0 the permittivity of the free space and k0 =
10−12N a measure of elastic constants in the orienta-
tional free energy. Convection sets in at the threshold
voltage, Uc, which depends on the material constants of
the specific nematic. Uc increases monotonously with in-
creasing frequency f and varies usually between 5 V and
100 V.

The linear system of PDE’s for the perturbations of
the electric potential φ, for the director distortions ny,
nz and the velocity field v in q-space [see Eq. (A.5)] can
be written in the symbolic form

C ∂

∂t
V (q, z, t) = L(R)V (q, z, t) , (6)

where we introduced the symbolic vector V (q, z, t) =
(φ, nz, ny, v). The operators C and L(R) can be read off
from Eqs. (A.6)–(A.11). They appear as combinations of
linear differential operators in z with coefficients, which
are periodic in time with circular frequency ω = 2πf and
which depend on the wave vector q = (q, p) as well. For
normal rolls with q parallel to n0 [i.e., q = (q, 0)] the
fields ny and vy vanish identically.

In view of time periodicity Eq. (6) is solved with a
Floquet ansatz in time

V (q, z, t) = Re
(

exp [σ(q)t]Vlin(q, z, t)
)

(7)

with Vlin(q, z, t) = Vlin(q, z, t + 2π/ω). Thus we arrive
from Eq. (6) at the linear eigenvalue problem

σ(q, R) CVlin(q, z, t) = (L − C ∂

∂t
)Vlin(q, z, t) . (8)

We are interested in the growth rate, σ0(q, R), i.e., in
the eigenvalue σ(q, R) with the largest real part. The
condition Re[σ0(q, R)] = 0 yields the neutral surface
R = S0(q) with its minimum Rc = S0(qc) at the crit-
ical wave vector qc. If the real and imaginary part of
σ0(q, R) vanish simultaneously at q = qc and R = Rc,
the bifurcation is stationary; otherwise we speak of an

oscillatory (Hopf) bifurcation. In fact oscillatory bifur-
cations to EC have not been found in the present linear
eigenvalue problem.

The boundary conditions for Vlin(q, z, t) (we will sup-
press the q-dependence in the following) with respect to
z at z = ±d/2 [see Eq. (A.13)] are automatically ensured
by a Galerkin method: the fields are expanded into com-
plete sets of functions, which vanish at the boundaries.
Similarly, the periodicity in time of Vlin is guaranteed
using (truncated) Fourier expansions in time. For in-
stance, the ansatz for the director component nz(z, t) of
Vlin(z, t) reads as follows

nz(z, t) =
N∑

n=1

K∑

k=−K

n̄z(n|k)exp[i k ωt]Sn(z) , (9)

with Sn(z) = sin[nπ(z/d + 1/2)] and n̄z(n|−k)∗ =
n̄z(n|k). An analogous ansatz is used for the corre-
sponding Fourier amplitudes φ, ny, vx, vy as defined in
Eq. (A.5), whereas for vz Chandrasekhar functions [6, 21]
replace the Sn. Note that the terms with odd indices
n = 1, 3, . . . are symmetric with respect to the reflection
z → −z at the midplane z = 0, whereas those with even
n = 2, 4, . . . are antisymmetric. Thus we arrive from
Eq. (8) at a linear algebraic eigenvalue problem to de-
termine σ0(q, R) and the corresponding expansion coef-
ficients n̄z(n|k), etc. of the linear eigenvector. The sum-
mations as in Eq. (9) have to be truncated. Typically
a truncation at K, N = 10 is well sufficient to obtain
an accuracy of better than 1%. This has been checked
by increasing systematically the number of modes and
monitoring the changes in the eigenvalues and the eigen-
vectors.

Inspection of the linear equations in the Appendix
shows that the transformation

T : (z, t) → (−z, t + π/ω) (10)

either reproduces or reverses the sign of the Fourier am-
plitudes as follows

T (φ, nz, ny, vx, vy, vz) → p (−φ, nz,−ny,−vx,−vy, vz)
(11)

with the parity p = ±1. As a consequence of this sym-
metry the possible eigenvectors of Eq. (8) fall into two
classes. The first one (even parity, p = 1) is character-
ized by n̄z(n|k) = 0 for even |k + n|, while in the second,
odd-parity class (p = −1), we have n̄z(n|k) = 0 for odd
|k + n|. Let us indicate contributions to the fields, which
are symmetric against z → −z [i.e., with odd indices n
in the expansion like Eq. (9)], with the symbol s and cor-
respondingly the antisymmetric ones (even n) with the
symbol a. With respect to time the symbol o (e) is used
to indicate the contributions of Fourier modes with odd
(even) indices k. Thus for each variable we have four dif-
ferent combinations of the symbols e, o and s, a which we
list in the Table I. It is obvious that the combinations
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TABLE I: Table of possible symmetries of the field variables.

Type Φ nz ny vx vy vz

I os es ea ea ea es
II oa ea es es es ea
III es os oa oa oa os
IV ea oa os os os oa

in the rows I and IV belong to p = 1, while those in the
rows II and III are associated with p = −1.

For clarity we present explicitly the leading terms of
nz(z, t) in the expansion Eq. (9) for the different sym-
metries, where the expansion coefficients are written in
terms of their moduli Nz(n|k) and phases χ(n|k)

n̄z(n|k) = Nz(n|k) exp[iχ(n|k)]
with Nz(n| − k) = Nz(n|k) . (12)

We obtain thus from Eq. (9) for the Type I solution

nI
z(z, t) = S1(z) {Nz(1|0) + Nz(1|2) cos[2ωt + χ(2|2)]

+ · · ·}
+S3(z) {Nz(3|0) + Nz(3|2) cos[2ωt + χ(3|2)]

+ · · ·}+ h.o.t. , (13)

and for the Type III solution

nIII
z (z, t) = S1(z) {Nz(1|1) cos[ωt + χ(1|1)]

+Nz(1|3) cos[3ωt + χ(1|3)] + · · ·}
+S3(z) {Nz(3|1) cos[ωt + χ(3|1)]

+Nz(3|3) cos[3ωt + χ(3|3)] + · · ·}+ h.o.t. . (14)

The expansion for Type II solutions is analogous to
Eq. (14) except that the even z-modes have to be re-
placed by the odd ones. In the same manner the Type IV
solutions can be obtained from the Type I solutions. Ac-
cording to Eq. (A.5) we recover δnz(x, z, t) in real space
by multiplying the expressions given in Eqs. (13), (14)
with cos(q · x).

We will use in this paper the acronym “conductive” to
characterize the even-parity solutions corresponding to a
combination of the modes with symmetry Type I and IV.
This case is realized in the low frequency “conductive”
regime in s-EC. The moduli of the expansion coefficients
of Type I are in this case typically much larger than those
of Type IV and the coefficient Nz(1|0) in Eq. (13) is dom-
inant. In the absence of the flexo effect mode IV is even
decoupled from mode I and thus is not relevant. Anal-
ogously the acronym “dielectric” is used to characterize
the odd-parity symmetry class, corresponding to a combi-
nation of the solutions of symmetry Type II and III. That
pattern is realized at higher frequencies in the so called
“dielectric” regime of s-EC. The moduli of the expansion
coefficients of Type III are in this case typically much
larger than those of Type II and the coefficient Nz(1|1)
in Eq. (14) is dominant. In the absence of the flexo effect

the solution of Type II is decoupled from the Type III
one and is not relevant for the threshold behavior. The
threshold behavior of EC for zero flexo coefficients can
be described quite well by analytical “one-mode” formu-
las [1] by restricting the expansions to the leading modes
shown in Eqs. (13), (14).

III. FLEXO POLARIZATION AND
NONSTANDARD EC

In this section we study the consequences of gener-
alizing the conventional nemato-hydrodynamics (coined
as the standard model, SM, in the introduction) by the
inclusion of the flexo polarization. Our main goal is to
demonstrate that in this way striped EC patterns become
possible in the planar geometry when σa < 0, which are
otherwise prohibited.

To elucidate the generic features of EC in this situation
it is sufficient to concentrate on a representative mate-
rial parameter set. If not otherwise stated, all results
given in this section are based on the material parame-
ters of the widely used nematic 4-methoxybenzylidene-
4’-n-butyl-aniline (MBBA), in particular with respect to
the elastic constants kii and the viscosity coefficients αi

[see Eq. (A.14)]. To reveal the particular influence of σa

and of the flexo coefficients ei we have, however, allowed
for their systematic variations in our theoretical param-
eter studies.

At first we present the onset behavior of EC, obtained
on the basis of the linear equations presented in the Ap-
pendix. In Fig. 1 we show the threshold voltage Uc as
a function of the dimensionless circular frequency ωτq

(ω = 2πf) for a 40 µm thick cell for different σa/σ⊥,
but using otherwise the MBBA parameters Eq. (A.14).
The charge relaxation time τq is defined in Eq. (A.1) and
ωτq = 1 corresponds to a frequency of about 34 Hz. We
have not resolved here the regime of very small ωτq where
the theoretical analysis becomes more difficult and which
is also typically avoided in experiments. For σa/σ⊥ = 0.5
(the MBBA value) we observe in Fig. 1 the familiar
threshold behavior exhibiting the conductive branch at
low frequencies with a crossover to the dielectric branch
at ω = ωc = 2πfc. Note, that the curvature of the Uc(ω)
curve in the conductive regime is concave in contrast to
be convex in the dielectric regime. Reducing σa/σ⊥ leads
to a shrinking of the conductive regime at the expense
of the dielectric one, which covers eventually the whole
frequency range for σa/σ⊥ = 0.05. Further reduction of
σa/σ⊥ (passing through zero to negative values) leads to
a considerable increase of the critical voltage; at the same
time the ω-dependence becomes more and more linear.

Fig. 2 exhibits the absolute value |qc| of the critical
wave vector qc ≡ (qc, pc) for the parameters of Fig. 1.
For σa/σ⊥ > 0.05 we observe a jump of |qc| from small
values below the crossover frequency ωc to considerably
larger values for ω > ωc. Decreasing σa/σ⊥ leads to an
overall continuous frequency dependence. For negative
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FIG. 1: (Color online) Critical voltage Uc as function of ωτq

for different σa/σ⊥ as indicated by the arrows.

values of σa the |qc(ω)| curve becomes almost flat. Note
that the relatively small values of |qc| ≈ 4π/d are com-
parable to values of the standard conductive EC regime,
even though the parity of the linear eigenvector [as also
reflected in the shape of the Uc(ω) curves] corresponds
to a dielectric mode.
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FIG. 2: (Color online) Modulus of the critical wave vector qc

as function of ωτq for different σa/σ⊥.

Finally, we address the obliqueness angle α =
arctan(pc/qc) of the rolls in Fig. 3. For σa/σ⊥ > 0.05
we observe jumps from α = 0 (normal rolls) to finite α
(oblique dielectric rolls) at ωc. For σa/σ⊥ = 0.1 and 0.3
the rolls become oblique again at small ω below the so
called Lifshitz frequency. With decreasing σa/σ⊥ (below
0.05 and moving into the negative range), the angle α
increases monotonically and remains almost constant for

all ωτq.
The theoretical results shown in Figs. 1–3 express

clearly the main message of this paper, that the param-
eter combination σa < 0, εa < 0 does not necessarily
prohibit electroconvection, if the flexo polarization Pfl

is taken into account.
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FIG. 3: (Color online) Angle α of the critical wave vector qc

with the x-axis as function of ωτq for different σa/σ⊥.

To demonstrate that flexo polarization gives rise to
a generic mechanism for nonstandard EC (σa < 0) we
present the ingredients of the driving positive feedback
loop. We make explicitly use of the linear threshold so-
lutions at onset [i.e., at qc = (qc, pc) and U = Uc]. It
is convenient to rotate the coordinate system in the x-y
plane in such a way that the new x− axis (coordinate x′)
is parallel to q. Thus the centers of the two rolls within
one wavelength (0 ≤ x′ ≤ λc) with λc = 2π/|qc| are lo-
cated at x′ = 0 and λc/2, where the director distortion
δnz is maximal at the midplane z = 0. At x′ = λc/4 and
3λc/4, i.e., between the rolls, δnz vanishes identically.

In Fig. 4 we show the amplitude nz(z, t) at the mid-
plane z = 0 [equal to the director distortion δnz(x′, z, t)
at the roll center x′ = 0 according to Eq. (A.5)] as func-
tion of time, for one period of the ac voltage. Note that
δnz(x′, z, t) determines directly the angle between the di-
rector and the x − y plane near onset. For definiteness
we have fixed in the sequel the undetermined amplitude
of the linear eigenvector in such a way, that the maximal
value of nz ≡ sin θ corresponds to a tilt angle of θ = 10◦.
Inspection of Fig. 4 shows that nz(0, t) can be well repre-
sented by a few Fourier modes in time with a small time
average. Thus the time variation is obviously dominated
by the Type III symmetry (dielectric) solution where the
relation nz(z, t + π/ω) = −nz(z, t) would hold exactly in
the absence of the flexo effect.

In Fig. 5 we present the profile of the amplitude nz(z, t)
for different times as a function of z for σa/σ⊥ = −0.1
and ωτq = 0.5. It is obvious that besides the lead-



6

0 1 2 3 4 5 6
ωt

−0.2

−0.1

0

0.1

0.2
n z (

z=
0)

FIG. 4: Temporal evolution of the director amplitude nz(0, t)
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ing mode ∝ cos(πz/d) at least the modes ∝ cos(3πz/d)
and cos(5πz/d) are needed to describe properly the z-
dependence.
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FIG. 5: (Color online) Profile of the amplitude nz(z, t) along
z for different times. The dashed curve marked as “avr.”
represents the time average.

The spatial variations of the director field are responsi-
ble for the charge separation. In analogy to δnz (A.5) the
charge density ρel(x, z, t) can be represented as the prod-
uct of sin(|qc|x′) and an amplitude ρ̄el(z, t). Thus |ρel| is
maximal between the rolls at x′ = λc/4, 3λc/4. It is use-
ful to single out the flexo contribution, ρfl = ∇ · Pfl, to
the total charge density ρel. In Fig. 6 we present the
corresponding amplitude profile ρ̄fl(z, t) which is pro-
portional to |e1 + e3|. Except near the boundaries at
z = ±d/2 the flexo charge ρ̄fl has a positive time aver-
age with small oscillations superimposed, which is in line
with the dominant dielectric symmetry. In Fig. 7 we show

the corresponding amplitude ρ̄C(z, t) of the “Coulomb”
charge ρC = ∇ · (ε0εE) for the same parameters. It
is evident that ρ̄C(z, t) is rather small compared to ρ̄fl.
Since ρ̄C shows non-symmetric variations in z in addi-
tion to strong oscillations in time, the Type II symmetry
prevails.

The total charge density ρel = ρfl + ρC is responsible
for the body force fb = ρelE0 cos(ωt)ẑ in the Navier-
Stokes equations. For the chosen material parameters,
where the main contribution stems obviously from the
flexo charge, fb oscillates in phase with the driving ac
voltage.
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FIG. 6: (Color online) Profile of the amplitude ρ̄fl(z, t) of the
flexo charge density along z for different times.
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FIG. 7: (Color online) Profile of the amplitude of the Coulomb
charge density ρ̄C = ρ̄el − ρ̄fl along z for different times.

A positive feedback loop to drive EC requires the vis-
cous torque density Γy on the director at the roll center to
enhance the director fluctuation. According to Eq. (A.6)



7

the director dynamics is governed by the equation

γ1∂tnz(z, t) =
[−k33q

2 − k22p
2 + k11∂zz

]
nz(z, t) + Γy

with Γy(z, t) = −α2qvz(z, t)− α3∂zvx(z, t) . (15)

The profile of Γy(z, t) shown in Fig. 8 for different t is cal-
culated with the velocity fields obtained from Eqs. (A.8),
(A.9). Near the midplane (z = 0) the time depen-
dence can be approximated in leading order as Γy(0, t) ∝
C cos(ωt) with C > 0. Since the elastic terms ∝ kii are
much smaller than the other terms in Eq. (15), the terms
γ1∂tnz and Γy have to balance each other. This is in fact
the case according to Fig. 4 where nz(0, t) ∝ sin(ωt) in
leading order. Therefore the out-of-plane director fluctu-
ations nz and the resulting charge separation lead to a
torque that enhances further the director distortion (pos-
itive feedback).

−10 −5 0 5 10
Γy  [N/m

2
]

0

−1/2

1/2

z/
d

avr.
t=0
t=T/4
t=T/2

FIG. 8: (Color online) Profile of the torque density Γy(z, t)
on the director along z for different times.

In contrast to ρfl the Coulomb charge ρC ∝ cos(ωt)
does not contribute to the positive feed back loop. It
leads to an almost stationary body force fb and thus to
a torque that is not compatible with the oscillatory di-
rector dynamics. Since ρfl ∝ |e1 + e3|, its contribution
to ρel diminishes with decreasing |e1 + e3| and the ad-
verse effect of ρC on electroconvection increases. In the
limit of |e1 + e3| → 0 we recover the SM, where ρC can
be estimated analytically. For the lowest-mode ansatz
of dielectric symmetry, nz(z, t) = Nz cos(z) cos(ωt), the
equation for the electric potential φ [Eq. (A.11) in Ap-
pendix] is easy to solve if ei = 0. Subsequently we obtain
from ρel = ∇ ·D the electric charge density in the form
ρel ≡ ρC = ρ̄el(z, t) sin(qx + py) with

ρ̄el(z, t) =
1
2

√
RqNz

(
σa

σ⊥
− εa

ε⊥

)

× ε⊥
1 + σaq2/[σ⊥(q2 + p2 + 1)]

cos(z) (16)

in dimensionless units (−π/2 < z < π/2). Thus in con-
trast to ρ̄C at finite ei shown above in Fig. 7, ρ̄el presents

now a finite time average in line with the Type III sym-
metry. As soon as (σa/σ⊥ − εa/ε⊥) becomes negative in
Eq. (16), the body force fb is certainly out-of-phase with
the ac driving and the resulting viscous torque is stabiliz-
ing, such that EC is prohibited. For MBBA parameters
(εa/ε⊥ ≈ −0.1) this would happen for σa/σ⊥ <∼ −0.1,
i.e., at negative σa. The relation (σa/σ⊥ − εa/ε⊥) > 0
is, however, only a necessary condition for the occur-
rence of EC. In the full linear stability analysis of the
SM (where ei = 0) in the dielectric regime the critical
voltage diverges in fact already at σa/σ⊥ ≈ 0.05, due to
the stabilizing effect of the dielectric torque for εa < 0.
In a similar way it can be shown that for the conductive
symmetry [nz(z, t) = Nz cos(z)] EC excluded for σa < 0,
ei = 0 as well. One should mention that for ei 6= 0 a
one-mode formula similar to Eq. (16) is not valid due to
coupling of modes with different symmetries. Note that
for ei 6= 0 an analogous leading-mode approximation be-
comes more complicated because one needs to take into
account at least two modes of the same parity. Moreover,
the applicability of such an approximation would be ques-
tionable in view of the importance of higher modes in t
and z as seen in Figs. 4, 5, respectively.

The eigenvalue problem [Eq. (8)] discussed in the con-
text of EC allows also for a qualitatively different solution
family. It is easy to see from Eq. (A.11) that director dis-
tortions with a wave vector q = (0, p) perpendicular to
the preferred x-direction do not lead to charge separa-
tion. Thus no flow is excited to drive EC. Nevertheless,
as first shown by Bobylev and Pikin [17], another kind
of pattern forming phase transition remains possible. It
arises from the competition between the elastic and the
electric contributions to the orientational free energy, if
the electric torque ∝ |e1 − e3| due to the flexo polariza-
tion becomes strong enough. In the presence of an ac
voltage we find for instance periodic director distortions
δnz, δny with wavenumber pfl if the dimensionless pa-
rameter µ = |εak11/(e1 − e3)2| <∼ 1. For the solutions,
which we call flexo domains, both symmetry types, “con-
ductive” and “dielectric”, are realized as well.

To study the competition between the flexo domains
(depending on |e1 − e3|) and ns-EC (mainly depending
on |e1 + e3|) we keep the MBBA parameters fixed except
σa/σ⊥ = −0.1 but allow for separate rescaling of the ei

in the form

(e1 − e3) → (e1 − e3)ξ− , (e1 + e3) → (e1 + e3)ξ+ , (17)

while so far only the special case ξ+ = ξ− = 1 has been
considered. Since for ξ+ = 0 the flexo charge ∝ |e1 + e3|
becomes zero, EC is impossible for σa < 0.

In Fig. 9 we present the neutral curves in the U − q
plane as a function of q at fixed values of p and ωτq = 0.5.
Let us start with ξ+ = 0 to block EC, while flexo domains
with wave vector qc = (0, pfl) exist for sufficiently large
|e1−e3|, i.e., for ξ− > 1.4. We find flexo domains with the
minimum of the neutral curve at q = 0 as demonstrated
for (ξ−, ξ+) = (2, 0) where pfl = 4.95π/d. With increas-
ing ξ+ the flexo charge becomes finite and the curvature
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FIG. 9: (Color online) Neutral curves U0(q) for the wave vec-
tor q = (q, p) as a function of q at a fixed value of p for differ-
ent magnitudes of the flexo coefficients (ξ−, ξ+) at ωτq = 0.5.

of the neutral curve at q = 0 decreases and changes even-
tually sign. In this case the ns-EC minimum develops at
qc = (qc, pc) (oblique rolls). As a representative exam-
ple we show the neutral curve for (ξ−, ξ+) = (2, 1) with
its minimum at qc = 4.08π/d and pc = 5.95π/d. In a
loose sense the flexo domains have rotated to exploit in
addition the flexo charge effect. For comparison we show
also two representative curves for (ξ−, ξ+) = (1, 1) and
(ξ−, ξ+) = (1, 2) where the flexo domains do not exist.
That is reflected in the divergence of the neutral curves
at q = 0. With increasing ξ+ the neutral curve moves
down and Uc decreases. Thus, in general, the existence
of the flexo domains is a strong indication but not a nec-
essary condition for ns-EC at moderate Uc for σa < 0.

IV. COMPARISON WITH EXPERIMENTS

To validate the theoretical description of ns-EC we
need experiments on unusual nematics with σa < 0,
which are fortunately available as already mentioned in
the introduction. Focus will be on the compound 4-
n-octyloxy-phenyl-4-n’-heptyloxy-benzoate (8/7, labeled
after the number of carbon atoms in the alkyloxy chains)
where TNI = 92◦C, TNS = 72.5◦C. Figs. 10 and 11 dis-
play corresponding experimental results on the frequency
dependence of Uc and |qc|, respectively, for a sample of
thickness d = 40 µm at two temperatures: T = 86◦C
(σa < 0, squares) and T = 90◦C (σa > 0, circles). The
roll angle α between q and n0 was found to be practi-
cally frequency independent where α = 0 at T = 90◦C
and α ≈ 75◦ at T = 86◦C. It is obvious that the experi-
mental results reveal the characteristic features of stan-
dard/nonstandard EC discussed before, which allow an
easy discrimination in the experiments. Whereas the roll
angle α is small and the Uc, qc curves look convex as

function of f , which is characteristic for s-EC, we find
the large α and the almost linear Uc(f) and qc(f) curves
typical for ns-EC (see Figs. 1, 2, and 3).

The theory offers also an indication why the ns-EC pat-
terns in comparison to standard ones are more difficult to
assess experimentally considering their lower uniformity
and reduced contrast [2, 9, 14, 15]. As a consequence of
the strong obliqueness of the rolls the director displays
besides the out-of-plane distortions (δnz) also in-plane
rotations (δny) which both vanish at the confining plates
of the cell. The δnz distortion is exploited in the conven-
tional shadowgraph technique [22, 23] or in diffraction
measurements by shining light on the nematic cell. A
finite optical contrast of the pattern requires a finite av-
erage of δnz in the z-direction. Thus the dielectric modes
with symmetry Type III (even in z) play the dominant
role. Since they oscillate in time, only certain time aver-
ages of the director dynamics are recorded with typical
experimental setups. Thus the optical contrast is con-
siderably smaller than in the conductive regime where
the director is stationary. In contrast to δnz the in-plane
component δny of the director has a large stationary con-
tribution with finite z-average, since δny is dominated by
modes of symmetry Type II in the presence of the flexo
effect. Due to Mauguin’s principle in-plane rotations of
the director (i.e., of the optical axis) cannot be detected
in leading order at small q/k0 ratios where k0 denotes
the wave number of the incident light. In the next or-
der, however, the local rotation of the optical axis is re-
flected in the fairly small depolarization effects. They are
typically detected with crossed polarizers, which indeed
turned out to be necessary to observe ns-EC in our ex-
periments. This might also explain, why ns-EC in some
former experiments without the use of crossed polarizers
has not been observed [12].

Encouraged by the convincing qualitative description
of the experiments by the theory as demonstrated be-
fore, we tried a more quantitative comparison as well.
Unfortunately, in contrast to MBBA, only few material
parameters are known for the nematic 8/7. Thus we had
to resort to a kind of educated guess of the missing mate-
rial parameters combined with a fitting procedure of the
experimental curves.

For simplicity we have chosen the same material pa-
rameter set for the nonstandard and standard regime
(i.e., for both temperatures T = 86◦C and T = 90◦C)
except that σa was allowed to change. This assumption
is supported by the fact that this temperature interval
is relatively short within the extended nematic phase;
hence one does not expect strong variation of the mate-
rial parameters except σa. Furthermore, viscosities and
elastic moduli play a minor role in EC compared to εa,
σa, and ei. The values of ε⊥ and εa were taken from
the experiments. The theoretical curves obtained by this
procedure are shown in Figs. 10 and 11 as solid lines,
which match the experiments quite well. The theoretical
roll angle α was found to be zero in the standard case
(T = 90◦) for all f as in the experiments, while the the-
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FIG. 10: (Color online) Experimental data (symbols) and the-
oretical results (lines) for the critical voltage Uc as a function
of frequency f for the compound 8/7 for positive as well as
for negative σa.
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FIG. 11: (Color online) Modulus of the critical wave vector qc

as a function of frequency f for the compound 8/7 for positive
as well as for negative σa. Experimental data (symbols) and
theoretical results (lines).

oretical value α ≈ 65◦ for ns-EC (T = 86◦) was slightly
smaller than in the experiment. It is reassuring, that the
material parameters resulting from fitting [Eq. (A.15)]
seem to be realistic. They do not differ too much from
the MBBA values (starting point for fitting), except for
the considerably large flexo coefficients.

In any case we do not claim that the material param-
eters are unique, for instance due to the large scatter
in the experimental data for the wavenumber. To prove
definitely that the flexoeffect is responsible for EC in the
nonstandard case, which seems to be natural according
to our analysis, one would need precise measurements of
the material parameters in particular of the flexo coeffi-

cients ei, which is far from trivial.

V. CONCLUSIONS

The flexoelectric effect, i.e., the occurrence of an elec-
tric polarization in a distorted director field, has been
described already many years ago [16]. After all, quanti-
tative measurements of this effect and the experimental
determination of the flexo coefficients e1 and e3 are still
difficult. According to earlier theoretical studies of the
conductive regime of EC inclusion of the flexo effect does
not have an important physical impact [19]. We have re-
peated the calculations and approved the former finding.

In contrast, we have demonstrated that incorporating
flexoelectricity into the standard model seems to provide
a proper mechanism for nonstandard EC when σa < 0,
εa < 0. Direct numerical calculations of the threshold
and of the critical wave vector for suitably chosen pa-
rameter sets have been supplemented by a qualitative
analysis of the various mechanisms, which drive EC. We
have shown that for σa < 0 without flexoelectricity the
charge separation (ρC) leads to a stabilizing torque on the
director, while including the flexoelectric charge ρfl the
torque yields the favorable conditions for EC. The pre-
dictions of the calculations for Uc(f) and qc(f) are con-
sistent with the main experimental characteristics of the
ns-EC patterns observed recently. We have even achieved
a semi-quantitative description of the experiments by a
reasonable choice of material parameters for the nematic
compound 8/7. We mention that other mechanisms, not
included in our theory, might be important as well. Apart
from smectic fluctuations, which become stronger when
approaching TNS , one has to be aware of boundary effects
(for instance imperfect director anchoring at the confin-
ing substrates or charge injection) in particular for thin
cells.

We mention here that apart from the 4-n-alkyloxy-
phenyl-4-n’-alkyloxy-benzoate homologous series referred
to in this paper, patterns now called as ns-EC have also
been seen in a few other substances with σa < 0 and
εa < 0 [24, 25]. Several ideas had been suggested as
possible explanations like, destabilization of twist fluctu-
ations [24], an isotropic mechanism [25, 26] as well as the
flexoelectric effect [20], but no detailed theoretical anal-
ysis has been given at that time, especially not in line
with the experiments.

Note that recent experimental studies of 8/7 revealed
also traveling waves at onset in particular for thinner cells
[15]. Hopf bifurcation cannot be captured by the present
theory. It is expected that combining flexoelectricity with
the weak electrolyte model [27] could give an explanation
for traveling ns-EC; this goes, however, beyond the focus
of the present paper.

The importance of flexoelectricity in ns-EC is a strong
motivation to re-investigate systematically the effect of
the flexo polarization also in standard EC. Preliminary
theoretical as well as experimental results give the im-
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pression that the flexoelectric effect has a stronger influ-
ence than assumed so far, in particular in the dielectric
regime [28]. Also, the sample thickness appears to be
quite important: in particular in very thin (few micron)
cells and at low frequencies flexoelectricity has noticeable
influence on EC even in the conductive regime [29]. De-
tailed studies focusing especially on thin samples are in
progress.

Finally we would like to remind that the waveform
of the applied electric field E0(t) influences the onset
behavior of EC. In case of standard EC also subharmonic
bifurcations at onset have been found besides the usual
ones of conductive or dielectric symmetry [30]. According
to theory a subharmonic bifurcation requires that the
condition E0(t) = −E0(t+π/ω) considered in this paper,
is not valid. It would be attractive to study the influence
of the waveform of driving electric field on nonstandard
EC as well.
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APPENDIX: THE LINEARIZED EQUATIONS

Our starting point is a nematic layer of thickness
d confined between two parallel plates at z = ±d/2
with the undistorted director n0 = (1, 0, 0) in the x-
direction and in the absence of flow (v0 = 0). An ac
electric field E0(t) = E0 cos(ωt)ẑ is applied in the z-
direction between the plates which corresponds to the
potential Φ0 = E0z cos(ωt) =

√
2U(z/d) cos(ωt), with

U = E0d/
√

2 the rms value of applied voltage. According
to Eq. (3), the electric properties of the uniaxial nematics
are described by the two permittivities, ε‖ and ε⊥, and
the two conductivities, σ‖ and σ⊥, parallel and perpen-
dicular to the director, respectively. If the flexo polar-
ization is considered in addition the two flexo coefficients
e1 and e3 come into play. The orientational elasticity of
the director is governed by three constants kii, i = 1, 2, 3,
which describe the restoring forces to splay, twist and
bend distortions. The viscous contributions to the di-
rector and flow dynamics is described by six viscosity
coefficients αi, i = 1, ..., 6 which are not all independent
because of the Parodi relation α2 + α3 = α6 − α5.

Inspection of the linear equations shows, that besides
the external ac period 2π/ω three additional time scales,
namely the charge relaxation time τq, the director relax-
ation time τd and the viscous relaxation time τvisc govern
the dynamics of the linear modes. They are defined as
follows:

τd =
γ1d

2

k11
, τq =

ε0ε⊥
σ⊥

, τvisc =
ρmd2

α4/2
, (A.1)

where γ1 = α3 − α2 and ρm ≈ 103 kg/m3 denotes the
mass density of the nematic. The first one is usually the
longest, while the third one is the shortest (τd ∼ 20 s and
τvisc ∼ 4×10−5 s, respectively for a cell of 40 µm). Thus
it is not surprising that inertial effects usually turn out
to be negligible. Note that τq ∼ 4×10−3 s is independent
on the cell thickness.

The stability of the basic state is studied by the famil-
iar linear stability analysis. Infinitesimal perturbations
are superimposed to the basic configuration:

n = n0 + δn , v = v0 + δv , Φ = Φ0 + δΦ . (A.2)

In leading order in the perturbations one arrives at the
linearized nemato-hydrodynamic equations in the form
of linear coupled PDE’s in δn, δv, δΦ. The instability of
the basic state is signaled by the existence of solutions of
this linear system that grow exponentially in time.

In this paper we will nondimensionalize the material
parameters as follows:

αi = α′iα0 , kii = k′iik0 , ρm = ρ′m
α2

0

k0
,

(σ‖, σ⊥) = (σ′‖, σ
′
⊥)σ0 ,

(e1, e3) = (e′1, e
′
3)

√
ε0k0 , (A.3)

with

k0 = 10−12 N , α0 = 10−3 Pa s ,

σ0 = 10−8 (Ω m)−1, ε0 = 8.8542× 10−12 A s
V m

.(A.4)

From the director normalization n2 = 1 it follows im-
mediately that in linear order the possible director dis-
tortions are perpendicular to n0, i.e., we use the ansatz:
δn = (0, δny, δnz). Furthermore it is convenient to apply
the curl to the Navier-Stokes equation to eliminate the
pressure. Due to translational invariance in the x − y
plane the dependence of the linear solutions on x, y can
be separated out in Fourier space. According to [6] the
following ansatz is appropriate for that purpose

δΦ = φ(z, t) sin(qx + py) ,

δnz = nz(z, t) cos(qx + py) ,

δny = ny(z, t) sin(qx + py) ,

{δvx, δvy} = {vx(z, t), vy(z, t)} cos(qx + py) ,

δvz = vz(z, t) sin(qx + py) . (A.5)

The equations become nondimensional if lengths are
measured in units of d/π, time in units of α0d

2/(k0π
2)

and the electric potential in units of E0d. One ar-
rives thus at the following linear equations for the
z, t dependent Fourier amplitudes (φ, nz, ny, vx, vy, vz) in
Eqs. (A.5). The primes for nondimensional material pa-
rameters defined in Eq. (A.3) are suppressed:
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Dynamics of nz:

εaR cos(ωt)qφ + [γ1∂t + k33q
2 + k22p

2 − k11∂
2
z − εaR cos2(ωt)]nz − (k11 − k22)p∂zny

+α3∂zvx + α2qvz − (e1 + e3)
√

Rq∂zφ− (e1 − e3)
√

R cos(ωt)pny = 0 , (A.6)

Dynamics of ny:

(k11 − k22)p∂znz + [γ1∂t + k33q
2 + k11p

2 − k22∂
2
z ]ny − α3pvx − α2qvy

+(e1 + e3)
√

Rqpφ− (e1 − e3)
√

R cos(ωt)pnz = 0 , (A.7)

Dynamics of vx, vy:

−α3p∂t∂znz + (α2q
2 − α3p

2)∂tny + [ρm∂t + (η0 − η1 − α2)q2 + η2(p2 − ∂2
z )]pvx

−[ρm∂t + η1q
2 + (α3 + α4 − η2)p2 − η3∂

2
z ]qvy + (α3 + η3 − η2)qp∂zvz = 0 , (A.8)

Dynamics of vx, vz:

R cos(ωt)[ε⊥(q2 + p2 − ∂2
z ) + εaq2]qφ− εaR cos2(ωt)q2nz − (e1 + e3)

√
R cos(ωt)q2(∂znz + pny)

−(α2q
2 + α3∂

2
z )∂tnz − α3p∂t∂zny + [ρm∂t + (η0 − η1 − α2)q2 + η2(p2 − ∂2

z )]∂zvx

−(α3 + η3 − η2)qp∂zvy − [ρm∂t + η1q
2 + η3p

2 − (α3 + α4 − η2)∂2
z ]qvz = 0 , (A.9)

Continuity equation:

qvx + pvy − ∂zvz = 0 , (A.10)

Electric potential:
√

R[ε⊥(q2 + p2 − ∂2
z ) + εaq2]∂tφ +

√
RQ[σ⊥(q2 + p2 − ∂2

z ) + σaq2]φ

−
√

R[εa∂t cos(ωt) + Qσa cos(ωt)]qnz − (e1 + e3)q∂t(∂znz + pny) = 0 . (A.11)

The Eqs. (A.6)-(A.11) contain the main control parame-
ter R defined in Eq. (5) and Q = α0d

2σ0/(k0π
2ε0), which

is proportional to the ratio of the director relaxation time
τd to the charge relaxation time τq. The rotational viscos-
ity γ1 in the director equations and the shear viscosities
ηi, i = 0, ..., 3 in the velocity equations, which have been
introduced by Miesowicz, are defined as

γ1 = α3 − α2 ,

η0 = α1 + α4 + α5 + α6 ,

η1 = (−α2 + α4 + α5)/2 ,

η2 = (α3 + α4 + α6)/2 , η3 = α4/2 . (A.12)

The applied voltage E0d cos(ωt) is kept fixed, the di-
rector is assumed to be fixed at z = ±π/2 (“strong an-
choring”), and for the velocity one has realistic no slip
boundary conditions:

φ(z = ±π/2, t) = 0 ,

nz(z = ±π/2, t) = 0 , ny(z = ±π/2, t) = 0 ,

{vx, vy, vz}(z = ±π/2, t) = 0 . (A.13)

We have used in this paper the parameter set of MBBA
[nondimensional according to Eq. (A.3)]:

ε⊥ = 5.25 , εa = −0.53 , σ⊥ = 1.0 , σa = 0.5

e1 = −3.25 , e3 = −4.59 ,

k11 = 6.66 , k22 = 4.2 , k33 = 8.61
α1 = −18.1 , α2 = −110.4 , α3 = −1.1 , α4 = 82.6 ,

α5 = 77.9 , α6 = −33.6 , ρm = 1.0× 10−3 . (A.14)

Typically the electric conductivities of nematics range
between 10−1σ0 and 10σ0. According to Eq. (A.1) the
charge relaxation time τq is inversely proportional to σ⊥.
If the circular frequencies ω are not to small (i.e., larger
than τ−1

d ) the σ⊥ dependence can be absorbed by pre-
senting the threshold curves in units of ωτq.

The theoretical curves for 8/7 (see Figs. 10, 11) have
been obtained with the parameter set [nondimensional
according to Eq. (A.3)]:

ε⊥ = 4.2 , εa = −0.2 , σ⊥ = 4.0 ,

e1 = −9.5 , e3 = −10.5 ,

k11 = 5.0 , k22 = 3.0 , k33 = 6.0 ,

α1 = 5.0 , α2 = −67.5 , α3 = 12.5 , α4 = 30.0 ,

α5 = 22.5 , α6 = −32.5 , ρm = 1.0× 10−3 , (A.15)

with σa = 0.15 in the standard EC regime and σa = −0.3
in the nonstandard one.
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