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Planar electroconvection in nematic liquid crystals with positive dielectric anisotropy is theoreti-
cally studied for the first time in the nonlinear regime. The system is characterized by a competition
between the non-equilibrium electroconvection instability and equilibrium Freedericksz distortions.
Near a resulting multicritical bifurcation point a novel splay-roll instability and bistability between

the convective and the homogeneous state occur.

PACS numbers: 61.30.Gd, 47.54.+r, 47.20.Lz

I. INTRODUCTION

Electroconvection in nematic liquid crystals (nemat-
ics) is widely accepted as an excellent paradigm to study
pattern forming instabilities in anisotropic systems [1-
5]. Nematics are intrinsically anisotropic fluids with uni-
axial symmetry. The preferred axis (the director n)
corresponds to the mean orientation of their elongated
molecules. Electroconvection (EC) occurs when a volt-
age above a critical threshold strength is applied across
a thin layer of a nematic with nonvanishing electrical
conductivity, which originates from impurities or from
suitable doping. At convection onset typically a periodic
array of convection rolls (stripes) is observed, which are
associated with periodic director distortions perpendicu-
lar to the roll axes in the layer plane.

Besides the nonequilibrium EC instabilities alterna-
tively equilibrium phase transitions (“Freedericksz tran-
sitions”) can be observed if electric (or magnetic) fields
are applied to uniformly oriented nematics [2]. The re-
sulting homogeneous director distortions, i.e. without
spatial variations in the plane, are minimizers of the ori-
entational elasticity potential characteristic for nemat-
ics [6]. The interplay between the periodic pattern-
forming and the homogeneous modes is reflected in
phenomena like “abnormal” rolls [7-10] or “dendritic
growth” [11] which have no counterpart in the standard
Rayleigh-Bénard convection. The bifurcation diagrams
are organized by various multicritical points mainly in
the nonlinear regime, such that the theoretical analysis
as well as the experimental verification are quite demand-
ing. In the present case EC is discussed in a system,
where equilibrium and nonequilibrium phase transition
and their competition are disentangled in a transparent
manner, since a certain multicriticality is already seeded
in the linear regime.

Our investigations concentrate on the familiar planar
electroconvection. In the common capacitor-like configu-
ration an ac-voltage V (t) = v/2 Ucos(wt) is applied in the
z-direction between two transparent plates (in the x,y-
plane), which confine a nematic layer. By a suitable sur-
face treatment of the plates the director is orientated in
a preferred direction (along %) in the layer plane. The ef-

fective voltage amplitude U and the circular ac-frequency
w serve as main control parameters. All material prop-
erties of nematics require a tensorial description. For
instance the dielectricity tensor €, which expresses the
electric displacement D = € - ¢gE in terms of the electric
field E, has the representation €;; = €1 d;; + (€] — €1 )nin;
(¢,j = x,y, z), which reflects the uniaxial symmetry. Ob-
viously e, describes the dielectric response if E is ori-
ented perpendicular to n while € governs the case E || n.
For positive dielectric anisotropy €, = ¢ — €1 > 0, the
orientation of n parallel to E is energetically favored.

Historically, standard nematics, like 4-
methoxybenzylidene-4’-n-butylaniline (MBBA) or a
mixture, Merck Phase 5, with negative dielectric
anisotropy €, have played a major role in the investi-
gation of EC, since there was hope to exploit them for
designing liquid crystal displays [12]. For this reason
most of the material parameters for those substances
have been measured, which has allowed a quantitative
comparison with theoretical calculations on EC [13].
For instance a spontaneously excited homogeneous
twist mode, which corresponds to a rotation of the
director in the plane of the nematic layer, has turned
out to be essential for the interpretation of secondary
instabilities in planar EC [14, 15]. A reverse sequence
of bifurcations is typical for the homeotropic geometry
(director orientation perpendicular to the confining
plates, i.e. parallel to the applied electric field). First
a primary Freedericksz transition takes place leading
virtually about the center plane of the cell to a planar
configuration, which at increasing voltages becomes
convectionally unstable via a secondary bifurcation [16].

In this paper we study planar EC in nematics with pos-
itive dielectric anisotropy €, > 0. This case, which has
not attracted much interest so far, is in fact very conve-
nient to investigate the competition between convective
and homogeneous modes. While in the standard planar
setup with €, < 0 the electric field E (|| Z) is stabilizing,
a destabilizing dielectric torque acts now on the director
to align it with the field direction. However, an ensuing
homogeneous distortion (Freedericksz transition) occurs
only for an applied voltage amplitude U above a cer-
tain w-independent threshold Ur = mw+/k11/(€qs€0) (see



e.g. [17], k11 denotes the splay elastic constant), since
opposing torques from the orientational elasticity have
to be overcome. The Freedericksz transition can com-
pete with the nonequilibrium EC instability of the basic
state. EC becomes possible above a frequency dependent
threshold voltage U.(w), which increases monotonously
with w starting from U,(0) &~ 7%\/k110. /(0s€1€0) . The
material constants o) and o, are defined in analogy to
€1, €, via the components of the conductivity tensor
o =0y = 010;; +0,nin . Note, that the ratioof €, 0
defines the charge relaxation time 7, = (e €9)/0 1, which
serves as a our time scale in the sequel.

Inspection of the expressions for Ur and U.(0) above
reveals that the Freedericksz transition is in fact easily
preempted by a primary EC instability at small w and not
too large €,. With increasing frequency U.(w) approaches
Ur from below until the curves cross at a codimension-2
(C2) point w = weo. The experimental studies of ne-
matics with positive €, have in fact exclusively concen-
trated on the linear threshold lines U., Ur and the iden-
tification of wes (see e.g. [18, 19] and further references
therein). Materials for a wider range of positive dielec-
tric anisotropies €, > 0 were systematically synthesized
by mixing MBBA with few weight percentages of suitable
nematics (EBCA, MBCA) with large €, = 20. Most ma-
terial parameters (in particular the viscosities, see Sec. II
below), which are needed for a precise comparison with
the linear theory, have not been measured in these mix-
tures. However, the experimental U,, Up threshold val-
ues compared well with theoretical calculations [18, 19]
on the basis of a material parameter set, to which we
refer as MBBA* henceforth. In MBBA* except €, the
material parameters of pure MBBA are used [20, 21].
The explicit bifurcation diagrams presented in this paper
are calculated for MBBA* with a representative medium
value ¢, = 0.1.

A simple consideration reveals that besides U., Ur a
further instability line in the nonlinear regime has to
meet the C2 point. If the voltage amplitude U is low-
ered starting in the Freedericksz state for U > Ur and
for w < wee one will hit for continuity reasons an upper
transition line UF (w) > Up > U.(w) to the convection
state. All the transition lines are sketched in Fig. 1 to
underline from beginning the generic framework for the
bifurcation structure near wco, which is detailed below.
A comprehensive analysis of the bifurcation diagram in
the vicinity of wg2 has also revealed a rich variety of non-
linear bifurcation types. As an example for the complex
structure of the multicritical point wcs it will be demon-
strated below that the bifurcation at the lines U., Ur
is supercritical, while it is subcritical and hysteretic at
UF. The resulting possibility of bistability between con-
vection states and homogeneous Freedericksz distortions,
has not been mentioned to our knowledge in the litera-
ture so far and might apply to other EC experiments as
well.

The paper is organized as follows: First in section II we
briefly present the fundamental equations as basis for our

theoretical calculations, also to fix our notations. Sec-
tion IIT contains the analysis of the convection onset at
the bifurcation lines U, and UY". In section IV the non-
linear bifurcation diagram for the substance MBBA* is
presented and discussed in detail. With some concluding
remarks the paper will end in section V.
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FIG. 1: Upper and lower convection onsets U,, US as func-
tion of the dimensionless frequency w’ = w7, together with
the Freedericksz bifurcation line Ur = w4/k11/(€a€0) (solid
lines) for MBBA* with ¢, = 0.1. The dashed line in-
dicates a weakly-nonlinear approximation for UZ near the
codimension-2 point w¢, (see Sec. IIIB below).

II. BASIC EQUATIONS

To explain the EC destabilization mechanism, which
has been elucidated first by Carr and Helfrich [22, 23] a
brief sketch of the standard nemato-hydrodynamic equa-
tions is sufficient [4, 24]. They describe the coupling be-
tween the director n, the velocity v, and the electric field
E, which derives as E = —V ¢ from the electric potential
@.

The important point is that in the presence of director
distortions an electric current density jo = V - (o - E) is
inevitably associated with a charge density p. = V - (€ -
eoE) according to the continuity equation

d
pe+ Vi je=0, 1
qiPe TV e =0 (1)

with d/dt = 0; + v - V the substantial derivative. The
bulk force p.E in the Navier-Stokes equation

d
PmEVZPeE—VIH'V'E; (2)

with the pressure p and the mass density p,,, may then
overcome the viscous stresses, to drive the velocity v.



The fluid is assumed incompressible (V -v = 0). X
denotes the stress-tensor with viscous and (almost neg-
ligible) elastic contributions. The explicit form of X
(see e.g. [2, 4]), which goes up to quintic order in the
components of v, n, includes six (5 independent) Leslie
shear viscosity coefficients a,...,as [25]. The famil-
iar effective (Miesowicz) viscosities, which are deter-
mined by the relative orientations of n, v and the gra-
dients of v, depend linearly on the ;. For instance the
large shears 0,v, and 0,v, at a convection roll center
in the planar case give rise to the Miesowicz viscosities
m = (o4 + a5 —az)/2and 92 = (a3 + s+ ag)/2 < 1,
respectively.
Eventually the director dynamics is governed by:

d
y1in X %nznx(hel+he+hv)7 (3)

with 74 = ag — ay. The restoring angular momenta in
case of splay (ki1), twist (k22) and bend (ks3) director
distortions are contained in the effective field h,; derived
from the Frank orientational elastic energy (see e.g. [2,
4, 6]). The dielectric and viscous torques h, and h,,
respectively, are defined as:

h, = e,60(n-E)E | h,=-aD-n—a3n-D, (4)
where the tensor D (D;; = 0v;/0x;) characterizes the
velocity shear. For example the viscous torque contribu-
tion —ay 9,v, enhances the splay distortion of the direc-
tor at the roll center. Equations (1), (2), (3) have to be
solved with rigid boundary conditions v = 0, n = x and
¢ = ¢o = FV2U cos(wt) at z = +d/2 with d the cell
thickness.

For a more compact notation we combine in the follow-
ing all field variables in a symbolic vector V = (¢, n,v),
so that the set of Egs. (1), (2), (3) can be written in the
symbolic form

B-9;V=L-V+Ny(V,V)+N35(V,V,V) +--- . (5)

The components of the vector operators Ny, N3, ... are
quadratic, cubic, ... in 'V and its spatial derivatives,
whereas L and B represent matrix differential operators.

III. ONSET OF CONVECTION

In the following the “lower” threshold curve U, for the
destabilization of the conductive ground state and the
corresponding “upper” one, UL, for the destabilization
of the Freedericksz state, already shown in Fig. 1, are

analyzed in detail.

A. Lower onset of convection at U,

The calculation of the lower onset of convection U,(w)
requires a linear stability analysis of the planar ground-
state Vo = (¢o,n9,v = 0) with ng = %X. From Eq. (5)

we arrive by linearization of V = V + §V with respect
to the convective perturbation §V(r,z,t) at the linear
eigenvalue problem: B - 8,0V = L -4§V. It is diago-
nalized by the ansatz dV(r,z,t) = eMe’®TV(q,2) with
q = (g,p). The eigenvalue A = ¢ + Q2 with the maximal
real part determines the growthrate o(q,w,U). The con-
dition ¢ = 0 yields the neutral curve Uy(q,w) with the
minimum U.(w) = Up(qe,w) at @ = q.(w). In the present
case the bifurcation is stationary (@ = 0) and we find
typically normal rolls at threshold, i.e. q. = g.x. Tech-
nically the eigenvalue problem is solved by a Galerkin
method, where all fields are expanded with respect to
the vertical coordinate z into a set of functions, that
fulfill the (rigid) boundary conditions at the confining
plates. The periodic time dependence of the eigenvec-
tor due to the applied ac-voltage is captured by Fourier
series in time. The series expansions are appropriately
truncated, such that the eigenvalue problem amounts to
the diagonalization of a matrix acting in the space of the
expansion coefficients. It turns out that the neutral curve
is already very well described by keeping only the leading
modes in z, ¢t . One arrives thus at an one-mode approx-
imation, which represents the dependence of the neutral
curve on the material parameters in a particularly trans-
parent manner:

w2k11 K(¢"H(¢',w'")
ereo ¢?A(q') + (€a/eL)B(g',w') |
In Eq. (6) the abbreviations

14 (kss/ki1) q? + (H,/Hr)?
- 1 +ql2

H(¢,w') = 0(¢)* +w"(¢)?
o(q)=q?(1+0a/0.)+1, e(d) =q* (1 + eafer) + 1,

A(ql) — a(ql) _ (042 ql2 - 053) U(ql)(ea/eJ_ - aa/UL)
n(g") — mAt + (a1 +m +12) ing? + Mg
B(¢,w'") = o(q) + w"e(q)

are used. The numerical constants A\; = 1.50563, iy =
1.24652, I, = 0.97267 correspond to certain overlap in-
tegrals, ¢' = gd/m is the dimensionless wavenumber and
w' = wr, the acfrequency in units of the charge relax-
ation time 7, [26]. For convenience we have included the
effect of a planar stabilizing magnetic field H = H,%
which is nondimensionalized in Eq. (6) with the help of
the splay Freedericksz field Hp = (n/d)\/k11/(toXa);
Xa > 0 denotes the anisotropy of the magnetic suscepti-
bility. According to the representative example of Fig. 2a
for MBBA* with ¢, = 0.1 the rigorous behavior of the
critical voltage U, (w') = ming Up(¢',w") is already deter-
mined very satisfactorily from Eq. (6). The lines U, and
Ur cross in this case at the C2 point wg,, = 1.99.

The w-dependence of the critical wavenumber g.(w),
which in fact slightly decreases with increasing w' in
Fig. 2b, might look unexpected, since for ¢, < 0 we are
accustomed to a monotonous increase of g, (w') and a di-

vergence also of U, at the cut-off frequency wl,, (= 2

Us(d',w') = (6)

K(q)

7
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for MBBA with ¢, = —0.53 [4]). The rather smooth
variations of U,, g, with w can be understood by exam-
ining more closely the threshold formula Eq. (6). Stabi-
lizing mechanism are captured via the orientational elas-
ticity term K (¢') > 0 and the viscous damping 7(q") > 0.
The a(q’)-term represents the essence of the Carr-Helfrich
destabilizing mechanism: The factor (e,/€L —04/01) <0
displays the charge separation effect coupled to the hy-
drodynamic torque contribution (a2¢? — a3) < 0. The
crucial difference in the threshold behavior between stan-
dard MBBA and MBBA* with €, > 0 comes from the di-
electric torque term (e, /€1 )B(q'), which is only weakly
frequency dependent. For ¢, < 0 this term is nega-
tive (stabilizing) with a minimum at ¢' = 0. The term
q>A(q') which has to compensate (e,/€1)B(q") (U2 >0
is necessary for EC !), has a maximum for ¢’ ~ 1.2 for
small frequencies that decreases with increasing w'’ and
shifts to larger ¢'. Since minimization of Up(q') requires,
loosely speaking, maximization of the denominator in
Eq. 6 the decrease of A(q') with increasing w' has to be
balanced by larger ¢/ values. In contrast, for €, > 0 the
situation is just opposite, the contributions of ¢'2A(q’)
and (€,/€1)B(¢') add up and ¢.(w') will in fact even de-
crease.

With the use of Eq. (6) the linear properties of elec-
troconvection can be easily assessed for other material
parameters as well. For instance the Freedericksz tran-
sition Ur would precede U, for €, > 0.295 for MBBA*
as already mentioned in [4]. In general one has also to
be aware of a possible bifurcation to oblique rolls with
the critical wave vector q. = (g, p.) including a finite
angle with the preferred direction % in the cell [4]. In
this case the exact threshold behavior can also be de-
scribed very well by a slightly more complicated one
mode formula [4, 13], which contains Eq. (6) as a spe-
cial case for p. = 0. While the threshold voltage in the
case of an oblique roll bifurcation is only slightly be-
low the normal roll threshold according to Eq. (6) the
roll angle a = arctan(p./q.) is fairly sensitive against
variations of the material parameters [4]. Finally we
would like to mention that the convection regime can
be enlarged with the use of an horizontal magnetic
field [27]. The Freedericksz threshold according to Up =
m\/k11/(€0 €2)\/1 + (H,/Hr)? is then shifted to larger
values, whereas U, reacts less sensitively. For instance in
the case of MBBA* with €, = 0.1 and for H, = Hr we
find the values Up = 12.19V, U(0) = 6.26V such that
the C2 point is shifted to the larger value wg, = 3.06 (cf.
Fig. 2a).

B. Upper onset of convection at UF

To calculate the upper onset of convection U a lin-
ear stability analysis of the the Freedericksz ground state
Vi = (¢,np,v = 0) for U > Ur has been performed
starting from Eq. (5) with the use of Galerkin methods.

It has turned out, that the general behavior of UF
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FIG. 2: Threshold voltage U, (a) and critical wavenumber ¢,
in units of 7/d (b) as function of the dimensionless frequency
w' for MBBA* with ¢, = 0.1 in comparison between rigorous
numerical results (thick lines) and the analytical one-mode
formula Eq. (6) (thin lines). The Freedericksz threshold Ur =

m+/k11/(€aco) is shown as well (a).

for w' < wg, can be satisfactorily described by an ana-
lytical approach, where only the leading Galerkin coeffi-
cients are kept. The Freedericksz solution, which bifur-
cates supercritically at U = Up is calculated within a
standard weakly nonlinear scheme. Near threshold the
director reads np = (1,0,¢r cos(mz/d)) in the leading
order of the amplitude v, which vanishes at Ugr. To
order O(1%.), where the corrections ~ 1% to n, = 1 and
¢o come into play, one arrives at a Landau-type equation
Opbr = osthp — grtb3 with the saturation coefficient gp
and the splay growth rate

€a€o(U? —U%)

e (7)

o8 = Tq

The linear growthrate og crosses zero at at Up; 74 =
aod? /(kow?) denotes the director relaxation time, where
ag = 1073Ns/m? and kg = 102N set the scales for the
viscosity and elasticity effects, respectively.

The calculation of gr is straightforward and the final
expression for gp' can be read off in the square bracket



of the following explicit representation:

¢2 _ 271d2
F s Tqm? (k33 — %kn + C(U, w’))
= (U? - (Ur)?) ; (8)
U?c60 (3 04/01L +w?eq /€L
n o_ a d a a
C(Uﬂw)_ 71_2 (4 1+w,2 ) Y

which is valid in the limit U — Up, w' = wgs.

In the next step the linear stability analysis of the
Freedericksz solution has to be performed. For finite 1p
the planar director symmetry is broken and the periodic
director fluctuation crucial in the Helfrich mechanism to
drive EC are impeded; consequently the threshold must
increase compared to U,. Technically one has to repeat
the calculations that led to U. (see Eq. (6)), but now
for the nontrivial distorted ground state (n = ng). We
will skip the straightforward though somewhat lengthy
calculations. The final result in the vicinity of w., be-
comes very transparent if written in the following form:
(UF? —(U,)? = [(UF)? - (Ur)?] 4%, consistent with
UF = U, at ¢ = 0. Solving for UF we obtain:

o _ c(Ur)? = (U)?
- c—1 ’

uh c=ce (e>1). (9)

It turns out that the factor c2, which has to be calcu-
lated numerically, depends mainly on some overlap inte-
grals, while the material parameter dependence is con-
densed in the parameter ¢; defined in Eq. (8). It is obvi-
ous from Eq. (9) that the line UL starts at the C2 point
(U, = Ur) as well. Furthermore, inspection of Eq. (8)
proves that for fixed €,, o, an increase of the bend con-
stant k33 leads to a decrease of ¥y and of ¢;. Thus the
slope of UF (w") depends rather sensitively on k33, which
is for instance known to increase strongly with tempera-
ture near a nematic-smectic transition [28]. In Fig. 1 the
analytical threshold curve UCF with ¢; =~ 0.019, ¢; =~ 97.8
for MBBA* (¢, = 0.1) is compared with the rigorous
numerical results. As to be expected from our weakly
nonlinear approach there is in fact good agreement near
the C2 point wg., where ¢ is not too large.

IV. NONLINEAR REGIME

After the discussion of the linear threshold lines U.,,
Ur and UY in section III we will now turn to the phase
diagram for the nonlinear states that bifurcate at these
lines. Our numerically demanding analysis has focused
on the interesting regime near w' = wp,, since for lower
frequencies the well investigated familiar EC bifurcation
scenarios for €, < 0 (see e.g. [24] were expected and in-
deed found in some selected test runs (for more details
see [29])). The analysis of the periodic solutions and their
stability is again based on Galerkin methods, by which
Eq. (5) is mapped on a system of nonlinear algebraic
equations for the expansion coefficients with respect to

suitable test functions. The equations are solved by a
Newton iteration scheme and in general tested for stabil-
ity with the use of the standard methods [13, 24].

In Fig. 3 the complete phase diagram in the U,w'-
plane near the C2 point (wp, = 1.99) is shown which
is considered to be generic for EC instabilities in ne-
matics with slightly positive €,. Let us discuss at first
the white wedged-shaped convection regime delineated
by the lines U, and UF. Increasing the applied voltage
at lower w' the normal rolls above U, become at first
unstable against the long-wavelength zig-zag (ZZ) insta-
bility, which involves undulations along the roll axis. At
the line Ug, on the other hand, a homogeneous splay
mode nd = g cos(rz/d) spontaneously bifurcates. For
w' larger than the crossing point, w' = 1.75, of Uzz and
Ug, the splay mode is directly superimposed onto the pe-
riodic director distortion with amplitude A leading to the
so-called splay rolls [15] characterized by the off-plane di-
rector component n, = (A cos(gz) + ¥g) cos(nz/d). The
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FIG. 3: Complete phase diagram for MBBA* with ¢, = 0.1
for frequencies w’ near the C2 point w(, (see text) on the basis
of Galerkin calculations for rolls with the critical wavevector
gc(w'). The bifurcation lines above onset (U.) indicate the
zig-zag instability (Uzz), the Freedericksz transition (Ur),
the splay-roll bifurcation (Us), the Freedericksz — convection
(UF) and the convection — Freedericksz transition (Up2).

bifurcation at Ug in Fig. 3 is supercritical and can appear
above or below the (in the convection regime, w' < wgy,
irrelevant) line Up. Although the transition is certainly
favored by the dielectric torque for €, > 0 it is also driven
by complex nonlinear interactions between the director
and the flow field. In fact splay rolls have been identified
and discussed also in buoyancy driven thermal convection
in nematics [15].

The interaction between the convection-mode ampli-
tude A and the homogeneous splay director distortion
g is captured by coupled order parameter equations for



A and Yg:

8 A = (or — grlA]> — BY3)A

. (10)

Byps = (95 + Tyl A )s .
All coefficients have been calculated and good agreement,
with the Galerkin analysis has been found. For ¢g = 0
the A-equation describes the supercritical bifurcation of
the rolls with the amplitude A? = og/gr o U?/U? — 1
at U,. The splay-roll bifurcation takes place, when the
effective growth rate agf F =05+ I'yA? becomes larger
than zero. The coefficient T'y, is negative for smaller w’
before it changes sign at w' < wy = 1.68, marked by a
star in Fig. 3. The form of Ug(w') can be understood
on the basis of Eq. (10): In the regime w' < wj a splay
bifurcation at Us < Uy is possible, because the contri-
bution I'y, A% > 0 in ogf 7 can compensate og, which is
negative for U < Ur (cf. Eq. (7)). For w' > wj the
negative I'y, term suppresses at first the positive og term
in agff resulting in Ug > Up.

Of particular interest is the upper bifurcation line U
(see also Eq. (9) and Fig. 1), at which the Freedericksz
state becomes convectionally unstable when lowering the
voltage from above. A weakly-nonlinear-expansion at
the line UY" with respect to the convective perturbation
yields a negative saturation coefficient g for frequencies
w' < Wy in the resulting Landau equation, indicating
a subcritical bifurcation. ¢ is strongly decreasing with
frequency, i.e. the subcritical nature becomes more pro-
nounced at lower w’. However, it should be emphasized
that the line UF has in principle no relevance, when the
voltage is increased from below, i.e. when starting from
convective Galerkin solutions inside the white wedged-
shaped regime in Fig. 3. In fact, we found these solu-
tions to exist far beyond UL in the nonlinear regime, but
we were not able to study systematically their stability.
Only in an intermediate frequency range w'.p < w' < Wy
above (and on the right of) the line Ugy in Fig. 3 con-
vection ceased to exist. Thus, in contrast to the unique
Freedericksz-solution in the bright grey region, bistability
exists between the Freedericksz- and convective solutions
in the grey-shaded area enclosed between UCF and Ugs.

For a better illustration of the subcritical nature of
the convection onset at UF and the interplay between
the Freedericksz state and convection, it is useful to fol-
low the order parameters A and 1 (obtained as Galerkin
solutions), when the reduced control parameter e =
U?%/U2 — 1 is continuously increased at fixed w'. The
case w' = 1.88 slightly below w!, = 1.89 is shown in
Fig. 4a. At first the amplitude A (solid line) of the peri-
odic roll state grows o« /€ above € = 0 in line with the
supercritical bifurcation at U.. At eg the homogeneous
splay mode 1s (dot-dashed line) bifurcates. Though a
further increase in A is then slowed down, splay-roll con-
vection solution continue to exist up to large €, as al-
ready mentioned. On the other hand we have learnt from
our previous considerations in section III B, that a pure
Freedericksz state ¢ r with A = 0, which bifurcates at ep,
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FIG. 4: Amplitudes for the off-plane director-distortion n, =
(Acos(gex) + s + ¢r) cos(mz/d) as function of the reduced
control parameter € = U?/U? — 1 for frequencies slightly be-
low/above the transition frequency w.r = 1.89 at w’ = 1.88
(a) and w’ = 1.90 (b). A describes the periodic off-plane
director excursions in convection rolls and s, 1r the ho-
mogeneous splay distortion in the convection or Freedericksz
state, respectively. For a detailed explanation, see text.

can exist only for € > €f' = (UF)?/U2 — 1 (thick dashed
line). Thus decreasing € in the Freedericksz state from
above leads in any case at € = €!” to a discontinuous
jump (indicated by the double-arrows in Fig. 4a) from
the Freedericksz solution nf" = 9 cos(nz/d) (Eq. (8)) to
the splay rolls (Eq. (10)) with 4,15 # 0. Obviously, for
€ > €' we recover the bistability between convection and
the Freedericksz state.

The situation changes for frequencies w' > w! . since
the bistable regime is restricted to an e-range between €Z’
and epy in Fig. 4b. Above €ps ~ 0.105 only the Freed-
ericksz solution exists (A = 0, ¢ = ¥r). As demon-
strated in Fig. 4b the point € = €2 corresponds then
to the saddle node (S) of the backward bifurcation at



€', which connects the stable and unstable branches of
the roll- and splay mode A, ts, respectively. At e’ the
splay amplitude branch s and the Freedericksz solution
1 F have to merge in line with Fig. 4b. The upper solid
A-line in Fig. 4b, which approaches zero at ¢ = 0 (not
shown) corresponds to the A-line in Fig. 4a. In the same
manner ¢¥r (dashed) approaches zero at er, as shown in
Fig. 4a. When approaching w. from above, the saddle
node moves obviously to large € along the almost vertical
separation line Uy for w' = w!p in Fig. 3. Note that
the unstable solutions starting at €f” in Fig. 4b have not
vanished; only for clarity they are suppressed in Fig. 4a,
because they have no physical relevance.

V. CONCLUSION

In conclusion we have demonstrated that planar ne-
matics with slightly positive €, (and positive o,) show
interesting nonlinear EC states which result from the
competition between a convection-mode and homoge-
neous splay mode. Above the subcritical transition UY
from the Freedericksz into convection state a bistability

between a Freedericksz solution (equilibrium state) and
convective solution (non-equilibrium state) was clearly
identified. A transition frequency w.r could be deter-
mined below which we have been able to construct splay
roll solutions up to high voltages, whereas for w > w.p
with increasing voltage a discontinuous transition to a
Freedericksz state occurs. The bifurcation diagrams are
believed to display the generic features. Support stems
from the detailed physical interpretation of the destabi-
lization mechanism as well as from the observation that
parameter modifications led only to some quantitative
changes. We hope that our comprehensive theoretical
analysis will motivate new experimental studies. Besides
a careful exploration of the linear destabilization lines
U, UF and the C2 point, the investigation of the bistable
regime above U, looks promising. One might for instance
achieve a better insight into the nature of inhomogeneous
Freedericksz states in the presence of walls between sym-
metry degenerated configurations v where according
to Eq. (2) also a flow is excited.
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Kramer for useful discussions.

[1] M.C. Cross and P.C. Hohenberg, Rev. Mod. Phys. 65,
851 (1993).

[2] P.G. de Gennes, The Physics of Liquid Crystals (Claren-
don Press, Oxford, 1974).

[3] S. Kai and W. Zimmermann, Prog. Theor. Phys. Suppl.
99, 458 (1989).

[4] E. Bodenschatz, W. Zimmermann, and L. Kramer, J.
Phys. (Paris) 49, 1875 (1988).

[6] L. Kramer and W. Pesch, Annu. Rev. Fluid Mech. 27,
515 (1995).

[6] F. C. Frank, Disc. Far. Soc. 25, 19 (1958).

[7] H. Richter, A. Buka, and I. Rehberg, in Spatio-Temporal
Patterns in Nonequilibrium Compler Systems, edited
by P.E. Cladis and P. Palffy-Muhoray (Addison-Wesley,
New York, 1995).

[8] J.-H. Huh, Y. Hidaka, and S. Kai, Phys. Rev. E 58, 7355
(1998).

[9] W. Pesch and U. Behn, in Ewolution of Spontaneous
Structures in Dissipative Continuous Systems, edited by
F.H. Busse and S.C. Miiller (Springer, Berlin, 1998).

[10] L. Kramer, B. Dressel, H. Zhao, and W. Pesch, Mol.
Cryst. Lig. Cryst. 364, 101 (2000).

[11] J.T. Gleeson, Nature 256, 511 (1996).

[12] See e.g. G.H. Heilmeier, L.A. Zanoni, and L.A Barton,
Proceedings of the IEEE 56, 1162 (1968); B.J. Lechner,
F.J. Marlowe, and E.O. Nester, ibid. 59, 1566 (1971).

[13] L. Kramer and W. Pesch, in Pattern Formation in Liquid
Crystals, edited by A. Buka and L. Kramer (Springer,
New York, 1996).

[14] E. Plaut, W. Decker, A.G. Rossberg, L. Kramer, W.
Pesch, A. Belaidi, and R. Ribotta, Phys. Rev. Lett. 79,
2367 (1997).

[15] B. Dressel, A. Joets, L. Pastur, W. Pesch, E. Plaut, and
R. Ribotta, Phys. Rev. Lett. 88, 024503 (2002).

[16] H. Richter, N. Klopper, A. Hertrich, and A. Buka, Euro-
phys. Lett. 30, 37 (1995).

[17] W.H. de Jeu, C.J. Gerritsma, and T. Lathouwers, Chem.
Phys. Lett. 14, 5031 (1972).

[18] M.I. Barnik, L.M. Blinov, M.F. Grebenki, S.A. Pikin,
and V.G. Chigrinov, Phys. Lett. A 51, 175 (1975).

[19] P.R. Kishore, Mol. Cryst. Lig. Cryst. 128, 75 (1985);
P.R. Kishore, T.F.S. Raj, A.W. Igbal, S.S. Sastry, and
G. Satyanandam, Liquid Crystals 14, 1319 (1993).

[20] The material parameter set MBBA Iin [4] is used except
that e, is allowed to vary. In line with [4] the average di-
electric constant € = (2e1 +¢))/3 is fixed for convenience
to the pure MBBA value € = 5.07.

[21] The molecular structure of the large-e, materials
like EBCA (4-ethoxybenzylidene-4’-cyanoaniline) differs
mainly by substituting the butyl-group in MBBA (4-
methoxybenzylidene-4’-n-butylaniline) by the strongly
polarizable cyano group. In the mixture MBBA-EBCA
the resulting value ¢, varies linearly with the concentra-
tion of EBCA; for instance ¢, = 0.1 corresponds to a con-
centration of = 2.3 % (weight percentage) [19]. Thus it is
not surprising that MBBA* with the material parameters
of pure MBBA, except ¢,, describe well the experiments.

[22] E.F. Carr, Mol. Cryst. Liq. Cryst. 7, 253 (1969).

(23] W. Helfrich, J. Chem. Phys. 51, 4092 (1969).

[24] E. Plaut and W. Pesch, Phys. Rev. E 59, 1747 (1998).

[25] F.M. Leslie, Quart. J. Mech. appl. Math. 19, 357 (1966).

[26] Although depending on the choice of certain test func-
tions previous one-mode formulas to be found in the lit-
erature [4, 13] look slightly different, their results match
practically with Eq. (6). Note that the threshold Up
(Eq. (6)) depends only on the ratios of the viscosity coef-
ficients «; (¢ = 1,...,6), which fulfill the Parodi relation
as + as = as — as. According to the definition of the



27]

Miesowicz coefficient 11, 72 (see paragraph after Eq. (2))
only the sum a4 + as enters, such that in fact only three
independent combinations of the a; are relevant. In ad-
dition from measurements of Ur = y/ki11/(€a€0), of the
codimension-2 point w2 in units of 7, = (e1€0)/oL and
of Up(w) one gets further valuable informations to asses
the parameters.

The theoretical analysis in [19], based on an old analytical
threshold formula (E. Dubois-Violette, P.G. de Gennes,

and O. Parodi, J. Phys. (Paris) 32, 305 (1971)), is only
useful to reproduce qualitative trends in the dependence
on the material parameters. In contrast to Eq. (6) one
finds considerable quantitative deviations from the rigor-
ous numerical results.

[28] F. Jahnig and F. Brochard, J. Phys. (Paris) 35, 301

(1974).

[29] B. Dressel, PhD thesis, Bayreuth 2002.



