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We study theoretically convection phenomena in a laterally extended planar nematic layer driven by an
ac-electric field ~electroconvection in the conduction regime! or by a thermal gradient ~thermoconvection!. We
use an order-parameter approach and demonstrate that the sequence of bifurcations found experimentally or in
the numerical computations can be recovered, provided a homogeneous twist mode of the director is consid-
ered as a new active mode. Thus we elucidate the bifurcation to the new ‘‘abnormal rolls’’ @E. Plaut et al.,
Phys. Rev. Lett. 79, 2367 ~1997!#. The coupling between spatial modulations of the twist mode and the mean
flow is shown to give an important mechanism for the long-wavelength zig-zag instability. The twist mode is
also responsible for the widely observed bimodal instability of rolls. Finally, a Hopf bifurcation in the resulting
bimodal structures is found, which consists of director oscillations coupled with a periodic switching between
the two roll amplitudes. A systematic investigation of the microscopic mechanisms controlling all these
bifurcations is presented. This establishes a close analogy between electroconvection and thermoconvection.
Moreover, a ‘‘director–wave-vector frustration’’ is found to explain most of the bifurcations.
@S1063-651X~99!01102-2#

PACS number~s!: 47.20.Ky, 47.20.Bp, 42.70.Df

I. INTRODUCTION

The rich variety of instabilities in nematic liquid crystals
has always attracted great interest among experimentalists
and theorists @1–3#. Nematic liquid crystals are fluids which
show a long-range uniaxial ordering in the orientation of
their rodlike molecules. The average orientation defines the
director field n, which is also the local anisotropy axis of the
medium. Due to the coupling of n to the other fields of the
fluid ~velocity, temperature, etc.!, specific focusing mecha-
nisms lead to new convective instabilities @4,5#. In the planar
setup used by most researchers, a nematic layer is sand-
wiched between two horizontal plates, where the director is

fixed in a horizontal direction x̂ ~planar anchoring!. Since the
rotational symmetry in the layer plane is broken, this system
has become a prime example for anisotropic convection
@3,6#.

Two realizations of convection in a planar nematic layer
exist. Under the application of a vertical ~along z) ac-electric
field of angular frequency v , charge focusing @4,7# leads to
electroconvection ~EC!. Thin cells of thickness d
.10–100 mm can be used. Consequently the characteristic
times are small and very large aspect ratios ~cell width/d)
can be obtained; also for these reasons EC has been exten-
sively studied @6#. Alternatively, by heating a planar nematic
layer from below heat focusing @5# leads to anisotropic ther-
moconvection ~ATC!. The characteristic times in ATC are
annoyingly long except when a large director-stabilizing pla-
nar magnetic field (i x̂) is applied as in @8#. On the other
hand, this system is interesting since its theoretical descrip-
tion is somewhat simpler than in EC.

In this paper we will concentrate on the ‘‘director-
dominated regime’’ where the slow dynamics of the director
field determines the longest characteristic-time scale. This
regime corresponds to EC at low frequencies in the conduc-
tion regime and to ATC in the absence of ~or at very small!
stabilizing magnetic fields. Most of the experimental studies
of EC have been performed until recently in this regime; the
new weak-electrolyte effects @9,10# relevant for high fre-
quencies, thin cells, or nematic materials with a very small
dielectric anisotropy ea will not be included. In the director-
dominated regime the sequences of spatio-temporal struc-
tures found experimentally by slowly increasing the main
control parameter ~the applied electric field in EC or the
temperature gradient in ATC! are similar in both systems.

Typically, normal rolls, with their axis ' x̂, are found at on-
set @11,5#. They undergo, at rather small e , the reduced dis-
tance to the convection threshold, modulational or homoge-
neous instabilities, leading toward either oblique rolls ~zig-
zags! @11–14# or abnormal rolls @15–17#. At higher e
bimodal or grid patterns @18,14# are very often found, which
finally become oscillating @18–20#. Despite the fact that
some elements of these scenarios ~especially the last steps
implying stationary or oscillating bimodal structures! have
been known experimentally for more than 20 years in EC, a
comprehensive theoretical description and explanation are
still lacking.

Since all the bifurcations occur relatively near to the con-
vection threshold, one major theoretical approach consists in
the ‘‘order-parameter expansions.’’ Order parameters are in-
troduced as the amplitudes of the dynamically active modes,
e.g., the pattern-forming, critically slowed roll modes ~of
growth rate s;e) in the framework of the standard weakly
nonlinear ~WNL! analysis. A simplified description of the
dynamics of the system is then obtained in terms of ‘‘ampli-
tude’’ or ‘‘order-parameter equations,’’ where the nonlin-
earities are truncated at cubic order in the common super-
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critical case @21#. The general structure of these equations
and the allowed couplings between the amplitudes can be
deduced a priori from the symmetries of the system. Never-
theless, a trustworthy description requires a systematic cal-
culation of the coefficients from the basic ‘‘microscopic’’
equations; indeed, except in very simple cases, even the sign
of the coefficients is not intuitively known. In nematic con-
vection the standard WNL analysis results in either ‘‘Lan-
dau’’ ~without spatial variations! or ‘‘Ginzburg-Landau’’
~including spatial degrees of freedom! amplitude equations
@3,6#. They have allowed successful studies of many generic
phenomena near threshold @7,20,23,24#. Some secondary in-
stabilities of the roll structures have been qualitatively ex-
plained as well @25,26#. However, strong quantitative dis-
crepancies concerning the long-wavelength secondary
instabilities could only be resolved by the use of fully nu-
merical solutions of the basic equations in which all the non-
linearities are kept ~‘‘Galerkin computations’’ @27,28#!. Such
methods were also needed to identify the surprising bifurca-
tion to abnormal rolls in EC @15#. Heavy computations of
this kind cannot easily be extended to bimodal structures;
thus their stability has not been addressed theoretically up to
now. In any case, the physical origin of bifurcations is hard
to extract by numerical methods, whereas a transparent in-
vestigation of nonlinear mechanisms becomes possible
within the order-parameter approach @26,29#.

The main goal of this paper is to demonstrate that an
order-parameter approach which includes a homogeneous
twist rotation of the director as a new active mode allows us,
in most cases, to reconstruct the whole sequence of bifurca-
tions. The corresponding new order parameter w , which de-
fines to lowest order the angle between the average in-plane
director n0 and x̂ @see Eq. ~39!#, has been in fact successfully
introduced at first for nematic convection with homeotropic
~isotropic! alignment @30#. In the planar case, the introduc-
tion of this new active mode stems naturally from the results
of the Galerkin computations and the experiments in EC @15#
and from a careful study of the results of the WNL analysis
in ATC @29#. After a brief glance at the basic equations and
their symmetries in Sec. II and at the standard linear proper-
ties in Sec. III A, we show in Sec. III B that this twist mode
has only a slightly negative growth rate as compared to the
growth rate of the roll modes. In Sec. IV the coupled ampli-
tude equations for the roll and twist modes are calculated
from the basic nematohydrodynamic equations, and we show
that the twist mode can indeed become active. A quantitative
description of the bifurcation to abnormal rolls is achieved.
In Sec. V the amplitude equations are generalized to include
long-wavelength modulations together with the mean-flow
effects. A coupling between splay-twist modulations of the
in-plane director and the mean flow is shown to give a very
efficient secondary mechanism for the zig-zag instability. A
subsequent restabilization of abnormal rolls at higher e is
also obtained. The competition between the various instabili-
ties is analyzed. Section VI is devoted to the study of the
short-wavelength instabilities of abnormal or oblique rolls.
The amplitude equations of Sec. IV are generalized by the
introduction of a secondary roll amplitude. It is shown that
the mechanism towards the bimodal varicose, proposed in
@26# for ATC on the basis of a WNL analysis, applies gen-
erally. Further investigation of the coupled amplitude equa-

tions reveals the existence of a Hopf bifurcation, which ex-
plains the oscillating bimodals. The microscopic mechanisms
controlling the various bifurcations and the structure of the
new solutions are systematically analyzed. Comparisons with
numerical results and experimental findings concerning
mainly the nematic materials N5 in EC and 5CB in ATC
~Sec. II A! are presented whenever possible. We also pro-
pose a heuristic interpretation of the bifurcation scenarios, in
terms of a competition ~or ‘‘frustration’’! between the focus-
ing mechanisms and the viscous torques exerted on the in-
plane director ~Sec. IV D!. The appendixes contain addi-
tional information concerning the linear equations ~Appendix
A!, the calculational method ~Appendix B!, analytic approxi-
mations of some nonlinear coupling coefficients ~Appendix
C!, and results for the nematic material MBBA ~Appendix
D!.

II. BASIC EQUATIONS — SYMMETRIES

In Sec. II A we recall the basis of the standard nematohy-
drodynamic @1,3# description of EC and ATC; a detailed pre-
sentation can be found in @25# for EC and in @23,29# for
ATC. The dimensionless units and the sets of material pa-
rameters used are also introduced. Section II B is devoted to
the symmetry properties of the system and to the basic ex-
pansion techniques.

A. Basic nematohydrodynamic equations —
dimensionless units

The director dynamics is determined by

g1n3ṅ5n3h, ~1!

where g1 is an anisotropic viscosity, and the dot stands for
the material derivative ] t1v•“ . The molecular field h †Eq.
~3! of @25#‡ contains elastic contributions proportional to the
splay, twist, and bend constants k11 ,k22 , and k33 , an electric
contribution proportional to the dielectric anisotropy ea in
EC, and finally viscous contributions h

v
. A convenient form

is

h
v
52a2 D•n2a3 n•D , ~2!

where D is the tensor gradient of velocity, D i j5]v i /]x j .
Since the anisotropic viscosity a2 is negative and of much
larger absolute value than the anisotropic viscosity a3 , the
main term }a2 in Eq. ~2! tends to rotate n in such a way that
the director-transverse velocity gradients n3(D•n) are
minimized @29#.

The evolution equation for the velocity v reads

rmv̇5fvol2“p1divs , ~3!

with rm the fluid density and p the pressure. The stress tensor
s †Eq. ~7! of @25#‡ contains elastic contributions and viscous
contributions proportional to the anisotropic viscosities
a1 , . . . ,a6 . We will also use the Miesowicz viscosities na
5a4/2, nb5na1(a31a6)/2, and nc5na1(a52a2)/2, and
refer to the corresponding flow geometries a ,b , and c @1#.

Differences between EC and ATC come into play in the
expression of the bulk force fvol in Eq. ~3! or equivalently in
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the nature of the scalar field which drives the convection
instability. In EC, it is the modulation f of the electric po-
tential which determines the electric field

E5

A2Vapp

d
@cos~vt !ẑ2d“f# , ~4!

with Vapp the effective applied voltage and d the thickness of
the cell. The modulation of the electric potential is related to
the ionic charge density re through the Maxwell equation
re5“•@e'E1ea(n•E)n# , and its evolution is governed by
charge conservation,

ṙe52“•@s'E1sa~n•E!n# , ~5!

where s' and sa are anisotropic conductivities. The bulk
force is then †right hand side of Eq. ~2.59! of @3#‡

fvol5reE1~P•“ !E, ~6!

i.e., the sum of the Coulomb force and of the ~purely non-
linear! ponderomotive force which implies the macroscopic
polarization P. This latter term had never been systemati-
cally included in theoretical studies of EC, but it has turned
out to have very little influence on the phenomena we study.

In ATC, the relevant scalar field is the difference u5T
2(T02DTapp z/d) between the actual temperature T and the
conductive profile, with T0 the mean temperature, and
DTapp /d the thermal gradient applied between the lower and
upper plates of the convection cell. The evolution of u is
governed by the heat-diffusion equation

u̇5“•@k'“T1ka~n•“T !n# , ~7!

where k' and ka are anisotropic thermal diffusivities. Under
the standard Boussinesq approximation the bulk force reads

fvol52rm@12a~T2T0!#g0 ẑ, ~8!

with a the thermal expansion coefficient, g0 the gravitational
acceleration.

We assume as usual the incompressibility condition “•v
50 and introduce the velocity potentials f and g such that

vx5]x]z f 1]yg , vy5]y]z f 2]xg , vz52~]x
2
1]y

2! f .
~9!

Since nx can be eliminated from the equations by using the
normalization condition n2

51, the local state vector of the
fluid is finally

V5~f ,ny ,nz , f ,g ! in EC,

V5~u ,ny ,nz , f ,g ! in ATC. ~10!

The basic equations @Eqs. ~5!, ~1!, and ~3! for EC, Eqs. ~7!,
~1! and ~3! for ATC# take the form

D•] tV5LR•V1N2~V ,V !1N3~V ,V ,V !1h.o.t., ~11!

where D and LR are linear, N2 and N3 are nonlinear differ-
ential operators, and h.o.t. denotes ‘‘higher-order terms.’’ In
the following, we will, for example, refer to the first line of
Eq. ~11! as the f equation ~in EC! and to the corresponding
nonlinearities as N2f ,N3f , etc. The main control parameter
R, with the dimensionless units of Table I, is given by

R5S Vapp

V0
D 2

in EC, R5

ag0d3

nak'p4
DTapp in ATC.

~12!

The applied electric field reads Eapp5A2R cos vt5A2REac
in EC. Note that for not too thin layers the largest character-
istic time in EC is the director-diffusion time tDD @Table
I~a!#, followed by the charge-diffusion time tCD5e' /s' ,
and the viscous-diffusion time tVD52rmd2/(a4p2). To al-
low a direct comparison with @15,25# we will display our
results as a function of vCD5tCD v . Note that

TABLE I. ~a! Dimensionless units, from @7#, used for electroconvection ~EC!. ~b! Dimensionless units,
from @23,29#, used for anisotropic thermoconvection ~ATC!.

Quantity Scaling unit Interpretation of the scaling unit

~a!

Elastic constant k0510212 N
Viscosity a051023 kg m21 s21

Dielectric constant e058.854310212 F m21 permittivity of free space
Electric conductivity s051028(V m)21

Mass density a0
2/k05106 kg m23

Length d/p inverse of typical roll wave number
Time tDD5a0d2/(k0p2) typical vertical director- diffusion time
Electric potential V05pAk0 /e0 typical Fréedericksz threshold

~b!

Elastic constant k11 splay elastic constant
Viscosity na5a4/2 isotropic viscosity
Heat conductivity k' conductivity perpendicular to the director
Length d/p inverse of typical roll wave number
Time tTD5d2/(k'p2) vertical thermal-diffusion time
Temperature nak'p3/(ag0d3)
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tDD

tCD
5Q

s'8

e'8
, where Q5

a0d2s0

k0p2e0

, ~13!

and the primes denote the dimensionless material constants.
In ATC the director-diffusion time tDD5g1d2/(k11p

2) also
exceeds by far the thermal-diffusion time tTD @Table I~b!#
and the viscous-diffusion time tVD , as measured by the
~large! dimensionless numbers

F5

tDD

tTD
5

k'g1

k11
, Pr5

tTD

tVD
5

a4

2rmk'

. ~14!

Table II displays the material parameters used for the cal-
culations. We have focused on standard nematic materials:
N55Merck Phase 5 at 30 oC with the parameters defined in
@15# for EC; 5CB at 27 oC with the parameters in @8# for
ATC. In Appendix D, however, results will be given in EC
for another common nematic material, MBBA at 25 oC, in-
troduced as MBBA I in @7#.

B. Symmetries — expansion techniques

We consider as usual the idealization of a nematic layer
infinitely extended in the horizontal plane. The resulting
translational invariance implies that the full solutions of Eq.
~11! can be written as a superposition of horizontal Fourier
modes characterized by their horizontal wave vector q5q x̂
1p ŷ, e.g., in ATC,

V5(
q

„uq~z !,ny
q~z !,nz

q~z !, f q~z !,gq~z !…e iq•r, ~15!

where r5x x̂1y ŷ is the horizontal position in the layer. The
case of EC is very similar, except that u is replaced by f ,
and that the fields become time dependent. For a discussion
of the symmetry properties of the EC equations with respect
to transformations of time, see @27#; as usual only the lowest
nontrivial Fourier components in time are kept in this paper.
With respect to the vertical dependence ~in z), all fields have
to vanish at the boundaries z56p/2 in our scaling. Using a
standard Galerkin technique @31#, u ~or f),ny ,nz , and g are
expanded in a sine basis $Sn(z)5sin@n(z1p/2)#%. For the
vertical velocity potential f, which must fulfill f 5]z f 50 at
the boundaries, the Chandrasekhar basis $Cn(z)% @32# is

used. We keep at least the two leading vertical modes for
each field in order to obtain a good numerical accuracy of
typically 2% as compared with calculations with many
modes. On the other hand, by keeping only one vertical
mode for each field analytic semiquantitative results ~with an
accuracy of typically 10%! can be obtained @33#. Therefore
our results will often be exemplified under this ‘‘one-mode
approximation’’ which captures the essential physical fea-
tures.

Another global symmetry of the system is the reflection
symmetry S:y°2y . The corresponding symmetry of Eq.
~11! is

S:y°2y , ny°2ny , g°2g ,

with the other fields unchanged, ~16!

or equivalently for a Fourier mode in Eq. ~15!,

~uq,ny
q ,nz

q , f q,gq!e iq•r
°~uq,2ny

q ,nz
q , f q,2gq!e iq•S~r!,

where it should be noted that q•S(r)5S(q)•r. Conse-
quently, the solutions V of Eq. ~11! can be classified accord-
ing to their symmetry: if S(V)5V , the symmetry S is not
broken; otherwise V and S(V) are two degenerate variants of
the same global state.

The reflection with respect to the midplane of the layer,
z°2z , is also a global symmetry. Two types of Fourier
modes in Eq. ~15! can be distinguished according to their
transformation under this reflection: type 1 when uq(z) @or
fq(z)],nz

q(z), f q(z) are even, ny
q(z),gq(z) are odd; type 2 in

the opposite case. Introducing sym(a)561 according to the
type of the Fourier mode a5(u ,ny ,nz , f ,g)e iq•r, Eq. ~11!
have the important ‘‘Boussinesq-like’’ symmetry property

sym@N2~a ,b !#52sym~a !sym~b !,

sym@N3~a ,b ,c !#51sym~a !sym~b !sym~c !. ~17!

TABLE II. ~a! Dimensionless parameters for the nematics N5 and MBBA used in EC ~see text; note that
we have always assumed rm8 51023). ~b! Dimensionless parameters for the nematic 5CB used in ATC ~see
text!.

~a!

k118 k228 k338 a18 a28 a38 a48 a58 a68 e i8 e'8 s i8 s'8

N5 9.8 4.6 11.4 239.0 2109.3 1.5 56.3 82.9 224.9 5.106 5.29 7.48 4.4
MBBA 6.66 4.2 8.61 218.1 2110.4 21.1 82.6 77.9 233.6 4.72 5.25 1.5 1

~b!

k118 k228 k338 a18 a28 a38 a48 a58 a68 ka8 F Pr

5CB 1 0.634 1.303 20.184 22.343 20.132 2 1.90 20.575 0.663 790 440
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III. ACTIVE MODE BASIS FOR THE EXTENDED WNL
ANALYSIS

WNL analyses in general rely on a perturbative treatment
of the nonlinear terms in the evolution Eq. ~11! for small
amplitudes of convection. Thus they become asymptotically
exact in the limit e→0, but in practice, as well as in our case,
semiquantitative or qualitative results are often obtained
even when the amplitudes are not infinitesimal @21#. Within
this pertubative approach it is natural to focus at first on the
linearized evolution equations D] tV5LRV , and to calculate
the corresponding eigenmodes as the solutions of
sDV5LRV . The solutions of the full problem ~11! are then
constructed as superpositions of these linear eigenmodes.
Among those, the dynamically active modes are the modes of
positive growth rate s , and in addition the modes of slightly
negative growth rate s which are nonlinearly excited by cou-
pling with the modes of s.0 @36#. The associated expansion
coefficients are the ‘‘amplitudes’’ or ‘‘order parameters.’’
Their evolution equations will be calculated after adiabatic
elimination of the remaining expansion coefficients associ-

ated with the dynamically passive modes of negative growth
rate; see @21# or Appendix B. For planar nematic convection,
the standard family of active modes consists of the roll
modes, the properties of which are reviewed in Sec. III A.
However, in Sec. III B it is shown that diffusion modes of
the director have also to be considered as active, even quite
close to the convection threshold.

A. Standard active mode basis: the roll modes

The first studies of EC @4,7# and ATC @5# have shown that
the modes destabilizing the quiescent solution V50 of Eq.
~11! are roll modes of wave number uqu close to 1 ~i.e., of
half period .d in physical units! and of the z symmetry type
1 . These roll modes are the solutions of

s~q;R !DV1~q;R !5LRV1~q;R !, ~18!

where the eigenvalues s(q;R) are always real in the absence
of weak-electrolyte effects @9# and correspond to the growth
rates. In the one-mode approximation the eigenvectors read

V1~q;R !5H „~f̃e2ivt
1f̃*e ivt!S1~z !, ñyS2~z !,i ñzS1~z !, f̃ C1~z !, g̃S2~z !…e iq•r in EC,

„ũS1~z !, ñyS2~z !,i ñzS1~z !, f̃ C1~z !, g̃S2~z !…e iq•r in ATC,
~19!

Since V in Eq. ~11! is real, V1(2q;R)5„V1(q;R)…* holds,
and one can focus on the modes with q• x̂>0. Then, a phase
choice can be made such that ñz51, Re(f̃), Im(f̃), ũ and
f̃ are positive ~real! numbers, and ñy and g̃ are real numbers.
The focusing mechanisms are the following ones ~see also
the linear equations in Appendix A!. In EC, a splay-bend
director fluctuation ~field nz) excites a charge or potential
modulation ~field f) via the charge-focusing term
2saQEac]xnz in the f equation ~A1!; a mass flow ~field f )
is induced via the Coulomb force ~A6!; this flow reinforces
the initial director distortion via the viscous torque
1ua2u]xvz in the nz equation ~A3!. In ATC, a splay-bend
distortion of the director leads to a temperature modulation
~field u) via the heat-focusing term 2kaR]xnz in the heat
equation ~A1!; a flow is excited by the buoyancy force ~A7!;
this flow reinforces the initial director distortion exactly as in
EC.

When the destabilizing forces overcome the stabilizing
ones, i.e., when R exceeds Rc , the growth rate s(q;R) of the
so-called critical roll mode at q5qc becomes positive. By
continuity, when R.Rc , there exists a wave-vector band of
roll modes of positive growth rates, which can be, for e
5R/Rc21 not too large, written as

s~q;R !.
R2R0~q!

tqRc
5

e2e0~q!

tq
. ~20!

R0(q)@e0(q)# is the ~reduced! threshold of the roll mode q
~‘‘neutral surface’’!, and tq is a characteristic time. Note that
e0(qc)50, and that tqc

is the characteristic time t of the

instability @34#. The symmetry properties discussed in Sec. II
lead to the distinction between two types of roll modes @35#:

the normal rolls, of wave vector q parallel to x̂, where S ~16!

is not broken, consequently ny5g50: normal rolls are
purely two-dimensional modes; and the oblique rolls, of

wave vector q5q x̂1p ŷ with qpÞ0, where S is broken.
Consequently two variants exist: the ‘‘zigs’’ with q ,p.0
and the ‘‘zags’’ with q.0,p,0. These modes are three di-
mensional since ny and g are nonzero ~nevertheless the ver-
tical averages of ny and g vanish!.

In ATC one has critical normal rolls @23#. In EC, at low v
one finds critical oblique rolls, whereas for v larger than the
Lifshitz frequency vL50.8tCD

21 the critical modes are of the
normal-roll type. At large v , but still below the crossover
frequency to the dielectric regime (vD54.0tCD

21), the
charge-focusing mechanism becomes less efficient. Conse-
quently, the convection only sets in with narrower rolls (qc

increases with v), where all gradients increase for compen-
sation, and at higher voltages (Rc increases with v). In this
‘‘high-energy’’ limit where also the dielectric torque stabi-
lizing the planar configuration gets very large, the damping
constant 1/t of the ‘‘forced’’ roll mode is very large.

B. The director modes

At fixed q, in addition to the roll modes V1(q;R) ~19!,
there exists an infinite number of linear eigenmodes
Vm(q;R) with discrete eigenvalues sm(q;R). For R close to
Rc , the corresponding growth rates Re„sm(q;R)… are nega-
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tive for all m and q and typically maximal in the homoge-
neous case q50 @37#. In our regime where the damping of
the director field is by far the weakest, the small values of
uRe„sm(0;R)…u are associated with director modes. They are
determined by the linear diffusion equations for ny and nz
with ]x5]y50 ~then n does not couple with the other
fields!:

g1] tny5k22]z
2ny , g1] tnz5~k11]z

2
1eaR !nz ~21!

for EC @see, e.g., Eq. ~A3!#. The equations for ATC are simi-
lar except for the absence of the dielectric torque (}ea). The
system ~21! admits two families of linear eigenmodes: the ny

modes ny5Sm(z),nz50, and the nz modes ny50,nz
5Sm(z). We call the modes of largest growth rate @for m
51, i.e., with an even cosine profile S1(z)5cos(z)] the twist
mode and the splay mode, respectively. For the twist mode

VT5„0,S1~z !,0,0,0…, ~22!

with the notations ~10!, one finds, e.g., the growth rate

sT52

k22

g1
in EC, sT52

k22

F
in ATC. ~23!

The ratio of sT to the growth rate of the critical roll mode is

sT

s~qc ;e !
5tsTe21.5 2

k22

k33qc
2
1k22pc

2
1k112eaRc

e21 in EC

2

k22

k33qc
2
1k22pc

2
1k11

e21 in ATC,

~24!

where simple approximations of the characteristic times t
have been used @see Fig. 1~a! for a comparison with rigorous
calculations in EC#. The order of magnitude of the ratio ~24!
is 2k22 /(k331k11)e21.20.25e21: it is very negative only
for very small e . The twist mode should therefore be in-
cluded in the active mode basis. Indeed, we will show in Sec.
IV that its slow linear damping can be compensated either at
quadratic order @term N2(V ,V) in Eq. ~11!# or at cubic order
@term N3(V ,V ,V) in Eq. ~11!# by a coupling with two roll
modes. On the other hand, the splay mode VS
5„0,0,S1(z),0,0…, which has a growth rate of the same
magnitude as sT , can only be excited at cubic order for
symmetry reasons @38#. We have checked that the excitation
of VS always occurs far above the threshold eAR of excitation
of VT ~Sec. IV!. Therefore the splay mode will not be kept in
the active mode basis here. Note that the quasihomogeneous
twist modes with long-wavelength variations of small wave
vector q play no role for perfect roll or bimodal structures
and have only to be considered in the case of modulated
structures ~Sec. V!.

IV. NONLINEAR ROLL SOLUTIONS

The inclusion of the twist mode in the active mode basis
lifts the simple symmetry rules which exclude quadratic

resonant terms in the standard amplitude equations. Thus the
treatment of the quadratic nonlinearities requires some care;
for this reason a general extended WNL scheme is intro-
duced in Appendix B. In Sec. IV A this scheme is applied to
calculate the amplitude equations which couple the ampli-
tude A of a roll mode to the amplitude w of the twist mode
@Eq. ~29!#. In Sec. IV B the abnormal-roll solutions of these
equations are studied, and in Sec. IV C the oblique-roll so-
lutions are studied. The nonlinearities controlling the values
of all the coefficients introduced in Sec. IV A are given. This
allows one to give a precise physical interpretation of the
mechanisms involved and to introduce in Sec. IV D a general
principle to interpret the roll-twist interactions.

A. Calculation of the roll-twist amplitude equations

We apply the scheme of Appendix B to roll structures of
fixed wave vector q. Only two active modes have to be con-
sidered: the roll mode V1(q) ~19! and the twist mode VT
~22!. According to Eqs. ~B8! and ~B12!, the corresponding
WNL solution assumes the form

V5VA1V'5@AV1~q!1c.c.#1wVT1V' , ~25!

where the passive part reads

FIG. 1. In EC ~for N5!, as a function of the
dimensionless frequency vCD5tCDv: ~a! solid
line: growth rate sT of the homogeneous twist
mode, in units of the normal-roll characteristic

time tq at q5qcx̂. Dotted line: analytic approxi-
mation ~24!. ~b! Saturation coefficient gq ~30! of
the normal rolls.
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V'52L21@N2~VA ,VA!2^U1~q!,N2~VA ,VA!&DV1~q!

2^U1~2q!,N2~VA ,VA!&DV1~2q!

2^UT ,N2~VA ,VA!&DVT# .

U1(q) and UT are the adjoint roll and twist modes @see Eq.
~B3!#. Introducing the coefficients

b2~q!5^U1~q!,N2„V1~q!uVT…&,

g~q!52^UT ,N2„V1~q!uV1~2q!…&, ~26!

one obtains

V'5uAu2 V2~q,2q!1@A2 V2~q,q!1c.c.#

1w @AV2~q,T !1c.c.# , ~27!

where

V2~q,2q!52L21@N2„V1~q!uV1~2q!…1g~q!D•VT# ,

V2~q,q!52L21N2„V1~q!,V1~q!…,

V2~q,T !52L21@N2„V1~q!uVT…2b2~q!D•V1~q!# .
~28!

By projecting Eq. ~11! onto U1(q) and UT @see also Eq.
~B13!#, one arrives at our first set of coupled amplitude equa-
tions

] tA5S e2e0~q!

tq
2gquAu2

1b2~q!w2b3~q!w2DA ,

~29a!

] tw5@sT2gww2
1G~q!uAu2#w2g~q!uAu2, ~29b!

where additional coefficients have been defined:

gq52^U1~q!,N2„V1~q!uV2~q,2q!…

1N2„V1~2q!uV2~q,q!…1N3„V1~q!uV1~q!uV1~2q!…& ,

~30!

b3~q!52^U1~q!,N2„VTuV2~q,T !…1N3„VTuVTuV1~q!…&,

~31!

gw52^UT ,N3~VTuVTuVT!&5

usTu
8

, ~32!

G~q!5G2~q!1G3~q!, with

G2~q!5^UT ,N2„V1~q!uV2~2q,T !…

1N2„V1~2q!uV2~q,T !…&,

G3~q!5^UT ,N3„V1~q!uV1~2q!uVT…&. ~33!

Note that for w50, Eq. ~29a! reduces to the well-known
Landau equation for the roll amplitude A, describing a super-
critical bifurcation since gq.0. We have not scaled out tq
and gq as usual, in order to clearly separate the linear and
nonlinear effects controlling the value of A.

B. Rolls with a normal wave vector

The amplitude equations ~29! must be invariant under the
global symmetry S ~16!, which transforms q into S(q) and w
into 2w . Therefore the coefficients b2(q) and g(q) vanish
for rolls with a normal wave vector q5q x̂ such that q
5S(q). After elimination of uAu2 in Eq. ~29a! and insertion
into ~29b!, one has to solve

@sT2gww2
1G~q!uA~q;e;w !u2#w50 ~34!

for the stationary solutions. Clearly the branch w50 corre-
sponds to the standard normal-roll solutions,

uAu5Ae2e0~q!

tqgq
, w50. ~35!

The effect of the coefficient G(q) in Eq. ~29b!, which turns
out to be always positive, is to enhance a fluctuation of w
about the normal-roll solution ~35!. Indeed, two roots of the
cubic equation in w ~34!, which were complex at small e ,
become real when e gets larger than

eAR~q!5e0~q!1eAR8 ~q!, where eAR8 ~q!5utqsTu
gq

G~q!
.

~36!

At this point a bifurcation from normal (qi x̂,w50) to ab-

normal rolls (qi x̂,wÞ0) occurs, which corresponds to
breaking the symmetry S ~16! without tilting the rolls ~see
@15# for an identification of this instability in EC!. We will
now study the coefficients determining the threshold of this
bifurcation and the ensuing saturation of the twist amplitude
w; if not otherwise stated, we will consider rolls at q5qc .

1. Threshold of the abnormal-roll bifurcation

The abnormal-roll threshold eAR(q) ~36! is controlled lin-
early by the growth rate sT of the twist mode in tq

21 units,
nonlinearly by the saturation factor gq in the A equation
~29a!, and by the coupling coefficient G(q) in the w equation
~29b!.

In EC, the linear effects tend to favor the abnormal rolls at
high v , where utsTu becomes very small @Fig. 1~a!#. This
indicates that the rotation of the director in the horizontal
plane becomes relatively easier at high v , as compared with
the excitation of the splay-bend nz mode associated with the
roll modes @cf. Eq. ~24! for tsT5esT /s(q;e), and the dis-
cussion in Sec. III A#.

The first important nonlinear effect is the saturation of the
amplitude expressed by the coefficient gq . This has been
first studied systematically for ATC @29#. In EC, the most
important saturating ~positive! contributions are ~P1! the
contributions of N3f„V1(q)uV1(q)uV1(2q)… due to
1
2 saQEac]xnz

3 , which indicate that the charge focusing be-
comes less efficient with increasing nz @compare with the
linear term 2saQEac]xnz of Eq. ~A1!, quoted in Sec. III A,
and note the opposite sign#; and ~P2! the contributions of
N3nz

„V1(q)uV1(q)uV1(2q)… due to a2(]xvz)nz
2 , which indi-

cate that the shear exerted on the director by the vertical
flows diminishes when the director rotates upwards @compare
with the linear term 2a2]xvz in Eq. ~A3!#. Both ~P1! and
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~P2! are generated by the quadratic corrections to nx due to
the distortion of the director field above onset of convection,
i.e., by inserting in the equations nx512

1
2 (ny

2
1nz

2) from
the director-normalization condition n2

51. We therefore call
~P1! and ~P2! ‘‘geometrical corrections’’ to the quoted linear
terms, where nx51 is taken. The dependence on qc(v) ~cor-
responding to horizontal gradients! of the contributions ~P1!,
together with the fact that uf̃/ ñzu in the linear mode ~19!
decreases strongly with v , lead to a strong increase of the
contributions ~P1! to gq when v increases. The dependence
on qc(v) of the contributions ~P2! renders them also much
larger when v increases. The most important antisaturating
~negative! contributions are ~N1! the contributions of
N3nz

„V1(q)uV1(q)uV1(2q)… due to a2(]zvx)nz
2 , which indi-

cate that when the director tilts upwards, it becomes sensitive
to the horizontal flows which tilt the director further as do
the vertical flows at linear order; ~N2! the contributions of
N3nz

„V1(q)uV1(q)uV1(2q)… due to 2
1
2 ea(Eapp)

2nz
3 , which

signify that the stabilizing dielectric torque @see Eq. ~A4!# is
reduced with increasing nz ; and ~N3! the contributions of
N3 f„V1(q)uV1(q)uV1(2q)… due to the source term (a11a2

1a3)]x@(]xvz)nz
2# in the evolution equation for vz . This

indicates a decrease of the effective viscosity for the vertical
flows in the rolls, since with increasing nz the highest
Miesowicz viscosity geometry c is gradually left for these
flows. The negative contributions ~N1!, ~N2!, ~N3! increase
less strongly with v than the saturating ones ~P1!, ~P2!. Con-
sequently gq increases with v @Fig. 1~b!#. Note that all the
effects controlling the value of gq in EC exist also in ATC
@29#, provided that the charge focusing in ~P1! is replaced by
the heat focusing ~see Sec. 4.2 of @29#! or that the electric
field in ~N2! is replaced by a planar magnetic field ~this was
predicted to lead to a subcritical bifurcation in ATC in @23#!.

The nonlinear coefficient directly responsible for the bi-
furcation ~36! towards abnormal rolls is G(q)5G2(q)
1G3(q) ~33!. In Appendix C we give an analytic approxi-
mation of G(q) within the one-mode approximation. The
contribution G3(q) of the cubic nonlinearities indicates a
renormalization of the damping of the twist mode by a cou-
pling to the roll modes. It is dominated by the contributions
of a2(]zvx)nzny in N3ny

„V1(q)uV1(2q)uVT…. The corre-
sponding mechanism can be interpreted according to the
principle that the director tends to rotate away from the

velocity gradients and therefore out of the (x ,z) plane due
to the a2 term in Eq. ~2!. There exists also a second-
ary mechanism of elastic origin, due to the term 2(k33
2k22)(]xnz)

2ny , which corresponds to a release of bend by
twist. Since the bend energy is proportional to qc

2(v), this
mechanism is only efficient in EC for the narrow rolls ~of
large qc) at high frequency v ~Appendix C!. The contribu-
tion G2(q) ~33! of the quadratic nonlinearities indicates an
indirect renormalization of the damping of w , which occurs
through the ~possible! excitation of the quadratic mode
V2(q,T). In EC, G2(q) becomes large only at high v @Fig.
2~a!#; in ATC, G2(q) is always one order of magnitude
smaller than G3(q). The corresponding mechanisms are
studied in Appendix C.

In EC, the increase of G(q) with v @Fig. 2~a!#, favorable
to the abnormal rolls @see Eq. ~36!#, is roughly compensated
by the increase of gq with v @Fig. 1~b!#. Thus the decrease of
the linear growth rate utsTu @Fig. 1~a!# appears to be the
main cause for the decrease of the abnormal-roll threshold
eAR8 (q) ~36! with increasing v @Fig. 2~b!#. The values of
eAR8 (q) ~36! match those of the fully nonlinear calculations
@15# at high frequency. At low frequency, discrepancies
show up which are due to nonlinear effects of higher order
not included in Eq. ~29!. Their influence grows in the limit
v→0, since there the bifurcation to abnormal rolls occurs at
increasingly higher e and A. In ATC, we find eAR(q)
50.11, a value larger than eZZ ~Sec. V!. This agrees with the
experiments, where the normal rolls at small e are first de-
stabilized by zig-zag modulations @14#.

2. Saturation of the abnormal-roll bifurcation

The saturation of the director rotation (wÞ0) in abnormal
rolls appears to be indirect: it is not controlled by the clas-
sical saturating term 2gww3 in the w equation ~29b!, but
rather by the coupling term 2b3(q)w2A in the A equation
~29a!. Indeed, the abnormal-roll solutions of Eq. ~29! read,
for e.eAR(q),

uAu5aqA 1

11bq
eAR~q!1

bq

11bq
e2e0~q!,

w56A 1

11bq

e2eAR~q!

tqb3~q!
, ~37!

FIG. 2. In EC, for rolls with wave vector q5qc(v) x̂: ~a! nonlinear interaction coefficient G(q) ~thick line! between the roll and twist
modes @cf. Eqs. ~29b!, ~33!#. The contributions G2(q) ~thin line! and G3(q) ~dotted line! of the quadratic and cubic nonlinearities in the ny

equation are shown. ~b! Reduced abnormal-roll threshold eAR8 (q) obtained from the extended WNL expression ~36! ~thick line! or from the
numerical computations @15# ~thin line!. The normal-roll threshold e0(q), only slightly positive for frequencies smaller than the Lifshitz
frequency vL50.8tCD

21 , is shown with the dotted curve.
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with aq51/Atqgq,bq5gqgw /@b3(q)G(q)# . This latter coef-
ficient is always small, for instance, in EC bq50.077 at
vCD50.5 and bq50.0015 at vCD54, while in ATC, bq
50.034. Thus, to lowest order in bq , the amplitude A stays
constant for e.eAR , and the saturation of w is clearly due to
the b3 effect. For q near qc ,b3(q) is always positive, indi-
cating a negative feedback w→A in Eq. ~29b!. In EC and
ATC, two leading contributions of N3„VT ,VT ,V1(q)… domi-
nate all the other ones in b3(q). One leading contribution is
due to 1

2 saQEapp]x(ny
2nz) from N3f„VT ,VT ,V1(q)… in EC

and 1
2 kaR]x(ny

2nz) from N3u„VT ,VT ,V1(q)… in ATC. These
terms are geometrical corrections @analogous in principle to
the term ~P1! of Sec. IV B 1# to the focusing-mechanism
terms in Eqs. ~A1! and ~A2! for the scalar field. These terms
indicate that a director rotation away from the roll wave vec-
tor (ny large! diminishes the charge and heat focusing. The
second dominant contribution to b3(q) ~31! is, both in EC
and ATC, due to the term 2ua2uny

2(]xvz) from
N3nz

„VT ,VT ,V1(q)…. It is a correction to the linear torque

ua2u]xvz in the nz equation ~A3!, which indicates that when
the director rotates, the shear inducing of the nz modulation
also becomes less efficient. In EC, b3(q) drastically in-
creases with the frequency: b350.036 at v.0, while b3
52.99 at vCD54. This is mainly due to the fact that the roll
modes at high frequency become more sensitive to the f and
nz effects mentioned above. Typical amplitudes nz(e) and
w(e) of the nz and ny distortions given in abnormal-roll
solutions by

nz52nz~e !S1~z !sin q•r1h.o.t.

522A~e !S1~z !sin q•r1h.o.t.,

ny5w~e !S1~z !1h.o.t., ~38!

according to Eqs. ~25!, ~19!, and ~22!, are shown for EC at an
intermediate frequency in Fig. 3. Note that w determines to
lowest order the in-plane director at the midplane of the layer
since there @39#

n5 x̂A12ny
2
2nz

2
1 ŷny1 ẑnz5n01 ẑnz1h.o.t.,

with n05 x̂1 ŷw . ~39!

Note also that the order-parameter scheme up to cubic order
breaks down if nz or w becomes larger than 1. The ampli-
tudes nz(e)52A(e) and w(e) ~37! match the numerical pre-
dictions of @15# only for e not too large, such as e&0.2 in the
example of Fig. 3. At higher e , the values of w(e) ~37! get
systematically much larger than those given by the fully non-
linear Galerkin computations. Indeed, the saturation of w in
Eq. ~29! is very weak; i.e., in the full equations, higher-order
effects not included in the order-parameter approach come
into play at these high e , high w values. The deviations
become more important at low v in EC, where b3 is very
small and thus w(e) ~37! reaches 1 for rather small e , e.g.,
for e.0.15 at v.0.

There exist special cases where b3(q) can become nega-
tive, i.e., the abnormal-roll bifurcation does not saturate in
the framework of Eqs. ~29! @40#. This occurs in EC at low
frequency for q larger than qc , e.g., q.1.20qc at vCD51, or
in ATC for q.1.45qc . The important negative term in
b3(q), which counteracts the effect of the positive terms
discussed here above, is a contribution of
N3nz

„VT ,VT ,V1(q)… due to 1
2 (2k2223k33)ny

2]x
2nz . It signi-

fies a reinforcement of elastic origin of the nz distortion in
rolls when the director rotates towards 6 ŷ. Such ‘‘narrow
abnormal rolls’’ are nevertheless obtained in the Galerkin
computations, where apparently higher-order terms not in-
cluded in Eq. ~29! become important.

C. Oblique rolls

In the case of zigs of wave vector q5q x̂1p ŷ with q ,p
.0, the coefficients g(q) and b2(q) in Eq. ~29! are nonzero.
The symmetry rule ~16! now only imposes that g(q) and
b2(q) change sign when passing from the zig q to the zag
S(q)5q x̂2p ŷ. The corresponding stationary solutions of
Eq. ~29! can still be calculated by elimination of A and so-
lution of a cubic equation in w , but the expressions become
quite lengthy. The result is the existence of a ‘‘generalized
abnormal-roll threshold’’ eAR(q), which reduces to Eq. ~36!
for p50, and which increases with increasing upu. For e
,eAR(q) only one root is real, i.e., only one solution branch
exists; whereas for e.eAR(q) all the three roots are real, i.e.,
two additional solution branches appear. Since the new solu-
tions, which one might call ‘‘anomalous’’ oblique rolls @41#,
are typically unstable against long-wavelength perturbations
~except under certain conditions at rather large e , see, e.g.,
@15#!, we will discuss here only the structure of the first,
most stable solutions. They are well approximated at small e
by the standard WNL solutions, where the cubic effects in w
are neglected, i.e., b3 ,gw ,G50 in Eq. ~29!. One finds, with
cq5b2(q)g(q)/(gqusTu),

uAu5aq Ae2e0~q!

11cq
, w52

g~q!

usTu
uAu2. ~40!

In zigs (p.0), due to the ‘‘torque’’ 2g(q)uAu2 in the w Eq.
~29b!, where g(q) is always positive, the director rotates

FIG. 3. Director amplitudes nz(e) ~thin line! and ny(e)5w(e)

~solid line! for EC in roll solutions at q5qcx̂,vCD53 @see Eq.
~38!#. The normal roll ~NR! branch nz(e);Ae ,w(e)50 becomes
unstable at e5eAR with respect to the twist mode. In the subsequent
abnormal rolls ~AR!, nz(e) remains roughly constant, whereas w(e)
increases as Ae2eAR @see Eq. ~37!#. The open and closed circles
show the numerical results @15# for nz(e) and w(e), respectively.
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(w,0) towards the direction of the axis of the rolls or,
equivalently, away from the wave vector (pw,0). This ef-
fect has been in fact pointed out in @26,29# for ATC. The
quadratic nonlinearities of the ny equation which control the
value of g(q) ~26! are the advection term 2g1vz]zny , the
a2 terms a2(]xvx

f )ny and ua2u(]zvy
f )nz @the superscript f de-

noting the velocity components generated by the potential f,
see Eq. ~9!#, and the elastic term ~only important in EC!
2(k111k3322k22)(]xnz)(]ynz). Since the a2 contributions
are in general dominant, this torque exerted by the rolls on
the director can also be understood from the principle that
the director tends to avoid the velocity gradients. The satu-
ration of the roll amplitude in Eq. ~40! is clearly enhanced by
the b2 effect @cf. cq}b2(q)]. Indeed, since b2(q) is positive
for all zigs at q.qc in the normal-roll regime ~usual case in
ATC, case v.vL in EC!, the 1b2(q)wA term in Eq. ~29a!

indicates that the rotation of the director towards 2 ŷ in zigs
(w,0) induces a negative feedback on A ~as does also the
b3 term, but at a higher order!. We find that b2(q) ~26! is
dominated by two contributions of N2„VT ,V1(q)…. The first
one comes from the term 2saQEapp]y(nynz) in the electric
potential equation in EC and from the term 2kaR]y(nynz)
in the heat equation in ATC. The second dominant contribu-
tion arises both in EC and ATC from the term ua2uny(]yvz)
in the nz equation. These terms are corrections to the linear
focusing term @see Eqs. ~A1! and ~A2!# and to the viscous
torque in the nz equation ~A3!. They also signify that a di-
rector rotation away from the direction of the wave vector
(pny,0) reduces the efficiency of the focusing mechanisms
of convection (A diminishes!.

The simple expressions Eq. ~40! of the standard WNL
oblique-roll solutions are of course modified by the inclusion
of the effects of b3 ,gw , and G in Eq. ~29!. The corrections
read at small e

duAu52aq
3g~q!@b2~q!G~q!1b3~q!g~q!#

2~11cq!5/2usTu2gq

@e2e0~q!#3/2,

dw5

g~q!

usTu2

b3~q!g2~q!/gqusTu2G~q!

11cq
uAu4. ~41!

Because of the G and b3 effects, duAu,0: the roll amplitude
is always strongly reduced due to the in-plane director rota-
tion, as shown in Fig. 4 for ATC. The full solutions of Eq.
~29! have been calculated for a representative experimental
oblique-roll wave vector q51.07qc( x̂ cos 8°1ŷ sin 8°) @14#.

The amplitudes plotted in Fig. 4 are still defined according to
Eq. ~38!; in fact in oblique rolls there is also a periodic
contribution of the roll mode ~19! to ny , but this contribution
}A(e) ñy is dominated by the contribution }w(e) even at
very small e values, e.g., for e*0.04 in the example of Fig.
4. The strong deviation from the standard WNL law
nz(e),A(e)}Ae2e0(q) ~40!, has been observed experimen-
tally @20# ~see Fig. 9a there!, and constitutes an experimental
confirmation of our analysis for ATC. The correction to the
WNL solution ~40! for w ,dw ~41!, is usually negative ~as in
Fig. 4! since gqusTuG(q).b3(q)g2(q). Provided the reduc-
tion of A due to the b3 term is not too strong, the angle uwu
increases because of the G effect. It is only when b3 gets
very large, for instance, for the oblique rolls at qc in EC at
very low frequency, that the w corrections can become posi-
tive: the reduction of A is then so strong that the angle of the
in-plane rotation is diminished. Note that the range of e
where the standard WNL solutions ~40! remain a good ap-
proximation typically extends with increasing p. The con-
tinuous transformation from a quasilinear law w(e)}2@e
2e0(q)# at large p @cf. Eq. ~40!# to the square root law
w(e)}2Ae2eAR at p50 @cf. Eq. ~37!# is visible in Fig. 2 of
@15#. Thus the zig solutions p.0,w,0 are continuously at-
tached to the abnormal-roll solutions with w,0 in Eq. ~37!.
It appears therefore justified to introduce as a generalized
definition of ‘‘zigs’’ the criterion w,0, with which both the
oblique rolls with p.0,w,0 and the abnormal rolls with p
50,w,0 are considered to belong to the same class of so-
lutions.

In some special cases b2(q) can become negative in zigs
for p.0, i.e., the in-plane director rotation reinforces the roll
amplitude to lowest order @cq becomes negative in Eq. ~40!#.
This occurs first in the oblique-roll regime in EC for v
,vL . Then, at q5qc ,b2(q) is slightly negative for 0,p
&pc and becomes positive for p*pc . The important nega-
tive term in b2(q), which counteracts the positive terms dis-
cussed above, is a contribution of N2nz

„V1(q),VT… due to
2(k332k22)]x(]ynz)ny . It implies an elastic reinforcement
of the nz distortion in zigs when the director rotates towards
2 ŷ. This term leads also, at fixed p, to a decrease of b2(q)
with increasing q. Thus in EC and ATC in the normal-roll
range, b2(q) can become negative at fixed p for q larger than
qc ~e.g., at p50.05qc , for q.1.19qc in ATC, for q
.1.04qc in EC at vCD51).

D. Interpretation: director–wave-vector frustration

The amplitude equations ~29! display, in the most com-
mon normal-roll regime ~when qc5qcx̂, and q5q x̂1p ŷ is

FIG. 4. In ATC ~for 5CB!,
comparison between results of the
standard WNL theory and the ex-
tended WNL theory @i.e., G ,b3

Þ0 in Eq. ~29!# for the amplitude
of nz ~left! and of the twist mode
~right! in an oblique-roll solution
of Eq. ~29!. The linear threshold
e0(q)50.013 is marked with the
crosses. Note the increasing de-
viations from the WNL results A
}Ae2e0(q),w}@e2e0(q)# .
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not too far from qc), the competition between two opposite
tendencies. On the one hand, the roll dynamics Eq. ~29a! is
controlled in this regime by the fact that b2(q)p
.0, b3(q).0, these coefficients being dominated by non-
linear corrections to the linear focusing mechanism terms ~in
the loose sense, i.e., including all the terms contributing to
the instability loop quoted in Sec. III A, in particular, the
viscous torque in the nz equation!. These b2 and b3 terms
change the linear growth rate of the roll modes ~20! into an
effective ~‘‘nonlinear’’! growth rate

seff~q;e !5

e2e0~q!

tq
1b2~q!w2b3~q!w2.

This effective growth rate is maximal for w5wopt(q)
5b2(q)/@2b3(q)# . Since wopt(q) is typically between 0 and
p/q , this means that ~M1! the focusing mechanisms are more
efficient when the roll wave vector is roughly parallel to the
director. On the other hand, the dynamics of the twist mode
Eq. ~29b! is controlled in this regime by the fact that
g(q)p.0,G(q).0. These coefficients are dominated by the
a2 contributions signifying the tendency of the director to
rotate due to the viscous torques away from the velocity
gradients and therefore away from the wave vector of the
rolls. The g and G terms thus indicate that ~M2! the director
is pushed by the rolls away from their wave vector. The
competition between ~M1! and ~M2! results in a ‘‘director–
wave vector frustration.’’ A first manifestation of this frus-
tration is the bifurcation from the normal to the abnormal
rolls, in which the rolls almost ‘‘destroy’’ themselves: in
abnormal rolls the director rotation is clearly due to ~M2!,
and the subsequent saturation of the roll amplitude
(uAu;const for e.eAR) due to ~M1!. We will see in the rest
of the paper that this frustration has other important conse-
quences.

V. LONG-WAVELENGTH ZIG-ZAG INSTABILITY
OF ROLLS WITH A NORMAL WAVE VECTOR

In EC for frequencies larger than the Lifshitz frequency
vL , or in ATC for usual nematics, one finds near onset nor-
mal rolls at q5qc5qcx̂. According to Sec. IV, these normal
rolls can undergo a secondary bifurcation to abnormal rolls
at rather small e5eAR . However, another possible second-
ary bifurcation is the long-wavelength zig-zag instability,
where undulations along the roll axis are amplified. This in-
stability is a generic feature of planar nematic convection
@27#, which thus competes with the abnormal-roll instability
~cf. Fig. 3 of @15#!. On the basis of a WNL analysis in EC, a
first mechanism has been identified for the zig-zag instabil-
ity, which relies on the coupling with the so-called mean-
flow modes @25#. These are passive modes that are excited by
roll undulations, but since their adiabatic elimination can
lead to nonanalyticities, a separate equation @analogous in
principle to Eq. ~B11!# has to be kept for them. Nevertheless,
strong discrepancies have remained between the results of
the standard WNL analysis as exposed in @25,23# and the
Galerkin computations or the experiments. Typically, the
standard WNL thresholds for the long-wavelength instabili-
ties are much too large as was noted in @27# for EC and in
@14# for ATC. In this section we want to show that these

discrepancies can be resolved by taking into account addi-
tional cubic nonlinearities @Eq. ~46!#, which couple the twist
mode and two roll modes. These terms are considered to be
of higher order in the standard WNL approach. We will also
analyze in detail the microscopic mechanisms controlling the
zig-zag instability and the subsequent restabilization of the
abnormal rolls in EC.

A. Roll-twist-mean-flow amplitude equations

To describe long-wavelength instabilities, the scheme in-
troduced in Sec. IV A has to be generalized in order to cal-
culate modulated-roll solutions. The scheme must also be
combined with the method explained in @25# to extract the
~possibly! singular mean flow. One starts with a superposi-
tion of roll modes ~19!

V rolls5E
V~qc!

dq A~q!V1~q!1c.c..A~r!V1~qc!1c.c.,

~42!

where V(qc) is a domain centered around qc , and the slowly
varying envelope

A~r!5E
V~qc!

dq A~q!e i~q2qc!•r ~43!

has been introduced.
The long-wavelength part VLW of the solution is then de-

fined to lowest order by

D] tVLW2LVLW5I2

5E
V~0!

dsE
V~qc!

dq A~q!

3A~2q1s!N2„V1~q!uV1~2q1s!….

~44!

The velocity field in Eq. ~44! can be treated with the tech-
nique introduced in @25#. One solves for a modified right
hand side where only the source term in the g field is
retained and projected onto the Hagen-Poisseulle pro-
file P1(z)5

1
2 (p2/42z2) according to I2g→^I2g&5(6/

p2)^P1(z),I2g(s;z)&; this gives the mean-flow contribution.
We also isolate the twist amplitude w as the amplitude of
S1(z) in the ny field of VLW @cf. Eq. ~22!# and get after
adiabatic elimination of the other fields

VLW5E
V~0!

ds@w~s!VTe is•r
1G~s!VMFe is•r

1VLW
rest~s!#

5w~r!VT1G~r!VMF1E
V~0!

dsVLW
rest~s!, ~45!

with VMF5„0,0,0,0,P1(z)….
Finally, there are passive, short-wavelength contributions

to the solution. The harmonics about 62qc are standard.
Additionally, we take into account the terms generated by
N2„V1(q)uVTe is•r…, with wave vectors around 6qc . The re-
sulting quadratic modes V2T(q,s) are calculated with the
projector technique of Appendix B. They contribute to the
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solution with an amplitude Aw . The higher-order terms that
we include in our analysis are the terms of order A2w gen-
erated by these quadratic modes and directly by the coupling
of the twist mode with the roll modes: we add to the right
hand side I2 of Eq. ~44! a contribution

I35E
V~0!

dsE
V~qc!

dqE
V~2qc!

dq8w~s!A~q!A~q8!

3@~N2„V2T~q,s!uV1~q8!…1N2„V2T~q8,s!uV1~q!…

1N3„V1~q!uV1~q8!uVTe is•r…# . ~46!

This addition is consistent with the scheme of Sec. IV A,
since a particular contribution of Eq. ~46! in the ny equation
leads for (s,q,q8)5(0,qc ,2qc) to the term 1G(qc)uAu2w
responsible of the abnormal-roll bifurcation. The important
point is that Eq. ~46! also induces corrections to the mean-
flow equations which turn out to resolve the difficulties
quoted in our Introduction. For instance, in ATC the standard
WNL analysis predicts a skewed-varicose instability of the
critical normal rolls at eSV50.15, in contradiction to the ex-
perimental findings which show rather a zig-zag instability at
much smaller e(eZZ.0.05 according to Fig. 4 of @14#!. The
inclusion of the terms ~46! in the perturbation analysis of
normal rolls drastically changes the form of the growth rate
as a function of the modulation angle ~Fig. 5! and leads to a
zig-zag instability at eZZ50.062 comparable to the experi-
ments. Since the zig-zag modulations are also for EC the
most dangerous destabilizing modes of rolls with a normal
wave vector, we now disregard the general skewed-varicose
case. Using the method exposed, for instance, in @25#, we
apply an inverse Fourier transform to the evolution equations

for A(q),w(s), and G(s) obtained in Fourier space. This
yields from expansions of the coefficients in powers of the
wave vectors corresponding derivative terms. One arrives at
the following system of equations for the roll envelope A, the
twist amplitude w , and the mean-flow amplitude G:

t] tA5@e~12e3]y
2!1r2]y

2#A2uAu2A2a7uAu2]y
2A

2a8A2]y
2A*2a9~]yA !2A*2a10u]yAu2A2is1A]yG

2ib1A]yw2ib2w]yA2bw2A , ~47a!

] tw5~sT1K1]y
2!w1ig8 ~A*]yA2A]yA*!

2gw w3
1Gw uAu2w , ~47b!

05nb]y
2G1iq4]y

2~A*]yA2A]yA*!1GG]y
2~ uAu2w !,

~47c!

where we have recalled on the left hand side some of the
time-derivative terms @42#. Note that the A equation has been
multiplied by the characteristic time t , and that the roll
modes have been rescaled for convenience by a factor aqc

51/Atgqc
~this amounts to rescaling the amplitudes by a

factor 1/aqc
). Some coefficients in Eq. ~47! are linked to the

coefficients appearing in Eq. ~29! for nonmodulated rolls:

b25t
]b2~qc1p ŷ!

]p
U

p50

, b5tb3~qc!,

g85aqc

2 1

2

]g~qc1p ŷ!

]p p50 , Gw5aqc

2 G~qc!. ~48!

A typical set of coefficients is given for EC in Table III. Note
that to lowest order in the amplitudes ~47! reduces to the
anisotropic Ginzburg-Landau equation for A if w and G are
adiabatically eliminated or to the roll-mean-flow system
~35!, ~36! of @25# if w is adiabatically eliminated. In Secs.
V B and V C we will study the stability of the normal-roll
solutions A5Ae ,w50 of Eqs. ~47!, and in Sec. V D we will
study the stability of the abnormal-roll solutions A
5A(eAR1be)/(11b), w5A(e2eAR)/@b(11b)# of Eqs.
~47!, where eAR52sT /Gw and b5gw /(bGw).

B. Stability of normal rolls: Standard zig-zag mechanisms

The results of the standard WNL analysis concerning the
zig-zag instability of normal rolls are recovered if the cubic
terms implying the twist amplitude w are dropped in Eq.
~47!, i.e., if one assumes Gw5GG50(b and gw do not inter-
vene at this stage!. In contrast to @25# the twist amplitude w
has not been adiabatically eliminated. Thus the contribution
of the twist dynamics appears now explicitly @43# in our
formula for the zig-zag threshold,

TABLE III. Coefficients of the roll-twist-mean-flow amplitude equations ~47!, in EC for N5 at vCD51.5.

e3 r2 a7 a8 a9 a10 s1 b1 b2 b sT K1 g8 gw Gw nb q4 GG

0.17 0.10 20.20 0.027 0.28 0.33 2.0 0.19 0.23 0.26 20.042 0.088 0.16 0.0052 0.37 16.4 4.54 36.8

FIG. 5. Growth rates of long-wavelength perturbation modes
dV5a1V1(qc1s)1a2V1(qc2s) of the normal rolls at q5qc in
ATC as a function of the modulation angle arg(s). The prediction
of a zig-zag instability at e5eZZ50.062 from the extended WNL
analysis ~thick line! agrees with full numerical results and the ex-
periments. The standard WNL analysis ~thin line! predicts errone-
ously a skewed-varicose instability at arg(s).50°,e5eSV50.15.
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eZZ
s

5

r2

d2
, with d25e31a72a81

2b1g8

sT
1

2s1q4

nb
.

~49!

The numerator r2 is the square of the coherence length in the
y direction, which vanishes at the Lifshitz point in EC: r2

→01 when v→vL
1 ; the denominator d2 has to be positive

for a destabilization to occur. Since b1 and g8 are always
positive ~and sT,0), the twist contribution 2b1g8/sT is
negative, i.e., stabilizing. The coefficients b1 and g8 appear
to be dominated by the same nonlinearities as b2 and g ~Sec.
IV C!: the fact that the rolls get stiffer by an excitation of the
twist is also a direct consequence of the ‘‘frustration’’ ~Sec.
IV D!. This becomes clear by inspection of the nz and ny
fields generated by a zig-zag perturbation of the normal rolls.
Using the fact that the amplitudes for the modulation wave
vectors 6p ŷ in a long-wavelength instability are almost op-
posite, one finds to lowest order in the perturbation ampli-
tude a:

nz

ñz

.@22A sin~qcx !1a cos~qcx !sin~py !#S1~z !

.22A sinFqcx2

a

2A
sin~py !GS1~z !, ~50a!

w.aA
g8

usTu
p cos~py !. ~50b!

The zig-zag perturbation creates locally some obliqueness of
the rolls, i.e., a modulated qy component of the local wave
vector, qy52(a/2A)p cos(py). According to ~M2! ~Sec.
IV D!, the in-plane director in the regions of obliqueness
is pushed away from the local wave vector: this creates
the splay-twist modulation ~50b! ~Fig. 7! @44#. According to
~M1!, the feed-back of this twist modulation on the roll per-
turbation is negative. The only destabilizing terms in d2 ~49!
are the one of e3 ~at least at not too large frequency v in EC!
and more importantly the mean-flow contribution 2s1q4 /nb ,
where s1 and q4 are always positive @45#. The zig-zag per-
turbation ~50a! creates the mean flow

vx5~]yG !P1~z !.aA
q4

nb
p2 sin~py !P1~z ! ~51!

sketched in Fig. 7. In EC and ATC, important contributions
to q4 are given by the viscous terms in the vx equation
a5@]y(Dxxny)1]z(Dxxnz)# , where Dxx5]xvx

f
5]x

2]z f . They
signify anisotropic viscous mechanisms of creation of the

mean flow, quite different from the standard advection
mechanisms ~due to the term v•“vx in the vx equation! rel-
evant for isotropic fluids where q4,0. In EC, additionally
the term 2e'R(]xf)(]y

2f) from the x component of the
Coulomb force gives large contributions to q4 . It corre-
sponds to an electric mechanism of generation of the mean
flow. The coefficient s1 in Eq. ~47a! is dominated by the
contributions of 2g1vx]xnz in the nz equation for EC and
for ATC. Thus the mean flow ~51!, by advection of the di-
rector field in the rolls, reinforces the zig-zag perturbation
~Fig. 7!. In ATC, this primary zig-zag mechanism cannot
compensate the stabilizing twist contribution, as shown in
the first line of Table IV: d2,0 in Eq. ~49!, i.e., no zig-zag
instability is predicted by the standard WNL analysis. The
twist contribution is overcompensated by the mean-flow one
only at low frequencies in EC, for instance at vCD51 ~sec-
ond line of Table IV!. At higher v, b1 and 22b1g8/sT
increase strongly, and d2 also becomes negative ~see, e.g.,
the third line of Table IV!. The increase of the twist contri-
butions results from the contribution to b1 due to term
eaR]y(nynz) in the z component of the Coulomb force. This
term introduces an electric mechanism of stabilization of the
zig-zag perturbation by the twist ~note that it would become
destabilizing for nematics with ea.0) which is only impor-

TABLE IV. Coefficients determining the standard zig-zag threshold ~49! for the critical normal rolls in
ATC ~first line!, and in EC at two different frequencies ~second and third line!. Note that the largest
contributions to d2 ~49! are always the twist contribution 2b1g8/sT and the mean-flow contribution
2s1q4 /nb .

r2 e3 a72a8 2b1g8/sT 2s1q4 /nb d2

ATC 0.22 0.29 21.05 23.29 1.16 21.13
EC at vCD51 0.033 0.26 20.22 20.83 1.22 10.43
EC at vCD52 0.158 0.085 20.25 22.09 1.07 21.19

FIG. 6. Stability diagram for rolls at q5qcx̂ in EC calculated
from Eqs. ~47!, as a function of the dimensionless frequency vCD

5tCDv . The unstable regions are in gray. For vL,v,vAR , the
normal rolls are first destabilized at eZZ ~52a! towards oblique rolls
by a zig-zag instability. For v.vAR , the first instability is at eAR

towards stable abnormal rolls. Abnormal rolls exist in general
above eAR and restabilize for v,vAR above eARstab . Note that the
standard WNL zig-zag threshold eZZ

s ~49! @GG5Gw50 in Eq.
~47c!#, which diverges at v.1.23, is totally misleading. The results
of the Galerkin computations @15# for the lines eZZ ~diamonds! and
eARstab ~squares! are included.
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tant at high v where R gets large. Thus the standard zig-zag
threshold eZZ

s diverges at vCD51.23 ~Fig. 6! in distinct con-
tradiction to the experiments as well as to the Galerkin cal-
culations which have shown the existence of a zig-zag insta-
bility up to vAR.2.5 @15,16#.

C. Stability of normal rolls: Secondary zig-zag mechanism

By inclusion of the higher-order terms Gw and GG in Eq.
~47!, the zig-zag threshold eZZ

s ~49! is modified to

eZZ5

r2

d3
, with

d35

1

2S d21

Gw

usTu
r2

1AS d22

Gw

usTu
r2D 2

18
g8dG

usTu
r2D , ~52a!

dG5

s1

nb
GG2

b1

usTu
Gw . ~52b!

If only Gw is kept, then dG is negative and the argument of
the square root is usually negative ~except in EC for v very
close to vL), i.e., the divergence of the zig-zag threshold
persists @it is even more dramatic than with Eq. ~49!, e.g., it
occurs now at vCD50.9 in EC#. Indeed, the term Gw uAu2w
in Eq. ~47b! reduces the damping of w: it thus produces the
normal → abnormal roll instability, but it also enhances the
stabilizing influence of the twist dynamics on the zig-zag
instability. On the contrary, keeping only the contribution of
GG in Eq. ~52! yields a positive dG since GG turns out to be
always positive. Then d3 reduces to

d3.
1

2S d21Ad2
2
18

g8dG

usTu
r2D , ~53!

which stays positive finite even when d2→2` , i.e., even
when the WNL zig-zag threshold ~49! diverges totally. The
exact zig-zag threshold ~52a! is shown in Fig. 6 for EC @46#.
The first correction to the standard WNL threshold eZZ

s can
be calculated analytically: for v→vL and r2→01,eZZ

s

→01, one finds

eZZ5eZZ
s

2

2g8

usTud2
dG~eZZ

s !2
1O~eZZ

s !3,

where, for EC, the prefactor of (eZZ
s )2 is 240. Thus, whereas

the slope of the zig-zag threshold at the Lifshitz point is not
changed as compared with the standard WNL analysis, the
domain of validity of the standard WNL analysis appears to
be very limited. The zig-zag threshold eZZ ~52a! increases
with frequency essentially because of a strong increase of r2
and b1 with v . Eventually eZZ meets the abnormal-roll line
eAR5usTu/Gw at a crossover frequency vAR where d3
5r2 /eAR5r2Gw /usTu; according to Eq. ~52a!, dG vanishes
at the crossover point, dG.0 for v,vAR ,dG,0 for v
.vAR . The competition between the zig-zag and the
abnormal-roll instabilities appears therefore to be controlled

by a balance between the GG effects mainly responsible for
the zig-zag instability ~it occurs first if dG.0) and the Gw

effects mainly responsible for the abnormal-roll instability ~it
occurs first if dG,0). More quantitatively, for EC, our ex-
tended WNL computations reproduce the results of the
Galerkin computations ~compare Fig. 6 to Fig. 3 of @15#!
very well at small e , whereas for e*0.07 our values of eZZ
become slightly too small; thus we find the crossover point at
vAR52.9 instead of vAR52.4 from the Galerkin computa-
tions. This agreement is satisfactory, and our analysis has the
advantage of allowing for analytic modeling. For instance,
by adjusting r2 and b1 , using otherwise the coefficients of
Table III, one can perfectly reproduce the results of the full
numerical calculation. Such an adjustment could possibly be
used also for modeling experimental results ~see also Sec.
V D!.

The new zig-zag mechanism expressed by the GG effect
can be understood by inspecting the corrections to the per-
turbation fields. Without Gw , one finds that the roll ~50a! and
twist perturbations ~50b! are unchanged, whereas the hori-
zontal velocity ~51! is modified according to

vx.aA
1

nb
S q41

g8

usTu
GG A2D p2 sin~py !P1~z !. ~54!

Thus the reinforcement of the zig-zag instability due to the
GG term is a three-step procedure ~Fig. 7!. First, the roll
curvature induces the splay-twist modulation ~50b!. Second,
this splay-twist modulation reinforces the mean flow already
induced by the roll curvature ~term }q4 in vx). Third, this
mean flow ~as known already from the standard mechanism!
reinforces the roll curvature. We find that in EC and in
ATC the dominant nonlinearities in GG are contribu-
tions from the viscous terms in the vx equation 1

2 @(a5

2a2)(]zvx
f )nz(]yny)1(a51a2)(]xvz)nz(]yny)# , which

signifies a kind of ‘‘velocity focusing’’ associated with the
long-wavelength splay term ]yny ~Fig. 7!. It would be inter-
esting to confirm this mechanism experimentally by optical

FIG. 7. Sketch of the mechanisms driving the zig-zag instability
of normal rolls. The thick lines represent slightly undulated rolls,
i.e., with a modulated local wave vector q @see Eq. ~50a!#. The
ensuing roll curvature produces a mean flow v ~dashed arrows!
which in turn advects the rolls and reinforces the undulations. In a
secondary mechanism, the undulations generate a splay- twist
modulation of the in-plane director n0 ~small arrows inside the
rolls!, which in turn strongly reinforces, via a kind of ‘‘flow focus-
ing,’’ the mean-flow.
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observations of the in-plane director: this should reveal, at
the onset of the zig-zag instability, the splay-twist modula-
tion shown in Fig. 7.

D. Restabilization of abnormal rolls at higher e

In the parameter region where the normal rolls are first
destabilized by the zig-zag instability ~case v,vAR in EC,
usual case in ATC!, abnormal-roll solutions nevertheless ex-
ist for e.eAR.eZZ . For symmetry reasons it seems clear
that a sufficiently large rotation of the in-plane director will
render these abnormal rolls stiff against long-wavelength
zig-zag perturbations where the resonant interaction between
the two modulation modes at 6p ŷ is important. A stability
analysis of Eq. ~47! does reveal the existence of a third sta-
bility boundary eARstab.eAR.eZZ where the zig-zag modu-
lations of the abnormal-roll solutions are damped out. The
y°2y symmetry in Eq. ~47! is broken by the b2 and b
terms in the A equation ~47a!, the terms gw and Gw in the w
equation ~47b!, and the term GG in the mean-flow equation
~47c!. The coefficients b2 and gw seem to play no important
role since their suppression only changes slightly ~by less
than 2%) the value of eARstab . Assuming therefore b25gw

50 in Eq. ~47!, one obtains the following approximate for-
mula:

eARstab

eAR
21.dG

g8

d4
, with

d45

Gw

2 F Gw

usTu
r22d212g8

dG

Gw

1AS Gw

usTu
r22d212g8

dG

Gw
D 2

24e3g8
dG

Gw
G . ~55!

This shows clearly that the lines eZZ ,eAR , and eARstab must
meet at the crossover point dG50 in EC. An expansion of
Eqs. ~52a! and ~55! in the vicinity of this point (v
→vAR

2 in EC) yields a relation between their slopes:

S eARstab

eAR
21 D;22S eZZ

eAR
21 D;

g8

Gw~r2 /eAR2d2!
dG .

~56!

This constraint on the slopes of the lines eARstab(v) and
eZZ(v) at the crossover point could be easily tested experi-
mentally @47#. Here we predict eAR.0.076
20.030dv ,eARstab /eAR21.20.19dv or equivalently
eARstab.0.07620.044dv for dv5v2vAR5O(1), with
frequencies in units of tCD

21 . The line eARstab(v) calculated
without approximations is shown in Fig. 6 for EC and
matches roughly the numerical results @15# for not too small
v . However, eARstab(v) increases too steeply with decreas-
ing v in contrast with the full numerical results ~see the
squares in Fig. 6 and Fig. 3 of @15#!. Indeed at low frequen-
cies, very high amplitudes are attained for e*0.15 ~Sec.
IV B 2! and the WNL perturbation approach is no longer
justified.

Note that only a few parameters determine the position of
the bifurcation lines eZZ ~52a!, eAR and eARstab ~55!: the lin-
ear coefficients r2 ,e3 , and sT and the nonlinear coefficients

d2 ,Gw , and dG85g8dG/Gw . The linear coefficients should
be relatively easy to determine in experiments. Measure-
ments of eAR for v.vAR , together with an extrapolation in
the domain v,vAR „observe that eAR8 (v) is very smooth
@Fig. 2~b!#…, would then yield the values of Gw . The remain-
ing coefficients d2 and dG8 could then be determined by
fitting the expressions ~52a! and ~55! of eZZ and eARstab to the
measured values of the zig-zag and abnormal-roll restabili-
zation thresholds.

VI. NONLINEAR BIMODAL SOLUTIONS

Abnormal or oblique rolls of wave vector q are stable
against long-wavelength perturbations in an intermediate e
range; e.g., in EC the abnormal rolls for e*eARstab . Experi-
ments ~see, e.g., @20,19#!, as well as numerical simulations
@27# or WNL analyses ~see, e.g., @26#!, have shown that they
are rather destabilized in this regime by a short-wavelength
mode of wave vector k leading to a bimodal structure. Am-
plitude equations modeling such instabilities can be derived
with calculations similar to those of Sec. IV A, where we add
a secondary roll mode to the basic ansatz for the extended
WNL solutions ~25!, now

V5VA1V'5@AV1~q!1BV1~k!1c.c.#1wVT1V' .
~57!

One should realize that since we leave the ‘‘very small e’’
region, no quantitative results are to be expected in general.
Nevertheless, we will obtain in some regimes ~EC at high v)
semiquantitative results, and, more importantly, qualitative
results concerning the origin of the bimodal instability and
the further stability of the bimodal solutions themselves
~which had never been studied theoretically!.

A. Bimodal-twist amplitude equations

With the scheme of Appendix B and calculations per-
formed at R5R0(q) in order to avoid R dependencies of the
nonlinear coefficients in the amplitude equations, we get
from Eq. ~57!

] tA5S e2e0~q!

tq
2gquAu2

1b2~q!w2b3~q!w2D A

2gkquBu2A ,

] tw5@sT2gww2
1G~q!uAu2

1G~k!uBu2#w

2g~q!uAu2
2g~k!uBu2,

] tB5S e2e0~k!

tk
2gkuBu2

1b2~k!w2b3~k!w2DB

2gqkuAu2B . ~58!

The coupling coefficient gqk is

gqk52^U1~k!,N2„V1~2q!uV2~q,k!…

1N2„V1~q!uV2~2q,k!…1N2„V2~q,2q!uV1~k!…

1N3„V1~q!uV1~2q!uV1~k!…&, ~59!
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where the second harmonics are defined as in Eq. ~28!, e.g.,

V2~q,k!52LR0~q!
21 •N2„V1~q!uV1~k!…. ~60!

B. Bimodal instability

Consider a primary solution of the zig type characterized
by a wave vector q5q x̂1p ŷ with p>0, an amplitude A
5A(q;e), and an in-plane director rotation w5w(q;e),0
~this can include both abnormal-and oblique-roll solutions,
see the discussion at the end of Sec. IV C!. The growth rate
of the short-wavelength perturbation of wave vector k de-
duced from Eq. ~58! is

sBV~q;k;e !5

] tB

B
5

e2e0~k!

tk
1b2~k! w2b3~k! w2

2gqkuAu2. ~61!

In EC and in ATC, sBV first becomes positive at e5eBV for
a certain wave vector k ~the ‘‘dual’’ of q) of the zag type
(ky,0). This selection can be heuristically understood by
noticing that the growth rate sBV(q;k;e) at the dual k is
much larger than sBV(q;k8;e) for a k8 in the zig region, e.g.,
at k85S(k). Since the coefficients e0(k),tk , and b3(k) are
unchanged under the application of S, and gqk is only
slightly modified @52#, one obtains sBV(q;k;e)
.sBV„q;S(k);e…12b2(k)w: the fact that b2(k) is large
and negative in the zag region ~and w,0) explains the se-
lection. Typically kÞS(q) so the resulting unsymmetric bi-
modal is of the ‘‘bimodal varicose’’ type @14#.

In EC for the abnormal rolls at q5qc , we find values of
eBV that are too small at low v . The reason is that uw(q;e)u
gets too large when compared with the Galerkin computa-
tions ~Sec. IV B 2!. However, the position of the dual is
qualitatively correct. For instance, at vCD51 we find uku
51.18qc ,argk5267° @48#, to be compared with uku
51.01qc ,argk5261 ° from the Galerkin computations. At
higher v , since the abnormal-roll solutions are closer to the
numerical Galerkin solutions ~Sec. IV B 2 and Fig. 3!, both
eBV and k agree reasonably well with the ones from the
Galerkin computations. For instance, at vCD52.4, we find
eBV50.186,uku50.98qc ,argk5233 ° @49#, to be compared
with eBV50.183,uku50.95qc ,argk5226 ° from the Galer-
kin computations. We mention that the bifurcation to the
bimodal varicose has also been evidenced recently in EC of
the nematic I52 at high electric conductivity @50#.

In ATC, for the primary zig mode q51.07qc( x̂ cos 8°
1ŷ sin 8°), we find eBV50.176,uku50.86uqu,argk5232°, in
qualitative agreement with the experimental observations

@14#. The corresponding coefficients ~Table V! will be used
in Sec. VI C for numerical simulations of the system ~58!.

For all these bimodal instabilities, the leading positive
contribution to sBV(q;k;eBV) ~61! is always b2(k)w ,
whereas the ~typically negative! contribution of b3(k)w2 is
smaller in magnitude @51#. This proves that the director ro-
tation (w,0) in the primary rolls is the main cause for the
excitation of a mode with wave vector in the zag region. This
holds for primary abnormal (p50) or oblique rolls (p.0)
and generalizes the mechanism identified in @26# for ATC,
which appears to be also valid for EC. Finally, note that this
mechanism can also be understood from the frustration in-
troduced in Sec. IV D: the director rotation in zigs being
driven by ~M2! and the subsequent excitation of a zag roll by
~M1!.

C. Bimodal-twist solutions—Hopf bifurcation

The main advantage of the model system ~58! is that ap-
proximate bimodal solutions can be calculated, and that their
stability can now be studied. Let A ,BÞ0, then Eq. ~58!
yields a cubic equation for w after the elimination of uAu2

and uBu2. For primary abnormal rolls, there exists a unique
stable solution for eBV,e,eHopf ~see below for eHopf), and
the bimodal bifurcation is supercritical. For primary oblique
rolls, we find a stable solution in a slightly larger e domain,
eBV2deBV,e,eHopf : the bimodal bifurcation is, in fact,
slightly subcritical. With the parameters of Table V, deBV
50.002!1: the corresponding hysteresis appears to be im-
possible to observe experimentally. However, the jumps in B
and w at e5eBV are not small and might be observable ~see
the left side of Fig. 8!. Note that after the bimodal transition,
w increases steeply owing to the term 2g(k)uBu2 in the w
equation, where g(k),0 since k is zag. The stability of the
bimodal branch against perturbations in A ,B , and w can be
studied by linearization of Eq. ~58!. One always finds a Hopf
bifurcation at sufficiently large e.eHopf . With the coeffi-
cients of Table V, eHopf50.22, and the development of the
Hopf bifurcation is shown, on the right side of Fig. 8, by a
time-forward simulation of Eq. ~58! after a jump from e
50.22 to 0.228. The two amplitudes oscillate roughly out of
phase, as observed experimentally in the oscillating bimodals
~see, e.g., @19# or Fig. 12 of @20#!. The calculated period of
these bimodal-twist oscillations is T548tq544t , which is
not too far from the periods measured experimentally, T
.15t @20#. The existence of these oscillations is robust
against changes in the parameters of Table V, provided that
their sign is left unchanged.

In order to analyze the origin of these oscillations, we
now focus on the simpler case of a symmetric bimodal k
5S(q). Such symmetric bimodals are often observed at

TABLE V. Coefficients of the bimodal-twist amplitude equations ~58!, in ATC for an experimental zig wave vector q and the corre-
sponding dual wave vector k ~see text!.

tq e0(q) gq b2(q) b3(q) gkq tk e0(k) gk b2(k) b3(k) gqk

267 0.013 0.0054 0.00010 0.0011 0.013 431 0.16 0.0024 20.0010 0.0017 0.0025

sT gw G(q) G(k) g(q) g(k)

20.00081 0.00010 0.0077 0.0034 0.0014 20.0048
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rather high values of the control parameter in EC and in ATC
after an evolution with R of the wave vectors of the bimodal
varicose @53#. In this symmetric case, assuming that Eq. ~58!
is still valid to describe the dynamics of the system, an ana-
lytic calculation of the Hopf threshold becomes tractable.
Since the phases of A and B are not coupled by the system
~58!, we can consider these amplitudes to be real without
loss of generality. After some simple rescalings, Eq. ~58!
takes the simpler form

] tA5~e2A2
1b2w2b3w2!A2gB2A ,

] tw5@sT2gww2
1G~A2

1B2!#w1g~B2
2A2!,

] tB5~e2B2
2b2w2b3w2!B2gA2B , ~62!

where g5gqS(q)5gS(q)q ,b25b2(q)52b2„S(q)….0,g
5g(q)52g„S(q)….0. For g.21, this system admits sta-
tionary bimodal solutions given by A5B5Ae/(11g)
5Ae8,w50. If we perturb these solutions according to

A5Ae81a , B5Ae81b , w501w ,

it turns out that the modes a1b and b2a are decoupled, and
that the former is always damped. The perturbation system
then reduces to

] t~b2a !522e8~12g !~b2a !22b2Ae8w ,

] tw52gAe8~b2a !1~sT12Ge8!w . ~63!

If we suppose that a fluctuation in the roll amplitudes favors
the zag mode B, then the director will avoid the stronger
gradients along the zag wave vector by rotating towards the
zig: w then becomes positive due to the g term in the second
equation. But this rotation will then favor A, at the expense
of B, due to the b2 term in the first equation: b2a will now
decrease. If the Ge8 term in Eq. ~63! is sufficiently large to

overcompensate the damping of the modes b2a and w , i.e.,
if the trace of the matrix ~63! is positive:

2e8~G1g21 !1sT.0⇔G.12g ,

e8.eHopf8 5

1

2

usTu
G1g21

, ~64!

b2a will even change sign and thus make the director rotate
in the opposite direction ~now towards the zag!. Thus a Hopf
bifurcation will occur, under the additional conditions that
the discriminant of the system ~63! is negative at e8

5eHopf8 :

D5

4usTu

~G1g21 !2
@ usTu~g21 !2

22b2g~G1g21 !#,0,

~65!

and that a stationary instability does not occur before:

usTu~g21 !22b2g,0. ~66!

These conditions are typically fulfilled since usTu is small
whereas the product b2g is large in oblique rolls. This, to-
gether with the fact that the instability condition ~64! is easy
to realize with the large G expected for nematic convection,
proves that the bimodal-twist oscillations are generic, as ex-
pected from the experiments. The leading mechanism,
clearly linked to the fact that b2(q) and g(q) change sign
when passing from the zig to the zag, is sketched in Fig. 9. It
can be interpreted in terms of the director–wave-vector frus-
tration introduced in Sec. IV D. Indeed, if a fluctuation fa-
vors one roll amplitude in the bimodal, according to ~M2! the
director will be pushed away from the wave vector of this
roll mode. Thus the director will approach the wave vector of
the other roll mode, which will be reinforced according to
~M1!, and so on ~Fig. 9!.

FIG. 8. Solutions of the coupled amplitude equations ~58! modeling the interactions between two roll modes of wave vector q ~zig! and
k ~zag! and the homogeneous twist mode. The coefficients of Table V have been used, and the roll amplitudes A ~thin line!, B ~dotted line!

have been multiplied by 2 in order to display the leading amplitudes of the nz field in Eq. ~57!, nz52@2A sin q•r12B sin k•r#S1(z)

1h.o.t. The amplitude w ~thick line! determines to lowest order the angle between the average in-plane director and x̂. Left panel: stationary
solutions obtained in the ‘‘low e’’ regime. For e0(q),e,eBV , one has monomode solutions (AÞ0,B50). At e5eBV , a subcritical
bifurcation towards a bimodal (A ,BÞ0) occurs; only the stable bimodal solutions are then shown. Right panel: behavior just above the
threshold of the Hopf bifurcation eHopf . After a jump from e50.22,eHopf to e50.228.eHopf , regular out of phase oscillations of A and B
develop, which are mediated by an oscillation of the in-plane director.

PRE 59 1763EXTENDED WEAKLY NONLINEAR THEORY OF PLANAR . . .



In fact, secondary indirect mechanisms for the feedbacks
w↔A implied in this instability loop are provided by the
interactions w↔B and B↔A . For instance, an increase of w
leads to an increase of A ~second step of Fig. 9! due to the
term in b2(q).0 in Eq. ~58!, but also because it first pro-
duces a decrease of B @due to the terms in b2(k),0,b3(k)
.0] which then drives an increase of A ~due to the term in
gkq.0). In a similar way, an increase of A drives a decrease
of w ~third step of Fig. 9! directly due to the g(q) term
@g(q).0# , or indirectly, via a decrease of B, due to the gqk
and g(k) terms @gqk.0 and g(k),0]. An important con-
sequence of these indirect mechanisms is that the oscillations
also develop in a bimodal constructed on primary abnormal
rolls for which b2(q)5g(q)50. Indeed, simulations of Eq.
~58! with a set of coefficients calculated in EC of N5 at
vCD52.4 for the bimodal constructed on the abnormal rolls
at q5qc show the same sequence as in Fig. 8, now with
eBV50.186 and eHopf50.24. Of course, these oscillations
disappear if gqk or gkq are set negative.

VII. CONCLUSION

A minimal description of planar nematic convection has
been obtained which captures the generic bifurcation se-
quences known experimentally. It is based on a systematic
WNL analysis where the active mode basis has been ex-
tended: besides the standard roll modes, ‘‘slow modes’’ con-
sisting of homogeneous or quasihomogeneous twist modes
of the director have also been included. The evolution equa-
tions coupling the corresponding order parameter w with the
roll amplitudes A ~or B) and with the mean-flow amplitude G
@Eqs. ~29!, ~47!, and ~58!# have allowed a quantitative de-
scription of the first bifurcations at small e ~see, e.g., Fig. 11!
and a qualitative description of the subsequent bifurcations at
higher e ~see, e.g., Fig. 8!. Due to the semianalytic nature of
the calculations, the dominant nonlinear microscopic mecha-
nisms could be singled out. This gives indications concern-
ing the behavior of nematics with other material parameters.
In general, the interactions between the twist and the roll
amplitudes appear to be ruled by a principle that we have
termed ‘‘director–wave-vector frustration’’: the charge- and
heat-focusing mechanisms both favor the in-plane director

almost parallel to the roll wave vectors, whereas the viscous
torques always push it away ~Sec. IV D!. This explains the
close analogy between electroconvection and thermoconvec-
tion.

A systematic calculation of the order-parameter equations
as presented here might also provide a better understanding
of the microscopic mechanisms for other systems where
slow modes play an important role. Examples are binary
fluid convection with slow concentration modes @54# or nem-
atic electroconvection in the presence of weak-electrolyte ef-
fects, in which slow charge modes allegedly drive the forma-
tion of the surprising ‘‘worms’’ @55#.

We hope that our results will stimulate new experimental
studies of electroconvection and thermoconvection, where
some features characteristic of the roll-twist-mean-flow inter-
actions could be evidenced: e.g., the dynamics at the zig-zag
instability ~Fig. 7!, the in-plane director oscillations underly-
ing the bimodal oscillations ~Fig. 9!, or the change in the
trajectory trace quoted in Appendix C. Since all the basic
structures and instability lines are now well understood, this
work also establishes a starting point for a systematic theo-
retical study of more complicated nonperiodic patterns. For
instance, the rich dynamics of structures with point defects
or walls @56# needs further investigation. In particular, the
spatiotemporal chaos observed under certain experimental
conditions might be better described and understood from
envelope equations of a type similar to Eqs. ~47!. For that
purpose, an extension of these equations to the case of a
general spatial dependence ~both ]y and ]xÞ0) is under
way. It would also be interesting to reanalyze the phase dy-
namics in the oscillating bimodals, which had been previ-
ously described on the basis of phenomenological models
@57#.

We note finally the similarities with homeotropic nematic
electroconvection, where one sets n5 ẑ at the plates and
therefore the rotational symmetry around z is initially not
broken. Convection sets in after an electric Fréedericksz
transition where the in-plane director orientation is selected,
and the associated Goldstone mode plays a role analogous to
our twist mode in planar convection. In fact, the first experi-
ments pointing to the existence of abnormal rolls were per-
formed in homeotropic electroconvection @58#, and the am-
plitude equations derived for this system in @30# are similar
to our amplitude equations in their simplest form @59#. In the
presence of a planar magnetic field, the homeotropic system
becomes anisotropic. Galerkin computations @60# and experi-
ments @61# have then shown sequences of bifurcations iden-
tical to the ones observed in the planar case. It would be
interesting to systematically calculate the corresponding
order-parameter equations, particularly to elucidate the role
of the mean flow in this homeotropic case.
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FIG. 9. Sketch of the mechanism driving the bimodal-twist os-
cillations. The thin arrows show the zig ~continuous line! and the
zag ~dashed line! wave vectors of the two roll modes in the bimo-
dal. The magnitude of the corresponding amplitudes A and B is
symbolized by the size of the Fourier spots attached to these wave

vectors. The in-plane director n0 , such that n0• ŷ5w , is drawn with
the thick arrow. The four elementary steps during one oscillation
are shown side by side. The torque }a2 exerted by the rolls on the
director is sketched with the vertical arrows, and the positive ~nega-
tive! feedback from the director to the roll amplitudes is indicated
with the 1(2).
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APPENDIX A: LINEAR EQUATIONS
FOR THE FOCUSING MECHANISMS

The focusing mechanisms and the analogy between EC
and ATC become clearer by inspection of the corresponding
dimensionless linear equations. In EC, the evolution of the
scalar field, the electric potential f , is governed by Eq. ~5!,

2~e'¹2
1ea]x

2!] tf1ea] t~Eac]xnz!

5Q~s'¹2
1sa]x

2!f2QsaEac~]xnz!, ~A1!

with Eac5cos vt. This equation presents the same kind of
focusing terms (}]xnz) as the evolution equation for the
temperature modulation u in ATC which follows from Eq.
~7!,

] tu5~k'¹2
1ka]x

2!u1Rvz2Rka]xnz . ~A2!

The evolution equation for nz , deduced from Eq. ~1!, con-
tains in both cases the same elastic and viscous terms,

g1] tnz5~k33]x
2
1k22]y

2
1k11]z

2!nz

1~k112k22!]y]zny2a2]xvz2a3]zvx1hz8 ,

~A3!

with the dimensionless units for EC; the important term here
is the viscous torque }]xvz . In EC additional electric terms
come in,

hz85eaRnz22eaREac]xf , ~A4!

which are only important at high frequencies. Finally, the
evolution equation for vz , deduced from Eq. ~3!, is also
rather similar for both systems,

rm] tvz2a2] t]xnz5~nc]x
2
1na]y

2
1na]z

2!vz

1

1

2
~a21a5!]x]zvx1 f vol , ~A5!

with the dimensionless units for EC ~for ATC one has only
to change rm into 1/Pr), with the bulk force being given by
the Coulomb force ~6! in EC,

f vol5eaR]xnz22REac~e'¹2
1ea]x

2!f , ~A6!

and by the buoyancy force ~8! in ATC,

f vol5u . ~A7!

APPENDIX B: EXTENDED WEAKLY NONLINEAR
SCHEME

In this appendix we show how to calculate approximate
WNL solutions of a problem of the form

D] tV5LV1N2~V ,V !1N3~V ,V ,V !, ~B1!

with the order-parameter approach. The main control param-
eter R ~not recalled in order to simplify the notations! is
fixed. The linear modes, the solutions of

s~m!DV1~m!5LV1~m!, ~B2!

are indexed by a collection of numbers m; for instance, in
the ‘‘extended layer’’ geometry, m5(q,n) where q is the
horizontal wave vector and n indexes the vertical depen-
dence ~in z). These linear modes are assumed to form a basis
in V space. With the help of a Hermitian scalar product in V
space, (U ,V)°^U ,V&, we define the adjoint linear operators
D† and L† by ^U ,D•V&5^D†•U ,V&, and the adjoint linear
modes as the solutions of

s~m!D†•U1~m!5L†•U1~m!. ~B3!

They can be normalized such that

^U1~m!,DV1~m8!&5d~m2m8!. ~B4!

The growth rates s(m) are assumed real. We distinguish
between the active modes of growth rate s(m).2c ~which
defines a domain A in m space! and the passive modes of
growth rate s(m),2c ~which defines a domain P in m
space!. Usually in the solutions of Eq. ~B1! there is a clear
separation between the growth rates of the excited active
modes and the growth rates of the excited passive modes ~see
below!, and therefore the exact value of c is not very impor-
tant. We assume the existence of a primary instability:

max
mPA

s~m!5e.0, ~B5!

with e!c . The orthogonality rule ~B4! allows the definition
of a projector onto the active mode space by

PAV5 (
mPA

^U1~m!,DV&V1~m!, ~B6!

and onto the passive mode space by

~12PA!V5 (
m8PP

^U1~m8!,DV&V1~m8!. ~B7!

Thus a natural decomposition of possible approximate solu-
tions of the evolution equation ~B1! is

V5VA1V'

5PAV1~12PA!V

5 (
mPA

A~m!V1~m!1 (
m8PP

B~m8!V1~m8!. ~B8!
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A mode V1(m) or V1(m8) is ‘‘excited’’ if the corresponding
amplitude A(m) or B(m8) is nonzero; the A(m) constitute,
in fact, the ‘‘active amplitudes’’ or ‘‘order parameters’’
which will define the solution. In order to show this, we
introduce the coprojector PA8 defined by

PA8 V5 (
mPA

^U1~m!,V&DV1~m!, ~B9!

such that PA8 D5DPA and PA8 L5LPA . The application of
(12PA8 ) on Eq. ~B1! then gives to lowest order

D] tV'5LV'1~12PA8 !N2~VA ,VA!, ~B10!

which shows that if VA is assumed to be of order A, V' is of
order A2. Moreover, the projection of Eq. ~B10! onto
U1(m8) gives

] tB~m8!5s~m8!B~m8!1^U1~m8!,N2~VA ,VA!& .

Assuming that ] t is of the order of the maximum growth rate
of the active modes ~B5!, we get ] t!us(m8)u and can there-
fore perform an adiabatic elimination of B(m8),

B~m8!52

1

s~m8!
^U1~m8!,N2~VA ,VA!&, ~B11!

or equivalently solve Eq. ~B10! by

V'52L21~12PA8 !N2~VA ,VA!. ~B12!

The projection of Eq. ~B1! onto the U1(m) gives the final
active amplitude equations

] tA~m!5s~m!A~m!1^U1~m!,N2~VA ,VA!1N2~VAuV'!

1N3~VA ,VA ,VA!&, ~B13!

where we have introduced the notations ~used in the rest of
the paper for the cubic order!

N2~aub !5N2~a ,b !1N2~b ,a !,

N3~auaub !5N3~a ,a ,b !1N3~a ,b ,a !1N3~b ,a ,a !,

N3~aubuc !5N3~a ,b ,c !1N3~a ,c ,b !1N3~b ,a ,c !

1N3~c ,a ,b !1N3~b ,c ,a !1N3~c ,b ,a !.

~B14!

In practice, often the eigenmodes ~or the operators L and N2)
at the control parameter R are not used to calculate the non-
linear coefficients of the amplitude equations since this
would introduce an R dependence of these coefficients. In-
stead, one uses, for instance, in convection the neutral roll
modes V1(q)ªV1„q;R0(q)… instead of V1(q;R) or evaluates
L21

5LR
21 in Eq. ~B12! at R5R0(q); clearly this introduces

only small numerical corrections to the scheme. Note finally
that the scalar product in our layer geometry is defined by

^U~z !e iq•r,V~z !e iq8•r&

5d~q2q8!
2

p
E

z52p/2

z5p/2

U*~z ! t V~z !dz . ~B15!

APPENDIX C: ANALYTIC APPROXIMATION
OF THE NONLINEAR ROLL-TWIST COEFFICIENT G

In this appendix we use the lowest-order Galerkin expan-
sion to give analytic approximations of the coefficient G(q)
~33! and to elucidate the corresponding mechanisms ~at q
5qcx̂). The contribution G3(q) of the cubic nonlinearities
then reads

g1G3~q!55 2.21ua2uqc f̃ ñz11.56a3qc
3 f̃ ñz1

6~k332k22!qc
2
22k331k22

4
ñz

2
1

3

4
qcRea@ ñz~f̃1f̃*!24qcuf̃u2# in EC

2.21ua2uqc f̃ ñz11.56a3qc
3 f̃ ñz1

6~k332k22!qc
2
22k331k22

4~F/g1!
ñz

2 in ATC,
~C1!

where the numerical constants arise from Galerkin overlap
integrals. Since for EC the electric contribution (}ea) is al-
ways negligible, the same effects control the value of G3(q)
in EC and in ATC. Typically, the first term proportional to
a2 ~noted hereafter G3visc) is by far the largest, followed by
the elastic contribution (G3elast). For instance, in EC at vCD

50.5, one has $G3visc ,G3elast%5$0.84,0.18%G3(q), while at
vCD54,$G3visc ,G3elast%5$0.66,0.32%G3(q); in ATC,
$G3visc ,G3elast%5$0.91,0.07%G3(q).

There are also contributions of the quadratic nonlineari-
ties to G(q) ~33!, which are only important in EC on which

we will now focus. With the use of the quadratic mode
V2(q,T) ~28!, which reads

V2~q,T !5„0,ñy
TS2~z !,0,0,g̃TS2~z !…e iqcx, ~C2!

one finds

g1G2~q!52.30ua2uqc
2 f̃ ñy

T
12ua2uqcñzg̃

T
20.646a3qc

2 f̃ ñy
T

1~k112k33!qcñzñy
T , ~C3!
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where the first two terms dominate. They originate from a2
terms in N2ny

„V1(2q)uV2(q,T)…, namely a2v•“ny

2a2(]xvx)ny for the term } ñy
T , and 2a2nz(]zvy) for the

term } g̃T. The first term in Eq. ~C3!, } ñy
T , is always posi-

tive. This is due to the fact that ñy
T
.0, as can be seen from

the result of the adiabatic elimination Eq. ~28!,

ñy
T
5@4k221k33qc

2#21~ ñy81ua2uqc
2g̃T!, ~C4a!

g̃T
5@qc

2~4na1ncqc
2!#21g̃8, ~C4b!

where

ñy85~0.323ua2u21.15a3!qc
2 f̃ 1

k112k33

2
qcñz , ~C5a!

g̃85~0.735a110.618ua2u10.367a320.206a5

10.367a6!qc
4 f̃ 11.22~a31a6!qc

2 f̃ . ~C5b!

In Eq. ~C5a!, ñy8 is dominated by the a2 contribution origi-
nating from the term a2(]xvx)ny in N2ny

„V1(q)uVT…; in Eq.

~C4a!, ñy
T is also dominated by this contribution from ñy8 .

Thus a2 mechanisms impose the positive value of G2(q)
~C3!.

The increase of G2(q) with the frequency v @Fig. 2~a!# is
in fact due to a change of sign of the second term } g̃T in Eq.
~C3!. Equation ~C5b! gives g̃85(13.2qc

2
228.5)qc

2 f̃ which

shows that g̃T and g̃8 are negative at low v where qc is
small, and positive at high v where qc becomes large. This
change of sign is mainly due to the a2 contribution in Eq.
~C5b! originating from the term a2]x(vz]zny) in
N2vy

„V1(q)uVT… @62#. It has some consequences on the angle
between the projection of the trajectories in the horizontal
plane and the axis of the rolls, which could be observed
experimentally. In ‘‘zig’’ abnormal or oblique rolls (q

5qcx̂1p ŷ with p>0; w,0) one expects according to Eqs.
~25!, ~27! for the component of the velocity parallel to the
axis of the rolls †Eq. ~B.4! of @29#‡,

v i52Auqu@ g̃~q!1w g̃T~q!#S2~z !sin~q•r!1h.o.t.

For small p , g̃(q). g̃1p , and therefore

v i.2Aqc@ g̃1p1w g̃T~qcx̂!#S2~z !sin~q•r!. ~C6!

Since g̃1.0, one has g̃1p.0 in zig oblique rolls, whereas
w g̃T(qcx̂),0. Thus, when p decreases ~this happens sponta-
neously under certain conditions in EC, see, e.g., @15#!, one
expects a change of sign of arctan(vi /v'), the angle between
the trajectories and the wave vector of the rolls †v' being the
velocity perpendicular to the axis of the rolls, v'.
22Aqc f̃ (qcx̂)C18(z)sin(q•r) according to Eq. ~B.3! of @29#‡.

APPENDIX D: RESULTS FOR THE
ELECTROCONVECTION OF THE NEMATIC MBBA

The ~commonly used! nematic MBBA is an interesting
example of material without a Lifshitz point. Moreover, in
recent experiments the excitation of the twist mode has just
been evidenced directly with some special optical methods
@17#. For MBBA, the crossover frequency to the dielectric
regime is vD52.3tCD

21 . We show in Fig. 10 the standard
WNL coefficients and in Fig. 11 the predictions of the ex-
tended WNL theory concerning the bifurcations of rolls with
a normal wave vector. Note that the quadratic effects (G2)
determining the value of G ~33! become dominant at high
frequency. Concerning the long-wavelength instabilities, one
sees that the standard WNL zig-zag line eZZ

s is always lo-
cated above the abnormal-roll line eAR : thus no zig-zag in-
stability would be predicted to occur below the abnormal-
roll threshold if the new term GG were not included in Eq.
~47c!. Within the extended WNL theory, the crossover be-
tween the zig-zag and the abnormal-roll instability occurs at

FIG. 10. In EC for MBBA ~like Fig. 1!: ~a!

growth rate sT of the homogeneous twist mode
in units of the characteristic time t; ~b! saturation
coefficient gqc

of the critical normal rolls.

FIG. 11. In EC for MBBA: ~a! coupling co-
efficient G(qc) ~33! between the critical rolls and
the twist mode, as in Fig. 2~a! for N5; ~b! stability
diagram, as in Fig. 6 for N5. The closed squares
and diamonds display the results of the full non-
linear Galerkin computations @3,28#.
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vAR51.3, with eAR.0.09520.058dv , eARstab /eAR21
.20.41dv or equivalently eARstab.0.09520.097dv for
dv5v2vAR5O(1), with frequencies in units of tCD

21 .
Note the good agreement of eARstab with the numerical cal-

culations; this is due to the fact that the amplitudes are
smaller in MBBA than in N5. Note also that the bifurcations
at zero frequency are similar to those for ATC of 5CB at zero
magnetic field.
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