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Convection in the presence of a first-order phase change
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We report experimental and theoretical results for two-phase convection in a thin horizontal layer of a fluid
with a first-order phase change and heated from below. A top layer of the nematic phase of a liquid crystal is
located above the bottom layer of the isotropic phase of the same substance. A horizontal field of 1000 G is
applied in order to align the director of the nematic phase. Over some ranges of the thickness of the isotropic
phase, and in sufficiently large thermal gradients, the more dense nematic phase can be stably stratified above
the less dense isotropic one, with a stable interface between them. Based on the equations of motion derived for
this problem by Busse and Schubert@J. Fluid Mech.46, 801~1971!#, we evaluate the bifurcation lines between
the quiescent and convecting states and the corresponding critical wave vectors as a function of the interface
position. We report experimental measurements based on Nusselt-number determinations for the locations of
the bifurcation lines. They are in good agreement with the theoretical results. We also report approximate
determinations of the critical wave numbers which are semiquantitatively consistent with the theory. A great
diversity of patterns is observed in the convecting states, including normal and parallel rolls, rolls with defects
and disorder, target patterns and spirals, and cellular flow with upflow or downflow at the cell center. These
patterns are discussed in terms of the breaking of the mirror symmetry at the horizontal midplane by the
interface, and in terms of the orienting effects of the magnetic field.@S1063-651X~99!05707-4#

PACS number~s!: 47.20.Bp, 47.54.1r, 61.30.2v
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I. INTRODUCTION

Nematic liquid crystals are fluids with long-range orie
tational order of their elongated molecules@1#. The anisot-
ropy due to the orientational ordering is reflected in the m
terial parameters such as the viscosity and the ther
conductivity, and in the constitutive equations. Under no
equilibrium conditions the anisotropy effects lead to a r
variety of new pattern-formation phenomena which do
occur in isotropic fluids. With increasing temperature the o
entational order of the fluid is reduced until it vanishesdis-
continuouslyat the nematic-isotropic transition temperatu
TNI . This phase transition to the isotropic phase is of fi
order; latent heatQ has to be provided, and the densityr
decreases discontinuously by a jumpDr. Numerous recen
experimental and theoretical studies of convection in nem
liquid crystals have significantly advanced our understand
of pattern formation in nonequilibrium systems~for reviews,
see, for instance, Refs.@2# and @3#!.

One of the best-studied paradigms of hydrodynam
pattern-forming systems is Rayleigh-Be´nard convection
~RBC! @4–6#, i.e., convection of a thin horizontal fluid laye
heated from below. The quiescent layer becomes unst
and undergoes a transition to buoyancy-driven convec
when the temperature differenceDT5Tb2Tt across it ex-
ceeds a threshold valueDTc (Tb andTt are the temperature
at the bottom and the top of the layer, respectively!. RBC in
nematics has also been investigated intensively@7–11#. In
this case a magnetic field couples to the fluid and can s
as an additional control parameter. This opens up a rich
furcation diagram which contains many new features
found in convection of isotropic fluids, such as subcritic
PRE 601063-651X/99/60~1!/539~12!/$15.00
-
al
-

t
-

t

ic
g

c

le
n

ve
i-
t
l

stationary and oscillatory onset of convection, ‘‘oblique
and ‘‘abnormal’’ rolls, and tricritical and Lifshitz points
Considering the complexities of the equations of motion,
agreement achieved between experiment and theory is
markable in most cases.

Nematic liquid crystals offer an additional opportunity
study an interesting stability and pattern-formation proble
namely, convection in the presence of a first-order ph
change@12–15,7#. This is the topic of the present pape
When the vertical temperature differenceDT across a con-
vection cell of thicknessd straddlesTNI , an interface be-
tween the two phases exists at that vertical positionz0 where
the local temperature is equal toTNI . Taking the origin of
the vertical~z! axis at the bottom of the cell, and measurin
length in units ofd, the low-temperature~more dense! nem-
atic phase will have a thickness 12z0. It will be stratified
above the less denseisotropic phase. In the absence of
temperature gradient this configuration is unstable in
presence of gravity. Remarkably, heating the system fr
below can stabilize this adverse density distribution over c
tain parameter ranges. From experiment it seems that
nematic nature of the upper phase has at most a minor in
ence on the instability mechanism and the bifurcation lin
although it affects some of the pattern-formation phenom
which occur.

For isotropic fluids the problem was examined theore
cally by Busse and Schubert@12,5#. They were able to cap
ture several central components of the instability mechan
by a set of approximate equations of motion. The the
includes the usual driving force of convection due to buo
ancy associated with the increasing density of the fluid w
decreasing temperature from the cell bottom to its t
539 ©1999 The American Physical Society
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540 PRE 60SAKURAI, TSCHAMMER, PESCH, AND AHLERS
In addition, the interface between a more dense layer st
fied above a less dense one has the tendency to becom
stable due to gravity. A small vertical fluctuation with hor
zontal wave numberp of the interface position will create
fluid column of width p/p with a relatively large average
density adjacent to a similar column of lesser average d
sity, making it favorable for the heavy column to sink a
the lighter one to rise. The corresponding Rayleigh-Tay
instability was studied extensively in the past for two imm
cible phases of distinct fluids@16#. However, often tempera
ture gradients were omitted or buoyancy was neglected. S
an analysis is thus expected to be relevant to our experim
in the presence of avanishingly smalltemperature gradient
whenDT is just large enough to straddle the transition te
perature. The situation is qualitatively different forlarge
temperature gradients. They will tend to suppress the am
tudes of spontaneous interface fluctuations because the i
face essentially is restrained to be located at that preci
defined vertical position where the local temperature equ
the transition temperature. The interface is actuallystabilized
in this case. Finally, the effect of the latent heat at the in
face, which does not exist in the Rayleigh-Taylor proble
must be considered. The detailed theoretical analysis@12# is
consistent with the qualitative conclusion that a local flu
tuation in the upward mass transport~velocity! through the
interface~driven perhaps by an interface fluctuation as d
scribed above! will require the conversion of isotropic to
nematic fluid, and thus will release heat. This leads to lo
heating in the neighborhood of the fluctuation, thereby c
ating an additional positive buoyancy force. Similarly,
downward velocity fluctuation will absorb heat, producin
cooling in its vicinity and thus enhancing the negative buo
ancy which prevails there. However, intuitive reasoning
this kind has to be taken with caution, since it also led to
opposite~incorrect! conclusion, namely, that latent-heat e
fects would be stabilizing@17#. One also has to keep in min
that the consideration of the buoyant forces alone is insu
cient. As in classical RBC, the destabilization of the qui
cent state requires in addition that the dissipative forces~vis-
cosity, heat diffusion! can be overcome. In the end th
interaction of all these effects makes it possible over so
parameter ranges for a more dense phase to be stably s
fied above a less dense one.

The theoretical work of Busse and Schubert@12# was mo-
tivated by the relevance of the interface instability to ge
physical and astrophysical problems. The stability of a de
phase above a less dense one plays a role in geothe
situations, where, for instance, water can be stably strati
above steam.@5,17# Phase changes also are important
convection in the Earth’s mantle@18# and in stars. However
in these latter cases there are very large gravitational p
sure gradients, and it is believed that the more dense pha
located below the less dense one. An instability can oc
nonetheless because the latent heat which is released b
interface displacement can still destabilize the system. V
ous types of interface instabilities, including ones with ne
tive latent heat@19# and when heating from above, we
enumerated by Busse@5#. Most of them are not readily
achieved in the laboratory. We believe that the semiqua
tative agreement between experiment and theory which
report for the case under examination here strengthens
ti-
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case for applying the theory to the experimentally less acc
sible ones.

There have been only qualitative experiments relevan
this interesting system@13,14# until very recently@15#. The
first experimental investigation of which we are aware w
by Fitzjarrald@13#, who used the same nematic liquid cryst
as the one employed in the present investigation. He he
from below as in our work, but did not apply a magne
field. The results of this research are qualitative. Neit
threshold valuesDTc nor critical wave numbersac for the
onset of convection were given. The work did not reveal t
there aretwo separate re-entrant conduction regimes, one
small and the other at largez0, and that the patterns forz0
near 1

2 consist of rolls~see Sec. V B below!. However, in
agreement with the present work, the author also identi
two types of cellular patterns, distinguished by having u
flow or downflow at the cell centers.

The experiments of Salan and Guyon@14# were designed
primarily to study convection in a homeotropically aligne
nematic liquid crystal @methoxybenzylidene p-
(n-butyl!aniline or MBBA# in a vertical magnetic field and
heated from above. For a relatively large field, convect
began only when the temperature difference was quite la
and hexagons occurred due to the non-Boussinesq natu
the sample. At even largerDT, the nematic-isotropic transi
tion temperatureTNI was reached at the top of the sample.
first hexagons continued to exist, but when the top tempe
ture was so large as to create a continuous isotropic layer
pattern consisted of disordered rolls which tended to ter
nate with their axes orthogonal to the cell wall in a mann
similar to the patterns of isotropic fluids.

In Ref. @15# significant information about the paramet
ranges for various types of patterns as well as quantita
results for the bifurcation lines were reported. However,
that work the top temperature was held fixed and only
bottom temperature was varied. This procedure is easier
perimentally than one in which the interface position is he
fixed, but it leads to a complicated experimental path fo
given run in which the interface first forms at the bottom a
then gradually moves towards the top asDT is increased.
Some ranges of the relevant parameter space were difficu
reach and were not explored. Nonetheless, where compa
is possible, the results reported in the present paper are
erally consistent with that work, although there are so
differences in detail with regard to the parameter ranges o
which certain patterns are found. These differences pres
ably are attributable to the bistability associated with su
critical or transcritical bifurcations, although this has n
been investigated more closely. There is one issue on w
our present understanding differs from the conclusio
drawn in Ref.@15#. On the basis of the bifurcation point
measured along the complicated experimental paths of
work, it was concluded erroneously that there are t
codimension-2 points in this system where two-pha
convection bifurcation lines cross Rayleigh-Be´nard bifurca-
tion lines. It is now clear that one goes smoothly over in
the other, and that there is no point in parameter space w
two distinct primary bifurcation lines meet.

Here we report quantitative measurements of heat tra
port in the form of Nusselt numbers which enabled us
determine the stability boundariesDTc(z0) of the quiescent
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PRE 60 541CONVECTION IN THE PRESENCE OF A FIRST-ORDER . . .
state in theDT-z0 plane with good accuracy. In these expe
ments, the top and bottom temperatures were adjusted i
pendently so as to keep the interface positionz0 constant as
DT was varied. This experimental path facilitates compa
son with the theory. We also calculated the bifurcation lin
using the equations of motion proposed by Busse and S
bert @12#, with an additional term which provides the effe
of the interface tension. Using the fluid properties of o
system, we found quite good agreement between the th
and the experiment.

We present results for the convection patterns which fo
in various regions of theDT-z0 plane. It turns out that two-
phase convection involves interesting nonlinear proble
such as the exchange of stability between hexagons and
A great diversity of patterns is observed in the convect
states, including near-perfect parallel rolls, rolls with defe
and curvature, and cellular flow with upflow or downflow
the cell center. To a large extent the parameter ranges
which these patterns occur can be understood qualitative
terms of the breaking of the mirror symmetry at the horizo
tal midplane of the cell by the interface, and in terms of t
magnetic-field effects on the nematic phase.

From some of the convection patterns near onset we
termined approximate values of wave numbers. For comp
son, we calculated the critical wave numbers from the eq
tions of motion. Here the experiment and the agreement w
theory is only semiquantitative. One reason for this may
that it is difficult to reach a true steady state in some para
eter regions because the approach to it is extremely s
Thus the patterns often remained somewhat disordered,
from our Fourier analysis we may have obtained a wa
number which is too small. Another reason may be that
bifurcations are expected to be subcritical or transcritical
that case the experiment near onset yields the wave num
of a finite-amplitude state whereas the theory correspond
infinitesimal critical perturbations of the conduction sta
Some of the results reported in the present paper have
summarized briefly in a recent review@7#.

II. APPARATUS, SAMPLE, AND EXPERIMENTAL
METHODS

The apparatus used by us was described in detail e
where @8,15,7,20#. It was a standard Rayleigh-Be´nard con-
vection apparatus with optical access from above which
designed for the study of convection in liquids at ambie
pressure. Its special feature was that it was made entire
nonmagnetic materials. It was located in the 19.5-cm
between specially shaped pole pieces of a Varian elec
magnet which provided a horizontal magnetic field of ma
nitudeH with a uniformity of60.1 % over a sample diam
eter of up to approximately 5 cm. The sample of circu
cross section was located inside a ‘‘can’’ in a water bath. T
top of the sample was a sapphire which was exposed on
outside to temperature-controlled circulating water. The te
perature stability of the water was better than 1 mK. T
sample was confined by an aluminum bottom plate wh
could be heated from below by a metal-film heater. T
thickness of the cell wasd50.327 cm, and the aspect~ra-
dius to thickness! ratio wasG512.7. The present work wa
carried out forH51000 G. Images of the convection pa
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terns were acquired by a computer-interfaced camera f
diffuse scattering of ambient light by the nematic phase.

The sample was 4 –n–pentyl–4’–cyanobiphenyl~5CB!
@21#, with a nematic-to-isotropic transition temperatureTNI
in the range 35.2–34.9 °C. We determinedTNI at various
times during this project with a resolution of about 1022 °C
by evaluating the brightness of images at various temp
tures incremented in steps of 5 mK. There was no hyster
in the brightness with increasing and decreasing tempera
It was found thatTNI gradually decreased with time, on av
erage by 2.65 mK/day in the initial stage~0–70 days after a
new cell was filled! and by 1.55 mK/day in the later stages
the project~70–170 days!. This monotonic time dependenc
of TNI may perhaps be attributed to a small amount of c
tamination leached out of the O ring and delrin cell wall us
for sealing the sample fluid. Although the decay ofTNI was
quite small within an experimental run~typically a couple of
days!, even a very small uncertainty inTNI causes a signifi-
cant error in the estimate of the interface position when
temperature differenceDT across the cell is small. There
fore, we used a time dependentTNI for the determination of
the interface positionz0 in every experimental run.

Typical temperature profiles in the sample cell are sho
schematically in Fig. 1 for two values ofDT. Since the con-
ductivity in the lower isotropic phase is larger than that in t
upper nematic phase@20#, the temperature gradient wa
smaller in the lower phase than in the upper one. The in
face position is given by

z05I I /~ I I1I N!, ~2.1!

where

I I5E
Tb

TNI
l IdT, I N5E

TNI

Tt
lNdT. ~2.2!

Here the conductivitiesl I and lN are for the isotropic and
nematic phases, respectively. Because of the large app
horizontal field, the relevant conductivity of the nema
phase islN5l' . Both l' andl I are known quantitatively
@20#. They can be represented by

l5l01l1 ~T2TNI!1ls , ~2.3!

wherels is a singular contribution. BelowTNI ,

FIG. 1. Schematic diagram of temperature profiles in the c
duction state. The dash-dotted line corresponds to a smaller
current, and the solid line to a larger heat current, at fixedz0.
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ls,'5l1,' ~Tc2T!a'. ~2.4!

In the isotropic phase,ls vanishes. The parameters need
are l051.5123104, l15237.0, l1,'521.4483103, Tc
536.06 °C, anda'50.172. Herel has the units erg/s cm
K. The results forl can be used to evaluatez0 from Eq.
~2.1!. As DT5Tb2Tt was changed in a given experiment
run, Tb and Tt were changed in such a way as to holdz0
constant.

The effective conductivity of the sample was evalua
using

leff5Q̃d/~ADT!, ~2.5!

whereQ̃ is the heat current passing through the sample~after
correction for the current carried by the cell walls! and A
5G2d2p is the area of the sample. The Nusselt numberN is
the ratio

N5leff /leff,0 ~2.6!

whereleff,0 is the average conductivity of the quiescent flu
given by

leff,05~ I N1I I !/~Tb2Tt!. ~2.7!

III. THEORETICAL ANALYSIS

In this section our theoretical analysis for the onset
convection, based on the~slightly generalized! Busse-
Schubert equations of motions@12#, is described briefly. All
details, like the scaling conventions or the explicit form
the parameters, are explained in the Appendix.

The equations are

k

n
¹2

] f

]t
5¹4f 2F PS 11s

]2

]x2D d~z2z0!11Gu, ~3.1!

@11Rbd~z2z0!#
]u

]t
5¹2u2@RQd~z2z0!1R#

]2

]x2
f ,

~3.2!

wherek is the thermal diffusivity,n the kinematic viscosity,
and s the dimensionless surface tension. They couple
velocity potentialf and the deviationsu of the temperature
from the conduction profile, which both begin to grow exp
nentially at threshold. Besides the familiar Rayleigh num
R, we introduce the additional control parametersRDr and
RQ , which characterize the interfacial Rayleigh-Taylor i
stability and the destabilization by the latent-heat effects,
spectively. They are related to the parametersP andRb de-
fined in Ref. @12# and used in Eqs.~3.1! and ~3.2! by P
5RDr /R andRb5RQ /R.

A central result of Ref.@12# was that the increase of an
of the three control parameters separately drives the qu
cent system towards instability. The analytical considerati
of Ref. @12#, made possible for certain limiting cases a
approximate free-slip boundary conditions, have proven
be illuminating in reaching that conclusion. We consider
results of Ref.@12# for zero surface tension and forRQ ,Rb
→0. It turns out that the Rayleigh-Taylor instability take
d

d

f

f

e

-
r

-

s-
s

o
e

place only forP above a certain~large! threshold. For fixed
Dr this requiresDT to be very small, whereas in the pre
ence of a finite temperature difference the instability is s
pressed. One can also see from Eq.~3.1! that a finite surface
tensions tends to reduce the prefactor of thed function on
the right-hand side, and thus the tendency toward
Rayleigh-Taylor instability. Further, by considering the o
posite limit of dominant buoyancy (RDr ,RQ!R), it was
demonstrated in Ref.@12# that the critical Rayleigh numbe
decreases with increasingRDr andRQ , i.e., again the desta
bilization due to two-phase effects became evident. Since
analysis of Ref.@12# covered neither the present experime
tal parameters nor the realistic rigid boundaries and the c
of finite surface tensions, we determined the onset of con
vection numerically from the above equations, as explain
in the Appendix.

IV. EXPECTED PATTERNS

Here we consider qualitatively the patterns that are to
expected in this system. In the framework of the wea
nonlinear stability analysis@22# it is well understood why
roll patterns characterized by a single wave vector typica
occur in many systems. Cellular patterns, however, req
the resonant interaction of degenerate or nearly degene
modes with different wave vectors. For this to happen,
mirror symmetry at the horizontal midplane of the cell has
be broken. Well known examples are the hexagonal pl
forms in isotropic fluids@23# which are associated with non
Boussinesq effects, i.e., with significant variations of the m
terial parameters throughout the cell because of the impo
temperature gradient. The bifurcation is then transcritic
The cells have upflow~downflow! at their centers when the
various properties like the viscosity and the thermal cond
tivity decrease~increase! with temperature. Upflow~down-
flow! is realized in most liquids~gases!.

The present system differs in several important aspe
from isotropic fluids. The mirror symmetry is always broke
by the existence of an interface which separates the two
ers with different material parameters. When cellular flo
occurs, we believe that the flow direction at the cell cent
depends on whether the interface is located significa
above or below the midplane. When the interface is loca
near the midplane, the symmetry breaking is relatively m
and it turns out that rolls can still exist.

An additional feature is that the system is anisotrop
particularly in the presence of a strong horizontal magne
field HW . The ‘‘director’’ n, which describes the orientationa
degrees of freedom of the nematic, tends to align paralle
HW . In RBC of asingle-phasenematic layer with thicknessd
the pattern-formation phenomena@8,7,24# are controlled by
the value of the dimensionless field

h5H/HF , ~4.1!

where the Fre´edericksz fieldHF is given by

HF5
p

d
A k11

rxa
. ~4.2!
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Herek11 is one of the elastic constants,r is the density, and
xa is the anisotropy of the diamagnetic susceptibility. Wh
h.hL2.32.4, convection rolls will form with their axes pa
allel to HW . For h,hL1.24.7, normal rolls~convection rolls
with their axes perpendicular toHW ) will develop. As the field
increases fromhL1 to hL2, oblique rolls exist and the roll axis
continuously changes withH from the normal to the paralle
orientation. As a guide to the patterns which might be
pected in the two-phase system, we assume that the pat
are approximately consistent with the thickness of the ne
atic phase and the known behavior of the single-phase n
atic system. The layer thicknessd in Eq. ~4.2! must then be
replaced byd(12z0), and

h5
d~12z0!

p
Arxa

k11
H. ~4.3!

FIG. 2. Schematic diagram of the dimensionless fieldh as a
function of the isotropic layer thicknessz0. The two dashed hori-
zontal lines are the two Lifshitz fieldshL1 andhL2 ~see text! with
parallel rolls at smaller and longitudinal rolls at largerz0.

FIG. 3. Nusselt numbers as a function of the temperature dif
enceDT across the cell for various interface positionsz0,0.45. For
clarity, only some of the data are shown.s: z050.43. d: z0

50.32. h: z050.27. j: z050.24. 1: z050.22. n: z050.17.
m: z050.00.,: z0520.10..: z0520.20.L: z0520.29.
n

-
rns
-

m-

This function, evaluated for the fluid properties of the ne
atic phase@25# just belowTNI and ourd andH, is shown in
Fig. 2 as a function ofz0. Also shown as horizontal dashe
lines arehL1 andhL2. One sees that, if rolls are the preferre
planform, they should be parallel to the field ifz0&0.5. For
z0*0.6, one would expect rolls to form with their axes o
thogonal toHW . Of course, as discussed above, there will
large parameter ranges, particularly forz0 close to zero and
z0 close to 1, over which rolls do not form at all, and whe
cellular or hexagonal planforms dominate.

V. RESULTS

A. Nusselt numbers and bifurcation lines

Results of Nusselt-number measurements along sev
paths of constant vertical interface positionz0 are shown in
Figs. 3 and 4. Here Fig. 3 is for the smaller and Fig. 4 for
larger values ofz0. In both cases, the upper figure covers
broad range of thez0-DT space, and the lower one is a
enlargement of the region nearz050 or z051.

For 0,z0&0.24 and 0.70&z0,1, the data reveal directly
the re-entrant nature of the instability. Over these rang
there is convection (N.1) below a critical valueDT1, as
well as above a second larger valueDT2. For the intermedi-
ate range 0.24&z0&0.70 convection occurs forall tempera-
ture differences, butN initially decreases with increasin
DT, consistent with a stabilizing influence of the temperatu
gradient. The results forN yield values ofDT1 and DT2
which are shown in Fig. 5 as solid circles.

Also shown in Fig. 5, as solid and dashed lines, are
results of the linear stability analysis described in Sec.
and the Appendix. We found only stationary bifurcations
threshold, over the entire parameter range. A vanishing ou
at the interface, which would correspond to separated c

r-

FIG. 4. Nusselt numbers as a function of the temperature dif
enceDT across the cell for various interface positionsz0.0.45. For
clarity, only some of the data are shown.s: z050.48. d: z0

50.58. h: z050.63. j: z050.69. n: z050.72. m: z050.77.
,: z050.82..: z050.86.1: z050.91.L: z051.00.
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544 PRE 60SAKURAI, TSCHAMMER, PESCH, AND AHLERS
vection rolls in the two phases@12#, never occurred. As in
the experiment, the calculation also yields reentrant cond
tion with two values of a criticalDT whenz0 is sufficiently
small or large. In the theory, the reentrant regions ext
over the ranges 0,z0&0.30 and 0.64&z0,1, which are
about 20 % wider than the ranges found by experiment. C
sidering the approximations which were involved in the th
oretical analysis~see the Appendix!, we find the agreemen
with experiment very satisfactory. A likely significant con
tribution to the small differences is the assumption of co
stant and equal properties for the two phases~except forr),
since it is known that particularly the properties of the ne
atic phase vary considerably with temperature nearTNI @7#.

Also shown~as a dotted line! in Fig. 5 is the limiting case
RQ ,Rb→0 which was evaluated analytically in Ref.@12#. In
this approximation convection occurs only below the lin
and the conduction state extends to arbitrarily largeDT
above it.

B. Patterns

The typical patterns which were found at various valu
of z0 and DT are illustrated in Figs. 6–10. For all of th
images, a magnetic field of 1000 G is in the horizontal
rection. Each figure shows four images, and below them
Nusselt-number results for the particular value ofz0. In the
plots ofN vsDT, the points corresponding to the four imag
are identified. Although there is little experimental inform
tion about the nature of the bifurcations, some or many
them presumably are transcritical or subcritical. Thus th
may well be bistability, and the patterns shown here fo
particular point in parameter space may not be unique.

In Figs. 6, 9, and 10 the Nusselt number again reflects
reentrant nature of the instability. Forz050.17 ~Fig. 6! and
z050.86 ~Fig. 10!, image~c! does not reveal any structure
consistent with the quiescent state suggested by the r
N.1. For z050.72 ~Fig. 9!, a faint roll structure is notice-
able for image~c!, even though the measurements ofN sug-
gest that this image is located in the reentrant conduc
region. We believe this to be associated with the extre

FIG. 5. Stability boundaries in thez0-DT plane. The solid
circles are the experimentally determined values. The solid~dashed!
lines are the results of the calculations for the lower~upper!
branches of the re-entrant bifurcation lines. The dotted line co
sponds to the caseRQ ,Rb→0 which was evaluated analytically i
Ref. @12#. The dash-dotted lines indicate the limits of the two-pha
region.
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FIG. 6. Nusselt numbers and patterns forz050.17. Images~a!,
~b!, ~c!, and~d! correspond to the Nusselt-number points identifi
by arrows in the graph.

FIG. 7. Nusselt numbers and patterns forz050.38. Images~a!,
~b!, ~c!, and~d! correspond to the Nusselt-number points identifi
by arrows in the graph.
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FIG. 8. Nusselt numbers and patterns forz050.53. Images~a!,
~b!, ~c!, and~d! correspond to the Nusselt-number points identifi
by arrows in the graph.

FIG. 9. Nusselt numbers and patterns forz050.72. Images~a!,
~b!, ~c!, and~d! correspond to the Nusselt-number points identifi
by arrows in the graph.
closeness of the near-vertical bifurcation line to this parti
lar experimental path~see Fig. 5!.

At small z050.17 ~Fig. 6!, the flow at largeDT @image
~a!# is cellular. For this value ofz0 the interface, being nea
the cell bottom, has a sufficiently strong symmetry-break
effect to prevent the formation of rolls. The cell centers a
pear bright, which corresponds to enhanced scattering of
bient light. Unfortunately we have not been able in our e
perimental setup to measure whether this correspond
upflow or downflow.

Surprisingly, a reduction ofDT yields a transition to rolls
@image~b!#. The rolls are oriented with their axes parallel
HW , as expected on the basis of Fig. 2 for smallz0. The same
orientation is also noticeable in the arrangement of the
lular flow of image~a!. The appearance of rolls asDT is
reduced suggests that the asymmetry due to the interfac
weak until convection causes some mixing of the tw
phases. A secondary bifurcation between the rolls and
cellular flow has not been resolved in the Nusselt-num
measurements. Finally, for very smallDT @image ~d!#, the
flow is cellular again, also with white cell centers. Here t
field does not seem to have any ordering effect.

For z050.38 ~Fig. 7!, the flow at largeDT @images~a!
and ~b!# consists of rolls with some defects, with the dom
nant orientation still consistent with the high-field regio
suggested by Fig. 2. Although convection is quite vigoro
there is in this case no suggestion of cellular flow at la
DT. Apparently the symmetry breaking is weak because
interface is located near the midplane of the cell. There is
re-entrant conduction region, and instead the pattern evo
directly into cellular flow asDT is reduced@images~c! and

FIG. 10. Nusselt numbers and patterns forz050.86. Images~a!,
~b!, ~c!, and~d! correspond to the Nusselt-number points identifi
by arrows in the graph.
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546 PRE 60SAKURAI, TSCHAMMER, PESCH, AND AHLERS
~d!#, with bright centers. In this cellular region any orderin
effect from the field is not obvious to the eye.

For z050.53 ~Fig. 8!, the flow is roll-like, but the rolls
form a spiral and numerous defects near the wall. Sim
patterns were also found, for instance, forz050.48, but in
that case the rolls tended to form target patterns and num
ous defects near the wall. At this value ofz0 we are in the
field region between the two Lifshitz fields in Fig. 2, an
apparently the orienting effect ofh is weak. Cellular patterns
were not observed at all, suggesting that the symm
breaking due to the interface does not play a large role foz0
near 1

2 .
For z050.72 ~Fig. 9!, the flow is cellular except in the

re-entrant conduction region. In contrast to smallerz0, the
cell centers are now black, corresponding to reduced sca
ing of the ambient light. Presumably the flow direction at t
cell centers is opposite to that at smallz0. It is interesting to
note that the arrangement of the cells, when they occur,
changes as the interface moves from below to abovez0. 1

2 .
For z0. 1

2 and above the re-entrant conduction region@im-
ages~a! and ~b!# the cells are ordered along rows which a
orthogonal to the field, consistent with the ordering effe
expected from Fig. 2 for field values below the Lifshi
fields. At the smallerDT @image~d!#, there is again no ob
vious field ordering of the cells.

Finally, for z050.86 ~Fig. 10!, cellular flow occurs at the
largestDT @image~a!#, and a transition to rolls occurs as th
DT is reduced@image~b!#. This is analogous to the phenom
ena found for smallz0 ~Fig. 6!, except for two important
differences: consistent with Fig. 2 the roll axes and cells
ordered along lines which areorthogonalto the field, and the
cell centers areblack. At small DT @image ~d!# the field
again has little if any ordering effect on the cellular patte

C. Wave numbers

In Fig. 11 the critical wave numbersac are shown as a
function of z0. Starting atz050 and 1, the dashed curve
represent the upper branches~compare Fig. 5! which start at
the single-phase valueac53.116 and decrease asz0 in-
creases beyond 0 or decreases below 1. When the maxi
or minimum value ofz0 is reached,ac decreases furthe
along the lower branches~solid lines!, reaches a minimum
and increases asz0 approaches 0 or 1 again. Thus,ac(z0) is
double valued.

Using the fact thatP5RDr /R diverges asDT→0, one
can show from Eq.~3.1! that the critical wave numberac

diverges asz0
21 or (12z0)21 asz0 approaches 0 or 1@12#.

However, a finite interface tensions is very effective in
suppressing short-wavelength spatial variations of the in
face, and thus leads to a strongly reduced amplitude of th
divergences@26#. Our calculations did not go to sufficientl
small or largez0 to clearly reveal the divergence nume
cally, but they do show an increase ofac as z0→0 andz0
→1. For comparison, we show as a dotted line the anal
result of Ref.@12# for Rb ,RQ→0. One sees that the ampl
tudes of the divergences are much larger in this case.

The experimental determination ofac was difficult be-
cause the patterns near onset often were rather disord
@see, for instance, Figs. 6~d! or 10~d!#, because the bifurca
tions presumably led to finite amplitudes at onset, and
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cause our sample had only a modest aspect ratio w
boundaries influenced the pattern. Thus we regard the exp
mental determinations ofac only as semi-quantitative. In
Fig. 11, data for the lower branches are given as solid circ
For largez0 they agree rather well with the calculation~solid
line!. For smallz0 they are 10–20 % lower than the theore
ical values, but for the reasons given above we do not reg
this as a significant discrepancy. The data would not be c
sistent with the strong divergences indicated for the c
without surface tension in the limitRQ ,Rb→0 ~dotted line!.

VI. SUMMARY AND CONCLUSION

In this paper we presented experimental results and th
retical calculations for convection in a horizontal layer of
fluid with a first-order phase change which is heated fr
below. In the experiment we used a liquid crystal with
nematic-isotropic transition, under conditions where the te
perature differenceDT extended from below to above th
transition temperatureTNI so that the more dense nemat
phase was stratified above the isotropic one. We applie
magnetic field of 1000 G in order to assure a director alig
ment parallel to this field. For the theory we carried ou
stability analysis of the equations of motion formulated
Busse and Schubert,@12# with the addition of an interface
tension term. Our results for the bifurcation lines based
realistic parameters corresponding to the properties of
fluid used in the experiment, as well as the experimen
measurements, are shown in Fig. 5. For sufficiently small
finite DT we found both theoretically and experimental
that this system is always unstable to convection. Howe
the temperature gradient has a stabilizing influence, and f
vertical interface positionz0 sufficiently small or sufficiently
large re-entrant stable conduction states were reached aDT
was increased. For even largerDT convection occurred
again, due to the usual Rayleigh-Be´nard mechanism. The
transition from the interface instability at smallDT to the
Rayleigh-Bénard instability at largeDT was continuous and
smooth in theDT-z0 plane. In the re-entrant conductio

FIG. 11. Critical wave numbers as a function of the interfa
positionz0. The solid~dashed! lines are the results of the calcula
tions for the lower~upper! branches of the re-entrant bifurcatio
lines ~see Fig. 5!. The dotted line corresponds to the caseRQ ,Rb

→0, which was evaluated analytically in Ref.@12#. The dash-dotted
line corresponds to the value 3.116 for the single-phase fluid.
solid circles are experimental estimates along the two low
branches.
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PRE 60 547CONVECTION IN THE PRESENCE OF A FIRST-ORDER . . .
states the more dense nematic phase was stably stra
above the less dense isotropic one, as originally predicte
Busse and Schubert@12# for isotropic fluids. Although the
general features of the bifurcation diagram in theDT-z0

plane were the same in the theory and the experiment,
maximum widths along thez0 axis of the conduction state
in the theory were about 20% larger than in the experime
We expect that this difference at the quantitative level is d
to approximations made in the calculation, in particular
the assumption that both phases have the same prope
except for the density difference. Considering the comple
ties of this system, we thus regard the general agreem
with the experiment as quite satisfactory. We conclude t
the Busse-Schubert concept@12# of two-phase convection
when evaluated quantitatively for realistic fluid propertie
describes the experiments rather well.

Busse and Schubert derived an analytic result for the
furcation line for the special case where certain parame
of the problem vanish (RQ ,Rb→0; see Sec. III!. They found
a re-entrant conduction regime for allz0, as is shown by the
dotted curve in Fig. 5. This case does not capture prop
the transition between the interface instability and
Rayleigh-Bénard instability and is similar to the physica
system only nearz050 andz051.

We also calculated the critical wave numbers of the ins
bility along the two bifurcation lines and compared the
with approximate experimental determinations. These res
are shown in Fig. 11 as solid and dashed curves. Here
experimental results are rather uncertain for two reaso
First, the patterns very near the bifurcation equilibrated v
slowly in certain parameter ranges and often remained di
dered throughout an experimental run, thus yielding exc
sively small wave numbers. Second, the bifurcations are
pected to lead to finite-amplitude convection which m
have a wave number which differs from that of the critic
infinitesimal perturbations of the theory. For these reas
we do not regard the differences of up to 20% or so betw
theory and experiment as significant.

We obtained experimental results for the patterns wh
form in various parameter ranges and report them in F
6–10. Depending onDT and z0, we found near-perfec
straight rolls, straight rolls with defects, highly curved rol
and cellular flow with either upflow or downflow at the ce
centers. Qualitatively, the parameter ranges for the var
patterns can be understood quite well on the basis of
breaking of the mirror symmetry at the horizontal midpla
by the interface, and on the basis of the properties of
nematic phase in the presence of a magnetic field. Quan
tive understanding of the patterns would require calculati
based on the Busse-Schubert equations supplemented b
propriate nonlinear terms. Such calculations have not
been carried out. For some parameter ranges they woul
near impossible because of the large amplitudes, corresp
ing to plumes of one phase entering another, which deve
immediately at onset.

Clearly, the theoretical treatment of the problem could
improved further. The obvious refinement would be the
clusion of temperature dependent fluid properties which
fer in the two phases. Given the present experimental sta
we do not feel that this is worthwhile at this time. Mo
interesting would be a nonlinear analysis in the param
ed
by
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ranges where this might seem fruitful. Further, one mig
consider including the anisotropic properties of the nema
phase if comparison with experiments in which the direc
degrees of freedom are not frozen by large magnetic field
desired. In that case the heat-focusing mechanism can
come important and reduceDTc , and even heating from
above may lead to instabilities of the nematic phase@27,7#.

It would also be interesting to relate the present analy
more closely to geothermal situations where, for instan
water can be stratified stably above steam,@28#, or to con-
vection in the Earth’s mantle@5#. In the latter case it is be
lieved that the lighter phase is stratified above the hea
one; but an instability can occur nonetheless because of
latent heat released or absorbed during interface fluctuati
This case is difficult to access in the laboratory, but the le
of agreement between experiment and theory found in
present work gives confidence in the corresponding theo
ical calculations. Similarly, it would be interesting to co
sider the case of heating from above, both theoretically
experimentally.
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APPENDIX

In this appendix the~slightly generalized! Busse-Schuber
equations@12# are rederived in a manner which follows mo
closely the conventional treatment of convection including
phase change~see, e.g., Refs.@29–31#!. The approximations
involved are clearly spelled out and it will become evide
how the present calculations might be refined.

It is convenient at first to keep all variables in physic
units. A Cartesian coordinate system with the gravitatio
accelerationg in the negative-z direction is used. The fluid is
sandwiched between two plates@parallel to the (x,y) plane#
at z50 and atz5d, where the temperaturesTb andTt,Tb
respectively are applied. WhenTb>TNI>Tt , a stable super-
position of a nematic fluid layer~characterized by an indext
or 2! above an isotropic one~index b or 1! can be achieved
For the locationz0 of the resulting flat interface between th
two fluids we make the following approximation, whic
holds with an accuracy of about 10%@see Eq.~2.1!, with
l I5lN#:

z0.d~Tb2TNI!/~Tb2Tt!. ~A1!

In the following we deal exclusively with the linear re
gime. In either layer, the onset of convection is determin
by the Boussinesq equations

]

]t
v52r21

“p1 ẑagu1n“2v, ~A2a!
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]

]t
u51bw1k“2u. ~A2b!

Herev5(u,v,w) denotes the velocity field,p is the devia-
tion from the hydrostatic pressure of the quiescent fluid, a
u is the deviation from the static temperature field with t
gradient 2b. We assume incompressibility, i.e.,“•v50.
Realistic rigid boundary conditions are applied, according
which u,v, and]w/]z vanish atz50 andz5d. Note that the
thermal diffusivityk[l/rCP , the thermal expansion coe
ficient a, the densityr, the kinematic viscosityn, as well as
b are in principle different in both layers. In the spirit of th
Boussinesq approximation their values are determined b
average over each layer. For the specific heat at cons
pressureCP we neglected the singular part which exists b
low TNI .

It is sufficient to concentrate on roll-like solutions, with
out variations in they direction ~i.e., v50!. Let h(x,t) pa-
rametrize the positionz5z01h(x,t) of the disturbed inter-
face where certain jump conditions@29,30,32# have to be
fulfilled. We recall these conditions here for convenien
since they are somewhat scattered in the literature. In
linear regime they can be formulated with respect to
originally flat interface, i.e., in the following the fieldsv and
u, as well as their normal (iz) and tangential (ix) deriva-
tives, are understood to be taken atz5z0. From continuity of
mass transfer one has at the linear level

r2S w22
]h

]t D2r1S w12
]h

]t D50. ~A3!

Note that the velocityw perpendicular to the interface an
the velocity of the interface]h/]t must not be identical as
for immiscible fluids. From momentum conservation tange
tial to the interface one obtains

r2S w22
]h

]t Du22r1S w12
]h

]t Du15~tx!12~tx!2 ,

~A4!

where the tangential component of the stress tensor is g
as

~tx! i5m i S ]wi

]x
1

]ui

]z D ,

with the dynamical viscositiesm i5n ir i ( i 51,2). In prin-
ciple one should include tangential variations of the surf
tensions in Eq. ~A4!, which govern the Marangoni instabi
ity in the case of a free surface@32–34#. We have checked
explicitly that this mechanism is totally negligible in th
present context. Momentum conservation perpendicula
the interface is expressed by

r2S w22
]h

]t Dw22r1S w12
]h

]t Dw1

5~tz!22~tz!11p12p21~r22r1!gh1s
]2h

]x2

~A5!
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with the normal component of the stress tensor

~tz! i52m i

]wi

]z
.

Note that the componentu of the velocity parallel to the
interface as well as any derivative of the fields with resp
to the horizontal coordinatex are continuous. Thus the pres
sure difference can be eliminated with the help of Eq.~A2a!,

]2~p22p1!

]x2
5S ]2

]x2
1

]2

]z2D S m2

]u2

]x
2m1

]u1

]x D . ~A6!

It is convenient to implement incompressibility,“•v50 by
the use of a velocity potentialf (x,z,t),

u5
]2f

]x]z
, w52

]2f

]x2
. ~A7!

Finally, the balance of thermal energy including the wo
done by pressure involves the balance of the heat curr
and the flow of the enthalpyh through the interface

r2S v22
]h

]t Dh22r1S v12
]h

]t Dh152S k1

]u1

]z
2k2

]u2

]z D .

~A8!
In the following we will discuss the various approxima

tions employed in Ref.@12#. All of them can in principle be
avoided at the expense of massive numerical calculat
and of physical transparency. In view of the present exp
mental accuracy and the fact that the deviations from rig
ous calculations are estimated to be of the order of 10%,
consider the simplifications of Ref.@12# to be satisfactory for
the present. The approximationr15r2 is used implicitly in
Eq. ~A3!. It applies well to our case since 2(r22r1)/(r1
1r2)5O(1023). Instead of the differentr i , i 51 and 2, in
both layers we use a weighted averager̄5@(d2z0)r2
1z0r1#/d. Consequently one hascontinuity of the velocity
perpendicular to the interface, i.e.,w15w2, which implies
together with the continuity ofu thecontinuity of f and] f /]z
@see Eq.~A7!#. In Ref. @12# the approximationm15m2 was
used, which involves an error of the order of 10%@2(m1
2m2)/(m11m2)5O(1021)#. Instead of differentm i , i 51
and 2 again their weighted averagem̄ which deviates from
the m i less then 5% is used. From Eqs.~A4! and ~A7!, one
obtains immediatelycontinuity of]2f /]z2. It is now easy to
see that, with the approximations used before, the contin
of normal stress equation~A5! together with Eqs.~A6! and
~A7!, leads to adiscontinuityin the third derivative off with
respect toz according to

m̄~]3f 1 /]z32]3f 2 /]z3!5F ~r22r1!g1s
]2

]x2Gh.

~A9!

In the thermal jump condition Eq.~A8! again a weighted
averagel̄ instead of different thermal conductivitiesl i , i
51 and 2, is used, which introduces an error of the orde
10%. One arrives at
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r̄S w12
]h

]t DQ5l̄S ]u1

]z
2

]u2

]z D , ~A10!

with the latent heatQ5h22h1.0 released at the transfo
mation from the isotropic to the nematic phase.

The last step, and perhaps the most subtle one, is to
struct an expression forh. One familiar starting point~also
used in Ref.@12#! is the assumption of local thermal equilib
rium and thermodynamic equilibrium at the deformed int
face, i.e., continuity of the temperature and the chemical
tential c. The static solution is characterized by equilibriu
temperature and pressure profilesT0(z), P0(z), respec-
tively. At the phase boundary (z5z0) the difference
g(T,P)5c12c2 of the chemical potentials of the tw
phases vanishes. Onset of convection yields a slightly
formed interface (hÞ0) and one has small disturbancesp,u
superimposed onto the static solution. From the resul
condition

g„T0~z01h!1u~z01h!,P0~z01h!1p~z01h!…50,
~A11!

the excursionh of the interface is determined by a Taylo
expansion up to first order with respect to the small qua
ties h, p,u:

S ]g

]T0

dT0

dz
1

]g

]P0

dP0

dz Dh1
]g

]T0
u~z0!1

]g

]P0
p~z0!50

~A12!

where all derivatives are taken at the interface. In our c
the derivative ofg with respect toP0 can be neglected rela
tive to that of g with respect toT0. This can easily be
checked for the two summands of the factor ofh on the
left-hand side of Eq.~A12!. Their ratio is determined by the
slope (dP0 /dT0)c of the coexistence~Clausius-Clapeyron!
curve evaluated atz0:

2]g/]T0

]g/]P0
5S dP0

dT0
D

c

5
Qr̄2

T0~r22r1!
. ~A13!

With the use of dT0 /dz5(T22T1)/d and 2dP0 /dz

5( r̄g)21 one finds the ratio of the pressure to the tempe
ture part to beO(1028). A similar estimate holds for the
p(z0) term in comparison to theu(z0) one ~see also the
related discussion in Ref.@12#!. Thus we arrive at the simple
relation

h52u~z0!dT0 /dz5bu~z0!, b5~T12T2!/d.
~A14!

Note that the reasoning above implies the continuity ofu.
Again we have neglected the difference of thermal cond
tivities in the two phases. Equation~A14! allows for an ob-
vious interpretation: Thermal fluctuationsu(z0) lead to an
excursion of the originally flat interface compatible with th
external temperature gradient.

In Ref. @35# ~related to the problem of a possible interfa
instability for a heavier phasebelow a lighter one, without
buoyancy effects! it was pointed out that the requirement
n-

-
-

e-

g

i-

e

-

c-

thermodynamic equilibrium is in principle questionabl
Thermal equilibrium can in general only be reconciled w
thermodynamic equilibrium in one of the two phases. T
authors discuss several choices for their problem. The m
result is that in the case of a small slope of the Clausi
Clapeyron curve as in our case, all requirements are equ
lent to Eq.~A14!.

Instead of the temperaturesT2 ,T1 at the confining plates
the control parametersDT5T12T2 and z0 have been used
in our analysis. The material parameters for 5CB are ta
from Ref.@8#. For a givenz0, the weighted average is alway
used~we will leave out the bar in the following!. In line with
Ref. @5#, d, d2/k, and (nk)/(agd3) are used as scales fo
length, time, and temperature, respectively. The surface
sion s for the nematic-isotropic interface i
1.431025 J/m2 @36#, i.e., 5.531022 in our units ofgDrd2.

Adding up ]2/]x]z applied to thex component~u! and
2]2/]x2 applied to thez component~w! of v in Eq. ~A2a!,
one ends up with

k

n
“

2
]u

]t
5“

4f 2F PS 11s
]2

]x2D d~z2z0!11Gu,

~A15!

@11Rbd~z2z0!#
]u

]t
5“

2u2@RQd~z2z0!1R#
]2

]x2
f ,

~A16!

with the velocity potential defined in~A7! and“

25]2/]x2

1]2/]z2. The following dimensionless control paramete
have been defined:

R5
gd3

nk
~aDT!, RQ5

gd3

nk
~aQ/Cp!,

RDr5
gd3

nk
~Dr/r!. ~A17!

Their relative magnitude is described by the ratios@37#

P5
RDr

R
, Rb5

RQ

R
. ~A18!

The discontinuities of thez derivatives are made explicit in
terms of thed-functions at the interfacez0. By integrating
with respect toz the ~rescaled! jump conditions@Eqs. ~A9!
and ~A10!# @with h inserted from Eq.~A14!# are easily re-
covered.

The physical interpretation of the parameters in Eq.~A17!
is quite obvious, since they characterize the different de
bilization mechanism. The parameterR is the familiar Ray-
leigh number describing thermal buoyancy. The other
rameters are only active at the interface: InRQ the latent-heat
term Q/Cp replacesDT and in RDr the gravitational accel-
eration gDr/r appears instead of the buoyant accelerat
gaDT. Note that in Ref.@12# a slightly different scaling was
adopted; temperature was measured in units ofQ/Cp , which
might be more convenient when considering the limitDT
→0.
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The determination of the convection threshold is standa
though tedious@38#. The equations separate with respect
their vertical coordinatez, the ‘‘infinitely’’ extended hori-
zontal coordinatex, and the timet; the dependence on th
latter variables is captured by the factor exp(gt1ipx). With
respect toz the solutions can be written as a linear combin
tion of exponentials exp(6ziz), separately for each of th
domainsz.z0 , z,z0. The eigenvaluesz i , i 51, 2, and 3,
which depend onp and the control parameters in Eq.~A15!,
are the roots of a cubic equation. It is easy to see that
arrives at a linear homogeneous system for 12 expan
coefficients, corresponding to six boundary conditions az
51 and 0 and another six at the interfacez5z0. For non-
trivial solutions of this system, the determinant has to van
-

y

o-
lo

,

o

d,

-

ne
on

.

One arrives at a complicated equation which connects
given wave numberp the growth rateg with R, z0, and the
other parameters in Eqs.~A17! and ~A18!. Stationary con-
vection at onset corresponds to a vanishing growth rateg,
and yields the neutral curveR0(p) with its minimum at the
critical wave numberp5ac . After the determination of the
stationary threshold we always checked whether an osc
tory onset might have preceded: we never found any, in
with Ref. @12#. The explicit ~in detail quite tricky! manipu-
lations have been done with the help of the well know
MAPLE package, which allows for symbolic as well as n
merical calculations. For instance, when dealing with the
ponentials in the determinant, it was very convenient that
calculations withMAPLE can be done with arbitrary numer
cal accuracy.
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-

ys.
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