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We report experimental and theoretical results for two-phase convection in a thin horizontal layer of a fluid
with a first-order phase change and heated from below. A top layer of the nematic phase of a liquid crystal is
located above the bottom layer of the isotropic phase of the same substance. A horizontal field of 1000 G is
applied in order to align the director of the nematic phase. Over some ranges of the thickness of the isotropic
phase, and in sufficiently large thermal gradients, the more dense nematic phase can be stably stratified above
the less dense isotropic one, with a stable interface between them. Based on the equations of motion derived for
this problem by Busse and Schubelt Fluid Mech.46, 801(1971)], we evaluate the bifurcation lines between
the quiescent and convecting states and the corresponding critical wave vectors as a function of the interface
position. We report experimental measurements based on Nusselt-number determinations for the locations of
the bifurcation lines. They are in good agreement with the theoretical results. We also report approximate
determinations of the critical wave numbers which are semiquantitatively consistent with the theory. A great
diversity of patterns is observed in the convecting states, including normal and parallel rolls, rolls with defects
and disorder, target patterns and spirals, and cellular flow with upflow or downflow at the cell center. These
patterns are discussed in terms of the breaking of the mirror symmetry at the horizontal midplane by the
interface, and in terms of the orienting effects of the magnetic fi@#i063-651X99)05707-4

PACS numbdis): 47.20.Bp, 47.54tr, 61.30—v

[. INTRODUCTION stationary and oscillatory onset of convection, “oblique”
and “abnormal” rolls, and tricritical and Lifshitz points.
Nematic liquid crystals are fluids with long-range orien- Considering the complexities of the equations of motion, the
tational order of their elongated moleculgld. The anisot- agreement achieved between experiment and theory is re-
ropy due to the orientational ordering is reflected in the mamarkable in most cases.
terial parameters such as the viscosity and the thermal Nematic liquid crystals offer an additional opportunity to
conductivity, and in the constitutive equations. Under non-study an interesting stability and pattern-formation problem,
equilibrium conditions the anisotropy effects lead to a richnamely, convection in the presence of a first-order phase
variety of new pattern-formation phenomena which do notchange[12—15,7. This is the topic of the present paper.
occur in isotropic fluids. With increasing temperature the ori-When the vertical temperature differenad across a con-
entational order of the fluid is reduced until it vanisitis-  vection cell of thicknessl straddlesTy,, an interface be-
continuouslyat the nematic-isotropic transition temperaturetween the two phases exists at that vertical positipwhere
Tni - This phase transition to the isotropic phase is of firstthe local temperature is equal 1q,,. Taking the origin of
order; latent heaQ has to be provided, and the density the vertical(z) axis at the bottom of the cell, and measuring
decreases discontinuously by a jumyp. Numerous recent length in units ofd, the low-temperaturémore densenem-
experimental and theoretical studies of convection in nematiatic phase will have a thickness-%,. It will be stratified
liquid crystals have significantly advanced our understandingibove the less densésotropic phase. In the absence of a
of pattern formation in nonequilibrium syster(fer reviews, temperature gradient this configuration is unstable in the
see, for instance, Reff2] and[3]). presence of gravity. Remarkably, heating the system from
One of the best-studied paradigms of hydrodynamidelow can stabilize this adverse density distribution over cer-
pattern-forming systems is Rayleigh#B®d convection tain parameter ranges. From experiment it seems that the
(RBC) [4—6), i.e., convection of a thin horizontal fluid layer nematic nature of the upper phase has at most a minor influ-
heated from below. The quiescent layer becomes unstabkence on the instability mechanism and the bifurcation lines,
and undergoes a transition to buoyancy-driven convectiomalthough it affects some of the pattern-formation phenomena
when the temperature differendelT=T,— T, across it ex- which occur.
ceeds a threshold valWeT, (T, andT, are the temperatures For isotropic fluids the problem was examined theoreti-
at the bottom and the top of the layer, respectiveRBC in  cally by Busse and Schubdrt2,5]. They were able to cap-
nematics has also been investigated intensiy@lyll). In  ture several central components of the instability mechanism
this case a magnetic field couples to the fluid and can serviey a set of approximate equations of motion. The theory
as an additional control parameter. This opens up a rich bincludes the usual driving force of convection due to buoy-
furcation diagram which contains many new features notncy associated with the increasing density of the fluid with
found in convection of isotropic fluids, such as subcriticaldecreasing temperature from the cell bottom to its top.
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In addition, the interface between a more dense layer stratcase for applying the theory to the experimentally less acces-
fied above a less dense one has the tendency to become wgible ones.
stable due to gravity. A small vertical fluctuation with hori-  There have been only qualitative experiments relevant to
zontal wave numbep of the interface position will create a this interesting systerfil3,14] until very recently[15]. The
fluid column of width w/p with a relatively large average first experimental investigation of which we are aware was
density adjacent to a similar column of lesser average derby Fitzjarrald[13], who used the same nematic liquid crystal
sity, making it favorable for the heavy column to sink andas the one employed in the present investigation. He heated
the lighter one to rise. The corresponding Rayleigh-Taylofrom below as in our work, but did not apply a magnetic
instability was studied extensively in the past for two immis-field. The results of this research are qualitative. Neither
cible phases of distinct fluids6]. However, often tempera- threshold values\ T, nor critical wave numbers, for the
ture gradients were omitted or buoyancy was neglected. Suagpnset of convection were given. The work did not reveal that
an analysis is thus expected to be relevant to our experimentsere arewo separate re-entrant conduction regimes, one at
in the presence of @anishingly smaltemperature gradient, small and the other at largg, and that the patterns fag
whenAT is just large enough to straddle the transition tem-near 3 consist of rolls(see Sec. V B beloyw However, in
perature. The situation is qualitatively different ftarge = agreement with the present work, the author also identified
temperature gradients. They will tend to suppress the ampliwo types of cellular patterns, distinguished by having up-
tudes of spontaneous interface fluctuations because the intdlow or downflow at the cell centers.
face essentially is restrained to be located at that precisely The experiments of Salan and Guyjda] were designed
defined vertical position where the local temperature equalprimarily to study convection in a homeotropically aligned
the transition temperature. The interface is actustihpilized nematic  liquid  crystal [methoxybenzylidene p-
in this case. Finally, the effect of the latent heat at the inter{n-butyl)aniline or MBBA] in a vertical magnetic field and
face, which does not exist in the Rayleigh-Taylor problem,heated from above. For a relatively large field, convection
must be considered. The detailed theoretical analyisdgis  began only when the temperature difference was quite large
consistent with the qualitative conclusion that a local fluc-and hexagons occurred due to the non-Boussinesq nature of
tuation in the upward mass transpévelocity) through the the sample. At even largeXT, the nematic-isotropic transi-
interface (driven perhaps by an interface fluctuation as de-tion temperaturd y, was reached at the top of the sample. At
scribed above will require the conversion of isotropic to first hexagons continued to exist, but when the top tempera-
nematic fluid, and thus will release heat. This leads to locature was so large as to create a continuous isotropic layer, the
heating in the neighborhood of the fluctuation, thereby crepattern consisted of disordered rolls which tended to termi-
ating an additional positive buoyancy force. Similarly, anate with their axes orthogonal to the cell wall in a manner
downward velocity fluctuation will absorb heat, producing similar to the patterns of isotropic fluids.
cooling in its vicinity and thus enhancing the negative buoy- In Ref. [15] significant information about the parameter
ancy which prevails there. However, intuitive reasoning ofranges for various types of patterns as well as quantitative
this kind has to be taken with caution, since it also led to theesults for the bifurcation lines were reported. However, in
opposite(incorrecy conclusion, namely, that latent-heat ef- that work the top temperature was held fixed and only the
fects would be stabilizin§17]. One also has to keep in mind bottom temperature was varied. This procedure is easier ex-
that the consideration of the buoyant forces alone is insuffiperimentally than one in which the interface position is held
cient. As in classical RBC, the destabilization of the quiesixed, but it leads to a complicated experimental path for a
cent state requires in addition that the dissipative fofeess  given run in which the interface first forms at the bottom and
cosity, heat diffusiopn can be overcome. In the end the then gradually moves towards the top A3 is increased.
interaction of all these effects makes it possible over som&ome ranges of the relevant parameter space were difficult to
parameter ranges for a more dense phase to be stably stragach and were not explored. Nonetheless, where comparison
fied above a less dense one. is possible, the results reported in the present paper are gen-
The theoretical work of Busse and Schuléf] was mo-  erally consistent with that work, although there are some
tivated by the relevance of the interface instability to geo-differences in detail with regard to the parameter ranges over
physical and astrophysical problems. The stability of a densehich certain patterns are found. These differences presum-
phase above a less dense one plays a role in geothermathly are attributable to the bistability associated with sub-
situations, where, for instance, water can be stably stratifiedritical or transcritical bifurcations, although this has not
above steam[5,17] Phase changes also are important forbeen investigated more closely. There is one issue on which
convection in the Earth’s mant[@8] and in stars. However, our present understanding differs from the conclusions
in these latter cases there are very large gravitational preshrawn in Ref.[15]. On the basis of the bifurcation points
sure gradients, and it is believed that the more dense phaserigeasured along the complicated experimental paths of that
located below the less dense one. An instability can occuwork, it was concluded erroneously that there are two
nonetheless because the latent heat which is released by eadimension-2 points in this system where two-phase-
interface displacement can still destabilize the system. Variconvection bifurcation lines cross Rayleighsed bifurca-
ous types of interface instabilities, including ones with negadion lines. It is now clear that one goes smoothly over into
tive latent heaf19] and when heating from above, were the other, and that there is no point in parameter space where
enumerated by Bussgs]. Most of them are not readily two distinct primary bifurcation lines meet.
achieved in the laboratory. We believe that the semiquanti- Here we report quantitative measurements of heat trans-
tative agreement between experiment and theory which wport in the form of Nusselt humbers which enabled us to
report for the case under examination here strengthens thdetermine the stability boundariésT (z,) of the quiescent
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state in theA T-z, plane with good accuracy. In these experi-
ments, the top and bottom temperatures were adjusted inde-
pendently so as to keep the interface posizigrtonstant as
AT was varied. This experimental path facilitates compari-
son with the theory. We also calculated the bifurcation lines,
using the equations of motion proposed by Busse and Schu-
bert[12], with an additional term which provides the effect
of the interface tension. Using the fluid properties of our isotropic | nematic Ty
system, we found quite good agreement between the theory :
and the experiment.

We present results for the convection patterns which form
in various regions of th& T-z, plane. It turns out that two- Normalized Vertical Position

phase convection involves interesting nonlinear problems, g 1. schematic diagram of temperature profiles in the con-

such as the exchange of stability between hexagons and rollg,ction state. The dash-dotted line corresponds to a smaller heat
A great diversity of patterns is observed in the convectingyrrent, and the solid line to a larger heat current, at fizgd

states, including near-perfect parallel rolls, rolls with defects

and curvature, and cellular flow with upflow or downflow at terns were acquired by a computer-interfaced camera from
the cell center. To a large extent the parameter ranges Ov@fffuse scattering of ambient light by the nematic phase.
which these patterns occur can be understood qualitatively in The sample was 4n—pentyl—4’—cyanobipheny(5CB)
terms of the breaking of the mirror symmetry at the horizon-[21] with a nematic-to-isotropic transition temperatfg,
tal midplane of the cell by the interface, and in terms of thej, the range 35.2—34.9 °C. We determin€g, at various
magnetic-field effects on the nematic phase. times during this project with a resolution of about £0°C
From some of the convection patterns near onset we deyy evaluating the brightness of images at various tempera-
termined approximate values of wave numbers. For compariyres incremented in steps of 5 mK. There was no hysteresis
son, we calculated the critical wave numbers from the equan the brightness with increasing and decreasing temperature.
tions of motion. Here the experiment and the agreement withy \yas found thafT, gradually decreased with time, on av-
theory is only semiquantitative. One reason for this may b%rage by 2.65 mK/day in the initial stage—70 days after a
that it is difficult to reach a true steady state in some parampey cell was filledland by 1.55 mK/day in the later stages of
eter regions because the approach to it is extremely slowpe project(70—170 days This monotonic time dependence
Thus the patterns often remained somewhat disordered, ang Ty may perhaps be attributed to a small amount of con-
from our Fourier analysis we may have obtained & wavgamination leached out of the O ring and delrin cell wall used
n_umber_ which is too small. Another reason may be _t_hat they, sealing the sample fluid. Although the decayTaf was
bifurcations are expected to be subcritical or transcritical. Iy ite small within an experimental rutypically a couple of
that case the experiment near onset yields the wave numbg(rays), even a very small uncertainty ify, causes a signifi-

of a finite-amplitude state whereas the theory corresponds ;¢ error in the estimate of the interface position when the
infinitesimal critical perturbations of the conduction State'temperature differencA T across the cell is small. There-
Some of the results reported in the present paper have beggye '\ve used a time dependery, for the determination of
summarized briefly in a recent revielv]. the interface positiorz, in every experimental run.
Typical temperature profiles in the sample cell are shown
Il. APPARATUS, SAMPLE, AND EXPERIMENTAL schematically in Fig. 1 for two values &T. Since the con-
METHODS ductivity in the lower isotropic phase is larger than that in the

upper nematic phasg20], the temperature gradient was

The apparatus used by us was described in detail elsgmaller in the lower phase than in the upper one. The inter-
where[8,15,7,20. It was a standard Rayleigh-Bard con-  face position is given by

vection apparatus with optical access from above which was

designed for the study of convection in liquids at ambient zo=1,/(1,+1y), (2.
pressure. Its special feature was that it was made entirely of
nonmagnetic materials. It was located in the 19.5-cm gapvhere
between specially shaped pole pieces of a Varian electro-
magnet which provided a horizontal magnetic field of mag- | = JTNI)‘ 4T e jTt)\ qT
nitudeH with a uniformity of £0.1 % over a sample diam- = . = N N=
eter of up to approximately 5 cm. The sample of circular

cross section was located inside a “can” in a water bath. Thedere the conductivitie, and Ay are for the isotropic and

top of the sample was a sapphire which was exposed on theematic phases, respectively. Because of the large applied
outside to temperature-controlled circulating water. The temhorizontal field, the relevant conductivity of the nematic
perature stability of the water was better than 1 mK. Thephase is\y=\, . Both\, and\, are known quantitatively
sample was confined by an aluminum bottom plate whict[20]. They can be represented by

could be heated from below by a metal-film heater. The

thickness of the cell wad=0.327 cm, and the aspe@&- A=Not Ay (T—Ty)+As, (2.3

dius to thicknessratio wasI'=12.7. The present work was

carried out forH=1000 G. Images of the convection pat- where\; is a singular contribution. Belowy,

Temperature

0 Zy 1
(bottom) (interface) (top)

(2.2
N
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Nsi =Ny, (Te—T). (2.9 place only forP above a certairflarge) threshold. For fixed
Ap this requiresAT to be very small, whereas in the pres-

In the isotropic phase\s vanishes. The parameters neededence of a finite temperature difference the instability is sup-
are A\p=1.512x10%, \,;=—237.0, Ay =—1.448X 10%, T, pressed. One can also see from B3l that a finite surface
=36.06 °C, andx, =0.172. Here\ has the units erg/s cm tensiono tends to reduce the prefactor of thdunction on
K. The results forn can be used to evaluat® from Eq. the right-hand side, and thus the tendency toward the
(2.1. As AT=T,— T, was changed in a given experimental Rayleigh-Taylor instability. Further, by considering the op-
run, T, and T, were changed in such a way as to hald posite limit of dominant buoyancyR,,,Rqo<R), it was

constant. demonstrated in Ref12] that the critical Rayleigh number
The effective conductivity of the sample was evaluateddecreases with increasimiy, andRq, i.e., again the desta-
using bilization due to two-phase effects became evident. Since the
5 analysis of Ref[12] covered neither the present experimen-
Neir= Qd/(AAT), (2.5 tal parameters nor the realistic rigid boundaries and the case

_ of finite surface tensiowr, we determined the onset of con-
whereQ is the heat current passing through the san(g@lier  vection numerically from the above equations, as explained
correction for the current carried by the cell walnd A in the Appendix.
=I"2d?7 is the area of the sample. The Nusselt nuniés

the ratio
IV. EXPECTED PATTERNS

N=Neft/Nefr.o (2.6 Here we consider qualitatively the patterns that are to be

dexpected in this system. In the framework of the weakly
nonlinear stability analysi§22] it is well understood why
roll patterns characterized by a single wave vector typically
Netro=(In+1)/(Ty=Ty). (2.77  occur in many systems. Cellular patterns, however, require
' the resonant interaction of degenerate or nearly degenerate
modes with different wave vectors. For this to happen, the
mirror symmetry at the horizontal midplane of the cell has to

In this section our theoretical analysis for the onset ofoe broken. Well known examples are the hexagonal plan-
convection, based on th(éshghﬂy genera“ze)j Busse- forms in iSOtI’OpiC ﬂUIdiZS] which are associated with non-
Schubert equations of motiofi$2], is described briefly. All  Boussinesq effects, i.e., with significant variations of the ma-

details, like the scaling conventions or the explicit form of terial parameters throughout the cell because of the imposed
the parameters, are explained in the Appendix. temperature gradient. The bifurcation is then transcritical.

The equations are The cells have upflowdownflow) at their centers when the
various properties like the viscosity and the thermal conduc-
tivity decrease(increasg with temperature. Upflowddown-

6, (3.1)  flow) is realized in most liquid¢gases

The present system differs in several important aspects
from isotropic fluids. The mirror symmetry is always broken

7 g by the existence of an interface which separates the two lay-

ax2 "’ ers with different material parameters. When cellular flow

(3.20  occurs, we believe that the flow direction at the cell centers
depends on whether the interface is located significantly
wherek is the thermal diffusivity,y the kinematic viscosity, above or below the midplane. When the interface is located

and o the dimensionless surface tension. They couple the@ear the midplane, the symmetry breaking is relatively mild

velocity potentialf and the deviation® of the temperature and it turns out that rolls can still exist.

from the conduction profile, which both begin to grow expo- An additional feature is that the system is anisotropic,

nentially at threshold. Besides the familiar Rayleigh numbeparticularly in the presence of a strong horizontal magnetic

R, we introduce the additional control paramet&g, and  field H. The “director” n, which describes the orientational
Rq, which characterize the interfacial Rayleigh-Taylor in- degrees of freedom of the nematic, tends to align parallel to
stability and the destabilization by the latent-heat effects, reg |, RBC of asingle-phaseematic layer with thickness
spectively. They are related to the parame®@ndR, de- o pattern-formation phenomefi®, 7,24 are controlled by
fined in Ref.[12] and used in Eqgs(3.1) and (3.2) by P the value of the dimensionless field
= RAp/R a.nd R,B: RQ/R

A central result of Ref[12] was that the increase of any
of the three control parameters separately drives the quies-
cent system towards instability. The analytical considerations
of Ref. [12], made possible for certain limiting cases andwhere the Fredericksz fieldH¢ is given by
approximate free-slip boundary conditions, have proven to
be illuminating in reaching that conclusion. We consider the
results of Ref[12] for zero surface tension and f&,,Rg . _
—0. It turns out that the Rayleigh-Taylor instability takes d Vpxa

wherel ¢ iS the average conductivity of the quiescent flui
given by

IIl. THEORETICAL ANALYSIS

2

f d
1to—; 8(z—z9)+1
ox

Sv2l v p
14

17
ot

a0 2
[1+Rgd(z— zo)]ﬁzvza—[RQa(z— Z0) +R]

h=H/He, 4.1)

a kll

4.2
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FIG. 2. Schematic diagram of the dimensionless fields a E 4n . : q
function of the isotropic layer thickness. The two dashed hori- Z12f R AA H o [
zontal lines are the two Lifshitz fields, ; andh, (see text with § al A A, " - C
parallel rolls at smaller and longitudinal rolls at larggr 2" AAA A, "
1 T YL
Here kqq1is one of the elastic_ constant_s,is the de.ns_i.ty, and 0 o5 1 15 >
Xa IS the anisotropy of the diamagnetic susceptibility. When AT (K)

h>h ,=32.4, convection rolls will form with their axes par-
FIG. 4. Nusselt numbers as a function of the temperature differ-

allel to H. Forh< h, 1=24.7, normal rollsconvection rolls > i

, . . Sy , enceAT across the cell for various interface positiags-0.45. For
with their axes perpendicular té) will develop. As the field clarity, only some of the data are show®: z,=0.48. ®: z,
increases fronh ; to hy ,, oblique rolls exist and the roll axis _gsg - 2,=0.63. W: 2,=0.69. A: 7,=0.72. A: z,=0.77.
continuously changes witH from the normal to the parallel . 7 —0.82.¥: 2,=0.86.+: z,=0.91. ¢ : zy=1.00.
orientation. As a guide to the patterns which might be ex-

pected in the two-phase; system, we assume that the patterpg;g function, evaluated for the fluid properties of the nem-
are approximately consistent with the thickness of the nem;... phasd25] just belowTy, and ourd andH, is shown in

at!c phase and the known beha\(ior of the single-phase nenﬁg' 2 as a function of,. Also shown as horizontal dashed
atic system. The layer thicknessin Eq. (4.2) must then be lines areh ; andh, ,. One sees that, if rolls are the preferred

replaced byd(1-2o), and planform, they should be parallel to the fieldzf=<0.5. For
Z0=0.6, one would expect rolls to form with their axes or-
~d(1-2z) [pxa thogonal toH. Of course, as discussed above, there will be
h=——— H. 4.3 )
T Kqq large parameter ranges, particularly fgrclose to zero and

Z, close to 1, over which rolls do not form at all, and where
cellular or hexagonal planforms dominate.

[
1.4} A
Oo AAA

Srapeo % a V. RESULTS

%00° A v
2120 e® O A v v A. Nusselt numbers and bifurcation lines
% [ 193 D. v v
814 '_nmnn”_- kol | Results of Nusselt-number measurements along several
z T S, °<><>° paths of constant vertical interface positipnare shown in

v . . . .
-V T UV S AL SO0 AN Figs. 3 and 4. Here Fig. 3 is for the smaller and Fig. 4 for the

larger values of,. In both cases, the upper figure covers a

0 2 4 6 8 10 12 1I4 '
: . broad range of they-AT space, and the lower one is an

13} e o o enlargement of the region neag=0 or z,=1.

- ° o o © For 0<zy=<0.24 and 0.7& z,<1, the data reveal directly
ém "0 . . the re-entrant nature of the instability. Over these ranges,
3 o o o ° there is convectionN>1) below a critical valueAT,, as
= |[*" o a well as above a second larger valné@,. For the intermedi-
811 + g o o O " - : )
g + .n ate range 0.24 z;=<0.70 convection occurs fall tempera
2 st m - i + ture differences, bulN initially decreases with increasing

1 '%’?’m"?ﬁ"*‘*f*** AT, consistent with a stabilizing influence of the temperature

0 1 ATQ(K) 3 4 gradient. The results foN yield values of AT, and AT,

which are shown in Fig. 5 as solid circles.

FIG. 3. Nusselt numbers as a function of the temperature differ- AlSO shown in Fig. 5, as solid and dashed lines, are the
enceAT across the cell for various interface positiags<0.45. For ~ results of the linear stability analysis described in Sec. IlI
clarity, only some of the data are showd: z,=0.43. ®: z,  and the Appendix. We found only stationary bifurcations at
=0.32. [: z,=0.27. W: z,=0.24. +: z,=0.22. A: z,=0.17.  threshold, over the entire parameter range. A vanishing of
A:7,=0.00.V: z,=—0.10.V¥: z5=—0.20. ¢: z,=—0.29. at the interface, which would correspond to separated con-
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FIG. 5. Stability boundaries in the,-AT plane. The solid
circles are the experimentally determined values. The $afidhegl
lines are the results of the calculations for the lowappe)
branches of the re-entrant bifurcation lines. The dotted line corre-
sponds to the caseg ,Rg— 0 which was evaluated analytically in 1.2
Ref.[12]. The dash-dotted lines indicate the limits of the two-phase
region.

11 ° §
vection rolls in the two phasd42], never occurred. As in (d) © \
. . . [ ]
the experiment, the calculation also yields reentrant conduc-
tion with two values of a criticaDA T whenz; is sufficiently 1 3\-—-».0“.”..»!-.“--m.--.; ------------- .
small or large. In the theory, the reentrant regions extend 0 2 4 6
over the ranges €2z,=<0.30 and 0.64z,<1, which are AT (°C)
about 20 % wider than the ranges found by experiment. Con-
sidering the approximations which were involved in the the-
oretical analysigsee the Appendjx we find the agreement
with experiment very satisfactory. A likely significant con-
tribution to the small differences is the assumption of con-
stant and equal properties for the two pha@ept forp),
since it is known that particularly the properties of the nem-
atic phase vary considerably with temperature fgar[7].
Also shown(as a dotted lingin Fig. 5 is the limiting case
Rq:Rz—0 which was evaluated analytically in R¢12]. In
this approximation convection occurs only below the line,
and the conduction state extends to arbitrarily largé
above it.

Nusselt Number

FIG. 6. Nusselt numbers and patterns fg=0.17. Imagesa),
(b), (c), and(d) correspond to the Nusselt-number points identified
by arrows in the graph.

B. Patterns

The typical patterns which were found at various values
of zg and AT are illustrated in Figs. 6—10. For all of the
images, a magnetic field of 1000 G is in the horizontal di-
rection. Each figure shows four images, and below them the
Nusselt-number results for the particular valuezgf In the
plots of N vs AT, the points corresponding to the four images
are identified. Although there is little experimental informa- : : ,
tion about the nature of the bifurcations, some or many of
them presumably are transcritical or subcritical. Thus there
may well be bistability, and the patterns shown here for a
particular point in parameter space may not be unique.

In Figs. 6, 9, and 10 the Nusselt number again reflects the
reentrant nature of the instability. Feg=0.17 (Fig. 6) and

=0.86 (Fig. 10, image(c) does not reveal any structure,
consistent with the quiescent state suggested by the result AT (°C)

N=1. Forzy,=0.72 (Fig. 9, a faint roll structure is notice-

able for image(c), even though the measurements\bug- FIG. 7. Nusselt numbers and patterns fg=0.38. Imageda),
gest that this image is located in the reentrant conductiorb), (c), and(d) correspond to the Nusselt-number points identified
region. We believe this to be associated with the extreméy arrows in the graph.

121 (d) *

Nusselt Number

—_
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FIG. 8. Nusselt numbers and patterns #gr=0.53. Imagesa), FIG. 10. Nusselt numbers and patternsg+ 0.86. Imagesa),

(b), (c), and(d) correspond to the Nusselt-number points identified ), (), and(d) correspond to the Nusselt-number points identified
by arrows in the graph. by arrows in the graph.

closeness of the near-vertical bifurcation line to this particu-
lar experimental patlisee Fig. 5.

At small z,=0.17 (Fig. 6), the flow at largeAT [image
(@] is cellular. For this value of, the interface, being near
the cell bottom, has a sufficiently strong symmetry-breaking
effect to prevent the formation of rolls. The cell centers ap-
pear bright, which corresponds to enhanced scattering of am-
bient light. Unfortunately we have not been able in our ex-
perimental setup to measure whether this corresponds to
upflow or downflow.

Surprisingly, a reduction AT yields a transition to rolls
[image(b)]. The rolls are oriented with their axes parallel to

H, as expected on the basis of Fig. 2 for snzgllThe same
orientation is also noticeable in the arrangement of the cel-
lular flow of image(a). The appearance of rolls asT is
reduced suggests that the asymmetry due to the interface is
weak until convection causes some mixing of the two
phases. A secondary bifurcation between the rolls and the

14 re , , ; cellular flow has not been resolved in the Nusselt-number
5 \(d) measurements. Finally, for very smalT [image (d)], the
£ 13 e (a)\' flow is cellular again, also with white cell centers. Here the
Z121% 1 field does not seem to have any ordering effect.
= . e For z,=0.38 (Fig. 7), the flow at largeAT [images(a)
BT o (? (b)\ . 1 and (b)] consists of rolls with some defects, with the domi-
D T ST NR—— nant orientation still consistent with the high-field region
: ; : suggested by Fig. 2. Although convection is quite vigorous,
0 2 4 6 8 . . .
AT (°C) there is in this case no suggestlon.of qellular flow at large
AT. Apparently the symmetry breaking is weak because the
FIG. 9. Nusselt numbers and patterns fg=0.72. Imagega),  interface is located near the midplane of the cell. There is no

(b), (c), and(d) correspond to the Nusselt-number points identifiedre-entrant conduction region, and instead the pattern evolves
by arrows in the graph. directly into cellular flow asAT is reducedimages(c) and
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(d)], with bright centers. In this cellular region any ordering 4 .
effect from the field is not obvious to the eye.
For z,=0.53 (Fig. 8), the flow is roll-like, but the rolls
form a spiral and numerous defects near the wall. Similar
patterns were also found, for instance, fge=0.48, but in
that case the rolls tended to form target patterns and numer-
ous defects near the wall. At this value f we are in the
field region between the two Lifshitz fields in Fig. 2, and
apparently the orienting effect ofis weak. Cellular patterns

Wave Number o

. 21 ®
were not observed at all, suggesting that the symmetry *
breaking due to the interface does not play a large rolegfor 18 \ . J \
nears. o 02 04 06 08 1
For z,=0.72 (Fig. 9), the flow is cellular except in the Interface Position zg

re-entrant conduction region. In contrast to smaligrthe N ) )
cell centers are now black, corresponding to reduced scatter- F!G. 11. Critical wave numbers as a function of the interface
ing of the ambient light. Presumably the flow direction at thePositionz. The solid(dashedl lines are the results of the calcula-

. . i : tions for the lower(uppe) branches of the re-entrant bifurcation
cell centers is opposite to that at smgfl It is interesting to - .
P 9 Ibnes (see Fig. . The dotted line corresponds to the cd&g, R,

2??:; thee: ;r;eﬂ?gianqgﬁg]fgtn?;\jgg fcr((ejlrls’bv; rlloevrv] :Qegm%;z_fr’ alsﬂo, which was evaluated analytically in Rgf2]. The dash-dotted
9 2" line corresponds to the value 3.116 for the single-phase fluid. The

For z,>32 and above the re-entrant conduction reg[qn solid circles are experimental estimates along the two lower
ages(a) and(b)] the cells are ordered along rows which are branches.

orthogonal to the field, consistent with the ordering effect
expected from Fig. 2 for field values below the Lifshits cause our sample had only a modest aspect ratio where
fields. At the smalleAT [image(d)], there is again no ob- boundaries influenced the pattern. Thus we regard the experi-
vious field ordering of the cells. mental determinations of. only as semi-quantitative. In

Finally, for zy=0.86 (Fig. 10, cellular flow occurs at the Fig. 11, data for the lower branches are given as solid circles.
largestAT [image(a)], and a transition to rolls occurs as that For largez, they agree rather well with the calculati¢solid
AT is reducedimage(b)]. This is analogous to the phenom- line). For smallz, they are 10—-20 % lower than the theoret-
ena found for smallz, (Fig. 6), except for two important ical values, but for the reasons given above we do not regard
differences: consistent with Fig. 2 the roll axes and cells ar¢his as a significant discrepancy. The data would not be con-
ordered along lines which amthogonalto the field, and the sistent with the strong divergences indicated for the case
cell centers areblack At small AT [image (d)] the field  without surface tension in the limRg,R;— 0 (dotted ling.
again has little if any ordering effect on the cellular pattern.

VI. SUMMARY AND CONCLUSION

C. Wave numbers . .
In this paper we presented experimental results and theo-

In Fig. 11 the critical wave numbers. are shown as a retical calculations for convection in a horizontal layer of a
function of z,. Starting atz,=0 and 1, the dashed curves fluid with a first-order phase change which is heated from
represent the upper branchigempare Fig. bwhich start at  pelow. In the experiment we used a liquid crystal with a
the single-phase value,=3.116 and decrease & in-  nematic-isotropic transition, under conditions where the tem-
creases beyond O or decreases below 1. When the maximuserature difference\T extended from below to above the
or minimum value ofz, is reached,«. decreases further transition temperaturd,, so that the more dense nematic
along the lower branchesolid linesg, reaches a minimum, phase was stratified above the isotropic one. We applied a
and increases & approaches 0 or 1 again. Thug,(z,) is  magnetic field of 1000 G in order to assure a director align-
double valued. ment parallel to this field. For the theory we carried out a

Using the fact thaP=R,,/R diverges asAT—0, one stability analysis of the equations of motion formulated by
can show from EQ(3.1) that the critical wave numbet,  Busse and Schubeit]2] with the addition of an interface-
diverges aszgl or (1—z0) ! asz, approaches 0 or l12].  tension term. Our results for the bifurcation lines based on
However, a finite interface tensiomr is very effective in  realistic parameters corresponding to the properties of the
suppressing short-wavelength spatial variations of the inteffluid used in the experiment, as well as the experimental
face, and thus leads to a strongly reduced amplitude of thesaeasurements, are shown in Fig. 5. For sufficiently small but
divergence$26]. Our calculations did not go to sufficiently finite AT we found both theoretically and experimentally
small or largez, to clearly reveal the divergence numeri- that this system is always unstable to convection. However,
cally, but they do show an increase @f asz,—0 andz, the temperature gradient has a stabilizing influence, and for a
—1. For comparison, we show as a dotted line the analytivertical interface positioa, sufficiently small or sufficiently
result of Ref.[12] for R;,Rqo—0. One sees that the ampli- large re-entrant stable conduction states were reachad as
tudes of the divergences are much larger in this case. was increased. For even larg&hT convection occurred

The experimental determination of, was difficult be- again, due to the usual Rayleigh#&#d mechanism. The
cause the patterns near onset often were rather disorder&ansition from the interface instability at smallT to the
[see, for instance, Figs(d or 10(d)], because the bifurca- Rayleigh-B@ard instability at largeA T was continuous and
tions presumably led to finite amplitudes at onset, and besmooth in theAT-z, plane. In the re-entrant conduction
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states the more dense nematic phase was stably stratifieanges where this might seem fruitful. Further, one might
above the less dense isotropic one, as originally predicted bgonsider including the anisotropic properties of the nematic
Busse and Schubefi.2] for isotropic fluids. Although the phase if comparison with experiments in which the director
general features of the bifurcation diagram in th&-z,  degrees of freedom are not frozen by large magnetic fields is
plane were the same in the theory and the experiment, théesired. In that case the heat-focusing mechanism can be-
maximum widths along the, axis of the conduction states come important and reduc&T., and even heating from

in the theory were about 20% larger than in the experiment2POve may lead to instabilities of the nematic phise7.
We expect that this difference at the quantitative level is due !t Would also be interesting to relate the present analysis

to approximations made in the calculation, in particular to™°re closely to geothermal situations where, for instance,

the assumption that both phases have the same propertiy@er can be stratified stably above ste4@g], or to con-

except for the density difference. Considering the complexiection in the Earth's mantlg5]. In the latter case it is be-

ties of this system, we thus regard the general agreemer"Ved that the Iight_er phase is stratified above the heavier
pne; but an instability can occur nonetheless because of the

with the experiment as quite satisfactory. We conclude tha] h | irq interf q i
the Busse-Schubert concelft2] of two-phase convection, at_ent eat_ re _ea_lsed or absorbed during interface fluctuations.
This case is difficult to access in the laboratory, but the level

when evaluated quantitatively for realistic fluid properties, . .
describes the experiments rather well. of agreement between experiment and theory found in the

Busse and Schubert derived an analytic result for the pipresent work gives confidence in the corresponding theoret-

furcation line for the special case where certain paramete;‘§_3| calculations. Similarly, it would be interesting to con-
of the problem vanishRq,Rs—0; see Sec. I}l They found sider the case of heating from above, both theoretically and

a re-entrant conduction regime for al, as is shown by the €XPerimentally.
dotted curve in Fig. 5. This case does not capture properly

the transitjon between the interface instability and the ACKNOWLEDGMENTS
Rayleigh-Baard instability and is similar to the physical .
system only neaz,=0 andzy=1. The authors would like to thank Professor F. Busse for

We also calculated the critical wave numbers of the instamMany illuminating discussions. The work in Santa Barbara
bility along the two bifurcation lines and compared themWas supported by the National Science Foundation through
with approximate experimental determinations. These result§rant No. DMR94-19168. One of uS.S) acknowledges
are shown in Fig. 11 as solid and dashed curves. Here treupport from the Ministry of Education of Japan. Another of
experimental results are rather uncertain for two reasond!s (G-A.) acknowledges support through NATO Grant No.
First, the patterns very near the bifurcation equilibrated ver)pRG-'-Gg73103-
slowly in certain parameter ranges and often remained disor-
dered throughout an experimental run, thus yielding exces- APPENDIX
sively small wave numbers. Second, the bifurcations are ex-
pected to lead to finite-amplitude convection which may In this appendix théslightly generalizefiBusse-Schubert
have a wave number which differs from that of the critical equationg12] are rederived in a manner which follows more
infinitesimal perturbations of the theory. For these reasonglosely the conventional treatment of convection including a
we do not regard the differences of up to 20% or so betweefihase changésee, e.g., Ref$29-31)). The approximations
theory and experiment as significant. involved are clearly spelled out and it will become evident

We obtained experimental results for the patterns whicHow the present calculations might be refined.
form in various parameter ranges and report them in Figs. It is convenient at first to keep all variables in physical
6-10. Depending om\T and z,, we found near-perfect units. A Cartesian coordinate system with the gravitational
straight rolls, straight rolls with defects, highly curved rolls, acceleratiory in the negativez direction is used. The fluid is
and cellular flow with either upflow or downflow at the cell sandwiched between two platgsarallel to the k,y) plang
centers. Qualitatively, the parameter ranges for the variougtz=0 and atz=d, where the temperaturdg, and T,<T,,
patterns can be understood quite well on the basis of theespectively are applied. Whéi,=Ty,=T,, a stable super-
breaking of the mirror symmetry at the horizontal midplaneposition of a nematic fluid layeicharacterized by an index
by the interface, and on the basis of the properties of th@r 2) above an isotropic onéndexb or 1) can be achieved.
nematic phase in the presence of a magnetic field. Quantitd=or the locatiorg, of the resulting flat interface between the
tive understanding of the patterns would require calculationgwo fluids we make the following approximation, which
based on the Busse-Schubert equations supplemented by djplds with an accuracy of about 10¢see Eq.(2.1), with
propriate nonlinear terms. Such calculations have not yek;=\y]:
been carried out. For some parameter ranges they would be
near impossible because of the large amplitudes, correspond- Zo=d(Tp— T/ (Tp—Ty). (A1)
ing to plumes of one phase entering another, which develop
immediately at onset.

. In the following we deal exclusively with the linear re-
. Clearly, the theoretical treatment of the problem could .begime. In either layer, the onset of convection is determined
improved further. The obvious refinement would be the in-

clusion of temperature dependent fluid properties which dif—by the Boussinesg equations

fer in the two phases. Given the present experimental status, 5
we do not feel that this is worthwhile at this time. More V== p VWt 2agh+ vV, (A23)
interesting would be a nonlinear analysis in the parameter at
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J with the normal component of the stress tensor
0=+ Bw+ «kV?26. (A2b)
(9Wi
o . . (17)i=2mi — -
Herev=(u,v,w) denotes the velocity fieldy is the devia- Jz

tion from the hydrostatic pressure of the quiescent fluid, and ]
6 is the deviation from the static temperature field with the NOte that the component of the velocity parallel to the
gradient — 8. We assume incompressibility, i.eV,-v=0. interface as well as any derivative of the fields with respect
Realistic rigid boundary conditions are applied, according td© the horizontal coordinateare continuous. Thus the pres-
which 6,v, andgw/ 9z vanish az=0 andz=d. Note that the  sure difference can be eliminated with the help of &Ra),
thermal diffusivity k=N\/pCp, the thermal expansion coef- 5 5 5
ficient a, the densityp, the kinematic viscosity, as well as 9 (mpy—my) [ 97 9
B are in principle different in both layers. In the spirit of the X2 EN 2
Boussinesq approximation their values are determined by an
average over each layer. For the specific heat at constaftis convenient to implement incompressibility,- v=0 by
pressureCp we neglected the singular part which exists be-the use of a velocity potentidi(x,z,t),
low Ty .

It is sufficient to concentrate on roll-like solutions, with- 9%f 92f
out variations in they direction (i.e., v=0). Let 5(x,t) pa- u=— 7 W=-—. (A7)

. " : : XdZ NG

rametrize the positioz=z,+ 5(x,t) of the disturbed inter-

face where certain jump conditio29,30,32 have to be : . .
fulfiled. We recall these conditions here for convenienceFma"y’ the balance of thermal energy including the work

since they are somewhat scattered in the literature. In thgOne by pressure involves the balance of the heat currents

linear regime they can be formulated with respect to theand the fiow of the enthalpl through the interface

originally flat interface, i.e., in the following the fieldsand P J 90 90
6, as well as their normall|¢) and tangential |x) deriva- Pz(vz_ _n)hZ_pl<Ul_ _77) h,= _(Kl_l_,(z_z),
tives, are understood to be takerzatz,. From continuity of at at 0z 9z

mass transfer one has at the linear level ) o ) (A8_)
In the following we will discuss the various approxima-

an tions employed in Ref12]. All of them can in principle be
Pz(Wz—E —P1<W1— E)ZO- (A3)  avoided at the expense of massive numerical calculations
and of physical transparency. In view of the present experi-
Note that the velocityw perpendicular to the interface and Mental accuracy and the fact that the deviations from rigor-
the velocity of the interfac@z/at must not be identical as ©OUS calculations are estimated to be of the order of 10%, we
for immiscible fluids. From momentum conservation tangen-consider the simplifications of R€fl2] to be satisfactory for

tial to the interface one obtains the present. The approximatign=p, is used implicitly in
Eq. (A3). It applies well to our case since 2{—p1)/(p1

+p,)=0(10"3). Instead of the differenp;, i=1 and 2, in
W= — U= (71~ (72, both layers we use a weighted average[(d—zo)p,
(Ad) +2zyp1]/d. Consequently one hasontinuity of the velocity
. ~ perpendicular to the interface, i.en;=w,, which implies
where the tangential component of the stress tensor is givelgether with the continuity af the continuity of f andif/ gz

du, duq A6
#26,)( Mlax . (A6)

an

Pz(Wz_ ot Ux—p1

as [see Eq(A7)]. In Ref.[12] the approximationu,= u, was
used, which involves an error of the order of 1008 (w1

(r ):M_(ﬂ+%) — o) (u1+ mz) =O(10"Y)]. Instead of differentu;, i=1

T ax gz and 2 again their weighted averagewhich deviates from

. . , » ) , the u; less then 5% is used. From Ed#4) and (A7), one
with the dynamical viscositieg,; =vip; (i=1,2). In prin-  gptaing immediatelgontinuity ofd2f/9z2. It is now easy to
ciple one should include tangential variations of the surfacggq that, with the approximations used before, the continuity

fcen_siona in Eq. (A4), which govern the Marangoni instabil- ¢ ,ormal stress equatioth5) together with Eqs(A6) and
ity in the case of a free surfa¢82-34. We have checked (a7) |eads to aliscontinuityin the third derivative of with
explicitly that this mechanism is totally negligible in the respect taz according to

present context. Momentum conservation perpendicular to
the interface is expressed by

_ 92
. . w(3t1102%= 3%t ,192%) = (p2=p1)g+ o7 7.
Pz(Wz_ E)WZ_Pl(Wl_ E)Wl (A9)
52 In the thermal jump condition E¢(A8) again a weighted
=(72)2— ()1t M=o+ (p2—p1)gn+ T2 average\ instead of different thermal conductivities , i

=1 and 2, is used, which introduces an error of the order of
(A5) 10%. One arrives at
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71/ M7, T %2 (A10)  Thermal equilibrium can in general only be reconciled with

thermodynamic equilibrium in one of the two phases. The
with the latent heaQ=h,—h;>0 released at the transfor- authors discuss several choices for their problem. The main
mation from the isotropic to the nematic phase. result is that in the case of a small slope of the Clausius-

The last step, and perhaps the most subtle one, is to cof-lapeyron curve as in our case, all requirements are equiva-

struct an expression fop. One familiar starting pointalso  lent to Eq.(A14).
used in Ref[12)) is the assumption of local thermal equilib-  Instead of the temperaturd@s, T, at the confining plates,
rium and thermodynamic equilibrium at the deformed inter-the control parameterAT=T;—T, andz, have been used
face, i.e., continuity of the temperature and the chemical po our analysis. The material parameters for 5CB are taken
tential . The static solution is characterized by equilibrium from Ref.[8]. For a giverz,, the weighted average is always
temperature and pressure profil@g(z), I1,(z), respec- used(we will leave out the bar in the followingln line with
tively. At the phase boundaryz&z,) the difference Ref.[5], d, d%/k, and (v«)/(agd®) are used as scales for
g(T,P)=4y,— ¢, of the chemical potentials of the two length, time, and temperature, respectively. The surface ten-
phases vanishes. Onset of convection yields a slightly desion o for the nematic-isotropic interface is
formed interface §+0) and one has small disturbancesy ~ 1.4xX10°° J/n? [36], i.e., 5.5< 10" in our units ofgA pd?.
superimposed onto the static solution. From the resulting Adding up ?/9xdz applied to thex componentu) and
condition — 9% 9x? applied to thez componeniw) of v in Eq. (A2a),

one ends up with

i (97,) 30, 502) thermodynamic equilibrium is in principle questionable:
P Wl_ ’

9(To(zo+ )+ 6(zo+ 1), Io(2o+ 1) + m(2o+ 1))=0,

2
(A11) Kg2?? _gas_ 9
v ot

Pl 1+ 0—2) 8(z—z9)+1]6,
ox

the excursiony of the interface is determined by a Taylor
expansion up to first order with respect to the small quanti-
ties 5, ,0:

(A15)

a0 ¥
dg dTy ogg dll, ag g n x
99 Al 99 dlho| . 99 99 _ (A16)
T, dz Tatt, dz |7 o, 0% T g, m(20)=0
(A12)  with the velocity potential defined itA7) and V2= 9%/ 9x?

where all derivatives are taken at the interface. In our casﬁL 9°/92°. The .folloyvmg dimensionless control parameters
the derivative ofg with respect tdI, can be neglected rela- ave been defined:

tive to that of g with respect toT,. This can easily be 4 4

checked for the two summands of the factor sfon the R= g—(aAT), RQ=g—(aQ/C ),

left-hand side of Eq(A12). Their ratio is determined by the VK VK P

slope dIl,/dTy). of the coexistencéClausius-Clapeyron

. d3
curve evaluated aty: RAPZQ—(AP/P)- (A17)
VK
2
—99/9Tg :<dH°) __Qr (A13)  Their relative magnitude is described by the rafigg]
aglally  \dTo/ . Tolp2a—p1)’
: Ra, Ro
With the use of dTo/dz=(T,—T,)/d and —dIl,/dz P=—2" Re=x (A18)

=(pg) ! one finds the ratio of the pressure to the tempera-
ture part to beO(10°8). A similar estimate holds for the
m(zp) term in comparison to th&(z,) one (see also the
related discussion in Ref12]). Thus we arrive at the simple
relation

The discontinuities of the derivatives are made explicit in
terms of thes-functions at the interfacey. By integrating
with respect toz the (rescaledl jump conditions[Egs. (A9)
and (A10)] [with # inserted from Eq(A14)] are easily re-
_ _ _ covered.
g 020)dTo/dz=B6(z0),  B=(Ts TZ)/d'(AM) The physical interpretation of the parameters in @4.7)

is quite obvious, since they characterize the different desta-
Note that the reasoning above implies the continuitydof bilization mechanism. The parameteris the familiar Ray-
Again we have neglected the difference of thermal conducleigh number describing thermal buoyancy. The other pa-
tivities in the two phases. Equatid@Al14) allows for an ob- rameters are only active at the interfaceRig the latent-heat
vious interpretation: Thermal fluctuatiorz,) lead to an term Q/C, replacesAT and inR,, the gravitational accel-
excursion of the originally flat interface compatible with the erationgAp/p appears instead of the buoyant acceleration
external temperature gradient. gaAT. Note that in Ref[12] a slightly different scaling was

In Ref.[35] (related to the problem of a possible interface adopted; temperature was measured in uni®/@,, which

instability for a heavier phaskelow a lighter one, without might be more convenient when considering the lichit
buoyancy effectsit was pointed out that the requirement of —0.
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The determination of the convection threshold is standardDne arrives at a complicated equation which connects for
though tedioug38]. The equations separate with respect togiven wave numbep the growth ratey with R, z;, and the
their vertical coordinate, the “infinitely” extended hori-  other parameters in Eq$Al7) and (A18). Stationary con-
zontal coordinatex, and the timet; the dependence on the Vection at onset corresponds to a vanishing growth sate
latter variables is captured by the factor eppfipx). With ~ @nd yields the neutral curvigy(p) with its minimum at the

respect taz the solutions can be written as a linear combina-cr't'?al wave numbep=a. After the determination of the_
tion of exponentials expfzz), separately for each of the stationary threshold we always checked whether an oscilla-

. ; . tory onset might have preceded: we never found any, in line
domainsz>z,, z<z,. The eigenvalueg;, i=1, 2, and 3, y g b y

_ i with Ref.[12]. The explicit(in detail quite tricky manipu-
which depend omp and the control parameters in H&\15),  |ations have been done with the help of the well known

are the roots of a cubic equation. It is easy to see that ongap g package, which allows for symbolic as well as nu-
arrives at a linear homogeneous system for 12 expansiomerical calculations. For instance, when dealing with the ex-
coefficients, corresponding to six boundary conditiong at ponentials in the determinant, it was very convenient that the
=1 and 0 and another six at the interface z,. For non-  calculations withmAPLE can be done with arbitrary numeri-

trivial solutions of this system, the determinant has to vanishcal accuracy.
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