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Abstract

Deviations from the center within a robust neighborhood may naturally
be considered an infinite dimensional nuisance parameter. Thus, the semi-
parametric method may be tried, which is to compute the scores function
for the main parameter minus its orthogonal projection on the closed lin-
ear tangent space for the nuisance parameter, and then rescale for Fisher
consistency. We derive such a semiparametric influence curve by nonlinear
projection on the tangent balls arising in robust statistics.

This semiparametric influence curve is then compared with the op-
timally robust influence curve that minimizes maximum weighted mean
square error of the corresponding asymptotically linear estimators over in-
finitesimal neighborhoods. While there is coincidence for Hellinger balls,
at least clipping is achieved for total variation and contamination neigh-
borhoods, but the semiparametric method in general falls short to solve
the minimax MSE estimation problem for the gross error models.

The semiparametric approach is carried further to testing contami-
nated hypotheses. In the one-sided case, for testing hypotheses defined
by any two closed convex sets of tangents, a saddle point is furnished
by projection on the set of differences of these sets. For total variation
and contamination neighborhoods, we thus recover the robust asymptotic
tests based on least favorable pairs.
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1 Introduction

Robustness and semiparametrics are of the same origin, namely, the desire to get
rid of a narrow parametric model. The first achieves this by including certain
neighborhoods, the second by introducing possibly infinite dimensional nuisance
parameters. Despite of similar goals, however, the relations between these two
modern statistical developments have not been investigated systematically.

Three aspects appear to be of conceptual interest.

Nonrobustness of Adaptive Procedures Informal statements by Huber
(1981; Section 1.2) and (1996; Sections 19, 28) and similar remarks by Hampel
et al. (1986) indicate nonrobustness of adaptive estimators, that is, of estima-
tors which are asymptotically efficient for the location problem with unknown
symmetric density.

Robustness or not of adaptive estimators for more general semiparametric
models has also been addressed, and declared a field of future research, by Bickel
et al. (1993; Introduction, p 4). In this remark, specific reference is made to the
infinitesimal setup of Hampel et al. (1986).

Section 6 below presents the readily available argument to prove the nonro-
bustness in the infinitesimal setup, and describes further aspects and ensuing
problems. But the thrust of the paper is not in this direction.

Common Local Asymptotic Basis Semiparametric theory, as treated in the
accounts by Bickel et al. (1993) and van der Vaart (1998), and infinitesimal
robustness in fact share the same mathematical basis: the local asymptotic
statistical theory due to LeCam.

This mathematical framework has been explicitly declared in these mono-
graphs, but hidden from the beginning by Hampel et al. (1986); already their
Definition 1 (Section 2.1, p 84) of the basic notion—influence function, as some
kind of Gâteaux–derivative—is kept informal, deprived of neighborhoods and
of estimators and their laws. However, once these ingredients are accounted
for mathematically, as in Rieder (1994), the similarity becomes obvious, and
concerns the main issues: derivation of asymptotic lower bounds for estimator
risk, and construction of optimal estimators achieving the bounds.

In this paper, we only argue with risks and neglect estimator constructions.

Model Deviations as Nuisance Parameter While adaptive procedures
are still open for robustification, another view opens robustness to semipara-
metric arguments: In principle, and quite naturally, model deviations can be
viewed an infinite dimensional nuisance parameter. Thus a neighborhood model
about a parametric family may be interpreted as a semiparametric model.

And this is the thrust of our paper: Bring the semiparametric methods to
bear on robust neighborhood models; in particular, derive the ‘efficient’ influence
curves. If everything works out the nicest way, the corresponding estimators
ought to be optimal for the parameter of the center model, in the presence
of model deviations; which is exactly what one expects from optimally robust
estimators.
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Outline of the Paper In Section 2, we set up the semiparametric approach,
including a smooth semiparametric model, tangent sets, influence curves of
functionals and asymptotically linear estimators, projections on tangent spaces,
the canonical influence curve, the Cramér–Rao and more general asymptotic
minimax bounds. The development derives the semiparametric recipe which
amounts to compute the scores function for the main parameter minus its or-
thogonal projection on the closed linear tangent space for the nuisance parame-
ter, and then rescale for Fisher consistency. Our presentation differs from Bickel
et al. (1993; Chapters 2–3) and van der Vaart (1998; Chapter 25) in that we
simultaneously consider the whole set of influence curves, not only the canonical
one. Moreover, adaptivity, existence of bounded influence curves, the case of a
finite dimensional nuisance tangent space, and an asymptotic confidence bound
that uses nonlinear projection on closed convex cones are addressed.

In Section 3, we formulate the robust setup of infinitesimal neighborhoods.
The embedding in the semiparametric mold creates an identifiability problem,
and requires the so-called idealistic attitude towards robustness. The deter-
mination of the corresponding tangent sets then leads to balls which span the
entire L2 of expectation zero; in particular, the subtraction of the projection
would annihilate the scores. But the semiparametric recipe seems intuitively
plausible even if the nuisance tangent set happens not to be a linear space.

In Section 4, therefore, we deviate from the dogmatic recipe and, from
the scores, subtract only its projection on the closed balls themselves. In the
Hellinger case, the resulting semiparametric influence curves conicides with the
classically optimum one. In the total variation and contamination cases, the
semiparametric influence curves turn out clipped versions of the scores. Thus,
essential features of the optimally robust influence curves for these models seem
to be recovered by our nonlinearly modified semiparametric approach.

In Section 5, the semiparametric influence curve is checked more quantita-
tively under a specified risk, namely, by comparison with the optimally robust
influence curve that minimizes maximum weighted mean square error of asymp-
totically linear estimators over shrinking neighborhoods. For Hellinger balls, the
two influence curves coincide (with the classically optimum one). In the case
of total variation balls, the semiparametric influence curve solves the robust
mean square error problem only for a particular bias weight, respectively, for
bias weight one and a different neighborhood radius (in an example shown to
be larger than the given radius). For parameter dimension one, the comparison
is also done with respect to a certain confidence risk. In the case of contamina-
tion neighborhoods, the semiparametric influence curve is bounded only from
above. As the semiparametric influence curve interchanges linear combination
and truncation, in comparison with the optimally robust influence curve, the
discrepancy between the two seems to increase with the parameter dimension.

Section 6 gives the brief argument that adaptive estimators not only inherit
the asymptotic efficiency of the estimator they adapt but also its nonrobust-
ness against infinitesimal gross errors, if only the canonical influence curve is
unbounded. The problem of adapting optimally robust estimators (estimating
out the unknown nuisance parameter) is suggests itself but not treated further.
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Section 7 applies the ideas to testing. Thus, the semiparametric extension
of Neyman’s C(α) -tests (to the case of an infinite dimensional nuisance param-
eter) may be modified nonlinearly to become applicable to the robust tangent
balls. Then, for contaminated one- and multisided hypotheses about the main
parameter, at least sensibly bounded test statistics are obtained. In general, op-
timally robust tests are not even available, against which these semiparametric
competitors might be judged.

In the one-sided, one parameter case however, and for total variation and
contamination neighborhoods, the asymptotic tests based on least favorable
pairs in the sense of Huber and Strassen (1973) define the ultimate robust-
ness standard. In Section 8, our semiparametric recipe is able to recover these
optimally robust tests. More generally, a saddle point is furnished for testing
hypotheses defined by any two closed convex sets of tangents, via (nonlinear)
projection on the set of differences of these sets.

Conclusions In the infinitesimal robust setup, the modified semiparametric
recipe mostly yields estimators and tests which are reasonably robust. Exact
agreement with an optimally robust procedure may be achieved for special loss
functions. But, since there is a difference in general, not all aspects of the robust
model seem to be caught correctly by the semiparametric method. Coincidence
occurs rather in the context of testing than estimation, and then rather for
Hellinger and total variation balls than for contamination neighborhoods. The
semiparametric method copes with parameter dimension greater than one more
easily than the robust method.

2 The Semiparametric Setup

To set up the standard semiparametric framework, we employ some family Q
in the set M of all probabilities on some sample space (Ω,B) ,

Q = {Qθ,ν | θ ∈ Θ , ν ∈ Hθ } ⊂ M (2.1)

The parameter θ of interest is finite (k -)dimensional, out of some open param-
eter set Θ ⊂ Rk , whereas ν acts as nuisance parameter. For each θ , ν ranges
over some set Hθ ; typically, subsets of some infinite dimensional function spaces;
densities or differences of densities (Section 3). The observations are assumed
independent identically distributed, x1, . . . , xn ∼ Qθ,ν . Estimators of θ may be
any functions Sn: Ωn → R

k which are product measurable Bn /Borel Bk . Let
us fix (θ0, ν0) , the true but unknown values of main and nuisance parameter.

Optimality results for the estimation of θ0 can in general only be derived
asymptotically, for sample size n → ∞ . Moreover, to obtain meaningful re-
sults, estimators, now estimator sequences S = (Sn) , must be judged not unly
at (θ0, ν0) but under local alternatives about (θ0, ν0) . Subsequently, the fixed
parameter will be omitted whenever feasible. Thus, we put Qθ0,ν0 = Q , and
denote expectation and covariance under Q by E and C. Also the spaces L2
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and L∞ of square integrable and essentially bounded real functions, respec-
tively, refer to the fixed Q = Qθ0,ν0 . The corresponding spaces of Rk valued
functions are denoted by Lk2 and Lk∞ .

For the local asymptotics a certain smoothness of the parametric model is
required, in the sense of mean square differentiability at (θ0, ν0) of square root
densities: There exists some function Λ ∈ Lk2 —the scores function for the main
parameter θ at (θ0, ν0)—such that for each a ∈ Rk , and for each g ∈ ∂2Q
there is some path t 7→ νgt ∈ Hθ0+ta such that, as t→ 0 in R ,√

dQθ0+ta,νgt
=
(
1 + 1

2 t(a
′Λ + g)

)√
dQθ0,ν0 + o(t) (2.2)

In this context, the tangent set ∂Q = ∂1Q + ∂2Q of the model Q at (θ0, ν0)
appears, where ∂1Q = { a′Λ | a ∈ Rk } is the tangent space for the first pa-
rameter component, and ∂2Q ⊂ L2 denotes the tangent set for the nuisance
component; all tangents in either class ∂∗Q necessarily have expectation zero.
The covariance I = C Λ is the Fisher information of the ν0 -section Qν0 of
model Q for the parameter θ at θ0 ; rk I = k , by (2.8) and (2.9) below.

As for complete technical details, maybe in slightly different notations, the
reader may consult the textbooks by Bickel et al. (1993; Chapters 2–3), van der
Vaart (1998; Chapter 25), and Rieder1(1994; Chapters 2–4).

Influence functions, or influence curves (IC), ψ for model Q at (θ0, ν0) are
defined by the conditions

ψ ∈ Lk2 , Eψ = 0 , EψΛ′ = Ik , Eψg = 0 ∀g ∈ ∂2Q (2.3)

where Ik denotes the k × k identity matrix. The set of all influence curves for
model Q at (θ0, ν0) is denoted by Ψ = Ψθ0,ν0 .

On the one hand, influence curves go with functionals T :Q → R
k which

are differentiable, with respect to model Q at (θ0, ν0) in accordance with (2.2),
and are Fisher consistent for the main parameter such that

T (Qθ0+ta,νgt
) = T (Qθ0,ν0) + Eψ(a′Λ + g) t+ o(t) = θ0 + ta+ o(t) (2.4)

On the other hand, influence curves go with asymptotically linear estimators.
These are estimators S = (Sn) that have an expansion

√
n (Sn − θ0) =

1√
n

n∑
i=1

ψ(xi) + oQn(n0) (2.5)

where the remainder tends to zero in probability, under the sequence of prod-
uct measures Qn . Such estimators are asymptotically normal in accordance
with (2.2): Setting Qn(a, g) = Qθ0+sna, ν

g
sn

for sn = 1/
√
n , their distributions

under Qnn(a, g) converge weakly as n→∞ , for every a ∈ Rk and g ∈ ∂2Q ,
√
n (Sn − θ0)(Qnn(a, g)) −−→w N (a,Cψ) (2.6)

1HR, henceforth
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Given any ψ ∈ Ψ, T (M) = θ0 + 2
∫
ψ
√
dQ
√
dM and Sn = θ0 + 1/n

∑
ψ(xi)

are constructions to achieve (2.4) and (2.5), which however depend on (θ0, ν0) .
For either tangent set ∂�Q let lin ∂�Q and c` lin ∂�Q denote the linear span,

respectively the closed linear span, of ∂�Q in L2 . Thus, c` lin ∂1Q = ∂1Q , and
c` lin ∂Q = ∂1Q + c` lin ∂2Q as dim ∂1Q is finite. Introduce the orthogonal
projection π�:L2 → c` lin ∂�Q on c` lin ∂�Q , and Π�:Lk2 → (c` lin ∂�Q)k the
orthogonal projection in the product space; then Π� = (π�, . . . , π�)′ , acting
coordinatewise.

In view of (2.3), the projection Π(ψ) on (c` lin ∂Q)k must be the same for
every ψ ∈ Ψ—the shortest, or canonical, influence curve % . In fact,

Π(ψ) = % = J−1
(
Λ−Π2(Λ)

)
∀ψ ∈ Ψ (2.7)

where
J = C

(
Λ−Π2(Λ)

)
= I − C Π2(Λ) (2.8)

denotes the Fisher information of model Q for the parameter θ at (θ0, ν0) .
A little argument shows that the existence of influence curves is equivalent

to regularity, that is, positive definiteness, of J ,

Ψ 6= ∅ ⇐⇒ J > 0

⇐⇒ a′Λ /∈ c` lin ∂2Q ∀ a ∈ Rk , a 6= 0
(2.9)

which condition we want to assume subsequently.

Remark 2.1 [ adaptivity ] With the nuisance parameter ν fixed to ν0 , the
ν0 -section Qν0 of model Q is a model without nuisance parameter,

Qν0 = {Q θ,ν0 | θ ∈ Θ } (2.10)

satisfying (2.2) with ∂2Qν0 = {0} and ∂Qν0 = ∂1Q . Consequently, the canoni-
cal influence curve and the Fisher information of model Qν0 for the parameter θ
at θ0 are given by, respectively,

%̂ = I−1Λ , I = C Λ (2.11)

The following bound of J by I , in the positive definite sense, is an immediate
consequence of (2.7), (2.8), and (2.11),

C %̂ = I−1 ≤ J−1 = C % (2.12)

where the lower bound is attained iff % = %̂ , which in turn holds iff Π2(Λ) = 0 .
This is the case of adaptivity. The construction of adaptive estimators is a
major subject of semiparametric theory; confer Bickel (1982; Sections 3 and 4),
Klaassen (1987), Schick (1986), and further references mentioned therein. ////

Remark 2.2 [ bounded influence curves ] The existence of bounded influence
curves ψ ∈ Ψ, which may become relevant for robustness in semiparametric
models, proves equivalent to the following condition

a′Λ /∈ c` ′ lin ∂2Q ∀ a ∈ Rk, a 6= 0 (2.13)
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where c` ′ lin denotes the closed linear span in L1 ; note the difference to (2.9).
The equivalence follows from Theorem 1 of Shen (1995) on observing that his
condition (S′), with c` ′ lin(∂2Q+constants) in the place of c` ′ lin ∂2Q , because
E Λ = 0 and E g = 0 ∀g ∈ ∂2Q , in fact simplifies to (2.13).

Naturally, condition (2.13) is stronger than (2.9). When lin ∂2Q has finite
dimension, however, it is closed in both L1 and L2 , and consequentially, the
mere existence of influence curves implies the existence of bounded ones. ////

Remark 2.3 [ finite dimensions ] In case Hθ ⊂ R
m for some finite dimen-

sion m , suppose the square root densities of model Q are L2 -differentiable
at (θ0, ν0) with respect to the full parameter (θ, ν) , such that (2.2) is satisfied
with paths νgt = ν0 + tb and g = b′∆, where ∆ ∈ Lm2 , E ∆ = 0 , denotes the
scores function for the nuisance parameter ν at (θ0, ν0) .

Then ∂2Q = { b′∆ | b ∈ Rm } , and the Fisher information H of model Q
for the full parameter (θ, ν) at (θ0, ν0) is

H = C
(

Λ
∆

)
=
(
I C
C′ D

)
where C = E Λ ∆′ (2.14)

The Fisher information D = C ∆ for the parameter ν at ν0 , of model Qθ0 ,
the θ0 -section of model Q , is assumed of full rank m .

Then Π2(Λ) = C D−1∆ and J = C
(
Λ−Π2(Λ)

)
= I − C D−1C′ . Moreover,

we have J > 0 iff H > 0 , since detH = detD detJ . Because D > 0 ,
condition (2.13), too, is equivalent to rkH = k +m .

In this case,

% = J−1
(
Λ− C D−1∆

)
= (Ik, 0k×m)H−1

(
Λ
∆

)
(2.15)

defines the shortest influence curve—in fact, the first component of the shortest
influence curve for the full parameter, which one usually is tempted to ascribe
to the MLE.

Starting from this function H−1
(

Λ
∆

)
, bounded influence curves have been

constructed explicitly by HR (1994), Remark 4.2.11 and 5.5(8), 5.5(9), if the
matrix D there is specialized to the projection matrix (Ik, 0k×m) . ////

Closely related to the orthogonal projection (2.7) of influence curves leading to
the canonical influence curve % is the Cramér–Rao bound for the covariance,

Cψ ≥ J−1 = C % ∀ψ ∈ Ψ (2.16)

in the positive definite sense, with equality iff ψ = % . In view of (2.6), this bound
concerns the asymptotic covariance of asymptotically linear estimators. Thus,
the asymptotically linear estimator with canonical influence curve % at (θ0, ν0)
is the asymptotically most accurate to estimate θ0 , in model Q .

That this optimality is not restricted to estimators which are asymptotically
linear, but need to fulfill only a regularity condition weaker than asymptotic
linearity, or may even be arbitrary measurable, is the subject of the convo-
lution and asymptotic minimax theorems, respectively; confer, for example,
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Bickel et al. (1993; Theorem 3.3.2), HR (1994; Theorems 4.3.2, 4.3.4), van der
Vaart (1998; Theorems 25.20, 25.21, Lemma 25.25).

Remark 2.4 [ nonlinear projection ] These optimality theorems require some
structure of the tangent set ∂Q , to be a linear space or at least a convex cone.
In spite of the special structure, the projection in terms of which the bounds
are stated, is generally that on the closed linear span c` lin ∂Q .

One exception is the concentration bound for asymptotically median unbi-
ased estimators by Pfanzagl and Wefelmeyer (1982; Theorem 9.2.2), in terms
of the projection on a closed convex cone. In HR (2000) we however show that
the bound may not possibly be attained, and derive a suitable one-sided bound
that is still based on the projection on c` ∂Q—as opposed to c` lin ∂Q . ////

3 The Infinitesimal Robust Setup

In robust statistics, we start with an ideal model P = {Pθ | θ ∈ Θ }—from
prior knowledge or nonparametric estimation in advance—which is smoothly
parametrized by some finite (k -)dimensional parameter θ out of an open sub-
set Θ ⊂ Rk ; formally, P is some model as assumed in Section 2 but deprived
of its nuisance parameter. Since we do not believe in such a model P strictly,
we enlarge its elements Pθ to certain neighborhoods U(θ; r) ⊂M of radius r .
Then the i.i.d. observations, under the hypothesis θ , may be allowed to follow
any law Q ∈ U(θ; r) , while still θ has to be estimated. Thus, the neighborhood
model

Q =
{
Q
∣∣ θ ∈ Θ , Q ∈ U(θ; r)

}
(3.1)

is obtained, which is clearly semiparametric: For Q ∈ U(θ; r) , the deviation
Q − Pθ from the ideal Pθ appears as nuisance parameter ν , ranging over the
sets of differences Hθ = {Q−Pθ | Q ∈ U(θ; r) } , where Q = Qθ,ν with ν ∈ Hθ .
In particular, the ideal model P is the ν0 -section of model Q at ν0 = 0.

Remark 3.1 [ nonidentifiability ] This interpretation requires the so-called ide-
alistic robustness approach, which assumes the existence of an ideal parameter
to be estimated even under deviations from the parametric model.

If one does not start with a true θ , but seeks θ depending on the real
law Q , one runs into the identifiability problem, that is, multiple solutions θ of
the equation Q = Qθ,Q−Pθ = Pθ+Q−Pθ . This is the case already for members
of the ideal model Q = Pζ with ζ close to θ such that Pζ ∈ U(θ; r) (if, as
usual, the parametrization is continuous relative to the neighborhoods).

This problem has been dealt with by the ‘pragmatic’ robustness approach,
which defines the parameter by means of functionals that are Fisher consistent
at the ideal model and extend the parametrization to the neighborhoods. In
fact, both approaches lead to the same optimally robust influence curves and
procedures—once the choice of functional is subjected to robustness criteria;
confer HR (1994; Preface, Subsection 4.3.3). So the difference between the two
approaches, and hence the difficulty of the first, seems not essential. ////
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We specify the neighborhoods U(θ; r) to be balls around Pθ of radius r in
Hellinger or total variation distance, or contamination neighborhoods,

U∗(θ; r) =
{
Q ∈M

∣∣ d∗(Q,Pθ) ≤ r } (3.2)

Uc(θ; r) =
{
Q = (1− r)+ Pθ + (1 ∧ r)M

∣∣M ∈M}
(3.3)

where the Hellinger and total variation metrics dh and dv are given by

2 d2
h(Q,P ) =

∫ ∣∣√dQ−√dP ∣∣2 , 2 dv(Q,P ) =
∫
|dQ− dP | (3.4)

Let us fix θ0 ∈ Θ and ν0 = 0, and write P for the previous Q = Qθ0,ν0 = Pθ0 .
In the sequel, the scores function Λ is that of the ideal model P , for θ at θ0 .

Towards the differentiability (2.2) of the neighborhood model Q∗ at (θ0, 0) ,
depending on the type of neighborhoods U∗(θ0; r) , we introduce the following
balls G∗ = G∗(θ0; r) as candidate tangent sets ∂2Q∗ ,

Gh =
{
g ∈ L2

∣∣ E g = 0 , E g2 ≤ 8r2
}

(3.5)

Gv =
{
g ∈ L2

∣∣ E g = 0 , E |g| ≤ 2r
}

(3.6)

Gc =
{
g ∈ L2

∣∣ E g = 0 , g ≥ −r
}

(3.7)

where Gh ⊂
√

2 Gv as dv ≤
√

2 dh , and Gc ⊂ Gv = Gc − Gc by (8.35) below.
The balls G∗ have already appeared in Bickel (1981).

Proposition 3.2 The tangent sets at (θ0, 0) of the neighborhood model Q∗ ,
for ∗ = h, v, c , are

∂1Q∗ = { a′Λ | a ∈ Rk } , ∂2Q∗ = G∗ , ∂Q∗ = ∂1Q∗ + ∂2Q∗ (3.8)

Proof Invoke bounded approximations Λ(t) of Λ such that E Λ(t) = 0 and,
as t → 0 , sup |Λ(t)| = o(t−1) and E |Λ(t) − Λ|2 → 0 . Given a ∈ Rk and any
bounded g ∈ G∗ , employ the path νgt = tg in defining measures Qt = Qθ0+ta,tg

by
dQt =

(
1 + t(a′Λ(t) + g)

)
dP (3.9)

Then mean square differentiability (2.2) is satisfied, and these probabilities be-
long to the neighborhoods U∗(θ0 + ta; tr) in the following, entirely acceptable
sense,

d∗(Qt, Pθ0+ta) ≤ tr + o(t) (3.10)

in the cases ∗ = h, v . In the case ∗ = c , there exist approximations P̃θ0+ta

of Pθ0+ta , namely, P̃θ0+ta with P density 1 + tra
′Λ(t) , tr = t/(1 − tr) , such

that
dv(P̃θ0+ta, Pθ0+ta) = o(t) and Qt ∈ Ũc(θ0 + ta; tr) (3.11)

for the contamination balls Ũc(θ0 + ta; tr) about P̃θ0+ta .
In either case, we pass to the closure of G∗ ∩ L∞ in L2 , which is G∗ . The

technical details needed in this proof may be found in HR (1994): Remark 4.2.3,
Lemma 4.2.4, Lemma 5.3.1, and proof to Theorem 5.4.1 (a). ////
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The tangent sets G∗ are closed convex, and the smallest cone and linear space
containing either G∗ is already the full tangent space L2 ∩ {E = 0} , provided
only that r > 0 . Consequentially, Λ − Π2(Λ) = 0 and J = 0 in (2.7); in
particular, adaptivity fails drastically. The canonical IC % is undefined.

4 The Semiparametric Influence Curve

In the robust setup, we therefore modify definition (2.7) of canonical influence
curve, replacing π2 by the nonlinear projection π̃2:L2 → ∂2Q∗ on ∂2Q∗ = G∗
itself. Correspondingly, Π2 is replaced by Π̃2 = (π̃2, . . . , π̃2)′:Lk2 → (∂2Q∗)k ,
defined coordinatewise. Thus, the following function %̃∗ , called semiparametric
influence curve, is obtained,

%̃ = K−1
(
Λ− Π̃2(Λ)

)
(4.1)

with scaling matrix
K = E

(
Λ− Π̃2(Λ)

)
Λ′ (4.2)

The definition of %̃ requires detK 6= 0. Rescaling of Λ− Π̃2(Λ) by K ensures
Fisher consistency, E %̃Λ′ = Ik . In general K 6= C

(
Λ− Π̃2(Λ)

)
, since residuals

are no longer orthogonal to the approximating ball.

Remark 4.1 The modified projection recipe (4.1), (4.2)—subtracting from Λ
the component explained by the nuisance parameter, and then rescaling for
Fisher consistency—seems no less plausible than the original one based on linear
projection. Derived only by analogy, the semiparametric influence curve must
however be checked against a mathematical solution to some suitable extension
of the Cramér–Rao bound, or convolution and asymptotic minimax theorems,
in the semiparametric/robust setup with full tangent balls. ////

The following approximation lemma is well-known and will be applied to the
balls G = G∗ , the space X = L2 , and the coordinates x of Λ ; then g̃ = π̃2(Λj) .

Lemma 4.2 Let G be a nonempty closed and convex subset of some Hilbert
space X , and x ∈ X . Then the minimum norm problem

|x− g|2 = min ! g ∈ G (4.3)

has a unique solution g̃ ∈ G , which is characterized by

〈x− g̃|g − g̃〉 ≤ 0 ∀ g ∈ G (4.4)

In the sequel, I = C Λ = (Ii,j) and %̂ = I−1Λ denote Fisher information (of
full rank k ) and the canonical influence curve, of the ideal model P at θ0 .

We now determine the semiparametric influence curves %̃h , %̃v , %̃c for the
Hellinger, total variation, and contamination neighborhood models, respectively.
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Theorem 4.3 [ Hellinger model ] The semiparametric IC %̃h exists iff

8 r2 < minj=1,...,k Ij,j (4.5)
And then

%̃h = %̂ = I−1Λ (4.6)

Proof In the case k = 1 we have π̃2 = γΛ with γ = positive root of the
minimum of 1 and 8 r2/I . Indeed, by Cauchy–Schwarz, for every g ∈ Gh ,

〈Λ−γΛ|g〉 = (1−γ)〈Λ|g〉 ≤ (1−γ)
√

8 r I1/2 = (1−γ)γ I = 〈Λ−γΛ|γΛ〉 (4.7)

For general k ≥ 1 , this implies that Λ − Π̃2(Λ) = DΛ and K = D I with
matrix D = diag(1− γj) , where 0 ≤ γj ≤ 1 , and γj = 1 iff Ij,j ≤ 8r2 . ////

Theorem 4.4 [ total variation ] The semiparametric IC %̃v exists only if

2 r < minj=1,...,k E |Λj | (4.8)

And then Λ̃(v) = Λ− Π̃2(Λ) has coordinates

Λ̃(v)
j = v′j ∨ Λj ∧ v′′j (4.9)

where the clipping constants v′j < 0 < v′′j are uniquely determined by

E(v′j − Λj)+ = r = E(Λj − v′′j )+ (4.10)

Proof Obviously, Λj − π̃2(Λj) = 0 iff E |Λj | ≤ 2r . Thus assume (4.8).
In case k = 1, in order to minimize E(Λ − g)2 for g ∈ Gv , we set up a

Lagrangian E
(
(Λ− g)2 + 2αg+ 2β |g|

)
with some unspecified real multipliers,

and try to minimize the integrand I(g) = (Λ−g)2 + 2αg+ 2β |g| at each point.
A minimizing value g̃ = 0 means that Λ2 ≤ (Λ − g)2 + 2αg + 2βg for all

numbers g > 0 ; that is, Λ − α ≤ β , and Λ2 ≤ (Λ − g)2 + 2αg − 2βg for all
numbers g < 0 ; that is, Λ− α ≥ −β . This is the case when Λ− g̃ = Λ.

If g̃ > 0 , then the derivative dI(g̃) = 0 gives Λ − g̃ = α + β . If g̃ < 0 ,
dI(g̃) = 0 gives Λ−g̃ = α−β . These are the cases when Λ−α > β , respectively
when Λ− α < −β .

Altogether, Λ− g̃ = (−β) ∨ (Λ− α) ∧ β + α = (α− β)∨Λ∧ (α+ β) seems
to be the necessary form of q̃ = Λ− g̃ .

Now define q̃ = v′ ∨ Λ ∧ v′′ by means of the unique solutions v′ < 0 < v′′

of E(v′ − Λ)+ = r = E(Λ − v′′)+ , which is a matter of continuity (dominated
convergence theorem), monotony (strict), and the intermediate value theorem.
We shall verify that this q̃ minimizes E q2 subject to E q = 0, E |Λ− q| ≤ 2r .

By the definition of q̃ , E(Λ− q)q̃ ≤ v′′ E(Λ− q)+ − v′ E(q − Λ)+ , which is
less or equal r(v′′− v′) = E(Λ− q̃)q̃ . Thus E(−q̃)(q− q̃) ≤ 0 , which is (4.4).////

Theorem 4.5 [ contamination ] The semiparametric IC %̃c exists only if

r < −maxj=1,...,k infP Λj (4.11)
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where infP denotes the P essential infimum. And then Λ̃(c) = Λ− Π̃2(Λ) has
coordinates

Λ̃(c)
j = (Λj + r) ∧ uj (4.12)

with clipping constant uj > 0 uniquely determined by

0 = E (Λj + r) ∧ uj (4.13)

Proof Obviously, Λj − π̃2(Λj) = 0 iff Λj ≥ −r a.e.P . Thus assume (4.11).
In case k = 1, in order to minimize E(Λ − g)2 for g ∈ Gc , we pass to the

equivalent problem of minimizing E q2 subject to E q = 0, q ≤ Λ+r , for which
we minimize a Lagrangian E q2 − 2uE q = E(q − u)2 + constant , subject to
q ≤ Λ + r . Doing this pointwise, the necessary form seems q̃ = (Λ + r) ∧ u .

Now consider the function f(s) = E(Λ + r) ∧ s for s ≥ 0 . It is monotone,
continuous [ dominated convergence applies since −(Λ + r)− ≤ f ≤ (Λ + r)+ ],
and has limits −E(Λ + r)− < 0 and r ≥ 0 at 0 and ∞ , respectively. Thus f
has a zero u > 0 , which we use to define q̃ = (Λ + r)∧ u . (Only in case r = 0,
may u be nonunique, but then q̃ = Λ.) By construction, q̃ satisfies the side
conditions E q = 0, q ≤ Λ + r .

To prove q̃ optimal, let q ∈ L2 be any such function. Then q ≤ q̃ = Λ + r
as soon as q̃ < u . Thus (u − q̃)(u − q) is always greater or equal to (u − q̃)2 .
Consequentially, E(−q̃)(q − q̃) = E(u− q̃)(q − u+ u− q̃) ≤ 0 ; which is (4.4).////

Remark 4.6 In Theorems 4.4 and 4.5, conditions (4.8) and (4.11), respectively,
ensure that E Λ(∗)

j Λj > 0 for ∗ = v, c . This may be seen by writing

E Λ(v)
j Λj = E Λ(v)

j Λ(v)
j + r(v′′j − v′j ) (4.14)

where r(v′′j − v′j ) > 0 unless r = 0 (and then Λ(v)
j = Λj , and Ij,j > 0),

respectively by writing

E Λ(c)
j Λj = E Λ(c)

j Λ(c)
j + E Λ(c)

j

(
Λj + r − Λ(c)

j

)
(4.15)

where Λj + r ≤ uj a.e.P only if r = 0 (and again Λ(c)
j = Λj , Ij,j > 0).

However, whether condition (4.8), respectively (4.11), for dimension k > 1
already imply the nonsingularity of K , hence the existence of %̃v , respectively
of %̃c , is unclear. ////

Remark 4.7 The optimization problems of this section resemble those that
determine robust influence curves, however with three distinctions:

(1) The approximation E |Λ− g|2 = min ! , instead of E |ψ|2 = min ! .
(2) The L2 ,L1 , and infP bounds on tangents translate into bounds on

influence curves in the dual norm supg∈G∗ |Eψg| , for ∗ = h, v, c , respectively.
(3) There is no condition on tangents that would correspond to the Fisher

consistency EψΛ′ = Ik of influence curves. ////

Thus, at least, certain features of robust influence curves are recovered.



NEIGHBORHOODS AS NUISANCE PARAMETERS 13

5 Comparison of Semiparametric and Robust
Estimators

More precisly, the semiparametric recipe (4.1), (4.2) will be judged under a
certain etimator risk. How does the semiparametric estimator—the asymptot-
ically linear estimator with semiparametric influence curve %̃∗—compare with
the robust estimator—the asymptotically linear estimator with robust influence
curve η∗ that, by definition, minimizes maximum asymptotic mean square error
of asymptotically linear estimators? The maximum is evaluated over shrink-
ing neighborhoods U∗(θ0; r/

√
n ) , as the sample size n tends to infinity, with

starting radius r ≥ 0—henceforth, radius r—fixed. For asymptotically linear
estimators, this maximum asymptotic MSE naturally extends the covariance
criterion employed in the Cramér–Rao bound to the infinitesimal robust setup.

Remark 5.1 An extension of asymptotic maximum MSE over neighborhoods,
from asymptotically linear to arbitrary estimators S = (Sn) , employing a risk
such as

lim
b→∞

lim
c→∞

lim sup
n→∞

sup
|t|≤c

sup
Q∈Un(t;r)

∫
b ∧ |Rn|2 dQn (5.1)

where Un(t; r) = U∗(θ0+t/
√
n , r/

√
n ) of fixed radius r , and Rn =

√
n (Sn−θ0) ,

has not been achieved. Theorem 4.1(A) of HR (1981 b), which admits arbitrary
estimators, is restricted to one sided confidence probabilities, dimension k = 1,
and total variation, contamination neighborhoods (for which least favorable
probability pairs exist). Therefore, except in this special case, the comparison of
semiparametric and robust ICs is bound to asymptotically linear estimators.////

For the estimation of θ0 , over shrinking neighborhoods U∗(θ0; r/
√
n ) , radius r ,

we consider a weighted MSE with nonnegative bias weight β . In the case of
estimators of θ0 that are asymptotically linear with influence curves ψ at θ0 ,
the maximum asymptotic weighted mean square error is

MSE∗(ψ;β, r) = E |ψ|2 + βr2ω2
∗(ψ) (5.2)

As for the derivation of this risk with weight β = 1, the bias terms ω∗(ψ) , and
the minimization of MSE∗(ψ;β, r) for ψ ∈ Ψ, which determines the robust
influence curve η∗ uniquely, confer HR (1994; Subsection 5.5.2).

The influence curves Ψ = Ψθ0 , and asymptotic linearity of estimators, are
defined with respect to the ideal model P at θ0 .

5.1 Coincidence in Hellinger Model

Hellinger bias, according to HR (1994; Proposition 5.5.3), is given in terms of the
maximum eigenvalue of the covariance, ω2

h(ψ) = 8 maxev Cψ . In view of the
Cramér–Rao bound (2.16), therefore, Hellinger risk MSEh(. ;β, r) is minimized
by the canonical IC (2.11): %̂ = I−1Λ, for every β, r ∈ [ 0,∞) . Theorem 4.3
thus yields the following coincidence.
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Theorem 5.2 Assume (4.5): 8 r2 < minj=1,...,k Ij,j . Then the semiparametric
IC %̃h agrees with the robust IC ηh ,

%̃h = %̂ = I−1Λ = ηh (5.3)

minimizing MSEh(. ;β, r) , for every β ∈ [ 0,∞) .

In principle, the coincidence is a first justification of the semiparametric recipe.
The value of this result, however, is somewhat diminished since Hellinger balls,
in certain respects, are deemed too small; confer Bickel (1981; Théorème 8)
and HR (1994; Example 6.1.1). The gross error neighborhoods (total variation,
contamination) seem in practice more suitable for robustness.

Remark 5.3 Identity (5.3) implies equality C %̃h = C %̂ in (2.12), with the
semiparametric and robust IC %̂ = ηh in the place of the canonical IC, which
might suggest adaptivity. However, due to bias, covariance alone does not define
the right risk in the Hellinger model Qh , which is why MSEh is used. Clearly,

MSEh(ηh;β, r) = tr I−1 + 8βr2 maxev I−1 > tr I−1 = MSEh(%̂;β, 0) (5.4)

if only βr > 0 . Thus, despite %̂ achieves minimum MSE in model Qh as
well as in P , strict inequality holds in (5.4), so adaptivity is violated; Hellinger
neighborhoods do not go for free. ////

5.2 Relations for Total Variation

Dimension k = 1

Total variation bias in one dimension, according to HR (1994; Proposition 5.5.3),
is ωv(ψ) = supP ψ − infP ψ . The robust IC ηv minimizing MSEv(. ;β, r) is
given by HR (1994; Theorem 5.5.7), with βr2 replacing β there. Thus,

ηv = c′ ∨AΛ ∧ c′′ (5.5)

for any numers c′ < 0 < c′′ and A such that E ηv = 0, E ηvΛ = 1, and

βr2(c′′ − c′) = E(c′ −AΛ)+ (5.6)

The following result justifies the semiparametric recipe (4.1)–(4.2) if one accepts
the particular bias weight implicitly defined by (5.7).

Theorem 5.4 Assume (4.8): r < E Λ+ . Then the semiparametric IC %̃v
agrees with the robust IC ηv minimizing MSEv(. ;β, r) , iff bias weight β = β(r)
is chosen such that

β−1 = r(v′′ − v′ ) (5.7)

where v′ = v′(r) < 0 < v′′(r) = v′′ are determined by

E(v′ − Λ)+ = r = E(Λ− v′′ )+ (4.10)
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Figure 1: Bias weight β(r) and radius R(r) versus radius 0 < r < 1/
√

2π , for total
variation neighborhoods Uv(θ, r/

√
n ) about the ideal location model Pθ = N (θ, 1) .

Proof Theorem 4.4 supplies %̃v = Av′ ∨ Λ ∧ v′′ with clipping constants v′, v′′

determined by (4.10) and rescaling constant A−1 = K > 0 (Remark 4.6).
Thus %̃v attains form (5.5) with c′ = v′A and c′′ = v′′A ; in particular,

βr2(c′′ − c′) = βr2(v′′ − v′ )A . Since Ar = AE(v′ − Λ)+ = E(c′ − AΛ)+

by (4.10), equation (5.6) is the same as (5.7). ////

Bias weight β = 1, in view of (5.1), seems the most natural choice. Then the
semiparametric IC %̃v minimizes MSEv(. ; 1, r1) , since it is the robust IC ηv for
this radius r1 , iff

r−1
1 = v′′(r1)− v′(r1) (5.8)

Let us keep bias weight β = 1. Then the semiparametric IC %̃v defined for
radius r minimizes the risk MSEv(. ; 1, R(r)) for another radius R(r) given by

R2(r) = r
/(
v′′(r)− v′(r)

)
= r2β(r) (5.9)

since %̃v is of form (5.5) and (5.6), hence is the robust ηv , for this radius R(r) .

Example 5.5 For the standard normal location model Pθ = N (θ, 1) , Figure 1
shows the bias weight β(r) and the radius R(r) defined by (5.7) and (5.9),
respectively. The function β(. ) has singularities at 0 and the right bound-
ary, which is 1/

√
2π = 0.3989 , and attains its minimum value βmin = 4.8662

at rmin = 0.1668 . In particular, no radius r1 for which β(r1) = 1 exists.
The radius R(r) descends to 0 , hence β(r) = o(r−2) , as r → 0 , and rises

to ∞ as r → 1/
√

2π . Since R(r)/r =
√
β(r) is always larger than

√
βmin ,

the semiparametric IC %̃v safeguards against more than double the amount
of contamination assumed in its definition (4.1)–(4.2) and, as β(r) > βmin , is
typically even more pessimistic.
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Figure 2: relMSE of semiparametric IC %̃v vs. robust IC ηv , for 0 ≤ r < 1/
√

2π .

Nevertheless, the efficiency loss incurred by the semiparametric IC is not
dramatic. Figure 2 plots the relative maximum asymptotic MSE,

relMSE(ηv, r) :=
MSEv(ηv; 1, r)
MSEv(%̃v; 1, r)

, 0 ≤ r < 1√
2π

(5.10)

of the semiparametric IC %̃v = %̃v,r in comparison to the robust IC ηv = ηv,r , as
a function of the radius r . relMSE(ηv, r) smoothly increases from its minimum
value 1 at r = 0 to its supremum 1.0961 as r → 1/

√
2π .

Therefore, the semiparametric IC never needs more than 10% additional
observations, in order to achieve the same accuracy in terms of MSEv(. ; 1, r)
as the robust IC. ////

Confidence risk

The asymptotic maximum risk considered in HR (1981 b), instead of mean
square error, and bounded from below for arbitrary estimators (Sn) , is based
on right and left confidence probabilities as follows,

lim
c→∞

lim sup
n→∞

sup
|t|≤c

sup
Q∈Un(t;r)

Qn(Rn < −τ) ∨Qn(Rn > τ) (5.11)

where Un(t; r) = Uv(θ0+t/
√
n , r/

√
n ) of fixed radius r , and τ ∈ (0,∞) is some

interval half-width. As already in (5.1), the standardization Rn =
√
n (Sn− θ0)

is needed only for the description of the asymptotic minimax estimator as an
asymptotically linear one.

Theorem 5.6 Assume (4.8): r < E Λ+ . Then the semiparametric IC %̃v
agrees with the robust IC ηv with respect to confidence risk (5.11) iff we choose
half-width

τ = τ(r) = 1 (5.12)
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Proof According to HR (1981 b; Theorems 4.1(A)–4.3; 1980; Theorem 3.1),
for radius

r < τ E Λ+ (5.13)

the estimator (Sn) minimizing risk (5.11) is asymptotically linear at θ0 with
IC ηv of form (4.9) and (4.10), however, with r in (4.10) replaced by r/τ .

Thus, the semiparametric IC %̃v is the robust IC ηv iff τ = 1 in risk (5.11).
And then, condition (5.13) on r is the same as (4.8). ////

Dimension k > 1

Exact total variation bias for more than one dimension is rather unwieldy,
ωv(ψ) = sup|e|=1 supP e′ψ − infP e′ψ , where sup|e|=1 extends over all unit vec-
tors in Rk ; confer HR (1994; Proposition 5.3.3). Approximate versions ω2

v;2(ψ)
and ωv;∞(ψ) have been defined by the Euclidean and sup norms in R

k of
the vector of coordinate biasses ωv(ψj) , respectively, which bound the exact
bias from below and above: ωv;∞ ≤ ωv ≤ ωv;2 ≤

√
k ωv;∞ . According to

HR (1994; Theorems 5.5.6–7) on one hand, the robust ICs ηv minimizing either
risk MSEv;s(. ;β, r) have the coordinates

ηj = c′j ∨AjΛ ∧ c′′j (5.14)

with any numbers c′j < 0 < c′′j and row vectors Aj ∈ Rk such that the side
conditions E ηv = 0 and E ηvΛ′ = Ik are met. Moreover, the clipping constants
satisfy

βr2(c′′j − c′j) = E (c′j −AjΛ)
+

(5.15)

in case s = 2, whereas, in case s =∞ , the differences c′′j − c′j are all the same

βr2(c′′j − c′j) = E (c′1 −A1Λ)+ + · · ·+ E (c′k −AkΛ)+ (5.16)

By Theorem 4.4 on the other hand, with clipping constants v′j < 0 < v′′j defined
by (4.10), and (Aj,i)−1 = K by (4.2), the semiparametric IC %̃v has coordinates

%̃j = Aj,1 v′1 ∨ Λ1 ∧ v′′1 + · · ·+Aj,k v′k ∨ Λk ∧ v′′k (5.17)

Thus, the order of clipping and linear combination is interchanged in %̃v and ηv .
So %̃v resembles, but does not exactly match, the robust ηv , therefore does not
minimize either risk MSEv;s(. ;β, r) , s = 2,∞ , if only βr > 0 .

However, the bias terms ωv;s are only bounds for the exact bias ωv , while %̃v
ought to be compared with the minimizer of the exact risk MSEv(. ;β, r) .
And, at least, %̃v has finite biasses ωv;s(%̃v) and ωv(%̃v) , hence finite risks
MSEv;s(%̃v;β, r) , and MSEv(%̃v;β, r) .

The relative increase of risk of the semiparametric IC %̃v over that of the
robust IC ηv remains to be investigated numerically—even in one dimension
when β 6= β(r) . A suboptimal %̃v may still be useful.
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5.3 Discrepancy for Contamination

Contamination bias is ωc(ψ) = supP |ψ| , the L∞ norm. The robust IC ηc
which minimizes MSEc(. ;β, r) , by HR (1994; Theorem 5.5.6), is the Hampel–
Krasker influence curve,

ηc = (AΛ− a)w , w = min
{

1,
b

|AΛ− a|

}
(5.18)

with a particular bound, namely, the solution b to the equation

βr2b = E
(
|AΛ− a| − b

)
+

(5.19)

which may be nonunique only if βr = 0 (in which case ηc = %̂ ).
The semiparametric IC %̃c , by Theorem 4.5, has coordinates

%̃j = Aj,1 (Λ1 + r) ∧ u1 + · · ·+Aj,k (Λk + r) ∧ uk (5.20)

with upper clipping constants uj defined by (4.13), and (Aj,i)−1 = K by (4.2).
Thus, in general, %̃c is unbounded so that the risk MSEc(%̃c;β, r) becomes

infinite if only βr > 0 (the only interesting case).
The intuitive convex combinations, which have been used in robust statistics

prior to any other type of neighborhoods, have always turned out very similar
to total variation in robustness respects. It is therefore surprising that the
semiparametric recipe (4.1), (4.2) may give reasonable results for one model
but not the other.

In the simplest testing context (one parameter, one-sided), however, the
discrepancy will again disappear; confer Remark 8.3 and Theorem 8.7 below.

6 Unresolved: Robust Adaptive Estimation

In the general semiparametric model of Section 2, given the canonical influence
curves (2.7), one %θ,ν for each parameter θ ∈ Θ, ν ∈ Hθ , the construction
problem is to obtain an estimator (Sn) that, for each θ ∈ Θ and ν ∈ Hθ , is
asymptotically linear at (θ, ν) with prescribed IC %θ,ν .

Infinitesimal Nonrobustness Such estimators are automatically nonrobust
in the same asymptotic, infinitesimal, setup in which their efficiency is obtained.

For example, consider the model dQθ,ν(x) = ν(x − θ) dx with location pa-
rameter θ ∈ R and nuisance parameter ν any symmetric Lebesgue density of fi-
nite Fisher information of location Iν =

∫
Λ2
ν(x)ν(x) dx with Λν = −ν̇/ν ; then

Λθ,ν(x) = Λν(x − θ) . In this model, adaptivity Π2;θ,ν(Λθ,ν) = 0 holds by rea-
sons of symmetry. Adaptive estimators have been constructed by Beran (1974)
and Stone (1975) which, at each (θ, ν) , achieve expansion (2.5) with influence
curve %θ,ν(x) = %̂θ,ν(x) = I−1

ν Λν(x − θ) , that is, are asymptotically linear
with IC %̂θ,ν . Hence, under Qnθ,ν , these estimators achieve the most concen-
trated limit law N (0, I−1

ν ) in (2.6), as if ν was known.
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The assumption of exact symmetry, however, is rather strict. In practice,
one would accept a distribution function as symmetric if it only is in a small
neighborhood of an exactly symmetric one. Such nonparametric hypotheses
of approximate symmetry have been investigated by HR (1981 a; Section 3)
and generalized by Kakiuchi and Kimura (2000). If Qθ,ν is thus enlarged to a
shrinking neighborhood U∗(θ, ν; r/

√
n ) , while still θ has to be estimated, the

adaptive estimates
√
n (Sn − θ) are driven off from their limit N (0, I−1

ν ) by
some bias up to ±r ω∗(%̂θ,ν) which, for gross error neighborhoods (∗ = v, c ),
may become infinite if only Λν = −ν̇/ν is unbounded. This readily follows from
the asymptotic linearity (2.5) and the results in HR (1994; Section 5.3).

The automatic nonrobustness of efficient estimators, under asymmetric gross
errors, in particular answers the question raised by Huber (1981; § 1.2, p 7).
The extension to the general semiparametric model with unbounded canonical
influence curve %θ,ν is obvious.

Other Robustness Aspects Not considered here are qualitative robustness
and (positive) breakdown point. Like Huber (1996; Section 28), we conjec-
ture them to be incompatible with adaptiveness, that is, asymptotic efficiency,
for the usual semiparametric models. Possibly related is the necessary nonuni-
form convergence of adaptive estimators in the symmetric location case; confer
Bickel’s (1981) presentation of Klaassen’s result. Similar results by Pfanzagl and
Wefelmeyer (1982; Proposition 9.4.1, Corollary 9.4.5) connect this nonuniform
convergence more explicitly with the discontinuity of Fisher information. On
the contrary, it is easy to see (since the Lindeberg condition may be verified uni-
formly) that Huber’s (1964) minimax location M-estimate tends to its normal
limits uniformly on the corresponding symmetric contamination neighborhood.
Thus it seems that a robustification would entail other desirable properties.

Adaptation of Optimally Robust Estimators In view of all this, it seems
desirable to construct estimators not with the canonical influence curves %θ,ν
but the robust influence curves ηθ,ν instead, sacrificing a few percent efficiency
under each Qθ,ν to gain robustness against deviations from Qθ,ν .

A first step in this direction has been made by Shen (1995; Theorem 2)
who derives a bounded influence curve ηθ,ν = ηc minimizing E |ψ|2 among
all influence curves ψ ∈ Ψ, as defined in (2.3) for a general semiparametric
model, subject to |ψ| ≤ sup |ηc| . In some sense, the result may be viewed
an extension of HR (1994; Theorem 5.5.1), from finite to infinite dimensional
nuisance tangent space ∂2Q of a certain kind; namely, an L2 space of functions,
expectation zero, and measurable relative to some sub σ algebra of B . For a
similar result and proof, confer HR (1994; Theorem 7.4.13).

The corresponding adaptive estimator construction, however, has not been
achieved yet. The construction by Shen (1994; Theorem 2) in the symmetric
location case is again only a first step, since the desired asymptotic linearity
and influence curve are established but not the required uniform behavior of
the estimator over shrinking full neighborhoods.
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7 Semiparametric C(α)-Tests

The semiparametric approach may further be applied to the testing of hypothe-
ses about the parameter of interest. The optimal tests are generalized C(α) -
tests, which are based on residual scores after an orthogonal projection on the
closed linear tangent space for the nuisance parameter. In connection with the
robust tangent balls, the nonlinear projection on these balls will be employed
instead, and yields sensibly bounded modifications of the test statistics of the
classical, asymptotically maximin, multiparameter tests.

7.1 C(α)-Tests For Tangent Spaces

We invoke the general setup of Section 2: The semiparametric probability
model Q = {Qθ,ν | θ ∈ Θ , ν ∈ Hθ } with main parameter θ , nuisance parame-
ter ν , the fixed parameter value (θ0, ν0) and corresponding element Q = Qθ0,ν0 ,
the scores function Λ ∈ Lk2 = Lk2(Q) of Q for θ and the differentiablity (2.2)
of Q at (θ0, ν0) , the orthogonal projection Π2:Lk2 → (c` lin ∂2Q)k , and the
Fisher information J = C Λ̄ of Q for θ at (θ0, ν0) , where Λ̄ denotes the
residual scores

Λ̄ = Λ−Π2(Λ) (7.1)

Given some numbers −∞ < z1 < z2 < ∞ and 0 ≤ z3 < z4 < ∞ , local
asymptotic one- and multisided hypotheses about the difference between the
true θ and its reference value θ0 are defined by

H ′ : e′J 1/2a ≤ z1 vs. K ′ : e′J 1/2a ≥ z2 (7.2)
H ′′ : a′J a ≤ z2

3 vs. K ′′ : a′J a ≥ z2
4 (7.3)

where e ∈ Rk , |e| = 1, is some fixed unit vector, and J 1/2 = A any k×k root
of J such that AA′ = J .

The hypotheses concern the sequence of laws Qn ∈ Q of the n i.i.d. obser-
vations x1, . . . , xn ∼ Qn . It is assumed that, for any a ∈ Rk and g ∈ ∂2Q ,
eventually

Qn = Qn(a, g) = Qθ0+sna, ν
g
sn

(7.4)

where sn = 1/
√
n and t 7→ νgt ∈ Hθ0+ta is some path with tangent g in (2.2).

We employ asymptotic tests δ = (δn) , that is, sequences of tests δn at
sample size n . Their error probabilities will be evaluated under the n fold
product measures Qnn , asymptotically, as n tends to infinity.

For α ∈ (0, 1) , let uα denote the upper α point of the standard normal dis-
tribution Φ , such that Φ(−uα) = α . By χ2(k, z2) denote the χ2 distribution
with k degress of freedom and noncentrality z2 , respectively a random variable
having this distribution, and by cα(k, z2) its upper α point.

Theorem 7.1 Let δ = (δn) be any sequence of tests.
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(a) Then, in the one-sided case,

sup
H′

lim sup
n→∞

∫
δn dQ

n
n(a, g) ≤ α (7.5)

implies

inf
K′

lim sup
n→∞

∫
δn dQ

n
n(a, g) ≤ Φ

(
−uα + (z2 − z1)

)
(7.6)

(b) In the multisided case,

sup
H′′

lim sup
n→∞

∫
δn dQ

n
n(a, g) ≤ α (7.7)

implies

inf
K′′

lim sup
n→∞

∫
δn dQ

n
n(a, g) ≤ Pr

(
χ2(k, z2

4) > cα(k, z2
3)
)

(7.8)

(c) Bounds (7.6) and (7.8), with lim sup replaced by lim inf , are achieved
by the asymptotic tests

δ′ = (δ′n) , δ′n = I
(
e′J−1/2Zn > uα + z1

)
(7.9)

δ′′ = (δ′′n) , δ′′n = I
(
Z ′nJ−1Zn > cα(k, z2

3)
)

(7.10)

respectively, where Zn = 1/
√
n
∑n
i=1 Λ̄(xi) .

Proof The differentiability (2.2), for every a ∈ Rk , g ∈ ∂2Q , entails the
following loglikelihood expansion,

log
dQnn(a, g)
dQn

=
1√
n

n∑
i=1

(a′Λ + g)(xi)−
1
2
‖a′Λ + g‖2 + oQn(n0) (7.11)

Thus, given a ∈ Rk , the Fisher information ‖a′Λ + g‖2 at t = 0 of the one
parameter family Q(a, g) = {Qθ0+ta, νgt

} is minimized with respect to g ∈ ∂2Q
by ga = −π2(a′Λ) = −a′Π2(Λ) . Therefore, associating with each a ∈ Rk any
path νat = νgat , the sequence of k parameter submodels Qn = {Qn,a | a ∈ Rk }
consisting of the elements Qn,a = Qn(a, ga) , will turn out least favorable.

In fact, as a′Λ + ga = a′Λ̄ and C Λ̄ = J , expansion (7.11) specializes to

log
dQnn,a
dQn

=
a′√
n

n∑
i=1

Λ̄(xi)−
1
2
a′J a+ oQn(n0) (7.12)

Because of this asymptotic normality, of the sequence of product models Qnn ,
Theorems 3.4.6, 3.4.11 of HR (1994) are in force and, subject to (7.5) and (7.7),
respectively, furnish the power bounds (7.6) and (7.8), as well as the asymptot-
ically most powerful level α tests δ′ and δ′′ , for the sequence of submodels.

But, for arbitrary tangents g ∈ ∂2Q , (7.11) implies the following asymptotic
normality of Zn under Qnn(a, g) ,

Zn(Qnn(a, g)) −−→w N
(
E Λ̄(a′Λ + g),J

)
(7.13)

where
E Λ̄(a′Λ + g) = E Λ̄Λ′a = J a (7.14)
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since Λ̄ is orthogonal to Π2(Λ) and g . Hence, the asymptotic error probabilities
of the tests δ′ and δ′′ do not depend on g ∈ ∂2Q . ////

Remark 7.2 The orthogonality of Λ̄ on ∂2Q may be used a second time to
construct test statistics that do not require knowledge of ν0 .

In the finite dimensional case, confer Remark 2.3, upon a regularization of
the likelihoods, (total) scores function, and Fisher information, estimates of ν
which are

√
n consistent and suitably discretized may be inserted for ν0 ; confer

HR (1994; Lemmas 6.4.1 and 6.4.4). Thus Neyman’s C(α) -tests are obtained,
under no stronger conditions than mean square differentiable root densities and
identifiability (of the ideal model).

The test statistics Zn may also be replaced by an estimator S = (Sn) of θ
which is asymptotically linear, in the sense of (2.5), at each Qθ,ν , with canonical
influence curve %θ,ν = J−1

θ,ν Λ̄θ,ν ; confer HR (1994; Theorem 6.4.8). This leads
to Wald’s estimator tests λ′ and λ′′ ,

λ′ = (λ′n) , λ′n = I
(
e′J 1/2

√
n (Sn − θ0) > uα + z1

)
(7.15)

λ′′ = (λ′′n) , λ′′n = I
(
n (Sn − θ0)′J (Sn − θ0) > cα(k, z2

3)
)

(7.16)

Like δ′ and δ′′ , also the test sequences λ′ and λ′′ achieve maxmin asymptotic
power subject to level α for H ′ vs. K ′ , respectively for H ′′ vs. K ′′ .

In the infinite dimensional case, the estimation of Λ̄θ0,ν0 and Jθ0,ν0 (with θ0

known, ν0 unknown), and the construction of an asymptotically linear estimator
with canonical influence curve %θ,ν = J−1

θ,ν Λ̄θ,ν at Qθ,ν (at least for θ = θ0 and
every ν ∈ Hθ0 ) is more difficult. The methods of Klaassen (1987) and the
references mentioned therein may prove useful. ////

7.2 C(α)-Tests For Tangent Balls

As in Section 3, we start from P = {Pθ | θ ∈ Θ } , an ideal, smooth k parametric
model without nuisance parameter.

Parametric Tests

Theorem 7.1 first specializes with ∂2P = {0} . Thus, the classical test sequences

δ̂′ = (δ̂′n) , δ̂′n = I
(
e′I−1/2Ẑn > uα + z1

)
(7.17)

and
δ̂′′ = (δ̂′′n) , δ̂′′n = I

(
Ẑ ′n I−1Ẑn > cα(k, z2

3)
)

(7.18)

based on Ẑn = 1/
√
n
∑

Λ(xi) , as well as the test sequences λ̂′ and λ̂′′ employ-
ing an asymptotically linear estimator Ŝ = (Ŝn) with influence curve %̂ = I−1Λ
at P = Pθ0 ,

λ̂′n = I
(
e′I1/2

√
n (Ŝn − θ0) > uα + z1

)
(7.19)

λ̂′′n = I
(
n (Ŝn − θ0)′I (Ŝn − θ0) > cα(k, z2

3)
)

(7.20)
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achieve maxmin asymptotic power subject to level α , for the following paramet-
ric local asymptotic one- and multisided hypotheses about θ− θ0 , respectively,

Ĥ ′ : e′I1/2a ≤ z1 vs. K̂ ′ : e′I1/2a ≥ z2 (7.21)

Ĥ ′′ : a′Ia ≤ z2
3 vs. K̂ ′′ : a′Ia ≥ z2

4 (7.22)

Semiparametric Projection

Now enlarge the parametric measures Pθ to neighborhoods U(θ; r0) under the
null hypothesis, respectively U(θ; r1) under the alternative. Thus, robust local
asymptotic one- and multisided hypotheses H̃ ′ vs. K̃ ′ , and H̃ ′′ vs. K̃ ′′ about
θ − θ0 are obtained. These concern the laws Qn ∈ U(θ0 + sna; snr0/1) at
sample size n , where sn = 1/

√
n , and a ∈ Rk is subject to the conditions of

the corresponding parametric hypotheses Ĥ ′ , K̂ ′ , Ĥ ′′ , K̂ ′′ , respectively.
By this enlargement, size and power of the tests δ̂′ and δ̂′′ will be affected

without control. Conceptually, a robustification is appealing that interpretes
model deviations as nuisance parameter. Then, to the neighborhood model Q
of semiparametric form (3.1), Theorem 7.1 may again be applied, and leads to
the semiparametric recipe: From Λ subtract the component Π2(Λ) explained
by the nuisance parameter, and exchange the test statistics I−1/2Ẑn based on Λ
for the test statistics J−1/2Zn based on Λ̄ = Λ−Π2(Λ) .

Remark 7.3 In the context of testing, contrary to estimation, there is no Fisher
consistency requirement, that is, EψΛ′ = Ik in (2.3) and the corresponding
standardization by J−1 in (2.7). The present standardization of Λ̄ by J−1/2

shall achieve unit covariance of the limit normals to obtain invariance under the
orthogonal group, which is needed in the proof of the maxmin testing result.////

Because, in the case of Hellinger, total variation, and contamination neigh-
borhoods, the tangent sets ∂2Q∗ , ∗ = h, v, c , determined by Proposition 3.2
achieve c` lin ∂2Q∗ = L2 ∩ {E = 0} , we replace, as we did in Section 4, π2

and Π2 by the nonlinear projection π̃2:L2 → G∗ on ∂2Q∗ = G∗ , respectively
by Π̃2 = (π̃2, . . . , π̃2)′:Lk2 → Gk∗ (acting coordinatewise).

Actually, the situation is more complex for testing than for estimation in Sec-
tion 4, since now two neighborhoods (null hypothesis, alternative) are involved.
This will be clarified in Remark 8.3 below.

We first put r = r0 + r1 and naively project on G∗ (of this radius r ). Thus,
let

Λ̃ = Λ− Π̃2(Λ) (7.23)

and suppose that
J̃ = C Λ̃ > 0 (7.24)

Then, based on Z̃n = 1/
√
n
∑

Λ̃(xi) , the semiparametric approach leads to the
scores statistics,

e′J̃−1/2Z̃n , Z̃ ′n J̃−1Z̃n (7.25)
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for testing the robust one- and multisided hypotheses H̃ ′ vs. K̃ ′ and H̃ ′′

vs. K̃ ′′ , respectively. The corresponding semiparametric estimator tests would
employ the statistics

e′J̃−1/2K
√
n (S̃n − θ0) , n (S̃n − θ0)′K′J̃−1K (S̃n − θ0) (7.26)

based on an asymptoticaly linear estimator S̃ = (S̃n) with semiparametric
influence curve %̃ = K−1Λ̃ , provided K = E Λ̃Λ′ is regular; confer (4.1), (4.2).

The semiparametric asymptotic tests thus obtained are denoted by δ̃′ , δ̃′′ ,
and λ̃′ , λ̃′′ , respectively. The suitable choice of the critical values for their test
statistics, however, must be left open.

‘Robust’ Test Statistics

Hellinger Model By Theorem 4.3, under condition (4.5): 8 r2 < min Ij,j ,
we have Λ̃ = DΛ with regular matrix D = diag(1− γj) , where γ2

j Ij,j = 8 r2 .
It follows that J̃ = D ID , J̃ 1/2 = D I1/2 , and so J̃−1/2Λ̃ = I−1/2Λ.

Moreover, K = D I , hence K′J̃−1K = I , and %̃ = %̂ = I−1Λ by Theorem 5.2.
Therefore, the semiparametric test statistics (7.25), (7.26) agree with the

parametric test statistics in (7.17)–(7.20). The result matches Theorem 5.2.

Total Variation Model Under condition (4.8): 2 r < min E |Λj | , Theo-
rem 4.4 furnishes Λ̃ with coordinates Λ̃j = v′j ∨Λj ∧ v′′j and clipping constants
determined by (4.10). Thus the coordinates of J̃−1/2Λ̃ are linear combinations
of v′j ∨ Λj ∧ v′′j , hence are bounded.

Boundedness of the semiparametric test statistics and influence curve %̃v ,
confer (5.17), ensures a minimal robustness of the corresponding semiparametric
tests δ̃′v , λ̃′v , for H̃ ′v vs. K̃ ′v , and δ̃′′v , λ̃′′v for H̃ ′′v vs. K̃ ′′v .

Contamination Model Under condition (4.11): r < −max infP Λj , The-
orem 4.5 supplies Λ̃j = (Λj + r) ∧ uj , whose upper clipping constant uj is
defined by (4.13). Thus the coordinates of J̃−1/2Λ̃ , certain linear combinations
of (Λj + r) ∧ uj , may be unbounded.

Unboundedness of the semiparametric test statistics and influence curve %̃c ,
confer (5.20), entails maximum asymptotic error probabilities 100% of the cor-
responding tests for the robust hypotheses; as with estimation in Subsection 5.3.

However, Remark 8.3 tells us that, instead on Gc = rGc , we must actually
project on the set r0Gc− r1Gc (which makes no difference in the Hellinger and
total variation models.) The correct Λ̃ and %̃c , therefore, are determined by
Theorem 8.7, and turn out bounded towards both sides.

Boundedness of the semiparametric test statistics and influence curve %̃c ,
now essentially of form (5.17), again ensures some minimal robustness of the
corresponding tests δ̃′c , λ̃′c for H̃ ′c vs. K̃ ′c , and δ̃′′c , λ̃′′c for H̃ ′′c vs. K̃ ′′c .
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Multiparameter, Multisided Case In this general case, an exact evaluation
of the asymptotic maximum size over H̃ ′′ and minimum power over K̃ ′′ of the
derived semiparametric tests, and other tests based on quadratic forms in sums
or in asymptotically linear estimators, is rather complicated; confer HR (1994;
§ 5.4, pp 192–194), especially equation (54) there. Optimization problems arise
for the maximum eigenvalue of the information standardized covariance subject
to bounds on the self-standardized sensitivity; see equation (55), p 194.

Dimensional Advantage As these problems have not been solved yet,
no optimally robust test is distinguished, in comparison to which the semipara-
metric tests might be judged.

It certainly is an advantage of the semiparametric over the maxmin approach
to robust testing that it works in higher dimensions as it works in one, and that
it yields test statistics which seem reasonably, if not optimally, robust.

One Parameter, One-Sided Case In the simplest case, a strong justifica-
tion of the semiparametric approach is possible. Section 8 will establish optimal
robustness: For the one parameter, one-sided, robust hypotheses H̃ ′ vs. K̃ ′ ,
the semiparametric test δ̃′ (and λ̃′ ) is asymptotically maxmin.

8 Saddle Points For Testing Convex Sets

Consider hypotheses which consist of local alternatives generated by any two
disjoint closed convex sets G0 and G1 of tangents at some probability P .
Picking the unique minimum norm element of G1−G0 , and the corresponding
sequence of Neyman–Pearson tests, seems to fit the semiparametric projection
arguments—and furnishes a saddle point.

The result applies to infinitesimal Hellinger, total variation, and contamina-
tion neighborhoods around P and a local alternative of P with fixed tangent,
respectively. In the total variation and contamination cases, the maxmin asymp-
totic tests thus obtained by projection agree with the robust asymptotic tests
based on the least favorable pairs in the sense of Huber and Strassen (1973).

8.1 Convex Sets Defining Local Alternatives

Let P ∈ M be some probability. Every tangent ρ ∈ L2 ∩ {E = 0} at P gives
rise to a sequence of local alternatives Pn,ρ of P such that, in the Hilbert space
of square root densities,√

dPn,ρ =
(
1 + 1

2snρ
)√
dP + o(sn) as n→∞ (8.1)

where sn = 1/
√
n . Constructions to achieve (8.1) are

dPn,ρ
dP

=

{(
1
2snρ+

√
1− 1

4s
2
n‖ρ‖2

)2

, or simply
1 + snρ if ρ ∈ L∞

(8.2)
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Let G0, G1 ⊂ L2 ∩ {E = 0} be any two disjoint sets of tangents. The obser-
vations x1, . . . , xn at sample size n are assumed independent identically dis-
tributed with distribution Qn . For fixed g = (g0, g1) ∈ G0 × G1 , preliminary
simple asymptotic hypotheses concerning Qn are that, eventually,

Hg0 : Qn = Pn,g0 Kg1 : Qn = Pn,g1 (8.3)

As in Section 7, asymptotic tests δ = (δn) , that is, sequences of tests δn at
sample size n , are employed, and their error probabilities are evaluated under
the n fold product measures Qnn .

Then the testing problem Hg0 vs. Kg1 at level α ∈ (0, 1) ,

lim inf
n→∞

∫
δn dP

n
n,g1

= max ! (8.4)
subject to

lim sup
n→∞

∫
δn dP

n
n,g0
≤ α (8.5)

has the solution δg = (δn,g) ,

δn,g = I
 1√

n

n∑
i=1

g10(xi) > ‖g10‖uα + 〈g10|g0〉
 (8.6)

where g = (g0, g1) , g10 = g1 − g0 , and uα denotes the standard normal upper
α point. Under Hg0 , δg achieves asymptotic size α and under Kg1 , asymp-
totic power Φ(−uα + ‖g10‖ ) . The tests δn,g are unique up to terms tending
to 0 in Pn probability. All these statements follow from the loglikelihood
expansion (8.12) below and HR (1994; Corollary 3.4.22).

Put HG0 = ∪{Hg0 | g0 ∈ G0} and KG1 = ∪{Kg1 | g1 ∈ G1} .

8.2 The Maxmin Test Result

Then the maxmin testing problem HG0 vs. KG1 at level α ∈ (0, 1) is

inf
g1∈G1

lim inf
n→∞

∫
δn dP

n
n,g1

= max ! (8.7)
subject to

sup
g0∈G0

lim sup
n→∞

∫
δn dP

n
n,g0
≤ α (8.8)

Convex Closed Tangent Sets The tangent sets

G0, G1 ⊂ L2 ∩ {E = 0} , G0 ∩G1 = ∅ (8.9)

are each assumed convex and closed in L2 . The set of differences

G10 = G1 −G0 (8.10)
2Note that σ > 0 must be assumed in part (b).
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which is again convex, may not be closed if dimL2 > 2 , and therefore explicitly
assumed to be also closed. Then denote by q10 = q1 − q0 the unique minimum
norm element of G10 ; as G0 ∩G1 = ∅ , we have q10 6= 0.

Theorem 8.1 The asymptotic testing problem HG0 vs. KG1 at level α has a
saddle point at q = (q0, q1) , and the maxmin asymptotic power achieved by δq
equals Φ(−uα + ‖q10‖ ) .

Proof For any tangent ρ , the following loglikelihood expansion holds,

log
dPnn,ρ
dPn

= sn
∑

i
ρ(xi)− 1

2 ‖ρ‖
2 + oPn(n0) (8.11)

Hence

log
dPnn,g1

dPnn,g0

= sn
∑

i
g10(xi) + const + oPn(n0) (8.12)

by mutual contiguity, for every g = (g0, g1) ∈ G0 × G1 and g10 = g1 − g0 .
Therefore, the test sequence δg is indeed the optimum one at level α for Hg0

vs. Kg1 ; confer HR (1994; Corollary 3.4.2).
Let us evaluate δq , for any q = (q0, q1) ∈ G0 × G1 fixed, under other

tangents ρ ∈ G0 ∪ G1 . In view of (8.11), by LeCam’s third lemma, confer
HR (1994; Corollary 2.2.6), the sequence of test statistics sn

∑
i q10(xi) are

asymptotically normal under Pnn,ρ ,

sn
∑

i
q10(xi) −−→w N

(
〈q10|ρ〉, ‖q10‖2

)
(8.13)

hence

lim
n→∞

∫
δn,q dP

n
n,ρ = Φ

(
−uα +

〈q10|ρ− q0〉
‖q10‖

)
(8.14)

Therefore, the asymptotic size under g0 ∈ G0 becomes maximal at g0 = q0 ,
and the asymptotic power under g1 ∈ G1 becomes minimal at g1 = q1 , iff

〈q10|q10 − g10〉 ≤ 0 ∀ g10 ∈ G10 (8.15)

By Lemma 4.2, this characterizes the minimum norm element q10 of G10 . ////

While q10 = q1 − q0 is unique, there may exist other least favorable pairs of
tangents g = (g0, g1) in G0 × G1 achieving the same g10 = g1 − g0 = q10 of
minimum norm in G10 = G1−G0 . But then δg = δq , by the following corollary.
So the maxmin asymptotic level α test for HG0 vs. KG1 is unique.

Corollary 8.2 Let g = (g0, g1) and q = (q0, q1) be two least favorable tangent
pairs in G0 ×G1 . Then

〈q10|g0〉 = 〈q10|q0〉 , 〈q10|g1〉 = 〈q10|q1〉 (8.16)

Proof By the saddle point, δq achieves asymptotic size ≤ α under Hg0 and
asymptotic power ≥ Φ(−uα + ‖q10‖ ) = Φ(−uα + ‖g10‖ ) under Kg1 . However,
strict inequalities cannot hold since δg is optimal for Hg0 vs. Kg1 . Inserting
ρ = g0, g1 in (8.14) and (8.15), (8.16) follows. Hence, in particular, δg = δq . ////
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8.3 Robust Asymptotic Tests

In the setup of Section 3, with P = Pθ0 , the normed robust tangent balls G∗
are

Gh =
{
g ∈ L2

∣∣ E g = 0 , E g2 ≤ 8
}

(8.17)

Gv =
{
g ∈ L2

∣∣ E g = 0 , E |g| ≤ 2
}

(8.18)

Gc =
{
g ∈ L2

∣∣ E g = 0 , g ≥ −1
}

(8.19)

Thus G∗ = rG∗ are the balls of radius r introduced in (3.5)–(3.7); ∗ = h, v, c .
We assume parameter dimension k = 1. Invoke the scores function Λ for

the parameter θ of the ideal model P at θ0 , and let numbers r0, r1, τ ∈ [ 0,∞)
be given. Then Theorem 8.1 is going to be applied to the tangent sets

G∗,0 = r0G∗ , G∗,1 = τΛ + r1G∗ (8.20)

Remark 8.3 The minimum norm element q∗,10 of G∗,10 = G∗,1−G∗,0 , there-
fore, will be τΛ minus its projection on the set of differences r0G∗ − r1G∗ .////

Abbreviate the corresponding hypotheses by H∗ = HG∗,0 and K∗ = KG∗,1 .
As shown in the proof to Proposition 3.2, H∗ and K∗ represent the neighbor-
hoods U∗(θ0; snr0) and U∗(θ0+snτ ; snr1) about Pθ0 and Pθ0+snτ of radii snr0

and snr1 respectively, up to some o(sn) where sn = 1/
√
n . Put r = r0 + r1 .

Maxmin Tests for Hellinger Balls

Theorem 8.4 Let
8 r2 < τ2 I , where I = ‖Λ‖2 (8.21)

Then the least favorable tangent pair qh = (qh,0, qh,1) in Gh,0×Gh,1 is unique,

qh,0 = r0γΛ , qh,1 = τΛ− r1γΛ , where γ =
√

8 ‖Λ‖−1 (8.22)

The maxmin asymptotic level α test δqh = (δn,qh) for Hh vs. Kh is given by

δn,qh = I
 1√

nI

n∑
i=1

Λ(xi) > uα +
√

8 r0

 (8.23)

and achieves maxmin asymptotic power Φ
(
−uα + τ ‖Λ‖ −

√
8 r
)

.

Proof Since Gh is symmetric convex, G10 = τΛ + r1Gh− r0Gh = τΛ− rGh ,
and the minimum norm element q10 is supplied by q0 = r0 g̃ , q1 = τΛ − r1 g̃ ,
where g̃ ∈ Gh is the unique minimizer of ‖τΛ− rg‖ among all g ∈ Gh .

The projection of τΛ on rGh is determined by Theorem 4.3 and its proof,
with Λ replaced by τΛ. Then condition (8.21) coincides with condition (4.5),
and is equivalent to r g̃ 6= τΛ, that is, Gh,0 ∩Gh,1 = ∅ . Thus g̃ = γΛ.

With q10 = (τ − γr)Λ and 〈q10|q0〉 = ‖q10‖
√

8 r0 , Theorem 8.1 applies.
The pair (q0, q1) is unique: q0 = r0g0 and q1 = τΛ + r1g1 for arbitrary

elements g0, g1 ∈ Gh entails that r g̃ = r0g0 − r1g1 , and then g0 = −g1 = g̃
because ‖g0‖, ‖g1‖ ≤

√
8 = ‖g̃‖ and the norm is strictly convex. ////
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Thus the least favorable tangents—multiples of Λ—generate local alternatives
within the parametric model P , and the asymptotic maxmin test δqh agrees
with the asymptotic most powerful test for (Pnθ0) vs. (Pnθ0+snτ

) at the smaller
level Φ(−uα−

√
8 r0) . The result compares with Theorem 5.2 and Remark 5.3.

Least Favorable Pairs of Probabilities For Hellinger balls, least favorable
pairs of probabilities in the sense of Huber and Strassen (1973) do not exist;
confer Birgé (1980).

For total variation and contamination neighborhoods, such Huber–Strassen
pairs exist. While the least favorable pairs are not unique, their likelihood and
its distribution under each of the two probabilities of least favorable pairs is
unique; confer HR (1977). The Neyman–Pearson tests based on the likelihoods
of the product measures of least favorable probability pairs furnish finite sample
size, hence also asymptotic, maxmin tests.

The robust asymptotic tests derived from Huber–Strassen pairs have been
evaluated by Huber–Carol (1970), HR (1978), Wang (1981), and Quang (1985).

Maxmin Tests for Total Variation Balls

Theorem 8.5 Let
2 r < τ E |Λ| (8.24)

(a) Then a least favorable tangent pair qv = (qv,0, qv,1) in Gv,0 × Gv,1 is
given by

qv,0 = r0 g̃v , qv,1 = τΛ− r1 g̃v (8.25)
where

r g̃v = τ (Λ− v′′ )+ − τ (v′ − Λ)+ (8.26)

with clipping constants v′ = v′(r/τ) < 0 < v′′(r/τ) = v′′ determined by

τ E(v′ − Λ)+ = r = τ E(Λ− v′′ )+ (8.27)

Setting Λ(v) = v′ ∨ Λ ∧ v′′ , the maxmin asymptotic level α test δqv = (δn,qv )
for Hv vs. Kv is given by

δn,qv = I
 1√

n

n∑
i=1

Λ(v)(xi) > ‖Λ(v)‖uα + r0 (v′′ − v′)
 (8.28)

and achieves maxmin asymptotic power Φ
(
−uα + τ ‖Λ(v)‖

)
.

(b) The test sequence δqv coincides with the robust asymptotic test based on
least favorable probability pairs for Uv

(
Pθ0 ; r0/

√
n
)

vs. Uv
(
Pθ0+τ/

√
n ; r1/

√
n
)

,
hence maximizes the asymptotic minimum power over Uv

(
Pθ0+τ/

√
n ; r1/

√
n
)

subject to asymptotic maximum size ≤ α over Uv
(
Pθ0 ; r0/

√
n
)

.
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Proof

(a) Also Gv is symmetric convex, so G10 = τΛ + r1Gv− r0Gv = τΛ− rGv ,
and the minimum norm element q10 is supplied by q0 = r0 g̃ , q1 = τΛ − r1 g̃ ,
where g̃ ∈ Gv is the unique minimizer of ‖τΛ− rg‖ among all g ∈ Gv .

The projection of τΛ on rGh is determined by Theorem 4.4, with τΛ
in the place of Λ . Then condition (8.24) coincides with condition (4.8), and is
equivalent to r g̃ 6= τΛ, that is, Gv,0∩Gv,1 = ∅ . Thus g̃ is of form (8.26), (8.27).

With q10 = τΛ(v) and 〈q10|q0〉 = τ r0 (v′′ − v′) , Theorem 8.1 applies.
(b) We invoke the results of HR (1978), replacing P−τn by P0 in (2.8)

there. This reduces 2τ to τ in that paper. Then the radius condition (2.6) of
HR (1978): r/τ < E Λ+ , coincides with (8.24). Moreover, the clipping equa-
tions (3.9) of HR (1978) agree with (8.27), and then the function Λ(v) equals
the function (3.10) of HR (1978).

Therefore, Theorems 3.4 and 4.1 of HR (1978) tell us that δqv maximizes
the asymptotic minimum power over Uv(Pθ0+snτ ; snr1) subject to asymptotic
maximum size ≤ α over Uv(Pθ0 ; snr0) . ////

Remark 8.6 Under condition (8.24), all least favorable pairs gv = (gv,0, gv,1)
of tangents in Gv,0 ×Gv,1 are characterized by

gv,0 = r0g0 , gv,1 = τΛ− r1g1 (8.29)

where g0 and g1 may be any elements of Gv whose positive and negative parts
make up those of g̃v given by (8.26) and (8.27) such that

r0g
+
0 + r1g

+
1 = τ (Λ− v′′ )+ , r0g

−
0 + r1g

−
1 = τ (v′ − Λ)+ (8.30)

The least favorable tangent pair qv = (qv,0, qv,1) , which results from the special
choice g0 = g1 = g̃v , is not the only one in general. Other choices of g0 and g1

may be based on suitable partitions of the events {Λ > v′′} and {Λ < v′} .
For testing Uv

(
Pθ0 ; r0/

√
n
)

vs. Uv
(
Pθ0+τ/

√
n ; r1/

√
n
)

, all least favorable
pairs of probabilities have been characterized by HR (1977; Theorem 5.2). ////

Maxmin Tests for Contamination Neighborhoods

Theorem 8.7 Let

r0 < E
(
τΛ− (r1 − r0)

)
+

(8.31)

(a) Then the least favorable tangent pair qc = (qc,0, qc,1) in Gc,0 × Gc,1 is
unique,

qc,0 = τ (Λ− c′′ )+ − r0 , qc,1 =

{
τΛ + τ (c′ − Λ)+ − r1

τ (Λ ∨ c′ )− r1

(8.32)

with clipping constants c′ = c′(r1/τ) < z < c′′(r0/τ) = c′′ determined by

τ E(c′ − Λ)+ = r1 , τ E(Λ− c′′ )+ = r0 (8.33)
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where z = (r1 − r0)/τ . Setting Λ(c) = c′ ∨Λ∧ c′′ − z , the maxmin asymptotic
level α test δqc = (δn,qc) for Hc vs. Kc is given by

δn,qc = I
 1√

n

n∑
i=1

Λ(c)(xi) > ‖Λ(c)‖uα + r0 (c′′ − z)
 (8.34)

and achieves maxmin asymptotic power Φ
(
−uα + τ ‖Λ(c)‖

)
.

(b) The test sequence δqc coincides with the robust asymptotic test based on
least favorable probability pairs for Uc

(
Pθ0 ; r0/

√
n
)

vs. Uc
(
Pθ0+τ/

√
n ; r1/

√
n
)

,
hence maximizes the asymptotic minimum power over Uc

(
Pθ0+τ/

√
n ; r1/

√
n
)

subject to asymptotic maximum size ≤ α over Uc
(
Pθ0 ; r0/

√
n
)

.

Proof

(a) We can show that G10 = τΛ + r1Gc − r0Gc equals the closed set

τΛ− (r1 − r0) +
{
g ∈ L2

∣∣ E g = r1 − r0 , E g+ ≤ r1 , E g− ≤ r0

}
(8.35)

As E(τΛ− c)+ = E(c− τΛ)+ − c , radius condition (8.31) is equivalent to

r1 < E
(
(r1 − r0)− τΛ

)
+

(8.36)

If (8.31) and (8.36) are violated, the zero function is in G10 as

0 = τΛ− (r1 − r0) +
(
(r1 − r0)− τΛ

)
+
−
(
τΛ− (r1 − r0)

)
+

Under conditions (8.31) and (8.36), equivalently c′ < z = (r1 − r0)/τ < c′′ for
the solutions c′ and c′′ to (8.33), the function q10 = qc,1 − qc,0 is nonzero,

q10 = τΛ− (r1 − r0) + τ (c′ − Λ)+ − τ (Λ− c′′ )+

= τ (c′ ∨ Λ ∧ c′′ )− (r1 − r0) = τΛ(c)
(8.37)

and, by Lemma 4.2, the minimum norm element of G10 . In fact, for all g0 ∈ Gc ,

〈Λ(c)|r0g0 − qc,0〉 =
〈
c′ ∨ Λ ∧ c′′

∣∣r0 (1 + g0)− τ (Λ− c′′ )+

〉
≤ c′′r0 E(1 + g0)− c′′τ E(Λ− c′′ )+ = 0

(8.38)

as c′ ∨ Λ ∧ c′′ ≤ c′′ and 1 + g0 ≥ 0 , and by (8.33). Likewise, for all g1 ∈ Gc ,

〈Λ(c)|qc,1 − τΛ− r1g1〉 =
〈
c′ ∨ Λ ∧ c′′

∣∣τ (c′ − Λ)+ − r1 (1 + g1)
〉

≤ c′τ E(c′ − Λ)+ − c′r1 E(1 + g1) = 0
(8.39)

With 〈Λ(c)|qc,0〉 = r0 (c′′ − z) , Theorem 8.1 applies.
Now let (r0g0, τΛ + r1g1) be any least favorable tangent pair, that is, with

elements g0, g1 ∈ Gc such that τΛ+r1g1−r0g0 = q10 . Then, in view of (8.37),

r1 (1 + g1)− r0 (1 + g0) = τ (c′ − Λ)+ − τ (Λ− c′′ )+ (8.40)
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The RHS, since c′ < c′′ , is a decomposition into positive and negative parts.
As also 1 + g1 ≥ 0 and 1 + g0 ≥ 0 this implies that

τ (c′ − Λ)+ ≤ r1 (1 + g1) , τ (Λ− c′′ )+ ≤ r0 (1 + g0) (8.41)

But by (8.33), the functions compared have the same expectations. Hence strict
inequalities cannot hold. It follows that

r0g0 = τ (Λ− c′′ )+ − r0 , r1g1 = τ (c′ − Λ)+ − r1 (8.42)

which proves uniqueness of the least favorable tangent pair qc = (qc,0, qc,1) .
(b) The substitution of P−τn by P0 in HR (1978) reduces 2τ to τ there.

Then the radius condition (2.6) of HR (1978) is (8.31). Moreover, the clipping
equations (3.9) of HR (1978) agree with (8.33), and the present function Λ(c)

equals the function defined by (3.10) in HR (1978).
Therefore, Theorems 3.4 and 4.1 of HR (1978) tell us that δqc maximizes

the asymptotic minimum power over Uc(Pθ0+snτ ; snr1) subject to asymptotic
maximum size ≤ α over Uc(Pθ0 ; snr0) . ////

Remark 8.8 The radius condition (8.31), being equivalent to τ c′′ > r1 − r0

for c′′ satisfying (8.33), is stronger than τ c′′ > −r0 . In turn, τ c′′ > −r0 for c′′

satisfying (8.33), can be shown to be equivalent to r0 < −τ infP Λ.
Under this radius condition (4.11): r0 < −τ infP Λ, Theorem 4.5 (with τΛ

in the place of Λ) yields the element g̃0 of Gc minimizing ‖τΛ− r0g‖ among
all g ∈ Gc :

r0 g̃0 = τΛ− (τΛ + r0) ∧ u = τ (Λ− c′′ )+ − r0 (8.43)

with u and τ c′′ = u− r0 determined by E g̃0 = 0. Thus, qc,0 = r0 g̃0 .
Likewise, the radius condition (8.36), being equivalent to τ c′ < r1−r0 for c′

satisfying (8.33), implies that τ c′ < r1 , equivalently r1 < τ supP Λ.
Under this radius condition (4.11): r1 < τ supP Λ, Theorem 4.5 (with −τΛ

in the place of Λ) yields the element g̃1 of Gc minimizing ‖τΛ + r1g‖ among
all g ∈ Gc . And then it may again be verified that qc,1 = τΛ + r1 g̃1 .

Therefore, according to Lemma 4.2, it follows that, for all g0, g1 ∈ Gc ,

〈τΛ− r0 g̃0|r0g0 − r0 g̃0〉 ≤ 0 , 〈τΛ + r1 g̃1|r1 g̃1 − r1g1〉 ≤ 0 (8.44)

But the bounds (8.38) and (8.39) established in the preceeding proof tell us
that this remains true for τΛ(c) = τΛ + r1 g̃1 − r0 g̃0 in the place of τΛ− r0 g̃0 ,
respectively of τΛ + r1 g̃1 . This is remarkable since the two additional terms
are always nonnegative,

〈r1 g̃1|r0g0 − r0 g̃0〉 =
〈
τ (c′ − Λ)+ − r1

∣∣r0g0 + r0 − τ (Λ− c′′ )+

〉
= τ r0 〈(c′ − Λ)+|1 + g0〉 ≥ 0 (8.45)

〈r0 g̃0|r1g1 − r1 g̃1〉 =
〈
τ (Λ− c′′ )+ − r0

∣∣r1g1 + r1 − τ (c′ − Λ)+

〉
= τ r1 〈(Λ− c′′ )+|1 + g1〉 ≥ 0 (8.46)

where use has been made of c′ < c′′ , which is garanteed by the stronger radius
condition (8.31), (8.36). ////
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Remark 8.9 For testing Uc
(
Pθ0 ; r0/

√
n
)

vs. Uc
(
Pθ0+τ/

√
n ; r1/

√
n
)

, all least
favorable pairs of probabilities have been characterized in terms of their densities
by HR (1977; Theorem 5.2). The uniqueness of the least favorable tangent
pair qc = (qc,0, qc,1) gives rise to the conjecture that, contrary to the total
variation case,

lim
n→∞

√
n dh(Q′′n,j , Q

′
n,j) = 0 , j = 0, 1 (8.47)

if (Q′n,0, Q
′
n,1) and (Q′′n,0, Q

′′
n,1) are any two, possibly different, least favorable

probability pairs for Uc
(
Pθ0 ; r0/

√
n
)

vs. Uc
(
Pθ0+τ/

√
n ; r1/

√
n
)

. ////

Remark 8.10 For shrinking contamination neighborhoods of a one parameter
family involving a finite dimensional nuisance parameter, the robust asymptotic
tests based on least favorable pairs were investigated by Wang (1981). It would
be interesting to derive his maxmin asymptotic test by projection. ////
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