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Abstract

A theoretical treatment of the light deflection of the extraor-
dinary light beam in a nematic liquid crystal in the neighborhood
of the Fréedericksz transition is presented. The analysis explains
recent experimental observations of director fluctuations near the
electrically driven splay Fréedericksz transition. As an application
of this method, we propose the measurement of material param-
eters of a nematic liquid crystal via a spatio-temporal analysis of
the measured light intensity.

1 Introduction

In a planarly aligned nematic liquid crystal, spatial variations of the di-
rector field lead to spatial variations of the the light intensity observed
behind the cell, provided that the illuminating light is polarized par-
allel to the director. A quantitative analysis of this effect allows the
determination of the orientation fluctuations of the director, as had been
described in Ref. [1]. Because of a certain similarity of this measurement
procedure to the one used in isotropic (i.e. not showing birefringence) flu-
ids to measure spatial variations of the index of refraction[1], it is called
shadowgraph method as well. For small orientation fluctuations of the
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director the analysis presented in Ref. [1] leads to a simple and robust
measurement procedure. It is based on the fact that the light intensity
variations observed behind the cell are proportional to these fluctuations
|2]. That method had been used to analyze the thermally driven di-
rector fluctuations in the neighborhood of a pattern forming instabihity,
namely the onset of electroconvection in a nematic liquid crystal [3]. A
spatio-temporal analysis of the observed intensity fluctuations allows for
the determination of the characteristic decay times of those fluctuations
at different wavelengths [4]. While in Refs. [1], [2], [4] only a planarly
aligned nematic liquid crystal was considered, it is the goal of this paper
to extend the analysis presented in Ref. [1] to the director deformation
above the splay Fréedericksz transition. It is motivated by a recent ex-
perimental study of that transition using the shadowgraph method [5].
These studies yielded fluctuating structures both above and below the
Fréedericksz transition. One of the striking features of the measurement
presented there was an unexplained increase of the fluctuation intensity
slightly above the transition voltage V.. The following calculations will
show that this can be understood as a purely optical effect, and that it
1s thus not indicative of any critical behavior of the director fluctuations
in the neighborhood of the transition.

2 Calculation of the light deflection

In the treatment of Ref. [1], deviations of the director field from the triv-
1al planarly aligned configuration were considered. Above the Fréedericksz
transition, the director field 1s more complicated, and the distribution of
the deformation angle 8(z) over the cell thickness d can be calculated
numerically by solving an integro-differential equation describing the di-
rector deformation as done in Ref. [5]. We will calculate the path of
light inside the cell for small distortions 6p(z,y) of that field 8x(z).

The index of refraction of an anisotropic liquid crystal for a beam of
light polarized in: the x-y plane is given by
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with 3 = —8(z,y) + arctan(y’), and n,, n. are the indices of refraction_
We will use the 5CB values n, = 1.54, n, = 1.72 in the numerical caley-
lations below.
Applying Fermat’s principle, that [ nds = minimum, we obtain the
Euler-Lagrange differential equation
of &f &f , &f ,

oy " dyor ayoy ¥ ayr V=0 .

with f(z,y,y) = n(z,y,v) - (1 + y?)1/2 .
We discuss here a director field of the form

O(z,y) = 0r(z) + Op(z,y) (2.3)
with

Op(z,y) = B sin( g-;c) cos(ky) . (2.4)

Here d is the cell thickness, 6p(z) represents the deformation of the
director field above the Fréedericksz transition, which in general has to
be obtained numerically [5], while 8p(z,y) represents a spatial Fourier
component of the distortion of this director field, which might be caused
by the thermal fluctuations in the case of the Fréedericksz transition, or
by electroconvection in the case of the transition to Williams rolls. The
light intensity at a distance z, from the top of the cell is given by

I

— .

IO

dy(0) dy(0)
The normalized light intensity signal I/I, measured at a fixed z;
has a periodicity with the wavelength A = 27 /k of the director modu-
lation and can thus be decomposed in a Fourier series. We define the
modulation amplitude A as the modulus of the fundamental mode. In
the absence of a Fréedericksz effect, it had been shown that this light

ntensity modulation A is proportional to a small director perturbation
b, i.e.

I(z1,y) = (2.5)

Axs- 9[] (26)
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Figure 1: The light intensity modulation as calculated numerically for a distor-
tion with amplitude 6 = 0.01 and wavelength A = d/4. The dashed lines are
obtained for z; = 0, and the solid lines for z; = 2d.
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Figure 2: The symbols represent the numerically obtained light modulation
amplitude below (solid squares), slighly above (open circles) and well above
(solid diamonds) the Fréedericksz transition, for z; = 0. The straight lines
represent the analytical approximation.

and the sensitivity s had been shown to be [2]:

n d
-k . :
n+lmn (2:7)

This fact allows for a robust measurement procedure because A is almost
independent of z; (which experimentally might be hard to determine

a=7

precisely), i.e. it is only a correction of second order in 6,. In the
case of a finite O, the sensitivity s is enhanced as demonstrated in Fig.
1. Here, Eq. (2.2) is solved numerically, both for a value of r = 0,
which is the case below the Fréedericksz transition, and for a finite value
of Or. Or has been calculated numerically for a positive value of the
control parameter ¢ = V?/V2? — 1, V. being the threshold voltage for
the Fréedericksz transition. The most striking feature caused by the
Fréedericksz effect seems the enhancement of the fundamental mode,
so that the higher harmonics are less pronounced in the light intensity
signal shown in the upper part of the figure. The dashed lines indicate
the intensity signal measured directly on the upper boundary of the cell
(z; = 0), while the solid lines show this signal at a distance of z; = 2d
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Figure 3: The symbols denote the numerically obtained sensitivity s. The line
is a guide for the eye.

behind the cell.

In Fig. 2 the amplitude of the light intensity modulation for three
different values of the control parameter e = V?/V?—1 are plotted versus
6,. The symbols were obtained via a numerical calculation. It can be
seen that the amplitude A is proportional to 6y for small values of 6y,
and the slope of this line serves to define the sensitivity s.

In order to get an analytical expression for the sensitivity we follow
Ref. [1] and expand f in a Taylor series up to second order in 6, y — Yo
and their derivatives. Inserting this expression in eq. (2.2) and omitting
all terms higher than second order implies

o6 06

ﬁﬂ$+ﬁa:m(ﬁ+l)y”=ﬂ (2.8)
with i = Te—e.
Furthermore 6r(z) is substituded by 6, sin(%:c), which is correct for

small e.
The influence of the fluctuations and the Fréedericksz effect can be

seen in an expansion up to order 8g 6, of the path of light y(r} at z =d
and its first derivative y'(d) (N = n”-.ﬁ)
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Figure 4: The validity range of the linear approximation is calculated for 21=0
and A = d/4. The line is a guide for the eye.

d

y(d) —yo =6 2 ¥ (2.9)
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The straight lines in Fig. 2 present the linear appraximation in 8,
given by eq. (2.10). The bad accordance of the two curves for higher «
18 due to the relative large values of §,, (for € = 0.1025, §,, ~ 0.3). Thus,
in the following we will calculate the sensitivity s numerically.

The sensitivity s of the method is a nontrivial function of the director
field 6z (z), as indicated in Fig. 3. Here 8p(z) is calculated numerically
for various values of ¢, and the amplitude of the light intensity modulation
obtained for a fixed value of the wavelength A = d/4 is shown. We would
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Figure 5: The validity range below (solid circles) and above (open squares) the
Fréedericksz transition. The lines are guides for the eye.

like to point out that there is a striking similarity of this curve with the
measured one presented in Fig. 4 of Ref. [5].

The qualitative feature of the curve presented in Fig. 3 to have a
maximum at a finite voltage seems understandable. Both cases V = 0
and V being very large correspond to director configurations (parallel or
perpendicular to y) where due to symmetry considerations small pertur-
bations of the director field cause only a second order effect in the index
of refraction. Thus the sensitivity s has to become small in those limiting
cases. If this interpretation is correct, one would expect an increase in
the observed light intensity fluctuations once the polarized hght enters
the cell at an oblique angle. In order to test this prediction we have
tilted the cell inside the microscope with respect to the optical axis, and
indeed found an increase of the light intensity fluctuations.

Of fundamental interest for the measurement is the question of the
linearity of the shadowgraph method. By inspection of Fig. 2 it is clear
that eq. (2.6) is valid only for small values of 8;. To get a measure for
the deviation from the linearity we define the quantity

i A — S'&ﬂ l
59{] .

Q. = (2.11)
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The value of 8; where @), first exceeds 10 percent is named 8q,. This
validity range is a function of the focal height z; of the microscope. In
addition, 1t is a function of both the control parameter ¢ (Fig. 4) and
the wave number &k (Fig. 5) of the distortion.

3 Conclusion

We have considered the optical effect of periodic distortions of the direc-
tor field along the axas of the director. In the case of thermally induced
fluctuations of the director field, distortions perpendicular to this axis
(i.e. a twist) cannot be excluded. It has been shown, however, that the
influence of these twist deformations is only second order in 6, thus it
might be justified to neglect this effect for such small values of 8, as they
are provided by the thermal fluctuations.

The comparision of our Fig. 3 with the measurement presented in
Fig. 4 of Ref. [5] can only be of a qualitative nature, because in that pa-
per the root mean sqare value of the intensity fluctuations was presented,
rather than the amplitude of one mode with wavelength A. It should be
no problem, however, to extract that amplitude via a spatial Fourier de-
composition of the measured signal, as it has been done for the case of a
pattern forming instability in Ref. [4]. That procedure would not only
yield the intensity of the fluctuations, but also the characteristic decay
time of a specific director deformation. That idea is identical to the one
used for measuring material parameters like the elastic constants and
the viscosity via dynamic light scattering methods. The shadowgraph
method might have some merits compared to dynamical light scattering,
however. It works well at long wavelengths comparable to the cell thick-
ness, and it seems to be simpler from a mechanical point of view. Test
measurements of material parameters of 5CB using this method are in

progress.
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