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Abstract 

If a magnetic field normal to the surface of a magnetic fluid is increased beyond a critical value a spontaneous deformation 
of the surface arises (normal field instability). The instability is subcritical and leads to peaks of a characteristic shape. We 
investigate the neighborhood of this instability experimentally under the influence of a temporal modulation of the magnetic 
field. We use a small vessel, where only one peak arises. The modulation can either be stabilizing or destabilizing, depending 
on the frequency and amplitude. We observe a cascade of odd-numbered response-periods up to period 11, and also a domain 
of even-numbered periods. We propose a minimal model involving a cutoff-conditon which captures the essence of the 
experimental observations. 

PACS: 47.20.-k; 47.20.Ky; 75.50.Mm 
Keywords: Magnetic fluid; Nonlinear oscillator; Subharmonic response; Surface instability 

1. Introduction 

Ferrofluids are colloidal suspensions of  magnetic 

monodomains in a non-magnetic carrier liquid [1]. 

They behave like a super-paramagnetic substance, 

which allows for a wide range of applications [2], 

and a peculiar flow behavior under the influence of  

external magnetic fields [3-5]. In general the hydro- 

dynamics of  polarizable fluids is an interesting and 

non-trivial topic which includes such subtle effects as 

counter propagation of  free surfaces under the influ- 

ence of external magnetic fields [6,7]. Experimental 

investigations of  the flow dynamics are hindered by 
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the fact that the fluid is opaque. This seems to be the 

reason that investigations of  the dynamic behavior of 

magnetic fu ids  are sparse, inspite of  its tremendous 

technological potential [8]. We feel that investiga- 

tions of dynamic surface deformations, which can be 

optically detected, are a practical approach to get a 

quantitative measurement of  the flow behavior. In our 

experiment we drive nonlinear oscillations of  the free 

surface of  a ferrofluid by making use of  the technical 

advantage that hydrodynamic motion can be induced 

by time dependent magnetic fields. The magnetic 

driving is particularly efficient in the neighborhood 

of static surface deforming instabilities, which can 

be achieved in super-paramagnetic fluids at relatively 

small external fields. These static instabilities are ac- 

compained by hysteresis leading to a particularly rich 
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behavior of the nonlinear surface oscillations. Here 

we present an experimental investigation of such field 

induced surface deformations. The resulting bifur- 

cation scenario of the nonlinear surface oscillations 

falls into a class which has never been studied ex- 

perimentally. We discuss the results in terms of a 

qualitative model which captures the main features of 

the experimental findings. 

2. Experimental setup and procedure 

The experimental setup is shown in Fig. 1. In order 

to obtain a suitable compromise between viscosity 

and magnetic permeability, we use a mixture of the 

commercial ly available ferrofluids EMG 901 (Fer- 

rofluidics) and EMG 909 in a ratio of 7 to 3. The prop- 

erties of  EMG 901 are: density p = 1530Kgm -3, 

surface tension a = 2.95 x 1 0 - 2 K g s  -2, initial 

magnetic permeabili ty ~ = 2.3, magnetic satura- 

tion Ms = 4.8 x 104Am - t ,  dynamic viscosity 

tl = 6 x 10 -3 N S m -2. The properties of EMG 909 

are: density p = 1020 Kg m -3,  surface tensiton cr = 

2.65 x 1 0 - 2 K g s  -2,  initial magnetic permeabili ty 

# = 1.8, magnetic saturation Ms = 1.6 x 104Am -1, 

dynamic viscosity q = 6 x 10 -3N s m -2. By as- 

suming a linear interpolation for the fluid param- 

fluid~ 
teflon ~ ]  I ~B(t) 

line-camera 

Fig. 1. Experimental setup. 
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eters of the mixture we obtain p = 1377Kgm 3, 

= 2.86 x 10 2 K g s  2 # = 2.15, Ms = 

3.84 x 103Am -1 and q = 8.8 x 1 0 - 3 N s m  -2. 

The critical field Hc for the onset of the normal 

field instability [1] has been measured to be Hc = 

6.2 x 103Am - l .  This is in resonable agreement with 

the theoretical value He = 5.9 x 103 A m  1 calculated 

for infinite fluid layer. According to the same theory 

the critical wavelength is expected to be 9 mm. Due to 

aging of  the fluid, presumably caused by evaporation 

of the carrier liquid, the critical field changes within 

one week by about 5%. The experimental runs shown 

below took on the order of  hours, where aging effects 

can be estimated to be on the order of 0.1%. 

The fluid is filled in a cylindrical teflon vessel of 

12 mm depth and 3 mm diameter which is small in 

comparison to the critical wavelength of  the normal 

field instability in a two-dimensional system and thus 

enforces the existence of a single peak. The upper 

2 mm of  the vessel has a slope with respect to the hor- 

izontal of 15 °, which is close to the measured contact 

angle between fluid and teflon, in order to provide a 

flat surface of the fluid [9]. 

An image of the vessel is shown in Fig. 2, where two 

snapshots of the ferrofluid-peak are also presented, the 

first one taken at the phase of  the oscillation where 

the amplitude reaches its minimum value, the second 

one taken at the maximum amplitude. 

The vessel is placed in the center of a pair of 

Helmholtz-coils (Oswald), with an inner diameter 

of 40cm.  One coil consists of  474 windings of  flat 

copper wire with a width of 4.5 mm and thickness 

2.5 mm. A current of  about 5 A is then sufficient to 

produce the magnetic field of  about 8 x 103 A m -  l 
used in this experiment. The static field is monitored 

by means of a hall probe (Group 3 DTM-141 Digital 

Teslameter) located below the vessel. 

The dynamics of the ferrofluid surface is detected 

by a digital line scan camera (i2S iDCI00)  which is 

focused on the vertical axis through the center of the 

vessel. The time between two exposures is set to 6 ms. 

The analysis of  the lines is done with a 90MHz 

Pentium-PC, equipped with a 6 bit interface board 

(i2S ISM197) for the line camera. The resolution in 

our experiment is 10.5 pixels per mm. For controlling 
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Fig. 2. Two snapshots of the ferrofluid-peak in the vessel. The first one is taken at the phase of the oscillation where the amplitude 
reaches its minimum value, the second one taken at the maximum amplitude. 

the experiment the PC is also equipped with a 

synthesizer-board (WSB-10), and two programmable 

counters (8253), located on a multifunction I /O-  

board (Meilhaus ME-30). The counters are used to 

keep track of the pacing-frequency of the synthesizer- 

board. Their output is used to trigger the camera in 

• any desired phase of the driving oscillation of the 

magnetic field. Thus we are using a phase-locked 

technique between the driving and the sampling in 
order to ensure a jitter-free measurement of the am- 

plitude. By keeping track of  the synthesizer pace the 

computer moreover manages the writing of the data 

into the synthesizer memory at times where no conflict 

with the DA-converter arises. This allows for smooth 

switching of the amplitude of  the AC-component of 

the magnetic field. The wave-signal is amplified by a 

linear amplifier (fug NLN 5200 M-260). The resulting 
driving magnetic field is H( t )  = Ho + A H  sin 27r tfD, 

with H0 as the static and A H  as the oscillating part 
of the magnetic field; fD is the driving frequency. 

At constant driving frequency fD and constant A H  

the static part H0 is increased in constant steps. Af- 
ter a relaxation time of at least 5 s the minimum and 
maximum height is determined for each value of/40. 

The response period T of the surface is analyzed by 
means of  a correlation function. 

3. Experimental results 

We modulate a subcritical bifurcation by means of  

an oscillating magnetic field. The oscillation changes 

the character of this bifurcation. The subsequent oscil- 

lations of the surface can be harmonic, subharmonic or 

irregular depending on the magnitude of the static and 

the amplitude and frequency of the oscillating mag- 

netic field. We condense the richness of the scenario 
into three phase-diagrams, using three representative 

driving frequencies. The most complex behavior is ob- 

served at a driving frequency of 13 Hz. The bifurcation 

diagrams simplify for smaller (larger) frequencies, for 

which we have taken 2.5 Hz (23.5 Hz) as a represen- 

tative. These driving frequencies must be compared 

with the characteristic time of  the system, which is 

given by the decay time of the peak once the field is 
turned off, and has been experimentally determined to 

be about 40 ms. 

3.1. Modulating the subcritical bifurcation 

Fig. 3 shows the height of the surface depending 
on the static field H0 without modulation (a) and with 

modulation A H  = 0.17 Hc and fD = 13Hz (b). The 
unit of the magnetic field is the critical field Hc = 
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Fig. 3. (a) AH = 0: Measurement of the height of the peak as a 
function of the static field H 0. (b) AH = 0.17Hc: Measurement 
of the response-period T in units of the driving period TD, 
and measurement of the maximum and minimum height. The 
driving period To is 76.16 ms. The upper part of each diagram 
corresponds to the minimum and maximum height of the peak in 
ram. Squares (crosses) correspond to the increasing (decreasing) 
field. 

6.2 × 1 0 3 A m  - l  of  the normal field instability in 

the static case. The squares mark the increase of  the 

static field and the crosses mark the adjacent decrease. 

Fig. 3(a) shows the hysteresis without field modula- 

tion. Starting with a flat surface and increasing the 

magnetic field leads to the onset of the normal field 

instability at /4o = H o  producing a peak of  2.1 mm 

height. Decreasing the field destroys the peak at the 

saddle-node field Hs = 0 .94Ho 

In Fig. 3(b) the influence of  the field modulation 

A H  = 0.17He is presented. In order to charac- 

terize the different states of the surface, including 

subharmonic behavior, we need to observe the max- 

imum height hmax and the minimum height hmin 

of  the surface during a sufficiently large time pe- 

riod. Addit ionally the response period T in units of 
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the driving period TD is shown. If it is not possible 

to detect a periodic motion for a certain state, this 

state is marked with T = 0 in the diagram. We ob- 

serve three qualitatively different oscillating states: 

The first is the flat surface, where hmin = 0 and 

hmax = 0. This state is labeled (0 0). It is measured 

for H0 < 0.92Hc. For H0 > 1.08He the peak oscil- 

lates around its equilibrium height, that is hmin > 0 

and hmax > 0. Therefore it is labeled ( +  +) .  Between 

the flat surface and the oscillating peak lies a regime 

(0.92Hc < H0 < 1.08He) where the peak periodi- 

cally arises and collapses to zero height. We label 

this behavior (0 +) .  In this regime the dynamics of 

the surface is determined by the ratio of  the driving 

period TD to the characteristic times a peak needs to 

arise and collapse. This is the regime of  interest where 

we observe complex temporal behavior, involving 

subharmonics as described below. At H0 = 0.92Hc 

the oscillating surface with response-period-1 devel- 

ops softly from the flat surface. Deviations of hmax 

between the increasing and decreasing field are due 

to camera fluctuations. The per iod-l-s ta tes  bifurcate 

at H0 ---- 0.98Hc into the period-2-states in a super- 

critical way. The transition from the period-2-states 

to the period-3-states at H0 = 1.015Hc shows a small 

hysteresis in the maximum height hmax. The coex- 

isting period-2-attractor and period-3-attractor cause 

an irregualr motion. The peak then seems to change 

its mode in an intermittent way. Further increase of 

H0 produces the odd-numbered subharmonic cascade 

3 - 5 - 7 - 9 - 1 1 .  The single subharmonic states are sep- 

arated by intermittent states. Further increase of H0 

leads to the ( +  +)-s ta te  of  the oscillating peak. We 

cannot exclude that the value of  hmax is finite for 

H0 < 0.92Hc. In this range the hmax is below our 

experimental resolution. We do indeed expect a finite 

value of hmax for any value of  the driving field due to 

the spatial inhomogeneity of the magnetic field at the 

surface of  the fluid. 

The transition from the 1T to the 2T-mode is some- 

what reminiscent of  the observation reported for a long 

channel in [3]. In that case, as indicated by Fig. l ,  

the 2T-oscillation occurred in the form of a standing 

wave very reminiscent of the Faraday instability, i.e. 

a symmetric oscillation around the value h = 0 was 
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observed. In contrast, the 2T-mode of the single peak 

in our experiment oscillates around a finite positive 
value, and it appears via a period doubling bifurcation. 

3.2. Dynamical behavior 

An example of subharmonic behavior is demon- 
strated in Fig. 4, where we observe a response-period 
T = 9TD. The ordinate corresponds to the actual 
height of the peak, while the abscissa indicates the 
time in units of the driving period. The time interval 

1TD consists of seven data points, which are linearly 
interpolated. Deviations in the periodicity of the mea- 

sure are due to camera fluctuations. 
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into the three domains (00), (0 +)  and (+ +). The 

measured states of the flat (0 0)-domain are not marked 
with any color in the diagrams. But all states of the 

(0 +)-domain are shown in the diagrams by colors. In 
the (+ +)-domain only the onset-state for each value 
of A H  is shown. The transition from (0 0) or (0 +)  to 
(+ +)-modes is indicated by a dotted black line. Each 
figure consists of two parts: (a) shows the color-coded 
oscillatory mode and (b) shows the color-coded max- 
imum height hmax of the surface. If it is not possible 
to identify a certain periodicity the number is replaced 
by the character T ,  because the peak then seems 
to change its subharmonic mode in an intermittent 

way. 

3.3. Phase-diagrams AH(H0) 

Figs. 5-7 describe the surface behavior by means 
of phase diagrams AH(H0) at three different driving 
frequencies. For each value of A H the static part H0 
is increased starting at such values of H0 for which the 
surface is still flat. The phase-diagrams are separated 

4 

~2 

0 ~t_ - 
0 9 18 

t ime (TD) 

Fig. 4. The height of the peak during a time of 18 periods of 
excitation at fD = 13 Hz. The solid line is obtained by a har- 
monic interpolation using the frequencies up to 3.5/TD, whose 
amplitude is determined by means of a discrete Fourier transfor- 
mation. The time interval 1TD consists of  seven phase-locked 
sampled data points. Thus small deviations in the periodicity 
of  the measure are presumably due to camera fluctuations. (For 
this measure we used a mixture of  EMG 901 and EMG 909 in 
a ratio of  4 to 1, in contrast to the ratio of  7 to 3, in order to 
obtain a larger height of  the peak.) 

3.3.1. Low frequency 

The results for low driving frequency fD ---- 2.5 Hz 
are shown in Figs. 5(a) and (b). In the AH-range from 
0 to 0.023 Hc we observe only two different states: 
the flat surface (0 0) and the oscillating peak (+ +). 
The threshold is decreased by modulation. For A H  > 
0.023Hc the (0+)-domain is observed, but the re- 
sponse of the surface is always harmonic as can be 

seen in Fig. 5(a). The existence of three qualitatively 
different domains is due to the hysteresis of the static 

bifurcation. It can be understood in the quasi- static 
limit of fD --+ 0. Then we would expect the (0 0)-state 
if the total magnetic field grew up from zero but stayed 
always below Hc, (0 +)-modes if the driving field were 
below the saddle-node field Hs for a certain time of the 
period TD, and (+ +)-modes if the driving field were 
always above the saddle-node field Hs. These two 

limit lines are drawn in Fig. 5(a): AH(H0) = He - H0 
(dashed line), AH(H0) = H0 - Hs (dashed-dotted 
line). Fig. 5(b) shows the maximum heights hmax of 
the peak. The higher H0 the higher hmax,  which is in 

accordance with the idea of the quasi-static limit. 

3.3.2. Medium frequency 
Fig. 6 shows the results for fD = 13 Hz. For A H  < 

0.08Hc we measure only two different states, similar 
to the behavior at a frequency of 2.5 Hz: the flat surface 
(00) and the oscillating peak (+ +). The threshold 
is slightly increased by modulation in contrast to the 
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measurement at 2.5 Hz. The AH-range of the direct 

transition between the two domains is also increased. 

For AH > 0.08He there exists the (0+)-domain 
again, but now this domain has a fine-structure of dif- 

ferent oscillatory modes as can be seen in Fig. 6(a). 

For low values of H0 the surface response is har- 

monic. Increasing H0 leads to a period-2-state. For 

sufficiently high oscillating fields, AH > 0.2Hc, and 

for high values of H0 this state converts directly into 

the (+ +)-domain. But in the AH-range from 0.09 

to 0.2 He we observe a 'balloon' of subharmonic and 

intermittent oscillations. For lower values of H0 the 

odd-numbered subharmonic cascade of periods 3, 5, 

7 and 9 TD can be observed inside this balloon. These 

different states seem to be separated by intermittent 

states caused by coexisting attractors [10,11] of the 

pure states. While a period-1-state could softly bifur- 

cate into a period-2-state, there exists no smooth tran- 

sition from T = 2 to T = 3 and we observe irregular 

change of the dynamics between these attractors. The 

diagram shows that the basins of attraction are get- 

ting smaller for higher modes. For higher values of/4o 

we can only observe intermittent states and the even- 

numbered subharmonic modes 4, 6, 8, 10, 12 and 16 

within the balloon. A regular band-structure, like the 

odd-numbered cascade, of the even-numbered modes 

cannot be found in the phase-diagram. The maximum 

height hmax of the peaks is shown in Fig. 6(b). The 

transitions from period-1 to period-2, from period-2 

to the balloon, and from the balloon to period-2 are 

indicated by small black bars. We observe, that some 

changes of the oscillating modes are connected with 

changes of hmax. At the transition point from period-1 

to period-2 hmax is increased. The period-2 to period- 

3 transition also shown an increase of hmax. But in the 

small intermittent band between the period-2-states 

and the period-3-bands the height is decreased. There 
exist local maxima of hmax inside the period-l-band 

and the period-2-band, indicating the areas of strong 

reasonance of the oscillator. 

D 111 (1998) 335-346 343 

Hc, where we find only the flat surface and the do- 

main with hmax > 0, is larger than in the case of 13 
or 2.5 Hz. This can be understood, because in the case 

of fD -+ cxD the fluid should not be influenced by 

the oscillating part. Therefore the (0 +)-domain ap- 
pears at higher values of A H for the high frequency 

fD = 23.5 Hz. The threshold for the transition be- 

tween the flat surface (0 0) and the (+ +)-domain is 

increased. For AH > 0.14Hc we observe only even- 

numbered oscillating modes 2, 4, 6, 8 and 10, the 

period-l-state and the intermittent state as shown in 

Fig. 7(a). For low values of H0 there exists only the 

period-2-state, except for two data points. The period- 

2-state changes into the period-4-state by a period- 

doubling-bifurcation in the AH-range from 0.23 to 

0.29 He. For AH = 0.29Hc the period-4-state is con- 

verted into a period-8-state if H0 is increased. Inside 

the period-2 domain there exists a balloon again con- 

sisting of states with period 4, 6 and 8 TD as well 

as intermittent states. The maximal height hmax is 

shown in Fig. 7(b). The transition from period-2 to 

period-4 or intermittency is again indicated by small 

black bars. Except for the area of the diagram de- 

scribed by high values of A H and low values of H0 
the height of the peaks is decreased if/4o is increased, 

in contrast to the cases of lower driving frequencies 

fD. 
Even- and odd-numbered subharmonic responses 

are known from simulations of driven nonlinear oscil- 

lators [10,11]. Their range of existence is governed by 

the ratio of the driving period TI~ to the natural period 

of the oscillator, which is in our case the time a peak 

needs to arise and collapse. In order to achieve a deeper 

understanding of the existence of the odd-numbered 

subharmonic cascade we derive a theoretical minimal 

model which reproduces the most striking observa- 

tions of the bifurcation scenario. 

4. Minimal model 

3.3.3. High frequency 

In Fig. 7 the results for high driving frequency fD = 
23.5 Hz are presented. The AH-range from 0 to 0.14 

We present a minimal theoretical model which cap- 

tures the essence of the experimental findings, namely 
the existence of two oscillatory domains, the subhar- 

monic dynamics, the hysteresis, the threshold shift and 
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the static behavior 

+ flh = h - h 2 + E(t), 

E(t) = HO + A H  s i n 2 r r t / T D  - He 

with a cutoff condition: /) and h are set to zero if h 

reaches negative values, h represents the height of the 

peak and/3 measures the damping. We use a second 

derivative in the equation because the driving period 

is not very different from the characteristic times that 

a peak needs to arise and collapse. The force h - h 2 is 

the minimal form which considers the asymmetry of  
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Figs. 8(a) and (b) show the results of the numer- 

ical simulation for the parameters obtained from the 

fit explained below. At fixed driving the static part H0 

is increased from 0.7 to 1.2 Hc. For each value of 

H0 the dynamic is determined after relaxation and is 

marked in the diagrams with a square. Crosses mark 

the adjacent decrease of H0. Fig. 8(a) demonstrates 
the hysteresis of the static case without modulation. 

At /4o = He the solution h = 0 becomes unsta- 
ble and the height h jumps to the fixpoint h*(~ = 

0) = 1. Further increase of H0 shifts the fixpoint to 

h*(~) = ~ + 1 + 1. Decreasing H0 leads to the sad- 

dle node Hs = He - 1 where the finite solution be- 

comes unstable. This dynamical behavior corresponds 

to the measured dynamic of  Fig. 3(a). The influence of  
modulation is shown in Fig. 8(b). Starting again at the 

(0 0)-state at low values of  H0, the solution h ---- 0 be- 
comes unstable in a supercritical way at H0 < He. The 
response period of  the (0 +)-state is T = TD. By in- 
creasing Ho this mode transforms supercritically into 

Fig. 8. Numerical simulation for the parameters obtained from 
the fit: (a) Height of the peak depending on the static field H 0 
without modulation. (b) Minimum and maximum height of the 
peak and response period T depending on the static field H0 at 
A H  = 0.24Hc. Squares (crosses) correspond to the increasing 
(decreasing) field. 

a period-2-state. Further increase of H0 leads to higher 

subharmonic modes and intermittent states, which are 

marked in the diagram again with T = 0. For H > 

1.1Hc the (+  +)-state becomes stable. A similar dy- 
namic is observed in the experiment in Fig. 3(b). A 

decrease o f /4o  shows no hysteresis except for some 
transitions in the subharmonic and intermittent regime. 

In the model the exact transition from (0 0) to (0 + ) -  

domains is always determined by the line AH(H0)  ---- 
Hc -- H0, because then the resulting force h - h 2 + ~ (t)  

is positive for a certain time. According to an ex- 
perimental resolution limit of the height we intro- 

duce a threshold height hres for the presentation of the 
simulations in the phase-diagram AH(Ho)  of Fig. 9. 

The model-parameters fl, To, Hc and hres are used 
as fit-parameters to fit the numerical transition-line 
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Fig. 9. Characterization of the surface dynamics obtained by numerical simulation for the parameters resulting from the fit. For each 
value of AH the static part H0 is increased from 0.8 to 1.2 Hc. The response periods are shown by colors. The solid black line 
indicates the transition from (00) or (0+) to (+ +)-modes. States lying on this line are already (+ +)-states. 

(0 0) --+ (0 + )  to the transition-line from the measure- 

ment at 13 Hz presented in Fig. 6 [12]. The initial pa- 

rameters of  each fit are chosen randomly from a certain 

interval. The best fits show good agreement with the 

measured transition-line (0 0) --+ (0 +) ,  but the inner 

structure of  the (0 +) -domain  does not match with the 

measurements. Therefore in Fig. 9 there is presented 

the best fit, which shows an inner structure of the 

(0 +) -domain  similar to the experimental data: /3 = 

0.07825422, TD = 2.87910700, Hc = 7.48344946 

and hres : 0.4278. The representation of  the data is 

the same as in Figs. 5(a)-7(a),  except for the label 

T ,  which marks periodic states with T > 10TD and 

states where no periodicity can be detected. The solid 

black line in Fig. 9 corresponds to the dotted black 

lines in Figs. 5-7,  indicating the transition from (0 0) 

or ( 0 + )  to ( +  +) -modes .  In the AH- range  from 0 to 

0.1 He the (0 0)-domain transforms directly into the 

(0 +)-domain .  For 0.050Hc < A H  < 0.226Hc we 

observe that ( +  +)-s ta tes  can retransform into (0 + ) -  

states in contradition to the experimental data shown 

before. Although this feature does not occur at all com- 

binations of the model-parameters,  we suppose that 

the retransformation could be suppressed by higher 

nonlinear terms. As in the experimental case referring 

to Fig. 6(a) we detect mainly the subharmonic cas- 

cade of response periods 1, 2, 3, 5, 7, 9 inside the 

(0 +) -domain  for lower values of H0. The period-2- 

regime includes a balloon of higher modes and inter- 

mittent states. The basins of attraction become smaller 

for higher modes in accordance with the experimental 

findings. 

5. Summary and conclusion 

We have studied the nonlinear surface oscillations 

of a magnetic fluid under the influence of a time de- 

pendent magnetic field in the neighborhood of a sub- 

critical bifurcation. The nonlinear response involves 
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subharmonic regimes with periods up to 11 TD, which 

are separated by regimes of irregular oscillations. At  

low frequencies the surface follows the frequency of 

the driving. At high frequencies only even-numbered 

subharmonics can be observed, while at medium fre- 

quencies a regime arises where odd-numbered subhar- 

monics are dominant. These features are captured by 

a minimal model of the nonlinear oscillator. 

We have used a harmonic driving H ( t )  = Ho + 

A H  sin 2zrtfD. It must be kept in mind that a time- 

periodic driving with different ratios of  harmonics, 

i.e. square waves, will lead to quantitative differences 

in the bifurcation scenario. We have not performed a 

systematic study of those influences. 

It seems to be interesting to study the interaction of  

many spatially coupled oscillating peaks. In the regime 

where subharmonic responses are favoured one would 

expect spatial domains with different phases of  the 

oscillation. Thus experimental investigations in larger 

vessels are currently under way. 
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