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Fingering instability in a water-sand mixture
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Abstract. The temporal evolution of a water-sand interface driven by gravity is experimentally investi-
gated. By means of a Fourier analysis of the evolving interface the growth rates are determined for the
different modes appearing in the developing front. To model the observed behavior we apply the idea of
the Rayleigh-Taylor instability for two stratified fluids. Carrying out a linear stability analysis we calculate
the growth rates from the corresponding dispersion relations for finite and infinite cell sizes. Based on the
theoretical results the viscosity of the suspension is estimated to be approximately 100 times higher than
that of pure water, in agreement with other experimental findings.

PACS. 47.54.+r Pattern selection; pattern formation – 47.55.Kf Multiphase and particle-laden flows –
68.10.-m Fluid surfaces and fluid-fluid interfaces

1 Introduction

There has been great interest in the behavior of granu-
lar materials over the last years (for a review see [1] and
references therein). Examples for the surprising behavior
of granular matter are two-dimensional localized states,
called oscillons [2], in vertically vibrated containers, strat-
ification phenomena observed while pouring granular mix-
tures onto a pile [3] or singing sand audible in deserts [4].

In contrast to the amount of phenomena one lacks a
sound theoretical explanation for the observations. Diffi-
culties arise due to the highly complex, disorded structure
formed by the grains and their nonlinear internal friction.
Therefore, most theoretical approaches have been done by
numerical methods. Molecular-dynamics simulations and
cellular automata calculations are frequently applied, for
recent reviews see [5]. These methods describe in some de-
tail the interactions between the particular grains [6]. Con-
clusions on the macroscopic behavior of granular matter
are then drawn from the simulations with a great num-
ber of particles. Despite the recent progress in computer
performance the size of the systems is still too small for a
quantitative comparison with real experiments [6,7].

Hydrodynamic approaches to granular material are
few [8–11] and are associated with restrictions as no in-
terparticle correlations [8], a Gaussian distribution in the
velocity of the grains [9] or steady-state properties [11].
Nevertheless, there are striking phenomenological similar-
ities in the observed patterns for pure granular materi-
als and pure fluids. Experiments with an inclined chute
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[12,13] or a vertically vibrated container [14,15] show the
most notable analogy. It is clear that granular media are
different from fluids but under certain conditions these
differences are not prevailing.

The flow of grains embedded in an interstitial fluid
is dominated either by the effects of grain inertia or by
effects of fluid viscosity. The Bagnold number B [16] ex-
presses the ratio of collision forces between the grains to
viscous forces in the fluid-grain mixture. A small Bagnold
number, B < 40, characterizes the regime of the macro-
viscous flow. In this regime the viscous interaction with
the pure fluid is important. Examples for this type of flow
are mud slides and the transport of water-sand mixtures
in river beds. At large Bagnold numbers, B > 450, the
flow is called grain-inertia regime where the grain-grain
interactions dominate. All flows of grains with air as in-
terstitial fluid fall into the grain-grain regime.

Here, experiments are performed with sand dispersed
in water. The occurring shear rates, the mean particle di-
ameters, and the viscosity of water result in a Bagnold
number of about 1 [17]. This motivates the idea to con-
sider the water-sand mixture as fluid-like. In the experi-
ments we observe that the initial flat water-sand interface
evolves into a finger-like pattern. The measured velocity
for the largest finger was typically three times the Stokes
velocity of a settling hard sphere. Furthermore, the veloc-
ity was nearly independent of the mass of the sand and
the diameter of the particles [17]. This independence of
particle properties encourages a fluid-like description of
the water-sand mixture. To model this behavior we test
a continuum approach which is based on a well-known
hydrodynamic instability.
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Fig. 1. Experimental setup.

The aim is to determine the critical parameters for the
stability of the pattern and the dispersion relation for the
whole spectrum of wave numbers detectable in the experi-
ment. Particularly, the latter extends significantly the ob-
jectives of earlier experiments with water and polystyrene
spheres [18] and with water and glass beads [19]. The de-
pendence of the initial wavelength of the developing pat-
tern on the width of the cell was studied in [18]. In [19]
the experiments were focused on the evolution of voidage
shock fronts caused by a step increase or decrease in the
fluidization velocity for a fluidized bed. We, however, turn
our attention to the temporal evolution of all wave num-
bers.

To model the water-sand mixture as a Newtonian fluid
with effective properties depending on the concentration
of the particles is obviously a simplifying description. In
such a model it is assumed that the particle concentra-
tion in the flowing mixture is almost constant. Further-
more, the particles have to be large enough to neglect their
Brownian diffusion. Stability analyses with these simplifi-
cations were made for moderate concentrated mixtures in
horizontal Hagen-Poiseuille flow [20] and in sedimentation
problems in inclined narrow channels [21–23]. For the lat-
ter configuration even the sediment was described by such
a simple model and a fair agreement with experimental
results was found [22]. In the clear knowledge of the limi-
tations of a fluid model for the water-sand mixture we will
examine whether such an approach can catch the essence
of the experimental results.

In the following section, the experimental arrangement
is described and the results for the growth rates of the
wave numbers are presented. In Section 3 the model is
explained and thereafter the calculated growth rates are
compared with those of the experiment (Sect. 4). The final
section contains our conclusions and some remarks about
further prospectives.

2 Experiment

2.1 Experimental setup

A closed Hele-Shaw-like cell is used to investigate the tem-
poral evolution of a water-sand interface driven by gravity
(see Fig. 1). The cell, a CCD-camera and a neon tube are
fixed to a frame which can be turned around a horizontal
axis. This allows image analysis in the comoving frame and

Table 1. Details of sand used in certain experimental config-
urations.

Experiment Size distribution [µm] Mass [g] Runs

I 71−80 2 100

II 71−80 4 12

III 71−80 8 12

IV 56−63 2 12

V 90−100 2 12

ensures a homogeneous illumination at every stage of the
pattern forming process. The length of the cell is 160 mm,
the height 80 mm and the width 4 mm, respectively. The
cell is filled with sand and distilled water. As sand we
use spherical glass particles (Würth Ballotini MGL) of
different sizes and size distributions (see Tab. 1 for de-
tails). Its material density is given by 2.45 g/cm3. The
rotation axes of the frame is right beneath the sand layer.
This minimizes the centrifugal forces on the sand layer
while the cell is turned. The cell is rotated by hand. To
obtain reproducible results the vertical and horizontal ac-
celeration is measured by acceleration sensors (ADXL05).
When the cell passes a rotation angle of 170 degree, a
lightgate triggers a number of snapshots. This moment
defines the starting time of our measurements where we
take images every 20 ms for later analysis. The images
have a dimension of 256 × 300 pixel. To achieve a rea-
sonable resolution we only focus on a horizontal length
of 61 mm at the middle of the cell. This gives a resolu-
tion of 4.9 pixel/mm. After each rotation the suspension
sediments until all particles are settled. This process takes
typically less than 1 minute. By means of tracer particles it
was proven that at this time the fluid in the cell is at rest.
The time between consecutive runs is at least 3 minutes
to secure independent runs. The influence of the waiting
time on the occurring patterns was tested and no effect
concerning the wavelength of the fingers was observed.

2.2 Experimental results

Figure 2 shows typical images of the sand-water cell at cer-
tain stages. 20 ms after the series of snapshots is started,
the initial flat sand layer is modulated at small scales
(Fig. 2a). These disturbances are enhanced and give rise
to sand fingers as seen in Figure 2c. At later stages the
fingers evolve to a mushroom-like pattern (Figs. 2d and
2e). This type of pattern was found also by numerical
simulations for two stratified suspensions of different con-
centration [24].

To analyze this behavior we apply a threshold algo-
rithm to obtain the water-sand interface. We look at ev-
ery column of our digitized image to determine the point
where the grey scale exceeds a certain value. We start at
the bottom (water) and continue to the top (sand). In this
way we track down the interface of the pattern. Figure 3
shows the temporal evolution of the images presented in
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Fig. 2. Sand-water interfaces at certain time steps: (a) 20 ms,
(b) 80 ms, (c) 140 ms, (d) 200 ms, and (e) 260 ms. The size
distribution of the sand particles is given by 71-80 µm and the
sand mass in the cell by 2 g, respectively. The presented frames
show the middle part of the cell and have a horizontal length
of 68 mm.
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Fig. 3. Temporal evolution of the water-sand interfaces. The
patterns are detected every 20 ms and shown with a constant
vertical offset of 1 mm. The experimental conditions are the
same as in Figure 2.
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Fig. 4. Amplitude A of a DFT-analysis for a typical wave
number (here k = 7 cm−1) in dependence on time t. An ex-
ponential fit is obtained by equation (1). The values belong to
the interfaces presented in Figure 3.

Figure 2. Here the interfaces of all patterns are shown.
While our detecting method works for the patterns dur-
ing the first stages, namely small scale modulations and
sand fingers, it breaks down for mushroom-like patterns.
However, this is not crucial because those patterns are
beyond the scope of the linear analysis presented here.
Discrete-Fourier-Transformation (DFT) gives the Fourier
spectrum of each interface. Figure 4 shows the temporal
evolution of the amplitude A of a typical Fourier mode. It
is seen that A grows exponentially from the first image to
t = 200 ms. By an exponential fit

A(k) = Ai(k) exp(n(k)t) (1)

we obtain the growth rate n for every wave number k in
our spectra, where Ai is the initial amplitude. For each fit
it was monitored that A(k) was smaller than 40% of its
wavelength, the criterion for the linear regime [25].

In order to test the reliability of our experimental setup
we perform 100 independent runs with one set of material
parameters. The particular values of this set are given in
the first row of Table 1 (Experiment I). We only analyze
image series where the angular velocity of our rotating ap-
paratus is larger than 6.6 rad/s. We find that 42 fast runs
show only a slight deviation in the angular velocity: 7.4 ±
0.1 rad/s. These 42 measurements are analyzed to obtain
a mean growth rate and a mean initial amplitude for each
wave number. The results are shown in Figure 5. It is seen
that the growth rates starting with small values increase
with increasing wave number until they saturate at larger
k. In contrast the initial amplitude decreases for increas-
ing wave numbers. In the case of large wave numbers we
do not obtain exponential fits for every experimental run.
This is due to the fact that the amplitude is very small
and that we approach the limit of the resolution of our
image processing. The error bars in Figure 5 indicate that
the number of runs which can be analyzed decreases for
larger wave numbers.
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Fig. 5. Growth rate (a) and initial amplitude (b) versus the
wave number k for experiment I (see Tab. 1).

An obvious question concerning the underlying mech-
anism of the pattern formation in our system is: How do
different material parameters effect the dispersion rela-
tion? Therefore we carry out experiments with different
material configurations which are characterized in Table 1.
Using 2 g, 4 g, and 8 g of sand (Experiments I, II, III)
we observe a shift of all growth rates towards larger values
with increasing mass of sand. This effect is independent
of the wave number (Fig. 6a). Using three different size
distributions (Experiments I, IV, V) the ratio of the cell
thickness of 4 mm to the mean particle diameter varies
between ∼ 70 and ∼ 40. As Figure 6b shows the mean
particle diameter does not have any significant influence
on the dispersion relation n(k). As a common feature we
find the same overall behavior for all material sets: the
growth rates increase for small k and reach a plateau for
larger values of k.

3 Theory

We choose a two fluid system as a model to describe the ex-
perimental results. In the initial state two incompressible
fluids of constant densities ρ1 and ρ2 and constant dynam-
ical viscosities µ1 and µ2 are arranged in two horizontal
strata. The index 1 (2) refers to the fluid at the bottom
(top) of the system. The pressure is a function of the ver-
tical coordinate z only; x and y are the coordinates in the
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Fig. 6. Growth rate versus the wave number for different ma-
terial parameters. In (a) 2 g (2), 4 g (•), and 8 g (4) of sand
with the same size distribution were used (Experiments I, II,
III). In (b) 2 g of sand with size distributions of 56−63 µm (2),
71−80 µm (4), and 90−100 µm (•) were used (Experiments
IV, I, V).

plane perpendicular to z. The acceleration due to gravity
acts in negative z-direction. A linear stability analysis is
carried out for small disturbances of this initial state. The
instability of a planar interface z = zs(x, y) ≡ 0 between
the two fluids is known as the Rayleigh-Taylor instability
[25–27].

We assume that the boundaries in z-direction are far
from the interface. Small changes δzs in the form of the
interface cause a pressure difference which is balanced by
the product of the surface tension Ts and the curvature
of the interface. Considering small disturbances δρ in the
density and δp in the pressure the Navier-Stokes equations
read [27]

ρ∂tu = −∂xδp+ µ∆u+ (∂xw + ∂zu) ∂zµ, (2)

ρ∂tv = −∂yδp+ µ∆v + (∂yw + ∂zv) ∂zµ, (3)

ρ∂tw = −∂zδp+ µ∆w + 2∂zw∂zµ− gδρ

+ Ts
(
∂2
x + ∂2

y

)
δzs δ(z − zs), (4)

where ∂i = ∂/∂i, i = x, y, z, t. The z dependence of
µ gives rise to the third term at the right-hand side of
equations (2–4) since the viscous part in the Navier-Stokes
equations is ∂j [µ (∂jvi + ∂ivj)] for an incompressible fluid.
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For convenience, we adhere to ∂zµ though ∂zµ is differ-
ent from zero only at the interface. The components of
the velocity field v are vx = u, vy = v, and vz = w
and are considered small, so that equations (2–4) contain
only terms which are linear in the disturbances. The delta-
function δ(z−zs) ensures that the surface tension appears
at the interface zs between the two fluids. The equation of
continuity (mass conservation) for an incompressible fluid
is

div v = ∂xu+ ∂yv + ∂zw = 0. (5)

Additionally the equation

∂tδρ = −(vgrad)ρ = −w∂zρ (6)

relates the temporal variations in the density fluctuations
to the density jump at the interface which moves with w in
z-direction. Equations (2–6) govern the linearized system.
The disturbances are analyzed into normal modes thus
seeking solutions which x and t dependence is proportional
to exp(ikx + nt). The wave number is denoted by k and
n(k) is the growth rate of the corresponding mode k. If
the fluid is confined between two rigid planes the boundary
conditions are

w = ∂zw = 0 at z = ±∞ (7)

where we shift the planes to infinity for the sake of sim-
plicity. The other boundary conditions are related to the
interface. All three components of the velocity and the
tangential viscous stresses must be continuous. Using the
exponential ansatz for the continuous velocity compo-
nents, equation (5) gives the continuity of ∂zw, too. The
continuity of µ(∂2

z + k2)w is the condition which ensures
that the two tangential stress components are continuous
across the interface. Inserting the exponential ansatz into
equations (2–6) and determining the solution of w in each
region in such a way that the boundary condition (7) as
well as the interfacial conditions are satisfied leads to the
dispersion relation [27]

−

{
gk

n2

[
(α1 − α2) +

k2T

g(ρ1 + ρ2)

]
+ 1

}
(α2q1 + α1q2 − k)

−4kα1α2 +
4k2

n
(α1ν1 − α2ν2)

[
α2q1 − α1q2

+k(α1−α2)
]
+

4k3

n2
(α1ν1−α2ν2)2(q1−k)(q2−k)=0.

(8)

The abbreviations α1,2 = ρ1,2/(ρ1 + ρ2) and q2
1,2 =

k2 + n/ν1,2 were introduced where ν1,2 = µ1,2/ρ1,2 is the
kinematic viscosity for each region. For the rest of the
paper we will use a dimensionless surface tension S =
T/
[
(ρ1 + ρ2) (gν4

1)1/3
]

if not stated otherwise.
We now briefly discuss the general results of the dis-

persion relation (8). The configuration where the lighter
fluid is on top of the heavier one, ρ2 < ρ1, is always sta-
ble, i.e., Re{n(k)} ≤ 0 for all k. This is independent
of whether there is any surface tension (Fig. 7b) or not
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Fig. 7. For zero surface tension (a) and surface tension S = 1
(b) the growth rate Re{n} of the modes is plotted versus their
wave number k for the case that the top fluid is lighter than
the bottom one, ρ2 = 0.5ρ1. The surface tension as well as the
relation of the viscosities does not change the overall behavior
too much as the three examples show: ν1 = ν2 = 10−6 m2 s−1

(solid line), ν1 = 10−6 m2 s−1 and ν2 = 0.75ν1 (long-dashed
line), and ν2 = 10−6 m2 s−1 and ν1 = 0.75ν2 (dot-dashed line).

(Fig. 7a). If the strata are in the opposite order, ρ2 > ρ1,
then the surface tension plays a crucial role. In the case of
no surface tension (Fig. 8a) the system is unstable against
disturbances of any wave number, i.e., Re{n(k)} ≥ 0 for
all k. If there is a surface tension a critical wave number
exists

kc =

√
g

T
(ρ2 − ρ1), (9)

and the system is stable (unstable) against modes with
wave numbers which are larger (smaller) than kc (Fig. 8b).
A moderate variation in the relation between the two vis-
cosities ν1 and ν2 has no strong influence on the general
behavior of the growth rates (see Figs. 7 and 8).

The experiments are carried out in a finite-size cell
in contrast to our simplification of infinite length in z-
direction. We determine now the limits to which this sim-
plification is justified (see also [28]). If the walls of the cell
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Fig. 8. The growth rate Re{n} of the modes is plotted versus
their wave number k for the case that the top fluid is heavier
than the bottom one, ρ2 = 2ρ1. The surface tension S is zero
in (a) and 1 in (b). The surface tension causes a drastic change
in the behavior whereas the ratio of the viscosities does not
change the overall behavior too much as the three examples
show: ν1 = ν2 = 10−6 m2 s−1 (solid line), ν1 = 10−6 m2 s−1

and ν2 = 0.75ν1 (long-dashed line), and ν2 = 10−6 m2 s−1 and
ν1 = 0.75ν2 (dot-dashed line).

are at z = ±Lz the appropriate ansatz for w is

w1 = a1e
+kz + a2e

−kz + b1e
+q1z + b2e

−q1z for z ≤ 0,

(10)

w2 = c1e
+kz + c2e

−kz + d1e
+q1z + d2e

−q1z for z ≥ 0.

(11)

With the boundary condition w = ∂zw = 0 at z = ±Lz
and the analysis at the interface as above one ends up
with a system of eight equations for the constants in
(10, 11). The coefficients of the corresponding matrix are
given in the Appendix. The vanishing determinant leads
to the dispersion relation n(k), its numerical solution is
shown in Figure 9 for different lengths Lz. The compar-
ison with the data for infinite Lz shows that there is no
real difference as long as |Lz| > 3 mm for the used ma-
terial parameters. Since the thickness of the sand layer
is below this margin we expect finite-size effects. In the
case of asymmetrically arranged walls at z = −L1 and
z = +L2 the dispersion relation shows up to a ratio of
|L1|/L2 ' 17 only a very weak deviation from the results
for symmetrical walls.
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Fig. 9. For zero surface tension (a) and surface tension S =
12.8 (b) the growth rate Re{n} is plotted versus the wave num-
ber k for Lz = ± 3 mm (long-dashed line) and Lz = ± 1 mm
(dashed line). For comparison the solid line shows the graph
for infinite Lz. It reveals that finite-size effects play a signifi-
cant role if k < 2π/|Lz|. The material parameters are ρ2 = 2ρ1

and ν2 = 33ν1 with ρ1 = 1 g cm−3 and ν1 = 10−6 m2 s−1.

In the frame of our continuum approach we consider
the water-sand mixture as a suspension in accordance with
the classification in [29]. The dispersion medium is water
and the dispersed material consists of sand particles with
a mean diameter and a density as stated in Section 2. The
material density as well as the dynamical viscosity of the
mixture depend on the packing density φ of the granular
material. The packing density φ measures the volumetric
concentration of the particles in the mixture. The material
density of the mixture is given by

ρmixture = φρsand + (1− φ)ρwater. (12)

Since ρwater and ρsand are constant, the considered small
disturbances in the mixture density δρmixture imply that
φ varies according to equation (12). In the following the
index 1 refers to water and 2 to the mixture, respectively.
Two empirical formulae [30,31]

µ2

µ1
= µr =

(
1−

φ

φmax

)−2.5φmax

φmax = 0.63, (13)

µ2

µ1
= µr =

(
1 +

0.75
φmax
φ
− 1

)2

φmax = 0.605, (14)
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Fig. 10. Relative dynamical viscosity µr versus the packing
density φ. The results of the two empirical formulae (13, 14) are
plotted as dashed and long-dashed lines, respectively. The solid
line indicates µr ' 1/ [1− (φ/φmax)]1/3 with φmax = 0.625
[32]. µr is nearly the same for all three approaches provided the
packing is not too dense, φ ≤ 0.48. Above this range µr starts
to diverge as φ reaches φmax where the divergent behavior
differs significantly between the various approximations.

were widely used for the dynamical viscosity of a hard
sphere suspension. The maximal packing densities in
(13, 14) result from the fit of the proposed formulae to
the experimental results.

Figure 10 shows the behavior of the relative dynam-
ical viscosity µr for different packing densities φ ac-
cording to equations (13, 14). A third relation, µr '

1/ [1− (φ/φmax)]
1/3

with φmax = 0.625, was also plotted
where particle sizes beyond the colloidal range were in-
corporated into the theoretical basis of this relation [32].
All three of them give nearly the same value for µr(φ) at
moderately dense packings, 0.4 ≤ φ ≤ 0.48. Above this
region the relative viscosity diverges as φ approaches its
maximal value. But the strength of the divergent behavior
is remarkably different so that µr already varies about a
factor of 5 for φ = 0.57. The fact of wide spread measured
values for the relative viscosity of the same system is ex-
emplarily shown in [33]. The measured values of µr vary
between 21 and 400 for a rather colloid system at φ ≈ 0.5.
A similar situation is present for suspensions [34] which
is why we cannot rely on a fixed value of µr within small
error bars. Therefore we consider µr a variable parame-
ter within reasonable limits rather than a fixed material
parameter.

4 Results and discussion

In experiment I the height of the sedimented sand layer
was measured by an optical close-up with a resolution of
37 µm per pixel. On the basis of six independent samples
the height was determined to 2.6± 0.2 mm. This results
in a packing density of φ = 0.48± 0.04. Thus the mixture
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Fig. 11. Growth rates n of the disturbances against their wave
numbers k for a packing density φ = 0.48. The results n(k) for
infinite Lz according to (8) are shown by the dashed line (µr =
15) and the long-dashed line (µr = 104), respectively. The
solid lines are calculated with |Lz| = ± 2.6 mm, the measured
height of the sand layer. The relative viscosity for each drawn
curve is stated at the right end of it. The finite-size effects
appear for small wave numbers and increase with increasing
relative viscosity. A relative viscosity of µr = 15 based on (14)
gives growth rates which are far away from the experimental
results ( ). The best fit over the whole k range gives µr = 104.
Fits with slightly smaller or larger µr values deliver better
agreements either with larger or smaller wave numbers.

is sufficiently characterized by equations (12–14) where
ρwater = 0.988 g/cm3. By means of (14) the viscosity of
the mixture is µ2 ' 15µ1 for φ = 0.48. The resulting
growth rates show disagreement for infinite Lz as well as
for finite Lz (Fig. 11). Since the relative dynamical viscos-
ity is the most uncertain quantity in our calculations we
vary µr to find the best fit with the experimental data. Un-
der the assumption of zero surface tension a least square fit
results in µ2 ' 104µ1 which gives a fairly good agreement
over the whole k range. In comparison to µ2 ' 104µ1, fits
with µ2 ' 128µ1 and µ2 ' 85µ1 show a better agreement
for smaller and larger wave numbers k, respectively.

For two sets of parameters, µ2 ' 15µ1 and µ2 '
104µ1, we calculate the dispersion relation for infinite as
well as for finite Lz. The finite-size effects appear for small
wave numbers and decrease with increasing wave numbers.
The differences in n(k) for small wave numbers are more
pronounced for larger relative viscosities (see Fig. 11). The
dispersion relations for infinite and finite Lz approach each
other at wave numbers where the initial amplitudes of the
disturbances are in the order of 10−2 mm. For these dis-
turbances a boundary at 2.6 mm distance appears to be at
infinity. Therefore it does not matter whether we choose
Lz = ±∞ or Lz = ± 2.6 mm. This is not the case for
small wave numbers where the initial amplitudes are in
the order of 10−1 mm (Fig. 5b).

There is one viscosity measurement [35] which comes
near to the value of the relative viscosity suggested by our
fit. The measurement was carried out for crushed sand
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Fig. 12. Growth rates n of the disturbances against their wave
numbers k for a packing density φ = 0.48. Two different fits
are compared with the experimental results ( ). The solid line
shows the graph based on the Rayleigh-Taylor approach with
finite z boundaries at |Lz| = ± 2.6 mm and µr = 104. The
long-dashed line presents the results of the Hele-Shaw approach
with µr = 404 and T ' 1.06 × 10−3 Nm−1.

with particle diameters from 20 to 80 µm and gives a value
of µ2 ∼ 110µ1 for φ = 0.48 (see Fig. 3 in [35]). This value
for the relative viscosity is notably close to our fit value.
The values for the viscosity of the suspension estimated
in [19], µ2 ∼ (130−190)µ1, are in a similar range as ours.
These values are determined by the help of the singular
wave number with the largest growth rate. A real compari-
son with our fit value is not possible because the necessary
packing density is not given for the type of experiments
from which the viscosity values were estimated.

Nevertheless, the large difference in µr between [30–32]
and [35] over a wide range of the packing density φ repre-
sents an unsatisfying situation. It highlights the need for
comprehensive and unambiguous viscosity measurements
in highly concentrated hard sphere suspensions. It further
shows how sensitive µr is on experimental methods [32],
the accurate determination of the density packing [33],
and the type of flow involved in the measurements [36].

The aspect ratio of the cell suggests that a description
referring to the Hele-Shaw type of the cell might be closer
to the experimental configuration. Adapting the disper-
sion relation of the Saffman-Taylor instability to the case
of zero throughflow velocity leads to [37]

n(k) =
b2

12(µ1 + µ2)

[
kg(ρ2 − ρ1)− Tk3

]
(15)

where b = 4 mm denotes the width of the cell. In contrast
to the Rayleigh-Taylor approach equation (15) contains
two parameters, the dynamical viscosity µ2 of the mixture
and the surface tension T , which have to be determined by
a least square fit. The validity of the Hele-Shaw approach
is limited by a cut-off condition at which the wave number
exceeds 2π/b.

The fit values µ2 ' 404µ1 and T ' 1.06× 10−3 Nm−1

result in a fit curve which is inferior to the Rayleigh-Taylor
fit (Fig. 12). Additionally, both fit parameters are ques-
tionable. The value µ2 ' 404µ1 is beyond any realistic
one for the dynamical viscosity of the mixture at a pack-
ing density of φ = 0.48. A nonzero surface tension between
the water-sand mixture and water is also arguable.

The better agreement of the Rayleigh-Taylor approach
with the experimental data is backed up by calcula-
tions focused on the influence of finite cell boundaries
for Rayleigh-Bénard convection [38]. As long as the ra-
tio between the relevant height of the cell and its width is
smaller than 0.8, the assumption of infinite boundaries
in y-direction is a good approximation. If this ratio is
larger than 5 the Hele-Shaw approach is well-founded. The
height of the sand layer and the width of the cell give a ra-
tio of 0.65 which supports the Rayleigh-Taylor approach.
As a consequence the cell width has no influence on the
instability for the used material sets.

It has to be stressed that both the Hele-Shaw and the
Rayleigh-Taylor approach assume a trivial y dependence
of the flow. In the experiment, that assumption is not
totally fulfilled: the rotation of the apparatus leads to a
sand layer which is not perfectly flat even in the beginning
of the flow process. This will lead to a three-dimensional
flow which effects the appearing patterns and their wave-
lengths. The strength of this effect is, however, presently
hard to determine.

5 Concluding remarks

In a closed Hele-Shaw-like cell the temporal evolution of
a water-sand interface was investigated. For the unstable
stratification, sand above water, the instability is driven
by gravity. The images of the temporal evolution were an-
alyzed by DFT. The Fourier spectra show that the initial
disturbances of the interface grow exponentially at the be-
ginning of the pattern forming process. This enables us to
determine the growth rates by an exponential fit for ev-
ery wave number in our spectra. The data show that the
growth rate increases with increasing wave number until
it saturates at larger values of k. This general behavior is
not influenced by the mean particle diameter which was
tested with three different size distributions. Experiments
with different amounts of sand reveal a shift of the disper-
sion relation n(k) as a whole. By increasing the mass of
sand, n(k) is shifted towards larger values of n.

To describe the general behavior we choose a two-fluid
system as a model. Carrying out a linear stability analysis
for the interface between the two fluids we calculate the
growth rates from the dispersion relation for a finite-size
cell. The theoretical results agree with the essence in the
experimental findings when assuming a relative viscosity
of the water-sand mixture which is close to one measured
with crushed sand and water [35].

Considering our simplifications and the uncertainty in
one relevant material parameter, the continuum approach
gives a reasonable agreement with the experimental
results. An interpretation for such an agreement was
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proposed in [19]. Above a critical value of the packing
density the mixture exhibits a non-zero yield stress well-
known for dry granular material. Below this critical value
the yield stress vanishes and the mixture behaves more
like a fluid with effective properties. Applying this inter-
pretation, the measured packing density of φ = 0.48 is
below this critical value. Thus, our results confirm a cer-
tain analogy between concentrated suspensions and fluids
which was found also in numerical simulations [24]. How-
ever, further investigations need to be done in order to
clarify open questions.

The available experimental data give no hint on
whether the dispersion relation n(k) will have a second
zero at kc after the observed plateau. A critical wave num-
ber kc means a non-zero interfacial tension according to
(9). A surface tension acts in a way to minimize the sur-
face of the fluid. Therefore it suppresses the formation
of waves with large wave numbers because their creation
entail additional surface. The suppression leads to a sat-
uration (reduction) in the growth rates of disturbances
with large (very large) wave numbers. In the context of
miscible fluids with slow diffusion the concept of an effec-
tive dynamical surface tension was recently successfully
applied [39]. The reason for such a surface tension lies
in the attraction between moving particles in a fluid for
non-zero Reynolds numbers [40]. The attraction originates
from the dynamics in the viscous fluid and results in a
favoured distance between the moving particles. Conse-
quently, is costs energy to separate the particles beyond
this favoured distance, i.e., to dilute the suspension. The
necessary energy corresponds to a surface tension which is
called effective dynamical surface tension to emphasize its
dynamical origin. The effect of such an effective dynamical
surface tension is seen in experiments by the presence of
sharp interfaces in rising bubbles, falling drops [41] and of
growing deposits [39]. A concentration gradient concern-
ing sand is present in our system between the water and
the water-sand layer. By reducing the density difference
between the layers, measurements for k values beyond the
plateau should be possible. This may lead towards the de-
termination of kc and the interfacial tension, respectively.

Since a linear stability analysis is restricted to terms
linear in the disturbances we cannot take into account
fluctuations in the relative viscosity of the mixture. These
would lead to terms of higher order because all terms
which contain the viscosity are already linear in the ve-
locity disturbances (see Eqs. (2–4)). On the other hand,
considering fluctuations of ρmixture(φ), i.e., fluctuations
of the packing density φ, implies variations of µr(φ). This
inconsistency owing to the restrictions of our linear theory
can only be resolved in a nonlinear analysis.

We are grateful to Lluis Carrillo, Stefan Neser, and Stefan
Schwarzer for inspiring discussions. The experiments were sup-
ported by DFG through Re 588/11-1.

6 Appendix

The matrix elements for finite Lz are A11 = e−kLz , A12 =
ekLz , A13 = e−q1Lz , A14 = eq1Lz , A15 = A16 = A17 =
A18 = 0, A21 = ke−kLz , A22 = −kekLz , A23 = q1e

−q1Lz ,
A24 = −q1eq1Lz , A25 = A26 = A27 = A28 = A31 = A32 =
A33 = A34 = 0, A35 = ekLz , A36 = e−kLz , A37 = eq2Lz ,
A38 = e−q2Lz , A41 = A42 = A43 = A44 = 0, A45 = kekLz ,
A46 = −ke−kLz , A47 = q2e

q2Lz , A48 = −q2e−q2Lz , A51 =
A52 = A53 = A54 = 1, A55 = A56 = A57 = A58 = −1,
A61 = k, A62 = −k, A63 = q1, A64 = −q1, A65 = −k,
A66 = k, A67 = −q2, A68 = q2, A71 = A72 = 2µ1k

2,
A73 = A74 = µ1(q2

1 + k2), A75 = A76 = −2µ2k
2, A77 =

A78 = −µ2(q2
1 + k2), A81 = R/2− C − α1, A82 = R/2 +

C + α1, A83 = R/2− q1C/k, A84 = R/2 + q1C/k, A85 =
R/2−C + α2, A86 = R/2 +C − α2, A87 = R/2− q2C/k,
and A88 = R/2 + q2C/k. Furthermore, the abbreviations

R =
k

n2

[
g(α2 − α1) +

k2T

ρ1 + ρ2

]
(16)

and

C =
k2

n
(α1ν1 − α2ν2) (17)

were used.
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