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Abstract

Recently, a model for the negative viscosity e!ect was proposed in form of a set of ordinary di!erential equations
(ODEs). We transform this set of ODEs in order to simplify its numerical integration. We investigate the limits of these
equations for the case of small frequencies and small amplitudes of the exciting magnetic "eld and compare the numeric
results with the analytical formulas. ( 1999 Elsevier Science B.V. All rights reserved.
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1. Introduction

The increase of the viscosity of a magnetic #uid
under the in#uence of a magnetic "eld has been
known since the measurements of McTague in 1969
[1]. A theoretical treatment for dilute dispersions
and accounting for the Brownian rotational
motion with their relaxation time q

B
was "rst pre-

sented by Shliomis in 1972 and later re"ned in
a review article in 1988 [2]. For the reduced viscos-
ity g

3
he obtained
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Here /
)

denotes the volume fraction of the hy-
drodynamic e!ective volume of the particles. The
Langevin parameter m"mH/k¹ characterizes the
ratio between the energy of the magnetic
moment m of the particle in the magnetic "eld
H and its thermal energy k¹. The Langevin
function ¸ is given by ¸(m)"coth(m)!1/m. The
angle between the direction of the "eld H and
the local angular velocity of the particle is mea-
sured by b.

Later Shliomis and Morozov [3] investigated
the additional viscosity generated in a #ow with
vorticity due to an alternating magnetic "eld. They
postulated a negative viscosity contribution (*g(0)
for a certain range of the frequency and "eld
strength of the applied "eld. The negative viscosity
e!ect has recently been detected by Bacri et al. [4].
We present an investigation of the model proposed
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in Ref. [4] in order to simplify the quantitative
comparison between theory and experiment.

2. Model equations and analytical results

The uncoupled system of ordinary di!erential
equations (ODEs) suggested in Ref. [4] is
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Here m
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"mH/k¹ denotes the e!ective "eld,
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is de"ned over the amplitude of

the external magnetic "eld. The product Fq
B
X]

H/H determines the ratio between the magnetiz-
ation parallel and perpendicular to the applied
"eld, where X is the averaged angular velocity of
the liquid. Solving this equations with the initial
conditions m

%
(0)"m

0
, F(0)+0 up to relaxation

and averaging the relaxed solution over one period
of the external magnetic "eld m"m
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cos (ut) the
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was obtained. It determines the reduced viscosity
g
3
by means of the equation
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(i) Transformation: Solving the system (2,3) be-
comes complicated, because the poles of F at m

%
"0

have to be taken into account. We prefer to solve
a mathematical equivalent system (2,6). Introduc-
ing A"¸F yields
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In contrast to Eq. (3), Eq. (6) has no poles. The
function g is now be determined by
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The transformed initial values are m
%
(0)"m

0
and

A(0)"0.

(ii) Limit for zero frequency: For the limit of very
small frequencies of the alternating magnetic "eld
the system of ODEs (2,6) degenerates to an alge-
braic system. After the transformation t@"ut and
inserting u"0 in the system we obtain
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The solution of this uncoupled system yields
m
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"m

0
cos (t@) for the "rst equation. With this solu-

tion one obtains A(t@)"2¸2
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/(m

%
!¸

%
). After insert-

ing A(t@) in Eq. (7) we get
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which is the limiting solution of the system (2,6,7). It
is obvious, that Eq. (10) is the mean over one period
of the static formula (1) using m"m

0
cos (t@).

(iii) Limit of weak excitation: The linearisation of
the Eqs. (2) and (6) in the case m

0
;1 yields the

equations
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These are two linear ODEs, which can be solved
with standard mathematical methods. Inserting the
solution for Eq. (11)
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as solution A(t) of the linearized Eq. (12). After
neglecting all exponential decaying terms in Eq.
(13), using the initial value A(0)"0 and inserting in
Eq. (7) one obtains
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This is in accordance with the formula presented by
Shliomis et al. in Ref. [3].

3. Numerical Results

For the numerical solution of the system (2,6,7)
we use a Runge}Kutta method of eighth order
with a combined error predictor of "fth and
third order as proposed by Hairer et al. in Ref. [5].
After solving the "rst two equations up to
relaxation all three equations are solved over one
period.

Because of the singular perturbation of the prob-
lem at uq

B
"0 the ODEs were only solved for

values of uq
B
'0.001. For smaller values the ap-

proximation g(uq
B
, m)"(1!3au2q2

B
)g(0, m

0
) was

used, which was obtained from a Taylor series
expansion of the weak "eld limit Eq. (14) for
small uq

B
. The corrector value a is introduced to

force a smooth solution between values g
0$%

cal-
culated from the ODEs and values from the ap-
proximation above. Its value is determined by a"
[1!g

0$%
(0.001,m)/g(0,m)]/(3]0.0012).

In Fig. 1 the results of the integration of the
ODEs for di!erent values of uq

B
are plotted

versus the amplitude of the external nondimen-
sional "eld m

0
. The values for uq

B
are 0.0, 0.001,

0.5, 1.0, 2.0 and 5.0 and marked with open
squares, solid circles, open triangles, solid squares,
solid triangles and open circles, respectively. The
curve for uq

B
"0 and uq

B
"0.001 can not be

distinguished by the naked eye. The curve for
uq

B
"5.0 falls below !1. In this range also

the total viscosity is negative. As a result a
spontaneous #ow instability is expected. Fig. 2
displays the isolines of the function g in depend-
ence of uq

B
(abscissa) and m

0
(ordinate) around

uq
B
"1. Note, the changing slope of the isoline

g"0 in Fig. 2.

Fig. 1. g(uq
B
,m

0
) for di!erent values of uq

B
: 0.0 (open squares),

0.001 (solid circles), 0.5 (open triangles), 1.0 (solid squares), 2.0
(solid triangles) and 5.0 (open circles) as function of the non-
dimensional "eld.

Fig. 2. Contour plot of g(uq
B
,m

0
) near uq

B
"1.

We have presented a transformation which
allows the exact solution of the standard model for
magnetoviscosity in an alternating magnetic "eld.
This is of crucial importance for "tting the model to
experimental data [6].
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