
Physics Reports 337 (2000) 117}138

Finger-like patterns in sedimenting water}sand suspensions
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Abstract

The temporal evolution of a water}sand interface driven by gravity is experimentally investigated. By
means of a Fourier analysis of the evolving interface the growth rates are determined for the di!erent modes
appearing in the developing front. To model the observed behavior we apply the idea of the Rayleigh}Taylor
instability for two strati"ed #uids. Carrying out a linear stability analysis we calculate the growth rates from
the corresponding dispersion relations for "nite and in"nite cell sizes and compose those results with the
experimental data. Alternatively, the situation of the sedimenting sand can be modeled by a two-dimensional
cellular automaton. A qualitative similarity between that model and the experimental situation is ob-
tained. ( 2000 Elsevier Science B.V. All rights reserved.

PACS: 05.45.!a

1. Introduction

There has been great interest in the behavior of granular materials over the last years
(for a review see [1] and references therein). Examples for the surprising behavior of granular
matter are two-dimensional localized states, called oscillons [2], in vertically vibrated containers,
strati"cation phenomena observed while pouring granular mixtures onto a pile [3] or singing sand
audible in deserts [4].

In contrast to the amount of phenomena one lacks a sound theoretical explanation for the
observations. Di$culties arise due to the highly complex, disordered structure formed by the grains
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the density of the grains.
The shear rate is denoted by c5 and g

&-6*$
is the interstitial kinematic #uid viscosity. The &linear concentration' j introduced

by Bagnold [16] is related to the packing density.

and their nonlinear internal friction. Therefore, most theoretical approaches have been done by
numerical methods. Molecular-dynamics simulations and cellular automata calculations are fre-
quently applied, for recent reviews see [5]. These methods describe in some detail the interactions
between the particular grains [6]. Conclusions on the macroscopic behavior of granular matter are
then drawn from the simulations with a great number of particles. Despite the recent progress in
computer performance the size of the systems is still too small for a quantitative comparison with
real experiments [6,7].

Hydrodynamic approaches to granular material are few [8}11] and are associated with restric-
tions as no interparticle correlations [8], a Gaussian distribution in the velocity of the grains [9] or
with smooth hard spheres at low density [11]. Nevertheless, there are striking phenomenological
similarities in the observed patterns for pure granular materials and pure #uids. Experiments with
an inclined chute [12,13] or a vertically vibrated container [14,15] show the most notable analogy.
In the latter experiments one observes for not too large driving frequencies that a solid}#uid
transition can be detected. The second transition to hydrodynamic surface waves is associated with
this #uid-like behavior of the layer of pure granular material.

Pure granular assemblies are characterized by the existence of a network of particles in contact.
At these contacts the forces are transmitted, resulting in a nonuniform force network across the
granular assembly. This force network accounts for a behavior di!erent from ordinary #uids.
Among the unusual e!ects are the pressure drop in the center beneath a pile of pure granular
material, the e!ect of arching in a "lled vessel, or the occurrence of the fastest #ow in thin layer near
the wall during the unloading of a hopper. It is clear that granular media are di!erent from pure
#uids but under certain conditions these di!erences are not prevailing. For example, the addition of
an interstitial #uid may change the behavior of the composed system with respect to pure, i.e. dry,
granular materials.

The #ow of grains embedded in an interstitial #uid is dominated either by the e!ects of grain
inertia or by e!ects of #uid viscosity. The Bagnold number B [16] expresses the ratio of collision
forces between the grains to viscous forces in the #uid}grain mixture.2 A small Bagnold number,
B(40, characterizes the regime of the macro-viscous #ow. In this regime the viscous interaction
with the pure #uid is important. Examples for this type of #ow are mud slides and the transport of
water}sand mixtures in river beds. At large Bagnold numbers, B'450, the #ow is called grain-
inertia regime where the grain}grain interactions dominate. All #ows of grains with air as
interstitial #uid fall into the grain}grain regime.

Here, experiments are performed with sand dispersed in water both "lled in a cell. By rotating the
cell the sand is layered above the water which leads to a gravitational instable situation. Therefore
the sand starts to sediment. The occurring shear rates, the mean particle diameters, and the
viscosity of water result in a Bagnold number of about 1 [17]. This motivates the idea to consider
the water}sand mixture as #uid-like. In the experiments we observe that the initial #at water}sand
interface evolves into a "nger-like pattern. The measured velocity for the largest "nger was
typically three times the Stokes velocity of a settling hard sphere. Furthermore, the velocity was
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3We are referring especially to the experimental runs where an initially unsaturated bed of beads was suddenly
exposed to a high velocity #uid.

nearly independent of the mass of the sand and the diameter of the particles [17]. This indepen-
dence of particle properties encourages a #uid-like description of the water}sand mixture. To
model this behavior we test a continuum approach which is based on a well-known hydrodynamic
instability.

The aim is to determine the critical parameters for the stability of the pattern and the dispersion
relation for the whole spectrum of wave numbers detectable in the experiment. Particularly, the
latter extends signi"cantly the objectives of earlier experiments with water and polystyrene spheres
[18] and with water and glass beads [19].3 The dependence of the initial wavelength of the
developing pattern on the width of the cell was studied in [18]. In [19] the experiments were
focused on the evolution of voidage shock fronts caused by a step increase or decrease in the
#uidization velocity for a #uidized bed. We, however, turn our attention to the temporal evolution
of all wave numbers.

To model the water}sand mixture as a Newtonian #uid with e!ective properties depending on
the concentration of the particles is obviously a simplifying description. In such a model it is
assumed that the particle concentration in the #owing mixture is almost constant. Furthermore,
the particles have to be large enough to neglect their Brownian di!usion. In the clear knowledge of
the limitations of a #uid model for the water}sand mixture we will examine whether such an
approach can catch the essence of the experimental results.

Whereas the #uid approximation leads to a quantitative comparison for all wave numbers,
simulations by means of a cellular automaton aim at a di!erent aspect. The purpose is to generate
patterns with the same qualitative features as those seen in the experiment. The used automaton is
restricted to a two-dimensional lattice where re#ecting walls and no slip boundary conditions are
imposed.

In the following section, the experimental arrangement is described and the results for the
growth rates of the wave numbers are presented. In Section 3 the model is explained and thereafter
the cellular automaton (Section 4). The calculated growth rates are compared with those of the
experiment in Section 5. Section 6 contains our conclusions and some remarks about further
prospectives.

2. Experiment

2.1. Experimental setup

A closed Hele-Shaw-like cell is used to investigate the temporal evolution of a water}sand
interface driven by gravity (see Fig. 1). Cells of di!erent widths but constant length (99.2mm) and
height (50mm) are used. The cell is "lled with sand and distilled water. As sand we use spherical
glass particles (WuK rth Ballotini MGL) with a material density of 2.45 g/cm3 and a size distribution
of 63}71lm. The cell is revolved by a stepping motor. The motor rotates the cell in 233ms. The
rotation axis is in the plane of the interface. This minimizes the centrifugal forces on the sand layer
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Fig. 1. Experimental setup.

while the cell is turned. The immovable camera which is "xed to the laboratory frame starts to take
snapshots 545ls after the cell is turned upside down. The time of the "rst snapshot de"nes
the starting time t"0. The images have a dimension of 256]364 pixel. To achieve a reasonable
resolution we only focus on a horizontal length of 29.35mm at the middle of the cell. The resolution
in this setup is given by 12.4 pixel/mm.

After each rotation the suspension sediments until all particles are settled. This process takes
typically less than 1min. Therefore, a waiting time of about 1 min between consecutive runs is
su$cient for the #ow in the cell to come to rest.

2.2. Determination of the experimental parameters

Fig. 2 shows typical images of the sand}water cell at certain stages. Eighty milliseconds after the
series of snapshots is started, the initial #at sand layer (Fig. 2a) is modulated at small scales (Fig. 2b
and c). These disturbances are enhanced and give rise to sand "ngers as seen in Fig. 2d and e. At
later stages the "ngers evolve to a mushroom-like pattern (Fig. 2f ). This type of pattern was also
found by numerical simulations for two strati"ed suspensions of di!erent concentration [20]
as well as for two #uids of di!erent density [21].

The rotation of the apparatus leads to an interface which is not perfectly #at even in the
beginning of the #ow process. This results in three-dimensional #ow e!ects which are studied in
detail. The setup was modi"ed in such a way that pictures of the side view into the cell could be
taken. The pictures manifest that during the rotation the heavier #uid starts to slide. This e!ect is
increased during the time interval of slowing down due to the inertia of the heavier #uid. When the
rotation is "nished the sliding has moved parts of the heavier #uid to the back wall of the cell (with
respect to the camera) resulting in an inclined interface (see Fig. 3a). Now, the heavier #uid slides
along the back wall and from there it #ows towards the front wall (see Fig. 3b). Obviously, the #ow
in thick cells cannot be described as a pure vertical sedimentation and convection across the cell
width is likely. These e!ects die out in thin cells which can be seen in Fig. 3c.
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Fig. 2. Sand}water interfaces at certain time steps: (a) 0ms, (b) 80ms, (c) 120ms, (d) 160ms, (e) 200ms and (f) 240ms. The
size distribution of the sand particles is given by 63}71lm and the sand mass in the cell by 2.02 g, respectively. The
presented frames show the middle part of the cell and have a horizontal length of 29.35mm (cell width 2mm).

Fig. 3. (a) Sketch of the sliding process during the rotation of the cell. The axis of rotation is indicated by a "lled black
circle. (b,c) Side view of the cell at di!erent times and for cell widths of 4.3mm (b) and 1.0mm (c). Three-dimensional #ow
phenomena appear in thick cells (b) and can be suppressed in thin cells (c). The time interval between consecutive images
is 80ms where the "rst picture is taken at 40ms.
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Fig. 4. Salt}fresh water interfaces at time t"0, 80, 120, 160, 200, 240, 280, 320, 360, 400, 480 and 560ms (a}1). About
120ms after the sedimentation started, light horizontal stripes appear (d). At later stages (h}k) a typical "nger pattern
evolves. The cell width is 3.5mm and the density of the dyed saturated salt water &1.19 g/cm3, respectively. The
presented frames show the middle part of cell and have a horizontal length of 32.6mm.

Several tests are performed in which the cell width and the density di!erence between the two
media are varied in order to study their in#uence on the three-dimensional #ow e!ects. Since
a continuous variation of the density of the sand is hard to realize, dyed NaCl solutions of di!erent
densities are used as the heavier #uid. In one set of experiments (cell width 3.5mm) a saturated
NaCl solutions (o&1.19 g/cm3) is layered above fresh water. The evolving interface shows the
surprising phenomenon of light horizontal stripes whose number increases with increasing time
(see Fig. 4). The appearance of these stripes can be explained with the assumption of a three-
dimensional #ow. The stripes are caused by #ow components across the cell width. These
components transport fresh water to the back wall of the cell leading to layers across the cell
completely "lled with fresh water. These layers can be seen as light horizontal stripes. Similar
patterns were observed in [22].

By reducing the cell width to 0.5mm and the density di!erence to *o&0.028 g/cm3 no
three-dimensional e!ects could be observed (see Fig. 5). Obviously, smaller widths approximate
better a two-dimensional system. Due to the role of inertia of the heavier #uid sliding e!ects are less
pronounced for #uids with smaller density di!erences.

In order to prove that the convection is purely driven by three-dimensional #ow e!ects, the
thermal in#uences on the convection was also tested. Therefore, in a control experiment the cell
was heated from the front side. The resulting convection rolls appear on a very large time scale
compared to the rotational triggered ones. Therefore, a thermal triggered convection, as suggested
in [23], can here be excluded.
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Fig. 5. Salt}fresh water interfaces at time t"0, 4.8, 5.4, 6.0, 6.6, 7.2, 7.8, 8.4, 9.0, 9.6, 10.2, and 11.4 s (a}1). No light
horizontal stripes appear, e.g. no three-dimensional #ow e!ects. Beginning with small undulations (b), a "nger-like
pattern develops (c}f) followed by plume-like structures (g}1). The cell width is 0.5mm and the density of the dyed salt
water &1.028 g/cm3, respectively. The presented frames show the middle part of the cell and have a horizontal length of
32.9mm.

For experiments with water and granular material the "rst condition for a two-dimensional #ow
can be easily realized. The second condition is di$cult to accomplish because granular material
with a density close to water, e.g. polystyrene beads (&Vernetztes Styrol-Perlpolymerisat', BAYER,
size distribution 200}250lm) with 1.0(o(1.1 g/cm3, shows strong electrostatic charge e!ects.
Even by adding of surfactants the charge e!ects could not be completely avoided. Therefore, a cell
of 2 mm width and spherical glass particles (WuK rth Ballotini MGL) present the best choice with
respect to a two-dimensional #uid-like #ow and visibility.

For cells thinner than 2 mm several problems occur and were studied. The images in Fig. 6 show
that initial disturbances develop into sand "ngers of notable smaller size and less pronounced
mushroom-like pattern compared with the patterns obtained in wider cells (see Fig. 2). We even
observe pincho! e!ects at the "ngers tips (see image at t"240ms in Fig. 6). More experiments with
thin cells were performed to investigate how the sedimentation process depends on the initial
packing density. Preparing the system with a high initial packing density leads to a compacted,
more solid-state-like sediment rather than a #uid-like mixture. The observed type of sedimentation
process is characterized by the sinking of individual particles out of the compacted sediment (see
Fig. 7). Therefore, a continuous #uid-like down#ow cannot be observed for higher initial packing
densities. A reason for the observed discontinuous sedimentation could be arching e!ects which
become relevant at high packing densities in thin cells. It is assumed that there is a critical initial
packing density which separates a #uid-like down#ow from a particle-like down#ow (cf. Fig. 7 and
the "fth frame in Fig. 6).
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Fig. 6. Sand}water interfaces at time steps of 40 ms commencing with t"0. The sand "ngers are of notable smaller size
and the mushroom-like pattern is less pronounced compared with the patterns obtained in a wider cell (see Fig. 2). The
size distribution of the sand particles is given by 80}90lm and the sand mass in the cell by 2 g, respectively. The presented
frames show the middle part of the cell (width"1mm) and have a horizontal length of 26.7mm.

Fig. 7. Snapshot of the sedimentation with a high initial packing density at t"160ms. Because only individual particles
come out of the sediment the pattern appears dim. The cell parameters are as in Fig. 6 with the exception of the horizontal
length, which is now 29.6mm.

2.3. Experimental results

The system for the determination of the growth rates was prepared in the following way: a cell of
2mm width (height 50mm, length 99.2mm) is "lled with 2.02 g of spherical glass particles with
a size distribution 63}71lm. The used resolution is 12.4 pixel/mm. The total number of evaluated
runs is 52. Fig. 2 shows a typical sequence of images during the sedimentation.

To analyze this sequence we apply a threshold algorithm to obtain the water}sand interface. We
look at every column of our digitized image to determine the point where the gray scale exceeds
a certain value. We start at the bottom (water) and continue to the top (sand). In this way, we track
down the interface of the pattern. Fig. 8 shows the temporal evolution of the images presented in
Fig. 2. Here the interfaces of all patterns are shown. While our detecting method works for the
patterns during the "rst stages, namely small-scale modulations and sand "ngers, it breaks down
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Fig. 8. Temporal evolution of the water}sand interfaces. The patterns are detected every 20 ms and shown with
a constant vertical o!set of 0.5mm. The experimental conditions are the same as in Fig. 2.

Fig. 9. Amplitude A of a DFT-analysis for a typical wave number (here kK4.3 cm~1) in dependence on time t. An
exponential "t is obtained by Eq. (1). The values belong to the interfaces presented in Fig. 8.

for mushroom-like patterns. However, this is not crucial because those patterns are beyond the
scope of the linear analysis presented here. Discrete Fourier transformation (DFT) gives the
Fourier spectrum of each interface. Fig. 9 shows the temporal evolution of the amplitude A of
a typical Fourier mode. It is seen that A grows exponentially from the "rst image to t&270ms. By
an exponential "t

A(k)"A
i
(k) exp(n(k)t) , (1)

we obtain the growth rate n for every wave number k in our spectra, where A
i

is the initial
amplitude. For each "t it was monitored that A(k) was smaller than 40% of its wavelength, the
criterion for the linear regime [24].

In order to test the reliability of our experimental setup we perform 52 independent runs with
one set of material parameters. These 52 measurements are analyzed to obtain a mean initial
amplitude for each wave number. It is seen that the initial amplitude decreases for increasing wave
numbers (see Fig. 10). In the case of large wave numbers we do not obtain exponential "ts for every
experimental run. This is due to the fact that the amplitude is very small and that we approach the
limit of the resolution of our image processing. The error bars in Fig. 10 indicate that the number of
runs which can be analyzed decreases for larger wave numbers.

An obvious question concerning the underlying mechanism of the pattern formation in our
system is: How do di!erent material parameters e!ect the dispersion relation? Therefore, we carry
out experiments with di!erent material con"gurations which are characterized in Table 1. The used
setup is di!erent where the cell and the CCD-camera are "xed to a frame which is resolved by hand
(for details see [25]). Using 2, 4 and 8 g of sand (Experiments I}III) we observe a shift of all growth
rates towards larger values with increasing mass of sand. This e!ect is independent of the wave
number (Fig. 11a). Using three di!erent size distributions (Experiments I, IV, V) the ratio of the cell
thickness of 4mm to the mean particle diameter varies between &70 and &40. As Fig. 11b shows
this variation of the mean particle diameter does not have a signi"cant in#uence on the dispersion
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Fig. 10. Growth rate (top) and initial amplitude (bottom) versus the wave number k. A cell of 2mm width (height 50 mm,
length 99.2mm) is used with 2.02 g of spherical glass particles with a size distribution 63}71lm. The error bars are given
by the standard deviation of the mean value.

Table 1
Details of sand used in certain experimental con"gurations

Experiment Size distribution (lm) Mass (g) Runs

I 71}80 2 100
II 71}80 4 12
III 71}80 8 12
IV 56}63 2 12
V 90}100 2 12

relation n(k). As a common feature we "nd the same overall behavior for all material sets: The
growth rates increase for small k and reach a plateau for larger values of k.

3. Theory

We choose a two #uid system as a model to describe the experimental results. In the initial state
two incompressible #uids of constant densities o

1
and o

2
and constant dynamical viscosities

k
1

and k
2

are arranged in two horizontal strata. Index 1 (2) refers to the #uid at the bottom (top) of
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Fig. 11. Growth rate versus the wave number for different material parameters. In (a) 2 g (h), 4 g (v), and 8 g (n) of sand
with the same size distribution were used (Experiments I}III). In (b) 2 g of sand with size distributions of 56}63lm (h),
71}80lm (n), and 90}100lm (v) were used (Experiments IV, I, V).

the system. The pressure is a function of the vertical coordinate z only; x and y are the coordinates
in the plane perpendicular to z. The acceleration due to gravity acts in negative z direction. A linear
stability analysis is carried out for small disturbances of this initial state. The instability of a planar
interface z"z

4
(x, y),0 between the two #uids is known as the Rayleigh}Taylor instability

[24,26,27].
We assume that the boundaries in the z direction are far from the interface. Small changes dz

4
in

the form of the interface cause a pressure di!erence which is balanced by the product of the surface
tension ¹

4
and the curvature of the interface. Considering small disturbances do in the density and

dp in the pressure the Navier}Stokes equations read [27]

oR
t
u"!R

x
dp#k*u#(R

x
w#R

z
u)R

z
k , (2)

oR
t
v"!R

y
dp#k*v#(R

y
w#R

z
v)R

z
k , (3)

oR
t
w"!R

z
dp#k*w#2R

z
wR

z
k!gdo#¹

4
(R2

x
#R2

y
)dz

4
d(z!z

4
) , (4)

where R
i
"R/R

i
, i"x, y, z, t. The z dependence of k gives rise to the third term on the right-hand

side of (2)}(4) since the viscous part in the Navier}Stokes equations is R
j
[k(R

j
v
i
#R

i
v
j
)] for an

incompressible #uid. For convenience, we adhere to R
z
k though R

z
k is di!erent from zero only at
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the interface. The components of the velocity "eld * are v
x
"u, v

y
"v, and v

z
"w and are

considered small, so that Eqs. (2)}(4) contain only terms which are linear in the disturbances. The
delta function d(z!z

4
) ensures that the surface tension appears at the interface z

4
between the two

#uids. The equation of continuity (mass conservation) for an incompressible #uid is

div *"R
x
u#R

y
v#R

z
w"0 . (5)

Additionally, the equation

R
t
do"!(* grad)o"!wR

z
o (6)

relates the temporal variations in the density #uctuations to the density jump at the interface which
moves with w in the z direction. Eqs. (2)}(6) govern the linearized system. The disturbances are
analyzed to as normal modes thus seeking solutions which x and t dependence is proportional to
exp(ikx#nt). The wave number is denoted by k and n(k) is the growth rate of the corresponding
mode k. If the #uid is con"ned between two rigid planes the boundary conditions are

w"R
z
w"0 at z"$R , (7)

where we shift the planes to in"nity for the sake of simplicity. The other boundary conditions are
related to the interface. All three components of the velocity and the tangential viscous stresses
must be continuous. Using the exponential ansatz for the continuous velocity components, Eq. (5)
gives the continuity of R

z
w, too. The continuity of k(R2

z
#k2)w is the condition which ensures that

the two tangential stress components are continuous across the interface. Inserting the exponential
ansatz into (2)}(6) and determining the solution of w in each region in such a way that the boundary
condition (7) as well as the interfacial conditions are satis"ed leads to the dispersion relation [27]

!G
gk
n2C(a1!a

2
)#

k2¹

g(o
1
#o

2
)D#1H(a2q

1
#a

1
q
2
!k)!4ka

1
a
2

#

4k2

n
(a

1
l
1
!a

2
l
2
)[a

2
q
1
!a

1
q
2
#k(a

1
!a

2
)]

#

4k3

n2
(a

1
l
1
!a

2
l
2
)2(q

1
!k)(q

2
!k)"0 . (8)

The abbreviations a
1,2

"o
1,2

/(o
1
#o

2
) and q2

1,2
"k2#n/l

1,2
were introduced where l

1,2
"

k
1,2

/o
1,2

is the kinematic viscosity for each region. For the rest of the paper we will use a
dimensionless surface tension S"¹/[(o

1
#o

2
)(gl4

1
)1@3] if not stated otherwise.

We now brie#y discuss the general results of the dispersion relation (8). The con"guration where
the lighter #uid is on top of the heavier one, o

2
(o

1
, is always stable, i.e., ReMn(k)N40 for all k.

This is independent of whether there is any surface tension (Fig. 12b) or not (Fig. 12a). If the strata
are in the opposite order, o

2
'o

1
, then the surface tension plays a crucial role. In the case of no

surface tension (Fig. 13a) the system is unstable against disturbances of any wave number, i.e.,
ReMn(k)N50 for all k. If there is a surface tension a critical wave number exists

k
c
"S

g
¹

(o
2
!o

1
)

(9)
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Fig. 12. For zero surface tension (a) and surface tension S"1 (b) the growth rate ReMnN of the modes is
plotted versus their wave number k for the case that the top #uid is lighter than the bottom one, o

2
"0.5o

1
. The surface

tension as well as the relation of the viscosities does not change the overall behavior too much as the three examples
show: l

1
"l

2
"10~6 m2/s (solid line), l

1
"10~6 m2/s and l

2
"0.75l

1
(long-dashed line), and l

2
"10~6 m2/s and

l
1
"0.75l

2
(dot}dashed line).

Fig. 13. The growth rate Re MnN of the modes is plotted versus their wave number k for the case that the top #uid is
heavier than the bottom one, o

2
"2o

1
. The surface tension S is zero in (a) and 1 in (b). The surface

tension causes a drastic change in the behavior whereas the ratio of the viscosities does not change the overall behavior
too much as the three examples show: l

1
"l

2
"10~6 m2/s (solid line), l

1
"10~6 m2/s and l

2
"0.75l

1
(long-dashed

line), and l
2
"10~6 m2/s and l

1
"0.75l

2
(dot}dashed line).

and the system is stable (unstable) against modes with wave numbers which are larger (smaller)
than k

c
(Fig. 13b). A moderate variation in the relation between the two viscosities l

1
and l

2
has no

strong in#uence on the general behavior of the growth rates (see Figs. 12 and 13).
The experiments are carried out in a "nite-size cell in contrast to our simpli"cation of in"nite

length in the z direction. We determine now the limits to which this simpli"cation is justi"ed (see
also [28]). If the walls of the cell are at z"$¸

z
the appropriate ansatz for w is

w
1
"a

1
e`kz#a

2
e~kz#b

1
e`q1z#b

2
e~q1z for z40 , (10)

w
2
"c

1
e`kz#c

2
e~kz#d

1
e`q1z#d

2
e~q1z for z50 . (11)
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Fig. 14. For zero surface tension (a) and surface tension S"12.8 (b) the growth rate ReMnN is plotted versus the wave
number k for ¸

z
"$3mm (long-dashed line) and ¸

z
"$1mm (dashed line). For comparison the solid line shows the

graph for in"nite ¸
z
. It reveals that "nite-size e!ects play a signi"cant role if k(2p/D¸

z
D. The material parameters are

o
2
"2o

1
and l

2
"33l

1
with o

1
"1 g/cm3 and l

1
"10~6m2/s.

With the boundary condition w"R
z
w"0 at z"$¸

z
and the analysis at the interface as above

one ends up with a system of eight equations for the constants in (10) and (11). The coe$cients of
the corresponding matrix are given in the appendix. The vanishing determinant leads to the
dispersion relation n(k), its numerical solution is shown in Fig. 14 for di!erent lengths ¸

z
. The

comparison with the data for in"nite ¸
z

shows that there is no real di!erence as long as
D¸

z
D'3mm for the used material parameters. Since the thickness of the sand layer is below this

margin we expect "nite-size e!ects. In the case of asymmetrically arranged walls at z"!¸
1

and
#¸

2
the dispersion relation shows up to a ratio of D¸

1
D/¸

2
K17 only a very weak deviation from

the results for symmetrical walls.
In the frame of our continuum approach we consider the water}sand mixture as a suspension in

accordance with the classi"cation in [29]. The dispersion medium is water and the dispersed
material consists of sand particles with a mean diameter and a density as stated in Section 2. The
material density as well as the dynamical viscosity of the mixture depend on the packing density
/ of the granular material. The packing density / measures the volumetric concentration of the
particles in the mixture. The material density of the mixture is given by

o
.*9563%

"/o
4!/$

#(1!/)o
8!5%3

. (12)
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Fig. 15. Relative dynamical viscosity k
3
versus the packing density /. The results of the three empirical formula (13)}(15)

are plotted as dashed, long-dashed, and solid lines. k
3
is nearly the same for all three approaches provided the packing is

not too dense, /40.48. Above this range k
3

starts to diverge as / reaches /
.!9

where the divergent behavior di!ers
signi"cantly between the various approximations.

Since o
8!5%3

and o
4!/$

are constant, the considered small disturbances in the mixture density
do

.*9563%
imply that / varies according to Eq. (12). In the following, index 1 refers to water and 2 to

the mixture, respectively. Three empirical formulae [30}32]

k
2

k
1

"k
3
"A1!

/
/

.!9
B

~2.5(.!9

with /
.!9

"0.63 , (13)

k
2

k
1

"k
3
"A1#

0.75
(/

.!9
//)!1B

2
with /

.!9
"0.605 , (14)

k
2

k
1

"k
3
"

1
[1!(///

.!9
)1@3]

with /
.!9

"0.625 (15)

were widely used for the dynamical viscosity of a hard sphere suspension. The maximal
packing densities in (13), (14) result from the "t of the proposed formulae to the experimental
results.

Fig. 15 shows the behavior of the relative dynamical viscosity k
3
for di!erent packing densities

/ according to Eqs. (13)}(15). All three of them give nearly the same value for k
3
(/) at moderately

dense packings, 0.44/40.48. Above this region the relative viscosity diverges as / approaches
its maximal value. But the strength of the divergent behavior is remarkably di!erent so that
k
3
already varies about a factor of 5 for /"0.57. The fact of wide spread measured values for the

relative viscosity of the same system is exemplary shown in [33]. The measured values of k
3
vary

between 21 and 400 for a rather colloid system at /+0.5. A similar situation is present for
suspensions [34] which is why we cannot rely on a "xed value of k

3
within small error bars.

Therefore, we consider k
3
a variable parameter within reasonable limits rather than a "xed material

parameter.
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4. Cellular automaton

The evolution of the sedimentation process is investigated numerically by a two-dimensional
computer model, which combines elements of a cellular automaton and a lattice-gas approach. It
keeps track of both the location of individual sand grains and of the #uid #ow in a simpli"ed way:
the interaction between the sand and water is described by Stokes law, and the velocity of the water
#ow is determined by Darcy's law, thus taking into account the Hele-Shaw geometry used in the
experiment.

A layer of sand particles is initially placed at the top of a rectangular lattice of size ¸1]¸2. The
particles move under the in#uence of the gravitational force and the water #ow. The velocity of
sand is evaluated in parallel and the position of all particles is updated at any time step. If a sand
particle reaches a position which is already occupied by another grain it is not allowed to stop there
} instead it di!uses around that point until it "nds an empty space. Re#ecting walls for the particles
are chosen as simpli"ed boundary conditions.

The #uid velocity is evaluated imposing Darcy's law and the equation of continuity. The vertical
component of the water velocity is proportional to the local density of particles o(x, z). According
to the equation of continuity in two dimensions, the integral :wdx must be zero. Therefore, if the
local density at a speci"c point is higher (lower) than the average density along that horizontal
coordinate, o6 (z), the water velocity is directed downward (upward) and its magnitude is

w
8!5%3

(x, z)"a[o(x, z)!o6 (z)]

with a free parameter a, which represents the permeability of the Hele-Shaw cell. The local density
at a given point is given by the number of sand particles inside a square box of side l around that
point. The horizontal component of the water velocity is then calculated by imposing

R
x
u
8!5%3

#R
z
w

8!5%3
"0 , (16)

the equation of continuity in the two-dimensional cell.
Once the #uid velocities are known at any point of the lattice the deplacement of the sand

particles are determined applying the rules

d
t
x
1
"u

8!5%3
,

d
t
z
4
"w

8!5%3
#v

'
, (17)

where v
'

is the Stokes velocity of the particles determined by the gravitational "eld.
In Fig. 16 the results of a simulation with 22 800 sand particles on a horizontal lattice of size

¸1"400 are shown with the following parameters: l"6, v
'
"4, a"0.1, and an initial density of

0.95 for the sand. The snap-shots from top to bottom refer to later stages of the dynamics.
Finger-like structures with higher density at the tips develop at the beginning of the sedimentation
process. Considering the simplicity of the model, the qualitative similarity with Fig. 2 can be
considered as striking. We thus believe that the model catches the essence of the physical
mechanisms involved in this pattern forming process.
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Fig. 16. Sedimenting "ngers simulated by means of a cellular automaton. Finger-like structures with higher density at the
tips evolve at the beginning of the sedimentation. Each snapshot shows the whole horizontal lattice size of ¸1"400. The
other parameters are: l"6, v

'
"4, a"0.1, and 0.95 for the initial density of the sand.

5. Results and discussion

The experiments are carried out in a system as described in the "rst paragraph of Section 2.3. The
height of the sedimented sand layer was measured to 6.8$0.1mm where the error corresponds to
a con"dence interval of 95%. This results in a packing density of /"0.61$0.04 where the error is
given by the standard deviation of the mean value. Thus, the mixture is su$ciently characterized
by Eqs. (12)}(15) where o

8!5%3
"0.988 g/cm3. By means of (15) the viscosity of the mixture is

k
2
K104k

1
for /K0.607 which gives together with an e!ective height of the #uidized layer of

¸
z
"2.1mm the best "t with the experimental data. The height of the #uidized sand layer was

determined by analyzing the snapshot at t"0. There is a clear "rst drop in the mean gray value at
a height of K18.3mm (see Fig. 17). The drastic decrease in the mean gray value "nishes at a height
of K16.2mm. We interpret the layer between both heights as the #uidized sand layer at t"0
which enters into the calculations.

The resulting growth rates show a good agreement with the experimental data up to
k&15 cm~1 (Fig. 18). For larger wave numbers, the theory predicts a monotonous decrease of the
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Fig. 17. Mean grey value (solid white line) from the top to the bottom across the cell at t"0. The graph is calculated for
the snapshot in the background of the "gure.

Fig. 18. Growth rates n of the disturbances against their wave numbers k for a measured packing density of /"0.61 (v).
The theoretical results n(k) are shown for k

2
K104k

1
at /K0.607 and di!erent boundaries: ¸

z
"$R (long-dashed

line) and ¸
2
"2.1mm, ¸

1
"!43.2mm (solid line). The "nite-size e!ects appear for small wave numbers and decrease

with increasing wave numbers. The dot}dashed line presents the results of a Hele-Shaw cell of 2mm width with k
3
K85

at /K0.603 and ¹K2.77]10~3 N/m.

growth rate whereas the experimental growth rates display a weak increasing behavior. This means
that the #uid-like model for a water}sand mixture works well at small wave numbers. We interpret
the divergence at larger wave numbers as an indication that the model of a Newtonian #uid might
not be appropriate for a suspension at large wave numbers.

Concerning the values of the packing density, we note that at a packing density of
about /"0.61 the e!ect of dilatancy occurs in order to allow the mixture to #ow [35]. There-
fore, we expect that more accurate measurements of the packing density during the
sedimentation will lead to smaller packing densities. In Fig. 18 we calculate the dispersion
relation for in"nite as well as for "nite boundaries, ¸

2
"2.1mm and ¸

1
"!43.2mm. The

"nite-size e!ects appear for small wave numbers and decrease with increasing wave numbers.
The dispersion relations for in"nite and "nite boundaries approach each other at wave
numbers where the initial amplitudes of the disturbances are in the order of 7]10~3mm. For
these disturbances a boundary at 2.1 mm distance appears to be at in"nity. Therefore for wave
numbers beyond k&20 cm~1 it does not matter whether we choose ¸

z
"$R or 2.1mm. This is

not the case for small wave numbers where the initial amplitudes reach an order of 10~1mm
(Fig. 10b).

The values for the viscosity of a water-sand mixture estimated in [19], k
2
&(130}190)k

1
, are in

a similar range as ours. These values are determined with the help of the singular wave number with
the largest growth rate. A real comparison with our "t value is not possible because the necessary
packing density is not given for the type of experiments from which the viscosity values were
estimated. The discussion of the empirical formulae (12)}(15) as well as the available experimental
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results [19,36], show that viscosity measurements in highly concentrated hard sphere suspensions
are very sensitive on experimental methods [32], the accurate determination of the density packing
[33], and the type of #ow involved in the measurements [37]. In the present state of the
experiments, these dependencies have not been studied in detail.

The aspect ratio of the cell suggests that a description referring to the Hele-Shaw type of the
cell might be closer to the experimental con"guration. Adapting the dispersion relation of
the Sa!mann}Taylor instability to the case of zero through#ow velocity leads to [38]

n(k)"
b2

12(k
1
#k

2
)
[kg[o

2
!o

1
)!¹k3] , (18)

where b"2 mm denotes the width of the cell. Eq. (18) contains two parameters, the dynamical
viscosity k

2
of the mixture and the surface tension ¹. The validity of the Hele}Shaw approach is

limited by a cut-o! condition at which the wave number exceeds 2p/b. The "t values k
2
K85k

1
at /"0.603 and ¹K2.77]10~3Nm~1 result in a "t curve which is inferior to the
Rayleigh}Taylor "t (Fig. 18). Particularly a nonzero surface tension between the water}sand
mixture and water is arguable.

It has to be stressed that both the Hele-Shaw and the Rayleigh}Taylor approach assume a trivial
y dependence of the #ow. In the experiment, that assumption is not totally ful"lled: the rotation of
the apparatus leads to a sand layer which is not perfectly #at even in the beginning of the #ow
process (see Section 2.3).

6. Concluding remarks

In a closed Hele-Shaw-like cell the temporal evolution of a water}sand interface was investi-
gated. For the unstable strati"cation, sand above water, the instability is driven by gravity. The
images of the temporal evolution were analyzed by DFT. The Fourier spectra show that the initial
disturbances of the interface grow exponentially at the beginning of the pattern forming process.
This enables us to determine the growth rates by an exponential "t for every wave number in our
spectra. The data show that the growth rate has a nonmonotonous k dependence: it increases steeply
towards a maximum at k&11 cm~1. Then it passes through a #at minimum after which the
growth rate increases moderately again.

To describe the general behavior we choose a two-#uid system as a model. Carrying out a linear
stability analysis for the interface between the two #uids we calculate the growth rates from the
dispersion relation for a "nite-size cell. The theoretical results agree well with the "rst part in
the experimental "ndings when using a relative viscosity of the water}sand mixture according to
the empirical formula (15).

Considering our simpli"cations and the uncertainty in one relevant material parameter, the
continuum approach gives a reasonable agreement with the experimental results: for not too large
wave numbers the #uid model describes satisfactorily the experimental results. For large wave
numbers the model fails to describe the measured behavior. Thus, our present results display that
an analogy between concentrated suspensions and #uids can be drawn for k415 cm~1. However,
further investigations need to be done in order to clarify open questions.
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One reason for the deviation between theoretical and experimental results at large k could be
the e!ect of shear thinning. It describes a decreasing viscosity with increasing shear rate [39].
Modulations of the velocity over short wave lengths are associated with larger shear rates which
could result in a reduced viscosity, i.e. a reduced damping and therefore an increased growth of the
disturbances at large k.

The available experimental data suggest that there is no interfacial tension between the
water}sand mixture and water. A surface tension acts in a way to minimize the surface of the #uid.
Therefore it suppresses the formation of waves with large wave numbers because their creation
entail additional surface. The suppression leads to a saturation (reduction) in the growth rates of
disturbances with large (very large) wave numbers. In the context of miscible #uids with slow
di!usion the concept of an e!ective dynamical surface tension was recently successfully applied
[40]. The reason for such a surface tension lies in the attraction between moving particles in a #uid
for nonzero Reynolds numbers [41]. The attraction originates from the dynamics in the viscous
#uid and results in a favored distance between the moving particles. Consequently, it costs energy
to separate the particles beyond this favored distance, i.e., to dilute the suspension. The necessary
energy corresponds to a surface tension which is called e!ective dynamical surface tension to
emphasize its dynamical origin. The e!ect of such an e!ective dynamical surface tension is seen in
experiments by the presence of sharp interfaces in rising bubbles, falling drops [42] and of growing
deposits [40]. A concentration gradient concerning sand and more or less sharp interfaces are
present in our system which allow, in principle, the existence of a dynamical surface tension. For its
determination a wide region of k values has to be covered which is realized in the presented
measurements in di!erence to former ones [25]. The experimental results indicate that there is very
likely no surface tension present.

Fluctuations of o
.*9563%

(/), i.e., #uctuations of the packing density /, imply variations of k
3
(/).

These would lead to terms of higher order because all terms which contain the viscosity are already
linear in the velocity disturbances (see (2)}(4)). Since a linear stability analysis is restricted to terms
linear in the disturbances we cannot take into account #uctuations in the relative viscosity of the
mixture. This inconsistency owing to the restrictions of our linear theory can only be resolved in
a nonlinear analysis.

Appendix

The matrix for "nite ¸
z

is

A
e~kLz ekLz e~q1Lz eq1Lz 0 0 0 0

ke~kLz !kekLz q
1
e~q1Lz !q

1
eq1Lz 0 0 0 0

0 0 0 0 ekLz e~kLz eq2Lz e~q2Lz

0 0 0 0 kekLz !ke~kLz q
2
eq2Lz !q

2
e~q2Lz

1 1 1 1 !1 !1 !1 !1

k !k q
1

!q
1

!k k !q
2

q
2

2k
1
k2 2k

1
k2 k

1
(q2

1
#k2) k

1
(q2

1
#k2) !2k

2
k2 !2k

2
k2 !k

2
(q2

1
#k2) !k

2
(q2

1
#k2)

R/2!C!a
1

R/2#C#a
1

R/2!q
1
C/k R/2#q

1
C/k R/2!C#a

2
R/2#C!a

2
R/2!q

2
C/k R/2#q

2
C/k

B .
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Furthermore, the abbreviations

R"

k
n2Cg(a

2
!a

1
)#

k2¹

o
1
#o

2
D (A.1)

and

C"

k2

n
(a

1
l
1
!a

2
l
2
) (A.2)

were used.
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