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Abstract. The formation of sand ripples under water shear flow in a narrow annular channel and the
approach of the ripple pattern towards a steady state were studied experimentally. Four results are obtained:
i) The mean amplitude, the average drift velocity and the mean sediment transport rate of the evolving bed
shape are strongly related. A quantitative characterization of this relation is given. ii) The ripple pattern
reaches a stationary state with a finite ripple amplitude and wavelength. The time needed to reach the
state depends on the shear stress and may be several days. iii) The onset of ripple formation is determined
by the bed shear stress, but it seems neither to depend on the grain diameter nor on the depth of the water
layer. iv) The ripple amplitude, drift velocity and sediment transport in this stationary state depend on
the grain size. This dependency is neither captured by the particle Reynolds number nor by the Shields
parameter: an empirical scaling law is presented instead.

PACS. 45.70.-n Granular systems – 92.10.Wa Sediment transport – 92.40.Gc Erosion and sedimentation

1 Introduction

Nature is rich in striking spatial patterns: from the spotted
coat of a dalmatian to the ice crystals on a windscreen,
from coral reefs to meandering rivers. On sand surfaces
exposed to flowing air or water, patterns of ripples are of-
ten observed; in deserts or mudflats, on riverbeds, or on
the beach. These ripples are generated through the fluid
motion at the upper sand layers, which shifts grains along
the surface. One expects the grain-level mechanisms driv-
ing the dynamics to be different for submarine and aeolian
(wind-driven) ripples [1]. In nature, there are two mecha-
nisms driving ripples: either the oscillatory shear occurring
below the surface of a water wave, or the unidirectional
shear caused by wind in a desert or by water in a river.
We concentrate on the latter class in this paper.

The onset of unidirectional shear-induced ripple forma-
tion has been studied in laboratory experiments: ripples
are created when a water shear flow of sufficient strength
is applied along a flat sand surface. The nucleation may
be due to local inhomogeneities in the sediment density
or size, randomly occurring turbulent fluid action, or in-
evitable deviations from a perfectly smooth sand surface
[2,3]. The growth rates of evolving ripples have been mea-
sured more recently [4].

The mechanism for ripple formation might depend on
the Reynolds number of the water flow, thus one may ex-
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pect that different types of theories apply for the different
parameter regimes, as discussed in references [5,6]. Un-
der continuum descriptions, sandbed formation driven by
water shear flow has been successfully treated in terms of
linear stability theory [7–9]. However, the attempt to treat
the formation of sand bedforms as a Kelvin-Helmholtz
type of instability [10] was not successful. Recently, the
instability of a particle bed sheared by a viscous fluid has
been investigated [11] utilizing the viscous resuspension
theory by Leighton and Acrivos [12] to calculate the par-
ticle transport rate.

In a different type of approach, one models explicitly
the grain-level events, because the formation and motion
of ripples or dunes is caused by persistent erosion and allu-
vium of grains. These transport processes can be modelled
by cellular automata that reproduce many of the qualita-
tive features of ripple dynamics [13–15]. The physical basis
for randomly occurring particle shifts could be turbulent
bursts [16].

In this paper, we present experimental observations of
the ripple formation: its onset is determined by the bed
shear stress, but it seems neither to depend on the grain
diameter nor on the depth of the water layer.

Another issue is the existence and the properties of a fi-
nal stationary state of the ripple evolution. Brush [17] and
later other experimental works [18,19] reported that after
adjustment of height and wavelength to the constraints
set by geometry and flow pattern, mature ripples in wa-
ter have a typical height of less than 3 cm with a typical
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length of less than 30 cm and are drifting slowly in the
downstream direction.

On the other hand, some theories support the idea that
ripples grow continuously in amplitude and wavelength,
logarithmically in time, i.e., they never reach a station-
ary state [15]. We find that the ripple pattern, under our
experimental conditions, reaches a stationary state with a
finite ripple amplitude and wavelength, although the time
needed to reach that state depends on the shear stress and
may be several days.

The drifting ripples can be modelled by a continuum
approach invoking conservation of mass in a two-
dimensional geometry. Such a calculation was introduced
in reference [20] and later generalized in references [21,22]
for less restrictive geometrical assumptions. They found
that for a ripple of height H travelling with velocity
ṽt the sediment transport rate Q̃b should be given by
Q̃b = H · ṽt. A comparison with the theory mentioned
above was not carried out so far. We describe here a
detailed experimental check of this relationship. It turns
out that the relation between the amplitude, the average
drift velocity and the sediment transport rate of the bed
shape is valid both locally and when averaged over the
whole channel, after a transient of about one day. During
this transient the balance does not hold.

In continuum theories (in contrast to cellular automa-
ton models) the grain diameter is taken into consideration
only indirectly via the roughness of the sand surface, or is
simply ignored. However, experimentally there is a clear
influence of the grain size on sedimentary bedforms (see,
e.g., Refs. [23–27]). The results reported in the literature
so far do not add up to a coherent picture of how sand
ripples are influenced when the grain size is changed.

We find that the time needed to reach the station-
ary state varies significantly both with distance from the
threshold and with grain size. We measure the dependency
of the ripple amplitude, drift velocity and sediment trans-
port on the grain size. It is neither captured by the par-
ticle Reynolds number nor by the Shields parameter: an
empirical scaling law is presented instead.

As suggested by the discussion above, ripple dynamics
involves a subtle interplay of many factors. Our experi-
mental setup, which will be described in the next section,
has been designed in such a way that some of these factors
are well controlled. For ripple dynamics in nature, on the
other hand, boundary conditions are less strict and all fac-
tors that are involved may vary considerably. As a result,
ripple shapes and dynamics as observed in our experiment
may differ significantly from those encountered in nature.

2 Experimental setup

Most of the previous experiments were performed in
rectangular, tiltable channels. It is then necessary to
continuously feed the system with water and sediment,
which gives rise to uncontrolled perturbations especially
near the inlet and the outlet. Examples of such setups
are described in references [25,28]. Our experimental

Fig. 1. (a) Side view of the experimental setup; (b) the six
images of the sand-water interface are separated by vertical
white lines. The images have been expanded in the vertical
direction.

Table 1. Experimental conditions and critical fluid velocity
uτ,cr for each of the sand charges. Here, d is the mean grain
diameter, α the angle of repose, and hw the depth of the water
layer.

Diameter range d α hw uτ,cr (cm/s)

90–100µm 95µm 30.0◦ 16mm 32.9± 0.8
180–200µm 190µm 29.0◦ 15mm 43.6± 0.8
280–300µm 290µm 29.5◦ 16mm 49.7± 0.8
400–425µm 413µm 29.5◦ 19mm 47.4± 0.8

arrangement has several advantages compared to previ-
ous work: rotational symmetry, strict mass conservation,
quasi–one-dimensional geometry, as well as high spatial
and temporal resolution. Using this setup we have been
able to measure the evolution of the amplitude, the drift
velocity and the sediment transport of the ripple pattern
from the early stages up to the stationary state for four
different grain sizes.

Our experimental setup (see Fig. 1(a)) consists of a
15mm wide and 58mm high annular channel of 292mm
diameter formed by a solid inner cylinder and an outer
cylinder shell, both made of Perspex. The annular channel
is filled with glass beads of density ρs = 2.45 g/cm3. The
glass beads have been sieved to obtain the size ranges
specified in Table 1. The listed values for the angle of
repose were measured after having poured the sand slowly
into the water-filled channel. The values are close to 30.0◦.
The depth of the water layer, i.e., the distance between
the flat sand surface and the rotor disc at the start of each
run, is also given in Table 1.
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The channel is lowered into an aquarium that is filled
with water to a height of 14 cm. The shear flow is gener-
ated with a rotor disc that extends 4mm from the top into
the channel. Since the ripple dynamics is influenced by the
initial structure of the sand surface [28], the surface was
flattened with a wooden T-shaped plate before each run.
Six cameras, controlled by a single frame grabber card,
are placed at angular distances of 60◦ and cover the entire
circumference of the channel.

At a constant sampling rate fs = 1/∆Ts the images
of all six cameras are stored. The boundary between the
brighter sand and the darker water is detected, rescaled to
account for the geometrical aberration, and the six pieces
are matched together. An example is shown in Figure 1(b).
The link between two images is indicated by white vertical
lines. We detect the sand-water interface with a lateral
resolution ∆X = π · 292mm/2400 ≈ 0.38mm, which is in
the range of the particle diameter. The corresponding line
is shown in white. The water is flowing from the left to
the right.

For quantifying the shear stress exerted by the flow-
ing fluid on the sediment particles two dimensionless pa-
rameters have been considered in the literature (see, e.g.,
Refs. [6,26]): the particle Reynolds number Re∗ and the
so-called Shields parameter θ. The particle Reynolds num-
ber is defined as

Re∗ =
duτ

ν
,

where the relevant length scale is the mean grain diameter
d, ν is the kinematic viscosity of water at room tempera-
ture, and

uτ =
(
ν
∂U

∂y

) 1
2

is the bed shear velocity related to the shear stress acting
on the particles. We have estimated ∂U

∂y by assuming a lin-
ear profile for the fluid velocity U(y) in the radial middle
of the channel. The Shields parameter is defined as

θ =
u2

τ

g(s− 1)d
,

where s = (ρs − ρf)/ρf is the relative density of the sed-
iment, with ρs and ρf being the density of the sand and
of the fluid, respectively, and g is the acceleration due to
gravity. In most of this paper we will quantify the applied
shear stress through the particle Reynolds number. The
corresponding values for the Shields parameter can be ob-
tained from the relation

θ =
Re2∗ν

2

g(s− 1)d3
.

We emphasize that the linear profile assumed for the
fluid velocity is merely a convenient way to obtain a char-
acteristic shear stress directly from the set rotation rate of
the disc. All values for the particle Reynolds number and
the Shields parameter given below rest on this assumption.
Had the fluid velocity been determined experimentally in
detail over the entire channel, it would have been possible

Fig. 2. Spatiotemporal evolution of the sand-water interface
along the circumference of the channel. Consecutive data sets
are separated 25min in time and are plotted above each other
with a certain offset. The scale is given at the left side of the
figure. The grain diameter is d = 95µm.

to give more accurate values. The “true” shear velocity
is lower than the one obtained from our procedure. This
is at least in part caused by the sidewalls in the narrow
channel. The flow pattern in the channel is probably tur-
bulent. However, in the immediate vicinity of the bottom
where the bed-load movement occurs, one has a laminar
boundary layer [29].

As a result of the cylindrical geometry one expects a
weak flow component in radial direction. We assume that
it does not contribute much to the shear stress.

3 Experimental results

3.1 Ripple evolution

We will first give a qualitative description of the different
dynamical stages observed. Figure 2 shows the character-
istic behavior of the ripple pattern as a function of time. In
this experiment the shear stress was Re∗ = 0.71 and the
sampling time ∆Ts = 25 min. Between two consecutive
boundary curves an offset of 1mm is added.

In the initial transient regime one observes a state
where ripples of quite different dimensions coexist, and
where ripples grow, diminish, and merge. This agitated
dynamics eventually leads to a stationary state. Figure 3
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Fig. 3. Spatiotemporal evolution of the first 30 modes of the
Fourier series corresponding to the sand-water interface shown
in Figure 2. Consecutive data sets are separated 25min in time
and are plotted above each other with a certain offset. The
grain diameter is d = 95µm.

shows the “calming down” of the dynamics in Fourier
space. After about 15 hours a single mode begins to dom-
inate the spectrum, and the ripples are of approximately
the same size. In this state the ripples drift slowly in the
downstream direction without significant changes in the
mean ripple amplitude. The same behavior is found also
for other sand charges with larger grain sizes (see Figs. 4
and 5).

In order to allow for quantitative characterization, the
boundary curve h(x, n∆Ts), where x is the spatial posi-
tion and n∆Ts with n ∈ N the elapsed time, is Fourier
decomposed,

h(x, n∆Ts) =
a0

2
+

N∑
i=1

{
ai(n∆Ts) cos

(
i2πx
L

)
(1)

+bi(n∆Ts) sin
(
i2πx
L

)}
,

where L is the circumference of the channel and 2N =
2400 the number of data points in the boundary curve.
Four quantities extracted from the data will be of partic-
ular importance in what follows: the mean ripple ampli-
tude, the mean sediment transport rate, the mean drift
velocity of the ripples, and the mean wave number. Note
that all these quantities, as defined below, imply averaging
over the circumference of the channel.

Fig. 4. Spatiotemporal evolution of the sand-water interface
along the circumference of the channel. Consecutive data sets
are separated 25min in time and are plotted above each other
with a certain offset. The scale is given at the left side of the
figure. The grain diameter is d = 190µm.

Fig. 5. Spatiotemporal evolution of the sand-water interface
along the circumference of the channel. Consecutive data sets
are separated 25min in time and are plotted above each other
with a certain offset. The scale is given at the left side of the
figure. The grain diameter is d = 413µm.



A. Betat et al.: Long-time behavior of sand ripples induced by water shear flow 469

Fig. 6. Spatiotemporal evolution of the local slope arctan( ∂h
∂x
)

along the circumference of the channel. Consecutive data sets
are separated 25min in time and are plotted above each other
with a certain offset. The scale is given at the left side of the
figure. The grain diameter is d = 95µm.

It is interesting to compare the slope of the evolving
ripples with the angle of repose. To do so, we differenti-
ate the boundary curve h(x) using 40 Fourier coefficients
and plot the temporal evolution of the local surface angle
α(x) = arctan(∂h

∂x ) for the transient regime (Fig. 6) as well
as for the stationary state (Fig. 7).

The ripple amplitude is smaller than the ripple wave-
length. The measured slopes remain below the static angle
of repose α = 30.0◦ (see Tab. 1) during all stages of the
ripple formation process. One might conclude that spon-
taneous avalanches in the sand do not play any role in
the ripple dynamics. However, one expects the dynamical
angle of repose to be lower than the static angle. In fact,
the measured local slopes are not far from the static an-
gle of repose at the steepest point on the lee side of the
ripple. On the other hand, our data indicate that in the
stationary state avalanches cannot be large. This might
be different in the earlier stages of the evolution.

The mean ripple amplitude Aav of the pattern is given
from the Fourier amplitudes as

Aav =

√√√√ N∑
i=1

(a2
i + b2i ). (2)

Typical results are presented in Figure 8(a). The mean
amplitude Aav grows almost linearly for about 24 hours
and reaches a maximum value after about 30 h. The

Fig. 7. Local slope arctan( ∂h
∂x
) for the stationary state reached

after 30 hours. The grain diameter is d = 95µm.

Fig. 8. Temporal evolution of the sediment transport for grains
with diameter d = 95µm. The solid circles indicate the mea-
sured values for (a) the average amplitude, (b) the wave num-
ber, (c) the velocity of the pattern, and (d) the mean transport
rate. The dashed lines indicate the steady-state value reached
after about 30 hours. In (e) the transport ratio is shown by
solid circles, and the dashed line indicates the theoretically
expected number, tr = 1.
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asymptotic value of the ripple amplitude is less than 1 cm,
as indicated by the dashed line.

In order to characterize the longitudinal scale of the
pattern by a single number, we calculate a mean wave
number km, defined as

km =

√√√√∑N
i=1 (a

2
i + b2i )k

2
i∑N

i=1 (a
2
i + b2i )

(3)

with ki = 2π
L/i . This special choice is motivated by the

calculation of the transport ratio presented below. The
mean wave number, as indicated in Figure 8(b), decreases
monotonically as a result of the merging of ripples in the
transient state. Note that the steady-state value for km

does not seem to fit with the number of ripples, because
the surface cannot be described by a simple sine wave.

The mean velocity vt of the pattern is obtained by
cross-correlating consecutive lines. We compute

S(δx, t) =
2N∑
j=1

(h(xj , t)− h(xj + δx, t+∆Ts))2 (4)

for a number of values for the spatial trial shift δx. The
condition

∂S(δxd, t)
∂δx

= 0 (5)

defines the actual shift δxd between the two patterns
that are being compared. The value is obtained from lin-
ear interpolation between discrete values of the difference
S(δx+∆x, t)−S(δx, t). Here, ∆x denotes the spatial dis-
tance between measurement points, see above. The drift
velocity of the ripples is then given by

vt = δxd/∆Ts . (6)

The measurements presented in Figure 8(c) clearly in-
dicate that the ripples move fast in the beginning, and
slow down to a finite value of about 4.3 mm/h after a
transient time of 30 h. A complete revolution of the pat-
tern would then take about 9 days. The observation that
for a given grain size the translation speed of the ripples
decreases with increasing ripple height was also reported
in reference [30].

The measured drift velocity must in some way reflect
the typical grain velocity. These two velocities could only
be equal had there been stiff translation of the entire rip-
ple. Since only grains in a shallow layer along the sand
surface move, the grain velocity must be correspondingly
much higher than the drift velocity of the ripples. It is not
possible to deduce the depth of the fluidized layer from
our data. Let us assume that it is one layer deep. The
number of moving grains along one ripple is then propor-
tional to λ/d, while the total number of grains in this
region (down to the depth of the ripple trough) is propor-
tional to Aavλ/d

2, where λ is the wavelength of the ripple
pattern. Therefore, the number of moving grains divided
by the total number of grains is d/Aav. We obtain an es-
timate for the mean grain velocity by dividing the drift

velocity of the ripples by that ratio. We find a value of
about 0.1mm/s, i.e., 10−4 of the speed of the rotor disc.

To obtain a quantitative measure for the sand flux
along the surface we use the mean rate of sedimenta-
tion and erosion. Due to the transport of sand the local
height of the surface varies slowly. We measure the sedi-
ment transport rate as

qb =
√

〈(∆h /∆Ts)2〉s , (7)

where 〈...〉s denotes the spatial average, and ∆Ts is the
sampling time of 25 minutes. The measurements presented
in Figure 8(d) indicate an increasing transport rate in the
beginning of the experiment followed by a monotonic de-
crease. The initial increase is caused by radial rearrange-
ment of the sand, and the final decrease is due to the
slowing down of the ripples.

We now turn to a quantitative analysis of the cou-
pling between ripple amplitude, drift velocity, and sedi-
ment transport rate. From mass conservation we expect
qb, vt, Aav, and km to be related, as suggested in refer-
ences [21,22]. However, for the interpretation of the ex-
perimental data one has to take into consideration the
finite sampling time. Our starting point is the equation of
continuity,

∂ρ

∂t
+∇(ρv) = 0 . (8)

Here, ρ is the density of the sediment, and v its veloc-
ity. Experimentally, we only determine the height h of
the sand at the outer channel wall, and calculate from it
a velocity component v along the wall. Thus, we cannot
measure any motion of sand grains in radial direction. We
assume that the grains basically follow concentrical tracks
in the channel, so that the dynamical behavior at the outer
wall is fully representative. This assumption will be more
precisely discussed now.

With ρ = hφ and a constant value for the packing frac-
tion φ we obtain an equation of continuity for the motion
of sand along the outer channel wall as

∂h

∂t
+ h

∂v

∂x
+ v

∂h

∂x
= 0 . (9)

Under stationary conditions we expect the velocity v to
be constant, thus

∂h

∂t
= −v ∂h

∂x
. (10)

The sediment transport rate,

Qb ≡
√〈(

∂h

∂t

)2〉
s

, (11)

may be expressed as

Q2
b = v2

〈(
∂h

∂x

)2〉
s

. (12)

The mean spatial derivative can be expressed in terms of
Fourier coefficients,

Q2
b = v2

N∑
i=1

k2
i (a

2
i /2 + b2i /2) , (13)
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and using equation (3) we obtain

Q2
b = v2k2

m

N∑
i=1

(a2
i /2 + b2i /2) . (14)

Therefore, the sediment transport rate may be written as

Qb = vkmAav/
√
2 . (15)

The measured transport rate qb is smaller than the
true rate Qb due to the finite sampling time ∆t: har-
monic waves h(x, t) = sin(kx + ωt) are measured with
a frequency-dependent reduction factor α given by

α2 =

〈(
∆h
∆t

)2〉
s〈(

dh
dt

)2〉
s

. (16)

Therefore,

α2 =

〈(
sin(kx+ω(t+∆t))−sin(kx+ωt)

∆t

)2〉
s

〈(ω cos(kx+ ωt))2〉s (17)

and we find

α2 =

(
sin(ω∆t

2 )
ω∆t

2

)2

. (18)

The factor α gives the reduction of the measured trans-
port rate qb as compared to the true rate Qb, qb = αQb.
Thus, in equation (15) we have to scale down the rms
value accordingly before we make a comparison. Since the
reduction factor depends on frequency, this involves both
km and Am (see Eqs. (2) and (3)). Thus, our measured qb
corresponds to an effective amplitude

Aeff =
N∑

i=1

(a2
i + b2i )α

2
i , (19)

where α2
i = ( sin(φs)

φs
)2 is the damping coefficient for wave

number ki, with φs = vt∆Tski/2. Similarly, an effective
wave number is given by

keff =

√√√√∑N
i=1 (a

2
i + b2i )k

2
i α

2
i∑N

i=1 (a
2
i + b2i )αi

. (20)

To check to which extent the experimental data fit
equation (15) we calculate the transport ratio

tr = qb/(vtkeffAeff/
√
2) . (21)

We expect tr = 1 under the conditions discussed above.
The experimental results are shown in Figure 8(e). The
deviations from 1 are always less than 30%, and after a
transient of about 30 hours the value 1 seems to be reached
fairly precisely, indicating that the ripples now move as a
stationary pattern without considerable change of packing

Fig. 9. Temporal evolution of the sediment transport for grains
with diameter d = 190µm. The solid circles indicate the mea-
sured values for (a) the average amplitude, (b) the wave num-
ber, (c) the velocity of the pattern, and (d) the mean transport
rate. In (e) the transport ratio is shown by solid circles, and
the straight line indicates the theoretically expected number,
tr = 1.

density and without considerable radial transport of the
sand. This is consistent with Figure 2.

However, it is remarkable that tr is quite close to 1
also during the early stages in the ripple dynamics. As
shown in parts (a)-(d) of Figure 8, all the quantities that
enter tr change much more during the experiment. In
this sense tr is a useful quantitative characterization of
the coupling between ripple size and sediment transport
rate: during all stages in the dynamical evolution the
effects balance to have tr 
 1. The steady state is then
reached after a fine tuning of this balance. We find the
same behavior also for other sand charges with larger
grain sizes (see Figs. 9 and 10).

A close relation between the transport rate and the
evolution of the sand-water interface can be found also lo-
cally: the deviations from tr = 1 are smallest in those parts
of the channels where the ripples are closest to steady-
state shape. If equation (10) holds locally, the expression
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Fig. 10. Temporal evolution of the sediment transport for
grains with diameter d = 413µm. The solid circles indicate
the measured values for (a) the average amplitude, (b) the
wave number, (c) the velocity of the pattern, and (d) the mean
transport rate. In (e) the transport ratio is shown by solid cir-
cles, and the straight line indicates the theoretically expected
number, tr = 1.

∂h
∂t + v ∂h

∂x must be zero. In order to check this condition,
the spatial and time derivatives as well as the average
velocity v of the whole ripple pattern were determined in-
dividually from the measured data. As demonstrated in
Figure 11, local deviations from zero can be found in re-
gions where smaller ripples merge to form a larger ripple
with the proper size, shape and speed. In these areas the
local velocity v(x) is not yet equal to the final average drift
velocity v, i.e., the local velocity gradient ∂v

∂x �= 0, which
causes an imbalance to equation (10). After a transient
of 30 h all local deviations have vanished and the rippled
surface reaches its stationary conformation.

The measurements shown so far clearly indicate that
there is a stationary state of the ripples. The time Teq to
reach this state is influenced by the grain size and the driv-
ing force. This is shown in Figure 12. The driving force as
given by the rotation rate is presented in a dimensionless

Fig. 11. Spatiotemporal evolution of ∂h
∂t

+ v ∂h
∂x

along the cir-
cumference of the channel. Consecutive data sets are separated
25min in time and are plotted above each other with a certain
offset. The scale is given at the left side of the figure. The grain
diameter is d = 95µm.

Fig. 12. The time Teq needed to reach the stationary state, as
a function of the reduced shear stress excess ε, for grain sizes
d = 95µm (�), d = 190µm (•) and d = 413µm (�).

form by ε = ω/ωcr −1. ωcr is the critical rotation speed at
which ripples are first formed. As ε decreases towards the
threshold for ripple formation, Teq increases in a mono-
tonic way. The lines are supposed to guide the eye. The
upper curve corresponds to the smallest grain size used. It
is interesting to note that one deals with the longest wait-
ing times in that case. One could speculate that this is
due to a higher mobility of larger particles: smaller grains
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Fig. 13. Dependence of the average amplitude Aav (a) and the
drift velocity vt (b) on the particle Reynolds number Re∗ for
grain size d = 95µm (�), d = 190µm (�), d = 290µm (•),
and d = 413µm (◦). The arrows indicate the onset of ripple
formation.

are more easily halted, and thus a larger number of grain
shifts and a longer time is needed to reach the steady state.

3.2 Scaling

An important question is whether it is possible to obtain
a scale-independent description of the ripple dynamics.
How should one rescale data obtained using different grain
sizes? Experiments have been carried out using four dif-
ferent mean particle diameters (see Tab. 1). We focus on
average quantities in the stationary state, which we ex-
pect to give the most robust characterization of the ripple
dynamics. We use the two dimensionless parameters Re∗
and θ to characterize the driving rate. In what follows, the
average value of ripple amplitude or drift velocity refers to
the average over temporal fluctuations taken after reach-
ing the stationary state (dashed lines in Fig. 8). Note that,
by our definition of these quantities, spatial averaging is
always implied.

The dependence of the average amplitude Aav and the
drift velocity vt on the particle Reynolds number Re∗ for
four different grain sizes is given in Figure 13. The four
curves display a strikingly similar S shape. However, the
curves do not collapse when given as functions of Re∗,
which is proportional to d. Instead, they are shifted to
higher values ofRe∗ for increasing grain size. Furthermore,
the curves are stretched in the vertical direction when the
grain diameter increases.

Our observations are consistent with the trends seen
in previous experimental studies. The steady-state rip-
ple amplitude seems to increase with the grain diame-
ter [27] for comparable stream conditions, whereas for a
given grain size it tends to increase with Re∗ [18]. In ref-
erence [30] the translation speed of ripples was found to

Fig. 14. Dependence of the average amplitude Aav (a) and
the drift velocity vt (b) on the Shields parameter θ for grain
size d = 95µm (�), d = 190µm (�), d = 290µm (•), and
d = 413µm (◦).

be dependent on the shear stress via a power law with
a positive exponent, but no dependence on the grain di-
ameter was found. No experimental studies focussing on
the scaling of the sediment transport are known to us. An
increase in the critical particle Reynolds number Re∗cr
with increasing mean diameter was also observed in ref-
erence [25]. However, a quantitative comparison between
those and our experiments is not feasible, since the sand
used in the experiments of Mantz [25] was flaky.

In Figure 14 the dependence of the average amplitude
Aav and the drift velocity vt on the Shields parameter
θ for the four different grain sizes is given. The similar-
ity in the shape of the curves and their stretching in the
vertical direction mentioned above can be observed also
here. Note that the curves appear in reverse order, since
θ ∝ d−1. Previous studies have found the onset of grain
motion to occur for Shields parameter values of 0.04 and
higher, while we find in our experiments that ripples are
formed at lower values, in particular for large grain sizes.

We point out that our results shown in Figures 13 and
14 indicate that neither the particle Reynolds number nor
the Shields parameter capture correctly the onset of rip-
ple formation. In terms of these dimensionless numbers
the onset value does not coincide, but is systematically
shifted as the grain size is varied. Thus, neither the parti-
cle Reynolds number nor the Shields parameter can serve
as basis for a scale-free description of the onset of rip-
ple formation, since they do not contain the correct size
dependence.

We will now demonstrate that another quantity that
does not contain d at all, the bed shear stress, has a value
at threshold that is close to constant over the different
grain sizes we have investigated.

The values we have obtained for the critical bed shear
velocity uτ,cr are listed in Table 1. The dependence of the
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Fig. 15. Dependence of the critical bed shear stress τw,cr on
the mean grain diameter d. The straight line indicates the mean
value of the four data points.

Fig. 16. Dependence of the critical bed shear stress τw,cr on
the height of the water layer hw for d = 95µm. The straight
line indicates the mean value of the four data points.

critical bed shear stress τw,cr = ρfu
2
τ,cr on the mean grain

diameter is given in Figure 15. The error bars in the hor-
izontal direction reflect the widths of the grain size distri-
butions as given in Table 1. The vertical error bars give the
uncertainty of the determination of the critical bed shear
velocity. The average over the data is indicated by the
line in Figure 15. To a first approximation the critical bed
shear stress does not depend on the grain size. Neverthe-
less, this statement is based on four data points only, and
therefore any conclusions should be drawn with caution.

We have also checked for a possible influence from the
depth (height) of the water layer on the threshold value. In
Figure 16 the dependence of the critical bed shear stress
τw,cr on the height of the water layer for a fixed grain
size of d = 95µm is shown. The average over the data
is given by the straight line. The error bars reflect the
experimental uncertainties in determining the critical bed
shear stress and the height of the water layer, respectively.
One must conclude that the water height has no influence
on the threshold value of the bed shear stress.

Returning now to the full curves in Figure 13, the evo-
lution in the curve shapes with increasing grain size is so
regular that one expects some kind of data collapse to be

Fig. 17. Dependence of the rescaled average amplitude Aav/d
on the reduced shear stress excess ε for grain size d = 95µm
(�), d = 190µm (�), d = 290µm (•), and d = 413µm (◦).

Fig. 18. Rescaled average amplitude Aav(
hw
d
)

1
2 as a function

of εAav for grain size d = 95µm (�), d = 190µm (�), d =
290µm (•), and d = 413µm (◦). The inset shows the same
data with logarithmic scales.

possible. An apparently plausible choice is to measure the
ripple amplitude in grain sizes and quantifying the driving
in terms of the bed shear stress discussed above. In Fig-
ure 17 the rescaled amplitude Aav/d is given as a function
of the reduced shear stress excess ε = (τw − τw,cr)/τw,cr.
Apparently, the assumed scaling law A/d = f(ε) does not
describe the data satisfactorily. Neither the level of the
steady-state plateau (as was also observed above), nor the
first crossover from a lower to a higher slope in the curves,
nor the second crossover where the slope decreases again
towards the steady-state plateau coincides. This indicates
that there is no unique scaling of the amplitude in terms of
the grain size that is also independent of the shear stress
excess ε.

We have explored several additional rescalings of the
data. The most promising of these is shown in Figure 18
where Aav(hw

d )
1
2 is given as a function of εAav. The data

can be fitted with a power law ∼ (εAav)3/4. From this, a
relation between Aav and ε can be deduced as

Aav ∼
(
d

hw

)2

· ε3. (22)
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Fig. 19. Dependence of the average amplitude Aav on the
reduced shear stress excess ε for grain size d = 95µm (�),
d = 190µm (�), d = 290µm (•), and d = 413µm (◦). The
straight line indicates a power law Aav ∼ ε3.

This is illustrated in Figure 19. An ε3-dependence of the
sand flux is well known from Bagnold’s pioneering work
[1]. Here we have found a similar relationship for the rip-
ple amplitude, at least in an intermediate range of the
driving shear stress. For higher ε-values, however, this cu-
bic dependence is replaced by a saturation of the ripple
amplitude.

4 Summary and conclusion

We have found in our experiments that the quantities rip-
ple amplitude, drift velocity and sediment transport rate
are coupled. This is explained on the basis of a continu-
ity equation for the sand. The dynamics is governed by a
feedback mechanism between ripple amplitude and sedi-
ment transport rate. This feedback can be quantitatively
expressed in terms of a transport ratio, which is close to
constant during the entire experiment. Thus, even though
the amplitude, velocity, and sediment transport all change
significantly during an experiment, the balance between
them is not much altered.

In our experimental setup the ripple pattern reaches a
stationary state characterized by a very slow drift, finite
amplitude and wavelength. The time needed to reach that
state can be fairly long, however.

Neither the particle Reynolds number nor the Shields
parameter capture the onset correctly. In fact, we could
not find any influence of the particle diameter or the water
height. Instead, the onset of ripple formation seems to
depend on the shear stress alone.

Universal laws for the scaling of the amplitude, the
drift velocity and the sediment transport rate independent
of the shear stress could not be found. However, there
are indications of a relationship of the form Aav ∼ ε3.
To pursue this point experimentally a larger setup, which
would allow the average ripple amplitude to reach higher
values before saturation, would be necessary.

Due to the channel geometry only an integer number of
ripples is possible. Thus, our apparatus may have changed
the ripple wavelength that is observed as compared to the
one in a very large system. In view of the coupling between
the ripple dimensions and the sediment transport that
drives the dynamics, this imposed wavelength may well
have influenced the ripple amplitude in the steady state.

It remains an open question how important the finite-
size effect is. One could speculate that with increasing
system size significant changes may occur in the ripple
dynamics as one passes from one dominating box mode
to another. Following this logic, the dynamics for fixed
system size may be frustrated between two box modes.
On the other hand, in nature one hardly encounters closed
systems like our experimental setup. Consequently, ripples
are expected to evolve without any coupling to externally
imposed box modes. Therefore, both the ripple shape and
the existence and characteristics of a stationary state may
very will be quite different in our experiments as compared
to nature. This issue can only be resolved through further
experimental studies.

Another important limitation of the setup is the fact
that our channel is fairly shallow. In addition, the rotor
disc provides rigid boundary conditions for the water flow
on the upper surface. This might have a large influence
on the final size of the ripples, but presumably does not
influence their onset very much, where the amplitude is
small compared to the height of the water layer.

An important direction for future research is to corre-
late the detailed shape of a ripple to its growth, decay, and
drift velocity. From such investigations one would hope to
learn more on the physical mechanisms of the ripple dy-
namics.

Another challenge for future experimental work is to
enlarge the system in order to reduce finite-size effects.
However, this will induce additional difficulties: increas-
ing the channel height will increase the Reynolds number
associated with the critical rotation speed, i.e., the turbu-
lence level would increase. Moreover, an increased channel
width may alter the radial flow. To overcome that diffi-
culty one would then need to increase the diameter of the
whole apparatus, which might lead to a prohibitive long
transient time, if one assumes that the period for one rip-
ple revolution around the channel (which is about 9 days
in our experiment) is a significant time scale here. Finally,
a larger setup will be more demanding as for mechanical
stability, since a larger rotor disc, higher rotation rates,
and higher motor power would be necessary.

Other important parameters for the ripple dynamics
might be the density difference between sand and fluid,
and the viscosity of the driving fluid. We are presently ex-
ploring the effects of changes in some of these parameters.
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