o-minimality in geometry

Christian Gleißner

Bayreuth

Aim of the talk:

- introduce the concept of o-minimality
- sketch the proof of the o-minimal Chow theorem (Peterzil and Starchenko)

What is o-minimality?

- branch of math is logic (here geometric point of view)
- concept of "tame topology": avoid spaces like graph of $x \mapsto \sin (1 / x)$

- Algebraic sets $\left\{x \in \mathbb{R}^{n} \mid P(x)=0\right\}$, where $P \in \mathbb{R}\left[x_{1}, \ldots, x_{n}\right]$ behave better.

- Intersections and unions of algebraic sets are again algebraic.
- Problem: complements and projections. The image of

$$
\pi:\left\{(x, y) \in \mathbb{R}^{2} \mid x y-1=0\right\} \rightarrow \mathbb{R}, \quad(x, y) \mapsto x
$$

is $\mathbb{R}^{*}=\{x<0\} \cup\{x>0\}$.

Definition

A semialgebraic set $A \subset \mathbb{R}^{n}$ is a subset defined by a boolean combination of polynomial equations and inequalities.

Semialgebraic sets $A \subset \mathbb{R}^{n}$ form the smallest class $S \mathcal{A}_{n}$ of subsets of \mathbb{R}^{n}, such that

- $\left\{x \in \mathbb{R}^{n} \mid P(x)=0\right\} \in S \mathcal{A}_{n}$ and $\left\{x \in \mathbb{R}^{n} \mid P(x)>0\right\} \in S \mathcal{A}_{n}$ for all $P \in \mathbb{R}\left[x_{1}, \ldots, x_{n}\right]$
- if $A, B \in S \mathcal{A}_{n}$, then $A \cup B, A \cap B$ and $\mathbb{R}^{n} \backslash A$ belong to $S \mathcal{A}_{n}$.

Products $V \times W$ of semialgebraic sets $V \subset \mathbb{R}^{n}$ and $W \subset \mathbb{R}^{m}$ are again semialgebraic.

Theorem (Tarski-Seidenberg)

Let $A \subset \mathbb{R}^{n}$ be a semialgebraic set and

$$
\pi: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n-1}, \quad\left(x_{1}, \ldots, x_{n}\right) \mapsto\left(x_{1}, \ldots, x_{n-1}\right)
$$

Then $p(A) \subset \mathbb{R}^{n-1}$ is semialgebraic.

Stability properties of semialgebraic sets

The collection $S \mathcal{A}:=\left\{(S \mathcal{A})_{n}\right\}_{n \in \mathbb{N}}$ is stable under

- boolean combinations (intersections, unions and complements),
- products and
- projections.

Moreover each set in $(S \mathcal{A})_{1}$ is a finite union of intervalls and points.

- Example of a typical semialgebraic set:

Definition

A structure (on \mathbb{R}) is a collection $S=\left(S_{n}\right)_{n \in \mathbb{N}}$, such that

1) S_{n} is a boolean algebra of subsets of \mathbb{R}^{n},
2) if $V \in S_{n}$, then $\pi(V) \in S_{n-1}$,
3) if $V \in S_{n}$ and $W \in S_{m}$, then $V \times W \in S_{n+m}$,
4) S_{n} contains $\left\{x \in \mathbb{R}^{n} \mid P(x)=0\right\}$ for every polynomial $P \in \mathbb{R}\left[x_{1}, \ldots, x_{n}\right]$.

A structure S is called o-minimal if
5) Each set in S_{1} is a finite union of intervalls and points.

Example

- The structure $S \mathcal{A}$, where

$$
(S \mathcal{A})_{n}:=\left\{\text { semialgebraic sets in } \mathbb{R}^{n}\right\}
$$

is o-minimal.

- The smallest structure containing $\left\{(x, y) \in \mathbb{R}^{2} \mid y=\exp (x)\right\}$ is o-minimal (Wilkie).

Definition/Notation

A subset $V \subset \mathbb{R}^{n}$ is definable if $V \in S_{n}$. A function f (or a map) is definable, if its graph is definable.

Proposition

Let $f: V \rightarrow \mathbb{R}^{m}$ be definable, then

1) image and preimage of definable sets under f are definable,
2) same for products and compositions of definable functions and maps.
proof of 1):

- $f(A)=\pi_{2}\left(\left\{(x, y) \in A \times \mathbb{R}^{m} \mid f(x)=y\right\}\right)$
- $f^{-1}(B)=\pi_{1}\left(\left\{(x, y) \in V \times \mathbb{R}^{m} \mid f(x)=y\right\} \cap\left(\mathbb{R}^{n} \times B\right)\right)$

Example

- For each $P \in \mathbb{R}\left[x_{1}, \ldots, x_{n}\right]$ the set $\left\{x \in \mathbb{R}^{n} \mid P(x)>0\right\}$ is definable:

$$
\left\{x \in \mathbb{R}^{n} \mid P(x)>0\right\}=\pi_{x}\left(\left\{\left(x, x_{n+1}\right) \in \mathbb{R}^{n+1} \mid x_{n+1}^{2} P(x)=1\right\} .\right.
$$

- The sin-function is not definable in any o-minimal structure, since $\sin ^{-1}(0)$ is infinite and discrete.

Conclusion

Every structure S contains $S \mathcal{A}$. (Semialgebraic sets form the smallest structure).

Proposition

Suppose $f: \mathbb{C} \rightarrow \mathbb{C}$ is holomorphic and definable in some o-minimal structure, then $f \in \mathbb{C}[z]$.
proof:

- otherwise $g(z):=f(1 / z)$ has an essential singularity at 0 .
- Let W^{*} be a punctured nbhd of the origin

$$
\Longrightarrow \quad g\left(W^{*}\right)=\mathbb{C} \quad \text { or } \quad g\left(W^{*}\right)=\mathbb{C} \backslash\{p\} .
$$

Moreover each value is taken infinitely many times (Picard's great theorem)
\Longrightarrow we may assume that f has infinitely many zeros

- zeros of $f(z)$ cannot accumulate $\Longrightarrow f^{-1}(0)$ is not definable (a contradiction).

Definition

A first order formula in S is constructed by the following rules:

1) $A \in S_{n} \Longrightarrow x \in A$ is a formula,
2) $P \in \mathbb{R}\left[x_{1}, \ldots, x_{n}\right]$ then $P=0, P>0$ and $P<0$ are formulas,
3) ϕ and ψ are formulas $\Longrightarrow \psi \vee \phi, \psi \wedge \phi$ and $\neg \phi$ are formulas,
4) if $\phi(x, y)$ is a formula and A is definable, then

$$
\exists x \in A \quad \text { s.t. } \quad \phi(x, y) \quad \text { and } \quad \forall x \in A \quad \phi(x, y)
$$

are formulas.

Proposition

If ϕ is a first order formula, then $\left\{x \in \mathbb{R}^{n} \mid \phi(x)\right\}$ is definable.
proof: Rules 1-3 produce definable sets. Rule 4: suppose

$$
B=\left\{(x, y) \in \mathbb{R}^{n+p} \mid \phi(x, y)\right\}
$$

is definable, then

- $\left\{y \in \mathbb{R}^{p} \mid \exists x \in A\right.$ s.t. $\left.\phi(x, y)\right\}=\pi_{y}\left(B \cap\left(A \times \mathbb{R}^{p}\right)\right)$ and
- $\left\{y \in \mathbb{R}^{p} \mid \forall x \in A \phi(x, y)\right\}=\mathbb{R}^{p} \backslash \pi_{y}\left(\left(A \times \mathbb{R}^{p}\right) \cap\left(\mathbb{R}^{n+p} \backslash B\right)\right)$ are definable.

Example

1) Let $A \in S_{n}$ be definable, then

$$
\bar{A}=\left\{x \in \mathbb{R}^{n} \mid \forall \epsilon \in \mathbb{R}, \epsilon>0, \exists y \in A \text { s.t. } \sum_{i=1}^{n}\left(x_{i}-y_{i}\right)^{2}<\epsilon^{2}\right\} .
$$

is definable and therefore also $\operatorname{fr}(A):=\bar{A} \backslash A$.
2) The derivative of a differentiable and definable function is definable.

Theorem (Peterzil, Starchenko)

Let $Y \subset \mathbb{C}^{n}$ be a closed, analytic and definable in some o-minimal structure, Y is complex algebraic.

Analytic and algebraic subsets

- $Y \subset \mathbb{C}^{n}$ is analytic \Longleftrightarrow for all $y \in \mathbb{C}^{n}$ there exists $U=U(y) \subset \mathbb{C}^{n}$ open and $f_{1}, \ldots, f_{k} \in \mathcal{O}(U)$ s.t. $U \cap Y=\left\{x \in U \mid f_{1}(x)=\ldots=f_{k}(x)=0\right\}$.
- $Y \subset \mathbb{C}^{n}$ is complex algebraic \Longleftrightarrow there exists $f_{1}, \ldots, f_{k} \in \mathbb{C}\left[x_{1}, \ldots, x_{n}\right]$ s.t.

$$
Y=\left\{x \in \mathbb{C}^{n} \mid f_{1}(x)=\ldots=f_{k}(x)=0\right\} .
$$

Proof of o-minimal Chow

- We prove the theorem in several steps:

Step 1

Let $f: \mathbb{C}^{n} \rightarrow \mathbb{C}$ be holomorphic and definable, then $f \in \mathbb{C}\left[x_{1}, \ldots, x_{n}\right]$.

Step 2 ("Noether normalization")
There exists a finite, proper and definable map $\pi: Y \rightarrow \mathbb{C}^{d}$, where $d:=\operatorname{dim}_{\mathbb{C}}(Y)$.

Step 3

The branch locus \mathcal{B} of $\pi: Y \rightarrow \mathbb{C}^{d}$ is definable.

Step 4

Use the associated unramified cover $\pi: Y \backslash \mathcal{R} \rightarrow \mathbb{C}^{d} \backslash \mathcal{B}$ to derive polynomial equations for Y.

Proof of o-minimal Chow

Step 2 ("Noether normalization")

There exists a finite, proper and definable map $\pi: Y \rightarrow \mathbb{C}^{d}$, where $d:=\operatorname{dim}_{\mathbb{C}}(Y)$.
proof:

- We embed Y in projective space

$$
Y \subset \mathbb{C}^{n} \rightarrow \mathbb{P}^{n}, \quad x \mapsto(1: x)
$$

- the frontier $\operatorname{fr}(Y)=\bar{Y} \backslash Y \subset H:=\left\{x_{0}=0\right\} \simeq \mathbb{P}^{n-1}$ is definable
- fact from o-minimality:

$$
\operatorname{dim}_{\mathbb{R}}(\operatorname{fr}(Y))<\operatorname{dim}_{\mathbb{R}}(Y)=2 d \quad \Longrightarrow \operatorname{fr}(Y) \neq H
$$

- pick $p \in H \backslash \bar{Y}$ and consider the projection

$$
\pi: \bar{Y} \rightarrow \mathbb{P}^{n-1}, \quad\left(x_{0}: x\right) \rightarrow\left(x_{0}: L_{1}(x): \cdots: L_{n-1}(x)\right)
$$

- the restriction $\pi: Y \rightarrow \mathbb{C}^{n-1}$ is proper, holomorphic, definable and finite
- the image $\pi(Y) \subset \mathbb{C}^{n-1}$ is closed, analytic (Remmert) and definable (then we repeat)

Step 3

The branch locus \mathcal{B} of $\pi: Y \rightarrow \mathbb{C}^{d}$ is definable.

Let $m:=\operatorname{deg}(\pi)$ be the degree of π, then

$$
\mathcal{B}=\left\{x \in \mathbb{C}^{d} \mid \# \pi^{-1}(x)<m\right\} .
$$

proof:

- we may assume that $Y \subset \mathbb{C}^{d} \times \mathbb{C}^{n-d}$ and $\pi(x, y)=x$
- consider the definable set

$$
M_{m}:=\left\{\left(x_{1}, y_{1}, \ldots, x_{m}, y_{m}\right) \in Y^{m} \mid x_{1}=\ldots=x_{m}\right\} \backslash \bigcup_{i<j}\left\{y_{i}=y_{j}\right\}
$$

- The complement $\mathbb{C}^{d} \backslash \mathcal{B}$ is definable, because it is the image of the projection

$$
\pi: M_{m} \rightarrow \mathbb{C}^{d}, \quad\left(x_{1}, y_{1}, \ldots, x_{m}, y_{m}\right) \mapsto x_{1}
$$

Step 4

Use the associated unramified cover $\pi: Y \backslash \mathcal{R} \rightarrow \mathbb{C}^{d} \backslash \mathcal{B}$ to derive polynomial equations for Y.
proof:

- we write $Y_{0}:=Y \backslash \mathcal{R}$ and $V:=\mathbb{C}^{d} \backslash \mathcal{B}$.
- for all $p \in V$ there exists $W=W(p) \subset V$ open such that

$$
\pi^{-1}(W)=\bigsqcup_{i=1}^{m} U_{i} \quad \text { and } \quad \pi_{\mid U_{i}}: U_{i} \rightarrow W \quad \text { biholomorphic }
$$

- the inverse maps are of the form

$$
\left(\pi_{\mid U_{i}}\right)^{-1}: W \rightarrow U_{i}, \quad x \mapsto\left(x, \phi_{i}(x)\right) \in \mathbb{C}^{d} \times \mathbb{C}^{n-d}
$$

- for simplicity: $d=n-1$ (we need only one equation).

$$
\begin{aligned}
\pi^{-1}(W) & =\left\{(x, y) \in W \times \mathbb{C} \mid \prod\left(y-\phi_{i}(x)\right)=0\right\} \\
& =\left\{(x, y) \in W \times \mathbb{C} \mid y^{m}-s_{1}(x) y^{m-1}+\ldots+(-1)^{m} s_{m}(x)=0\right\}
\end{aligned}
$$

Proof of o-minimal Chow

- the functions $s_{i}:=\sum_{k_{1}<\cdots<k_{i}} \phi_{k_{1}} \cdots \phi_{k_{i}}$ glue to functions on $V=\mathbb{C}^{d} \backslash \mathcal{B}$
- by properness s_{i} extend to an entire function $\widehat{s}_{i}: \mathbb{C}^{d} \rightarrow \mathbb{C}$
- claim: \widehat{s}_{i} is definable and therefore a polynomial (Step 1)

$$
\Longrightarrow \quad Y=\overline{Y_{0}}=\left\{(x, y) \mid y^{m}-\widehat{s_{1}}(x) y^{m-1}+\ldots+(-1)^{m} \widehat{s_{m}}(x)=0\right\}
$$

proof of claim:

- recall the definable set

$$
M_{m}:=\left\{\left(x_{1}, y_{1}, \ldots, x_{m}, y_{m}\right) \in Y^{m} \mid x_{1}=\ldots=x_{m}\right\} \backslash \bigcup_{i<j}\left\{y_{i}=y_{j}\right\}
$$

- $\Gamma\left(s_{i}\right)$ is the image of the definable map

$$
\begin{gathered}
\psi_{i}: M_{m} \rightarrow V \times \mathbb{C}, \quad\left(x_{1}, y_{1}, \ldots, x_{m}, y_{m}\right) \mapsto\left(x_{1}, \sum_{k_{1}<\cdots<k_{i}} y_{k_{1}} \cdots y_{k_{i}}\right) \\
\Longrightarrow \quad \widehat{s}_{i} \text { is also definable }
\end{gathered}
$$

Thank you for your attention

