On the degree of the canonical map of a product quotient surface

Christian Gleißner

Bayreuth

Joint work with R. Pignatelli and C. Rito

- For a smooth complex algebraic surface S of general type we can consider its canonical map

$$
\varphi_{K_{S}}: S \rightarrow \mathbb{P}^{p_{g}-1}, \quad p_{g}(S):=h^{0}\left(\mathcal{O}\left(K_{S}\right)\right)=h^{0}\left(\Omega_{S}^{2}\right) \quad(\geq 1)
$$

- If $\varphi_{K_{S}}$ is generically finite then automatically $p_{g}(S) \geq 3$
- Beauville '79 remarked an upper bound for $\operatorname{deg}\left(\varphi_{K_{S}}\right)$:

$$
9 \chi\left(\mathcal{O}_{S}\right) \geq K_{S}^{2} \geq \operatorname{deg}\left(\varphi_{K_{S}}\right) \cdot \operatorname{deg}\left(\varphi_{K_{S}}(S)\right) \geq \operatorname{deg}\left(\varphi_{K_{S}}\right) \cdot\left(p_{g}(S)-2\right)
$$

\Longrightarrow resolving for the degree yields:

Beauvilles upper bound

$$
\operatorname{deg}\left(\varphi_{K_{S}}\right) \leq \frac{9 \chi\left(\mathcal{O}_{S}\right)}{p_{g}(S)-2}=\frac{9\left(1-q(S)+p_{g}(S)\right)}{p_{g}(S)-2}=9+\frac{27-9 q(S)}{p_{g}(S)-2} \leq 36
$$

$\left(q(S):=h^{0}\left(\Omega_{S}^{1}\right)\right.$ is the irregularity of $\left.S\right)$

The inequality

- $9 \chi\left(\mathcal{O}_{S}\right) \geq K_{S}^{2} \quad(B M Y) \quad$ is sharp iff S is a ball quotient
- $K_{S}^{2} \geq \operatorname{deg}\left(\varphi_{K_{S}}\right) \cdot \operatorname{deg}\left(\varphi_{K_{S}}(S)\right) \quad$ is sharp iff $\left|K_{S}\right|$ has no basepoints (b.p.f)

Remark

To realize the upper bound $\operatorname{deg}\left(\varphi_{K_{S}}\right)=36$ we need:

- S to be a ball quotient,
- the canonical system $\left|K_{S}\right|$ b.p.f,
- $p_{g}(S)=3$ and $q(S)=0$.
- In 78' Persson provided an example with $\operatorname{deg}\left(\varphi_{K_{S}}\right)=16$, the highest known degree until 2015
- In 2015 Yeung claimed to have an example with $\operatorname{deg}\left(\varphi K_{S}\right)=36$, but the proof seems to have a gap.

The main result (Pignatelli, Rito, -)

A realization of $\operatorname{deg}\left(\varphi_{K_{S}}\right)=32$.

- Ball quotients are very hard to handle
$\Longrightarrow \quad$ surfaces with $K_{S}^{2}=8 \chi\left(\mathcal{O}_{S}\right)$ are simpler
- For these surfaces the inequality becomes

$$
\operatorname{deg}\left(\varphi_{K_{S}}\right) \leq \frac{8 \chi\left(\mathcal{O}_{S}\right)}{p_{g}(S)-2}=8+\frac{24-8 q(S)}{p_{g}(S)-2} \leq 32
$$

Remark

To realize the upper bound $\operatorname{deg}\left(\varphi_{K_{S}}\right)=32$ we need:

- the canonical system $\left|K_{S}\right|$ b.p.f,
- $p_{g}(S)=3$ and $q(S)=0$.
- A typical example of a surface (of general type) with

$$
K_{S}^{2}=8 \chi\left(\mathcal{O}_{S}\right)
$$

is a product of two smooth projective curves C_{i} of genus $g_{i} \geq 2$:

$$
8 \chi\left(\mathcal{O}_{S}\right)=8 \chi\left(\mathcal{O}_{C_{1}}\right) \cdot \chi\left(\mathcal{O}_{C_{2}}\right)=8\left(1-g_{1}\right)\left(1-g_{2}\right)=K_{S}^{2}
$$

- The canonical map of $S=C_{1} \times C_{2}$ factors:

Classical Theorem

- $\varphi_{K_{C_{i}}}$ is an embedding $\Longleftrightarrow C_{i}$ is not hyperelliptic
- If C_{i} is hyperelliptic then $\varphi_{K_{C_{i}}}$ is of degree 2
$\Longrightarrow \quad$ too small to be interesting

The idea:

Generalize the situation by taking quotients of a product of curves.

Definition

A complex projective surface S is said to be isogenous to a product if S is a quotient

$$
S=\left(C_{1} \times C_{2}\right) / G,
$$

where the C_{i} 's are smooth curves of genus at least two, and G is a finite group acting freely on $C_{1} \times C_{2}$.

Remark

- A surface isogenous to a product is smooth, minimal, of general type i.e. $\kappa(S)=2$ and K_{S} is ample.
- Simple formulas for the invariants:

$$
\chi\left(\mathcal{O}_{S}\right)=\frac{\left(g_{1}-1\right)\left(g_{2}-1\right)}{|G|}, \quad K_{S}^{2}=8 \chi\left(\mathcal{O}_{S}\right) \quad \text { and } \quad e(S)=4 \chi\left(\mathcal{O}_{S}\right)
$$

The initial example is due to Beauville:

- He considered a free $(\mathbb{Z} / 5)^{2}$ action on two copies of the Fermat quintic

$$
C:=\left\{x^{5}+y^{5}+z^{5}=0\right\} \subset \mathbb{P}_{\mathbb{C}}^{2}
$$

- Since $g(C)=(5-1)(5-2) / 2=6$ the quotient surface

$$
S=(C \times C) /(\mathbb{Z} / 5)^{2}
$$

has $\chi\left(\mathcal{O}_{S}\right)=1$.

- For a surface S of general type it holds $\chi\left(\mathcal{O}_{s}\right) \geq 1$.
- There is a complete classification of all surfaces isogenous to a product in the boundary case $\chi\left(\mathcal{O}_{S}\right)=1$ due to Bauer, Catanese, Grunewald, Carnovale, Polizzi, Pennegini, Zucconi.
- In principle the methods to classify these surfaces work also for other values for $\chi\left(\mathcal{O}_{s}\right)$. But the classification becomes much harder as $\chi\left(\mathcal{O}_{s}\right)$ increases.

The problems

I) We have to construct examples of surfaces S isogenous to a product for fixed invariants p_{g} and q, if possible a full classification
$\Longrightarrow \quad$ in view of Beauvilles inequality the interesting values are

$$
p_{g}(S)=3,4 \quad \text { and } \quad q(S)=0
$$

II) Once we have the examples, we need to analyse their canonical system: basepoints and the image of φK_{S} in $\mathbb{P}^{p_{g}-1}$.

- For simplicity we assume that the action on $C_{1} \times C_{2}$ is diagonal

$$
g(x, y)=(g \cdot x, g \cdot y) \quad \forall \quad g \in G .
$$

- According to Catanese there is a unique realisation of S such that G acts faithfully on each curve.

Proposition

Let $S=\left(C_{1} \times C_{2}\right) / G$ be a surface isogenous to a product, then it holds

$$
q(S)=g\left(C_{1} / G\right)+g\left(C_{2} / G\right)
$$

- Since we are interested in the case $q(S)=0$, we also assume $C_{i} / G \simeq \mathbb{P}^{1}$.

Observation:

Since we act on the product $C_{1} \times C_{2}$ via the diagonal subgroup $\Delta \leq G \times G$, we obtain

- (branched) Galois covers $f_{i}: C_{i} \rightarrow C_{i} / G=\mathbb{P}^{1}$ of the projective line and
- a branched cover

$$
\psi: S \rightarrow\left(C_{1} \times C_{2}\right) /(G \times G)=C_{1} / G \times C_{2} / G \simeq \mathbb{P}^{1} \times \mathbb{P}^{1}
$$

- The quotient map $\pi: C_{1} \times C_{2} \rightarrow S$ and the covers ψ and f_{i} fit in a commutative triangle

\Longrightarrow The cover ψ is particularly useful when it is Galois. This is the case iff Δ is normal in $G \times G$ i.e. G is abelian.
- Our final assumption is: G is abelian
- This allows us to apply the powerful theory of abelian covers to $\psi: S \rightarrow \mathbb{P}^{1} \times \mathbb{P}^{1}$, which has Galois group

$$
(G \times G) / \Delta \simeq G, \quad(a, b) \mapsto a b^{-1}
$$

- It also makes a classification for a fixed p_{g} more feasible.

Remark

- In Beauvilles example we had an explicit description in terms of equations
- In general it is hard to work with equations, so we aim for a more abstract description

The Galois covers $f_{i}: C_{i} \rightarrow C_{i} / G=\mathbb{P}^{1}$ are described by:

Riemann's existence theorem

Given

- a finite set $\mathcal{B} \subset \mathbb{P}^{1}$ and
- a surjective group homomorphism $\eta: \pi_{1}\left(\mathbb{P}^{1} \backslash \mathcal{B}\right) \rightarrow G$ to a finite group G then, there exists up to isomorphism a unique compact Riemann surface C and a unique inclusion $G \subset A u t(C)$ such that
- $C / G \simeq \mathbb{P}^{1}$,
- the branch locus of $C \rightarrow \mathbb{P}^{1}$ is contained in \mathcal{B}
- the monodromy of $C \backslash \mathcal{R} \rightarrow \mathbb{P}^{1} \backslash \mathcal{B}$ is η.
- Recall that $\pi_{1}\left(\mathbb{P}^{1} \backslash \mathcal{B}\right)$ has a presentation of the form $\left\langle\gamma_{1}, \ldots, \gamma_{r} \mid \prod_{i=1}^{r} \gamma_{i}=1\right\rangle$
- The images $a_{i}=\eta\left(\gamma_{i}\right)$ generate the group G and fulfill the relation

$$
\prod_{i=1}^{r} a_{i}=1
$$

- Let m_{i} be the order of a_{i}, then Hurwitz' formula holds:

$$
2 g(C)-2=|G|\left(-2+\sum_{i=1}^{r} \frac{m_{i}-1}{m_{i}}\right)
$$

Definition

Let $m_{1}, \ldots, m_{r} \geq 2$ be integers, a spherical system of generators for a finite group G of type $\left[m_{1}, \ldots, m_{r}\right]$ is an r-tuple

$$
\left(a_{1}, \ldots, a_{r}\right)
$$

of elements generating G, such that

$$
\prod_{i=1}^{r} a_{i}=1 \quad \text { and } \quad \operatorname{ord}\left(a_{i}\right)=m_{i}
$$

- We define the stabilizer set of a generating vector $V=\left(a_{1}, \ldots, a_{r}\right)$ as

$$
\Sigma_{V}:=\bigcup_{g \in G} \bigcup_{i \in \mathbb{Z}} \bigcup_{j=1}^{r}\left\{g a_{j}^{i} g^{-1}\right\}
$$

- To a surface isogenous to a product

$$
S=\left(C_{1} \times C_{2}\right) / G,
$$

we can attach two generating vectors V_{1} and V_{2}.

- The freeness of the G-action on the product $C_{1} \times C_{2}$ is reflected by the condition

$$
\Sigma_{V_{1}} \cap \Sigma_{V_{2}}=\left\{1_{G}\right\} .
$$

- Conversely a triple (G, V_{1}, V_{2}) consisting of a finite group and two generating vectors whose stabilizer sets intersect trivially is realized by a surface isogenous to a product.
- Next we study the abelian $G \simeq(G \times G) / \Delta$ cover ψ in the diagram

- Since π is by assumption unramified, $f_{1} \times f_{2}$ and ψ have the same branch locus:

$$
\mathcal{B}=\mathbb{P}^{1} \times \mathcal{B}_{2} \quad \cup \quad \mathcal{B}_{1} \times \mathbb{P}^{1}
$$

where $\mathcal{B}_{1}=\left\{p_{1}, \ldots, p_{s}\right\}$ is the branch locus of f_{1} and $\mathcal{B}_{2}=\left\{q_{1}, \ldots, q_{l}\right\}$ the branch locus of f_{2} :

$$
B_{i}^{\text {ver }}=p_{i} \times \mathbb{P}^{1} \quad \text { and } \quad B_{j}^{h o r}=\mathbb{P}^{1} \times q_{j}
$$

- The G action on $\psi_{*} \mathcal{O}_{S}$ induce a splitting in eigensheaves

$$
\psi_{*} \mathcal{O}_{S}=\bigoplus_{\chi \in \operatorname{lrr}(G)}\left(\psi_{*} \mathcal{O}_{S}\right)^{\chi}
$$

that are locally free of rank $1 \Longrightarrow\left(\psi_{*} \mathcal{O}_{S}\right)^{\chi}=\mathcal{O}\left(L_{\chi}^{-1}\right) \quad$ for some line bundle

- According to a result of Catanese, the line bundles L_{χ} can be determined from the monodromy.

Theorem (special case of Catanese, Liedtke)

Let $S=\left(C_{1} \times C_{2}\right) / G$ be a regular surface isogenous to a product, where G is abelian. Let

$$
V_{1}=\left(a_{1}, \ldots, a_{s}\right) \quad \text { and } \quad V_{2}=\left(b_{1}, \ldots, b_{l}\right)
$$

be associated generating vectors, $m_{i}=\operatorname{ord}\left(a_{i}\right)$ and $n_{j}=\operatorname{ord}\left(b_{j}\right)$.
Let $R_{i}^{\text {vert }}$ and $R_{j}^{\text {hor }}$ be the reduced inverse images of $B_{i}^{\text {vert }}$ and $B_{j}^{\text {hor }}$ under ψ, then

$$
H^{0}\left(S, K_{S}\right)=\bigoplus_{\chi \in \operatorname{lrr}(G)} s_{\chi} \cdot H^{0}\left(\mathcal{O}(-2,-2) \otimes L_{\chi}\right)
$$

where

$$
\left(s_{\chi}\right)=\sum_{i=1}^{s}\left(m_{i}-1-\frac{m_{i} \chi\left(a_{i}\right)}{d_{\chi}}\right) R_{i}^{v e r t}+\sum_{j=1}^{l}\left(n_{i}-1-\frac{n_{j} \chi\left(b_{j}^{-1}\right)}{d_{\chi}}\right) R_{j}^{h o r}, \quad d_{\chi}:=\operatorname{ord}(\chi)
$$

- only vertical and horizontal divisors can intersect
- no basepoints can come from $H^{0}\left(\mathcal{O}(-2,-2) \otimes L_{\chi}\right)$

Remark

The canonical divisor K_{S} of a surface isogenous to a product is ample

$$
\Longrightarrow \varphi_{K_{S}}(S) \text { is a surface if }\left|K_{S}\right| \text { is b.p.f. }
$$

Combinatorics Bounds and Algorithm

- The first step towards a classification for a fixed value of p_{g} is a bound on the group order.

Proposition

Let $S=\left(C_{1} \times C_{2}\right) / G$ be a regular surface isogenous to a product, where G is abelian, then

$$
n:=|G| \leq 8\left(p_{g}+2\right)+8 \sqrt{\left(p_{g}+2\right)^{2}-1}
$$

In particular

$$
n \leq \begin{cases}79 & \text { for } p_{g}(S)=3 \\ 95 & \text { for } p_{g}(S)=4\end{cases}
$$

Proof.

Since G is abelian, we have $n \leq 4\left(g_{i}+1\right)$. This implies

$$
n \cdot\left(1+p_{g}\right)=\left(g_{1}-1\right)\left(g_{2}-1\right) \geq\left(\frac{n}{4}-2\right)^{2}
$$

which is equivalent to

$$
0 \geq n^{2}-16\left(p_{g}+2\right) n+64
$$

- Let $S=\left(C_{1} \times C_{2}\right) / G$ be a regular surface isogenous to a product, where G is abelian, then G cannot be cyclic (Bauer and Catanese).
- Let V_{i} be the generating vectors. Then the types

$$
T_{1}=\left[m_{1}, \ldots, m_{s}\right] \quad \text { and } \quad T_{2}=\left[n_{1}, \ldots, n_{l}\right]
$$

fulfill additional constraints:

- n_{i} divides $g\left(C_{1}\right)-1$ and m_{j} divides $g\left(C_{2}\right)-1$
- $\operatorname{Icm}\left\{m_{1}, \ldots, \widehat{m}_{i}, \ldots, m_{s}\right\}=\operatorname{Icm}\left\{m_{1}, \ldots, m_{s}\right\}$ and the same for $T_{2}=\left[n_{1}, \ldots, n_{l}\right]$.
- Hurwitz' formula

$$
2 g\left(C_{1}\right)-2=|G|\left(-2+\sum_{i=1}^{s} \frac{m_{i}-1}{m_{i}}\right)
$$

and also for T_{2}.

- other constraints ...

Remark

For a fixed value of p_{g} the classification problem becomes finite.

Input: a positive integer $p_{g} \geq 3$
1st Step: here we determine the set of triples
$\left(n, T_{1}, T_{2}\right), \quad$ where the types $T_{1}=\left[m_{1}, \ldots m_{s}\right]$ and $T_{2}=\left[n_{1}, \ldots, n_{1}\right]$
satisfy the constraints from above.

2nd Step:

- For each triple (n, T_{1}, T_{2}) found in the 1st step we run through the abelian groups G of order n and determine all triples of the form $\left(G, V_{1}, V_{2}\right)$ where V_{i} is a generating vector for G of type T_{i}.
- We check the freeness condition $\Sigma_{V_{1}} \cap \Sigma_{V_{2}}=\left\{1_{G}\right\}$
\Longrightarrow we obtain a surface S isogenous to a product
- for each surface S we check if $\left|K_{S}\right|$ is b.p.f.

Output: a complete list of all regular surfaces isogenous to a product with geometric genus p_{g}, obtained by the action of an abelian group such that $\left|K_{S}\right|$ is b.p.f.

Automatically $\operatorname{deg}\left(\varphi_{K_{S}}\right) \leq 8+\frac{24}{p_{g}-2}$ with equality iff $\operatorname{deg}\left(\varphi_{K_{S}}(S)\right)=p_{g}-2$.

We run a MAGMA implementation of the algorithm for the input value $p_{g}(S)=3$ we obtain:

Theorem (Pignatelli, Rito, -)

There are precisely two families of regular surfaces S isogenous to a product with $p_{g}(S)=3$ obtained by the action of an abelian group such that $\left|K_{S}\right|$ is b.p.f.

$$
\Longrightarrow \quad \operatorname{deg}\left(\varphi_{K_{s}}\right)=32 .
$$

The 1st example in detail:

- The group is $G=(\mathbb{Z} / 2)^{4}$
- The generating vectors are:

$$
V_{1}=\left(e_{124}, e_{1}, e_{1234}, e_{23}, e_{14}, e_{24}\right), \quad V_{2}=\left(e_{34}, e_{2}, e_{3}, e_{13}, e_{123}, e_{4}\right)
$$

where $e_{i j k}:=e_{i}+e_{j}+e_{k}$ is the sum of the unit vectors.
\Longrightarrow There are six vertical and six horizontal branch divisors of

$$
\psi: S \rightarrow \mathbb{P}^{1} \times \mathbb{P}^{1}
$$

- Let $\chi_{1}, \ldots, \chi_{16}$ be the irreducible characters of $(\mathbb{Z} / 2)^{4}$ (ordered as in MAGMA's character table), then:

$$
h^{0}\left(\mathcal{O}(-2,-2) \otimes L_{\chi_{i}}\right)= \begin{cases}1 & \text { if } i=8,12,13 \\ 0 & \text { else }\end{cases}
$$

- A basis for $H^{0}\left(S, K_{S}\right)$ is given by $\left(s_{\chi_{8}}, s_{\chi_{12}}, s_{\chi_{13}}\right)$.

$$
\left.\begin{array}{l}
\left(s_{\chi_{8}}\right)=R_{1}^{\text {vert }}+R_{4}^{\text {vert }}+R_{4}^{\text {hor }}+R_{6}^{\text {hor }} \\
\left(s_{\chi_{1} 1}\right)=R_{5}^{\text {vert }}+R_{6}^{\text {vert }}+R_{3}^{\text {hor }}+R_{5}^{\text {hor }} \\
(\text { (red }) \\
\left(s_{\chi_{1} 3}\right)=R_{2}^{\text {vert }}+R_{3}^{\text {vert }}+R_{1}^{\text {hor }}+R_{2}^{\text {hor }}
\end{array} \quad \text { (green) }\right) ~ l
$$

The picture in the branch locus:

What happens for $p_{g}=4$?

- Here the maximal possible degree of $\varphi_{K_{S}}$ is 20 .

To realize this bound we need an example with $\left|K_{S}\right|$ b.p.f. such that the image of $\varphi_{K_{S}}$ is a quadric.

- Unfortunately when we run the program for $p_{g}=4$, we find that all examples have basepoints.
- We can drop the freeness assumption and allow mild singularities i.e. canonical singularities.
- The stabilizer of a point $(x, y) \in C_{1} \times C_{2}$ is the intersection

$$
\operatorname{Stab}(x, y)=\operatorname{Stab}(x) \cap \operatorname{Stab}(y)
$$

of cyclic groups and therefore cyclic.
$\Longrightarrow \quad$ The quotient S has at most finitely many isolated cyclic quotient singularities.

- A germ of a canonical cyclic quotient singularity (in dimension two) is represented by \mathbb{C}^{2} modulo

$$
\left\langle\left(\begin{array}{cc}
\epsilon & 0 \\
0 & \epsilon^{n-1}
\end{array}\right)\right\rangle \leq S L(2, \mathbb{C}), \quad \text { where } \quad \epsilon:=\exp \left(\frac{2 \pi i}{n}\right)
$$

and denoted by A_{n-1}.

- Under this assumption the canonical divisor K_{S} of $S=\left(C_{1} \times C_{2}\right) / G$ is Cartier and S has a crepant resolution:

$$
\rho: \widehat{S} \rightarrow S, \quad \text { where } \widehat{S} \text { is smooth, } \rho \text { is proper and birational and } \rho^{*} K_{S}=K_{\widehat{S}}
$$

- The invariants $\chi\left(\mathcal{O}_{S}\right)$ and K_{S}^{2} are related by:

$$
8 \chi\left(\mathcal{O}_{S}\right) \geq 8 \chi\left(\mathcal{O}_{S}\right)-\frac{2}{3} \sum_{x \in \operatorname{Sing}(S)} \frac{n_{x}^{2}-1}{n_{x}}=K_{S}^{2}
$$

$\Longrightarrow \quad$ there might be still useful examples with few singularities

- We extend the algorithm to the canonical case and find an example with $p_{g}(S)=4$ and b.p.f. canonical system.
- The example has nine singularities of type A_{2} and maps to the quadratic cone

$$
u v=w^{2}
$$

- $K_{S}^{2}=24 \quad \Longrightarrow \quad \operatorname{deg}\left(\varphi_{K}\right)=12$
- Another way is to try with irregular surfaces (isogenous to a product) e.g

$$
\psi: S \rightarrow \mathbb{P}^{1} \times E, \quad \text { where } E \text { is an elliptic curve i.e. } q(S)=1
$$

Theorem (Pignatelli, Rito)

There is a surface S isogenous to a product with $p_{g}(S)=3$ and $q(S)=1$ such that $\left|K_{S}\right|$ is basepoint free

$$
\Longrightarrow \quad \operatorname{deg}\left(\varphi_{K}\right)=24
$$

- Pignatelli and Rito found their example via a hand computation.
- Up to now no systematic (computer-) search has been performed for irregular surfaces isogenous to a product.

Thank you for your attention

