On the degree of the canonical map of a product quotient surface

Christian Gleißner

Bayreuth

Joint work with R. Pignatelli and C. Rito

On the degree of the canonical map of a product quotient surface Milano Bicocca, June 18. 2018 Christian Gleißner

Motivation

• For a smooth complex algebraic surface *S* of general type we can consider its canonical map

$$\varphi_{K_S} \colon S \dashrightarrow \mathbb{P}^{p_g - 1}, \qquad p_g(S) := h^0(\mathcal{O}(K_S)) = h^0(\Omega_S^2) \quad (\geq 1)$$

- If φ_{K_S} is generically finite then automatically p_g(S) ≥ 3
- Beauville '79 remarked an upper bound for $deg(\varphi_{K_S})$:

$$9\chi(\mathcal{O}_{\mathcal{S}}) \geq K_{\mathcal{S}}^2 \geq deg(\varphi_{\mathcal{K}_{\mathcal{S}}}) \cdot deg(\varphi_{\mathcal{K}_{\mathcal{S}}}(\mathcal{S})) \geq deg(\varphi_{\mathcal{K}_{\mathcal{S}}}) \cdot \left(p_g(\mathcal{S}) - 2\right)$$

 \implies resolving for the degree yields:

Beauvilles upper bound

$$deg(\varphi_{K_S}) \leq \frac{9\chi(\mathcal{O}_S)}{p_g(S) - 2} = \frac{9(1 - q(S) + p_g(S))}{p_g(S) - 2} = 9 + \frac{27 - 9q(S)}{p_g(S) - 2} \leq 36.$$

$$(q(S) := h^0(\Omega^1_S)$$
 is the irregularity of S)

On the degree of the canonical map of a product quotient surface

The inequality

- $9\chi(\mathcal{O}_S) \ge K_S^2$ (BMY) is sharp iff S is a ball quotient
- $K_S^2 \ge \deg(\varphi_{K_S}) \cdot \deg(\varphi_{K_S}(S))$ is sharp iff $|K_S|$ has no basepoints (b.p.f)

Remark

To realize the upper bound $deg(\varphi_{K_S}) = 36$ we need:

- S to be a ball quotient,
- the canonical system |K_S| b.p.f,
- $p_g(S) = 3$ and q(S) = 0.
- In 78' Persson provided an example with deg(φ_{KS}) = 16, the highest known degree until 2015
- In 2015 Yeung claimed to have an example with deg(φ_{KS}) = 36, but the proof seems to have a gap.

Motivation

The main result (Pignatelli, Rito, -)

A realization of $deg(\varphi_{K_S}) = 32$.

· Ball quotients are very hard to handle

 \implies surfaces with $K_S^2 = 8\chi(\mathcal{O}_S)$ are simpler

• For these surfaces the inequality becomes

$$deg(\varphi_{\mathcal{K}_{\mathcal{S}}}) \leq \frac{8\chi(\mathcal{O}_{\mathcal{S}})}{p_g(S)-2} = 8 + \frac{24-8q(S)}{p_g(S)-2} \leq 32$$

Remark

To realize the upper bound deg(φ_{K_s}) = 32 we need:

• the canonical system |K_S| b.p.f,

On the degree of the canonical map of a product quotient surface Milano Bicocca, June 18. 2018 Christian Gleißner

Motivation

• A typical example of a surface (of general type) with

$$K_S^2 = 8\chi(\mathcal{O}_S)$$

is a product of two smooth projective curves C_i of genus $g_i \ge 2$:

$$8\chi(\mathcal{O}_S) = 8\chi(\mathcal{O}_{C_1}) \cdot \chi(\mathcal{O}_{C_2}) = 8(1 - g_1)(1 - g_2) = K_S^2$$

• The canonical map of $S = C_1 \times C_2$ factors:

Classical Theorem

- $\varphi_{K_{C_i}}$ is an embedding $\iff C_i$ is not hyperelliptic
- If C_i is hyperelliptic then $\varphi_{K_{C_i}}$ is of degree 2

 \implies too small to be interesting

The idea:

Generalize the situation by taking quotients of a product of curves.

Definition

A complex projective surface S is said to be isogenous to a product if S is a quotient

$$S=(C_1\times C_2)/G,$$

where the C_i 's are smooth curves of genus at least two, and G is a finite group acting freely on $C_1 \times C_2$.

Motivation

Remark

- A surface isogenous to a product is smooth, minimal, of general type i.e. $\kappa(S) = 2$ and K_S is ample.
- Simple formulas for the invariants:

$$\chi(\mathcal{O}_S) = \frac{(g_1 - 1)(g_2 - 1)}{|G|}, \qquad \mathcal{K}_S^2 = 8\chi(\mathcal{O}_S) \qquad \text{and} \qquad e(S) = 4\chi(\mathcal{O}_S).$$

The initial example is due to Beauville:

• He considered a free $(\mathbb{Z}/5)^2$ action on two copies of the Fermat quintic

$$C:=\{x^5+y^5+z^5=0\}\subset \mathbb{P}^2_{\mathbb{C}}$$

• Since g(C) = (5-1)(5-2)/2 = 6 the quotient surface

$$S = (C \times C)/(\mathbb{Z}/5)^2$$

has $\chi(\mathcal{O}_S) = 1$.

Motivation

- For a surface S of general type it holds $\chi(\mathcal{O}_S) \ge 1$.
- There is a complete classification of all surfaces isogenous to a product in the boundary case χ(O_S) = 1 due to Bauer, Catanese, Grunewald, Carnovale, Polizzi, Pennegini, Zucconi.
- In principle the methods to classify these surfaces work also for other values for $\chi(\mathcal{O}_S)$. But the classification becomes much harder as $\chi(\mathcal{O}_S)$ increases.

The problems

I) We have to construct examples of surfaces *S* isogenous to a product for fixed invariants p_g and q, if possible a full classification

 \implies in view of Beauvilles inequality the interesting values are

 $p_g(S) = 3, 4$ and q(S) = 0.

II) Once we have the examples, we need to analyse their canonical system: basepoints and the image of φ_{K_S} in \mathbb{P}^{ρ_g-1} .

On the degree of the canonical map of a product quotient surface Milano Bicocca, June 18. 2018 Christian Gleißner

Working assumptions

• For simplicity we assume that the action on $C_1 \times C_2$ is diagonal

$$g(x,y) = (g \cdot x, g \cdot y) \quad \forall \quad g \in G.$$

• According to Catanese there is a unique realisation of *S* such that *G* acts faithfully on each curve.

Proposition

Let $S = (C_1 \times C_2)/G$ be a surface isogenous to a product, then it holds

$$q(S) = g(C_1/G) + g(C_2/G).$$

• Since we are interested in the case q(S) = 0, we also assume $C_i/G \simeq \mathbb{P}^1$.

Observation:

Since we act on the product $C_1 \times C_2$ via the diagonal subgroup $\Delta \leq G \times G$, we obtain

- (branched) Galois covers $f_i: C_i \to C_i/G = \mathbb{P}^1$ of the projective line and
- a branched cover

$$\psi \colon S \to (C_1 \times C_2)/(G \times G) = C_1/G \times C_2/G \simeq \mathbb{P}^1 \times \mathbb{P}^1$$

On the degree of the canonical map of a product quotient surface

Working assumptions

The quotient map π: C₁ × C₂ → S and the covers ψ and f_i fit in a commutative triangle

⇒ The cover ψ is particularly useful when it is Galois. This is the case iff Δ is normal in $G \times G$ i.e. G is abelian.

- Our final assumption is: *G* is abelian
- This allows us to apply the powerful theory of **abelian covers** to $\psi \colon S \to \mathbb{P}^1 \times \mathbb{P}^1$, which has Galois group

$$(G \times G)/\Delta \simeq G,$$
 $(a, b) \mapsto ab^{-1}.$

• It also makes a classification for a fixed p_g more feasible.

Monodromy and Riemann's existence theorem

Remark

- In Beauvilles example we had an explicit description in terms of equations
- In general it is hard to work with equations, so we aim for a more abstract description

The Galois covers $f_i : C_i \to C_i/G = \mathbb{P}^1$ are described by:

Riemann's existence theorem

Given

- \bullet a finite set $\mathcal{B} \subset \mathbb{P}^1$ and
- a surjective group homomorphism $\eta \colon \pi_1(\mathbb{P}^1 \setminus \mathcal{B}) \to G$ to a finite group G

then, there exists up to isomorphism a unique compact Riemann surface C and a unique inclusion $G \subset Aut(C)$ such that

- $C/G \simeq \mathbb{P}^1$,
- the branch locus of $C \to \mathbb{P}^1$ is contained in \mathcal{B}
- the monodromy of $C \setminus \mathcal{R} \to \mathbb{P}^1 \setminus \mathcal{B}$ is η .

Monodromy and Riemann's existence theorem

• Recall that $\pi_1(\mathbb{P}^1 \setminus \mathcal{B})$ has a presentation of the form $\langle \gamma_1, \ldots, \gamma_r \mid \prod_{i=1}^r \gamma_i = 1 \rangle$

• The images $a_i = \eta(\gamma_i)$ generate the group *G* and fulfill the relation

$$\prod_{i=1}^{r} a_i = 1$$

• Let m_i be the order of a_i , then Hurwitz' formula holds:

$$2g(C) - 2 = |G| \left(-2 + \sum_{i=1}^{r} \frac{m_i - 1}{m_i} \right)$$

Definition

Let $m_1, \ldots, m_r \ge 2$ be integers, a **spherical system of generators** for a finite group *G* of type $[m_1, \ldots, m_r]$ is an *r*-tuple

 (a_1,\ldots,a_r)

of elements generating G, such that

$$\prod_{i=1}^r a_i = 1 \quad \text{and} \quad \operatorname{ord}(a_i) = m_i.$$

On the degree of the canonical map of a product quotient surface

Monodromy and Riemann's existence theorem

• We define the *stabilizer set* of a generating vector $V = (a_1, ..., a_r)$ as

$$\Sigma_V := \bigcup_{g \in G} \bigcup_{i \in \mathbb{Z}} \bigcup_{j=1}^r \left\{ g a_j^i g^{-1} \right\}$$

To a surface isogenous to a product

$$S = (C_1 \times C_2)/G_2$$

we can attach two generating vectors V_1 and V_2 .

• The freeness of the *G*-action on the product $C_1 \times C_2$ is reflected by the condition

$$\Sigma_{V_1} \cap \Sigma_{V_2} = \{\mathbf{1}_G\}.$$

 Conversely a triple (G, V₁, V₂) consisting of a finite group and two generating vectors whose stabilizer sets intersect trivially is realized by a surface isogenous to a product.

The abelian cover ψ

• Next we study the abelian $G \simeq (G \times G) / \Delta$ cover ψ in the diagram

• Since π is by assumption unramified, $f_1 \times f_2$ and ψ have the same branch locus:

 $\mathcal{B} = \mathbb{P}^1 \times \mathcal{B}_2 \quad \cup \quad \mathcal{B}_1 \times \mathbb{P}^1,$

where $\mathcal{B}_1 = \{p_1, \dots, p_s\}$ is the branch locus of f_1 and $\mathcal{B}_2 = \{q_1, \dots, q_l\}$ the branch locus of f_2 :

$$B_i^{ver} = p_i \times \mathbb{P}^1$$
 and $B_j^{hor} = \mathbb{P}^1 \times q_j$

Computing a basis of $H^0(S, K_S)$

• The *G* action on $\psi_* \mathcal{O}_S$ induce a splitting in eigensheaves

$$\psi_*\mathcal{O}_S = \bigoplus_{\chi \in \mathit{Irr}(G)} \left(\psi_*\mathcal{O}_S\right)^{\chi}$$

that are locally free of rank 1 $\implies (\psi_* \mathcal{O}_S)^{\chi} = \mathcal{O}(L_{\chi}^{-1})$ for some line bundle

• According to a result of Catanese, the line bundles L_{χ} can be determined from the monodromy.

Theorem (special case of Catanese, Liedtke)

Let $S = (C_1 \times C_2)/G$ be a regular surface isogenous to a product, where G is abelian. Let

$$V_1 = (a_1, ..., a_s)$$
 and $V_2 = (b_1, ..., b_l)$

be associated generating vectors, $m_i = ord(a_i)$ and $n_j = ord(b_j)$. Let R_i^{vert} and R_i^{hor} be the reduced inverse images of B_i^{vert} and B_i^{hor} under ψ , then

$$H^0(\mathcal{S},\mathcal{K}_{\mathcal{S}}) = \bigoplus_{\chi \in Irr(G)} s_{\chi} \cdot H^0(\mathcal{O}(-2,-2) \otimes L_{\chi}),$$

where

$$(s_{\chi}) = \sum_{i=1}^{s} \left(m_i - 1 - \frac{m_i \chi(a_i)}{d_{\chi}} \right) R_i^{\text{vert}} + \sum_{j=1}^{l} \left(n_i - 1 - \frac{n_j \chi(b_j^{-1})}{d_{\chi}} \right) R_j^{\text{hor}}, \qquad d_{\chi} := \text{ord}(\chi).$$

On the degree of the canonical map of a product quotient surface

Christian Gleißner

• only vertical and horizontal divisors can intersect

• no basepoints can come from $H^0(\mathcal{O}(-2,-2)\otimes L_{\chi})$

Remark

The canonical divisor K_S of a surface isogenous to a product is ample

 $\implies \varphi_{K_S}(S)$ is a surface if $|K_S|$ is b.p.f.

Combinatorics Bounds and Algorithm

• The first step towards a classification for a fixed value of *p*_g is a bound on the group order.

Proposition

Let $S = (C_1 \times C_2)/G$ be a regular surface isogenous to a product, where G is abelian, then

$$n := |G| \le 8(p_g + 2) + 8\sqrt{(p_g + 2)^2 - 1}$$

In particular

$$n \leq \begin{cases} 79 & \text{for } p_g(S) = 3\\ 95 & \text{for } p_g(S) = 4 \end{cases}$$

Proof.

Since *G* is abelian, we have $n \le 4(g_i + 1)$. This implies

$$n \cdot (1 + p_g) = (g_1 - 1)(g_2 - 1) \ge \left(\frac{n}{4} - 2\right)^2$$

which is equivalent to

$$0 \ge n^2 - 16(p_g + 2)n + 64.$$

On the degree of the canonical map of a product quotient surface

Combinatorics, Bounds and Algorithm

- Let $S = (C_1 \times C_2)/G$ be a regular surface isogenous to a product, where *G* is abelian, then *G* cannot be cyclic (Bauer and Catanese).
- Let V_i be the generating vectors. Then the types

 $T_1 = [m_1, \dots, m_s]$ and $T_2 = [n_1, \dots, n_l]$

fulfill additional constraints:

- n_i divides $g(C_1) 1$ and m_j divides $g(C_2) 1$
- $lcm\{m_1, ..., \widehat{m_i}, ..., m_s\} = lcm\{m_1, ..., m_s\}$ and the same for $T_2 = [n_1, ..., n_l]$.
- Hurwitz' formula

$$2g(C_1) - 2 = |G| \left(-2 + \sum_{i=1}^{s} \frac{m_i - 1}{m_i} \right)$$

and also for T_2 .

other constraints ...

Remark

For a fixed value of p_g the classification problem becomes finite.

On the degree of the canonical map of a product quotient surface Milano Bicocca, June 18. 2018 Christian Gleißner

Combinatorics, Bounds and Algorithm

Input: a positive integer $p_g \ge 3$

1st Step: here we determine the set of triples

 (n, T_1, T_2) , where the types $T_1 = [m_1, \dots, m_s]$ and $T_2 = [n_1, \dots, n_l]$

satisfy the constraints from above.

2nd Step:

- For each triple (n, T₁, T₂) found in the 1st step we run through the abelian groups G of order n and determine all triples of the form (G, V₁, V₂) where V_i is a generating vector for G of type T_i.
- We check the freeness condition $\Sigma_{V_1} \cap \Sigma_{V_2} = \{1_G\}$

 \implies we obtain a surface S isogenous to a product

• for each surface S we check if $|K_S|$ is b.p.f.

Output: a complete list of all regular surfaces isogenous to a product with geometric genus p_g , obtained by the action of an abelian group such that $|K_S|$ is b.p.f.

Automatically $deg(\varphi_{K_S}) \leq 8 + \frac{24}{p_g-2}$ with equality iff $deg(\varphi_{K_S}(S)) = p_g - 2$.

The results:

We run a MAGMA implementation of the algorithm for the input value $p_g(S) = 3$ we obtain:

Theorem (Pignatelli, Rito, -)

There are precisely two families of regular surfaces *S* isogenous to a product with $p_g(S) = 3$ obtained by the action of an abelian group such that $|K_S|$ is b.p.f.

 $\implies deg(\varphi_{K_S}) = 32.$

The 1st example in detail:

- The group is $G = \left(\mathbb{Z}/2\right)^4$
- The generating vectors are:

 $V_1 = (e_{124}, e_1, e_{1234}, e_{23}, e_{14}, e_{24}), \qquad V_2 = (e_{34}, e_2, e_3, e_{13}, e_{123}, e_4),$

where $e_{ijk} := e_i + e_j + e_k$ is the sum of the unit vectors.

 \implies There are six vertical and six horizontal branch divisors of

$$\psi \colon \mathcal{S} \to \mathbb{P}^1 \times \mathbb{P}^1.$$

• Let $\chi_1, \ldots, \chi_{16}$ be the irreducible characters of $(\mathbb{Z}/2)^4$ (ordered as in MAGMA's character table), then:

$$h^{0}(\mathcal{O}(-2,-2)\otimes L_{\chi_{i}}) = \begin{cases} 1 & \text{if } i = 8, 12, 13 \\ 0 & \text{else} \end{cases}$$

• A basis for $H^0(S, K_S)$ is given by $(s_{\chi_8}, s_{\chi_{12}}, s_{\chi_{13}})$.

$$\begin{aligned} (s_{\chi_8}) &= R_1^{vert} + R_4^{vert} + R_4^{hor} + R_6^{hor} & \text{(blue)} \\ (s_{\chi_11}) &= R_5^{vert} + R_6^{vert} + R_3^{hor} + R_5^{hor} & \text{(red)} \\ (s_{\chi_13}) &= R_2^{vert} + R_3^{vert} + R_1^{hor} + R_2^{hor} & \text{(green)} \end{aligned}$$

The picture in the branch locus:

What happens for $p_g = 4$?

• Here the maximal possible degree of φ_{K_S} is 20.

To realize this bound we need an example with $|K_S|$ b.p.f. such that the image of φ_{K_S} is a quadric.

• Unfortunately when we run the program for $p_g = 4$, we find that all examples have basepoints.

- We can drop the freeness assumption and allow mild singularities i.e. canonical singularities.
- The stabilizer of a point $(x, y) \in C_1 \times C_2$ is the intersection

$$Stab(x, y) = Stab(x) \cap Stab(y)$$

of cyclic groups and therefore cyclic.

 \implies The quotient *S* has at most finitely many **isolated cyclic quotient singularities**.

• A germ of a canonical cyclic quotient singularity (in dimension two) is represented by \mathbb{C}^2 modulo

$$\left\langle \left(\begin{array}{cc} \epsilon & 0\\ 0 & \epsilon^{n-1} \end{array}\right) \right\rangle \leq SL(2,\mathbb{C}), \quad \text{ where } \quad \epsilon := \exp\left(\frac{2\pi i}{n}\right)$$

and denoted by A_{n-1} .

Generalizations:

• Under this assumption the canonical divisor K_S of $S = (C_1 \times C_2)/G$ is Cartier and S has a crepant resolution:

 $ho: \widehat{S} \to S$, where \widehat{S} is smooth, ho is proper and birational and $ho^* K_S = K_{\widehat{S}}$

• The invariants $\chi(\mathcal{O}_S)$ and K_S^2 are related by:

$$8\chi(\mathcal{O}_S) \ge 8\chi(\mathcal{O}_S) - \frac{2}{3}\sum_{x \in Sing(S)} \frac{n_x^2 - 1}{n_x} = K_S^2$$

⇒ there might be still useful examples with few singularities

- We extend the algorithm to the canonical case and find an example with $p_g(S) = 4$ and b.p.f. canonical system.
- The example has nine singularities of type A₂ and maps to the quadratic cone

$$uv = w^2$$
.

•
$$K_S^2 = 24 \implies deg(\varphi_K) = 12$$

• Another way is to try with irregular surfaces (isogenous to a product) e.g

 $\psi \colon S \to \mathbb{P}^1 \times E$, where *E* is an elliptic curve i.e. q(S) = 1

- Pignatelli and Rito found their example via a hand computation.
- Up to now no systematic (computer-) search has been performed for irregular surfaces isogenous to a product.

Thank you for your attention