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Definition
A complex projective variety X is said to be isogenous to a
productif X is a quotient
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where the C;’s are curves of genus at least two, and G is a finite
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Varieties Isogenous to a Product
What are varieties isogenous to a product?

Definition

A complex projective variety X is said to be isogenous to a
productif X is a quotient

X =(Cy x ... x Cp)/G,

where the C;’s are curves of genus at least two, and G is a finite
group acting freely on C;y x ... x Cp.

Remark: For the rest of the talk we consider the unmixed case
where the action of G on the Product Cq x ... x C, is diagonal
i.e. G=GnN(Aut(Cy) x ... x Aut(Cp)).

We assume furthermore that G acts faithfully on each curve.
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Varieties Isogenous to a Product
What are varieties isogenous to a product?

Motivation:

@ find new examples of varieties of general type

@ interesting relations with group theory and computer
algebra
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Classifications for fixed invariants py(X) = h°(X, Q%),

a(X) = h°(X, Q2}):
@ py=0,9g=0 Bauer, Catanese, Grunewald [BCGO8],
@ py=1,9g=1 Carnovale, Polizzi [CP09]
@ pg=2,q9=2 Penegini[Pel0].
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The surface case n = 2

Classifications for fixed invariants py(X) = h°(X, Q%),
a(X) = hO(X, )

@ py=0,9g=0 Bauer, Catanese, Grunewald [BCGO8],
@ py=1,9g=1 Carnovale, Polizzi [CP09]
@ pg=2,q9=2 Penegini[Pel0].

Aim: Classification for the invariants pg = 1 and q = 0.
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The surface case n = 2

@ Start with expressing numerical invariants of
S =(Cy x Cp)/Ginterms of g(Cy) and g(C»):

w2 _ 8(a(CH) —1)(g(C2) ~ 1)
S~ @ |

Gl 28
By Noether-formula 12y(0g) = K2 + e(S) we get

Inourcase pg=1,9=0 = x(Og) = 2. It follows

\G\:(g(c‘)_1)2(g(02)_1), K2=16 and e(S)=8.
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Since we only consider unmixed actions we obtain two
G-Coverings
f,‘ : C,‘—> C,'/G, i= 1,2.

Using Kinneth’s formula we get
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The surface case n = 2

Since we only consider unmixed actions we obtain two
G-Coverings
f,‘ : C,‘—> C,'/G, i= 1,2.

Using Kinneth’s formula we get
HY(Cy x Co, Q% .,)¢ = HY(Cy, QL)% @ HO(Co, QL)€
Since q(S) = h°(C1 x C2, Q)¢ and we have fixed g(S) = 0
— 9(C;/G) = 0.

Thus the holomorphic maps f; are ramified coverings of IF’(‘C.

@ Study G-Covers of P[. in greater detail.
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@ G=<A>,
® g4 -...~gr:1G,
@ 37 €&, s.t. ord(g;) = My
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The surface case n = 2

Definition

Let G be a finite group, 2 < my < ... < m, integers.
A spherical system of generators of G (ssg) of type [my, ..., my]
is a r-tuple A= (g, ..., gr) of elements of G s.t.

@ G=<A>,
® g4 -...~gr:1G,
@ 37 €&, s.t. ord(g;) = My

We choose a geometric basis:
@ generators vi,. .., of T (PL — {P1,..., Pr})
@ vi-...-y =1
@ and a monodromy 74 (PL — {Py,..., P}) — G.

= unramified G-cover C* — PL — {Py,..., P/}
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The surface case n = 2

There is a unique extension to a ramified G-cover: C — P.

Theorem (Riemann’s existence theorem)

A finite group G acts as a group of automorphisms of some
compact Riemann surface C s.t. C/G ~ P, iff

@ Jssg of type [my, ..., my],
@ Hurwitz’ formula holds:

]

26(C) ~2 = |GI(-2+ 3 (1~ ).
i=1
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The surface case n = 2

® LetA=(g1,...,9r) be assgoftype T = [my,...,m;] for G
finite. We define the stabilizer set:

r m

(A= JUJUlg-d 97"}

geGi=1j=1

@ A pair (A1, Ay) of ssg’s is called disjoint <=
(A1) NX(A2) = {1a}

@ Geometrically disjoint means that G acts without fixed
points on Cq x Co.
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The surface case n = 2

— We have a group theoretic description of surfaces
isogenous to a product:

@ Given S = (Cq x Cp)/G we can attach a disjoint pair of
ssg’s
(A1(S), A2(S)) oftype (T+(S), T2(S)).

@ Vice versa, the data above determine a surface isogenous
to a product.
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Theorem (finiteness of classification)

There are only finitely many groups G, acting fixed point free
and diagonally on a product Cy x Co, (9(C;) > 2), such that
pg(S) =1 and g(S) = 0, where

S = (C1 X Cg)/G
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Theorem (finiteness of classification)

There are only finitely many groups G, acting fixed point free
and diagonally on a product Cy x Co, (9(C;) > 2), such that
pg(S) =1 and g(S) = 0, where

S = (C1 X Cg)/G

proof: We use Hurwitz’ formula:

2g(Cy) —2=|G|(-2+ X _4(1 — 7)) > 2 and similary for Co.
Note that —2+3°7_; (1 — 7.) > 5. The minimum is obtained for
the tuple [2, 3, 7] (Klein’s quartic curve). Since we have K§ =16

8(9(C1) —1)(g(C) — 1) _ 2/G]
|Gl ~ 425G

— 16 =K3 =

therefore |G| < 14112.
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@ Let (A1(S), A2(S)) be a disjoint pair of ssg’s of type
(T1(S), T2(S)) = ([, .-, ne), [My, ..., Mg])

corresponding to a surface S with p; = 1 and q = 0.
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The surface case n = 2

@ Let (A1(S), A2(S)) be a disjoint pair of ssg’s of type
(T1(S), T2(S)) = ([, .-, ne), [My, ..., Mg])

corresponding to a surface S with p, =1 and g = 0.
We can show, as in the last theorem:
) r,s<8,
i) nj, m; < 30.
@ Itis now possible to classify all surfaces isogenous to a
product with py = 1 and q = 0 of unmixed type, using the
computer algebra system MAGMA.

There are exactly 49 families of surfaces isogenous to a
product of unmixed type with pg = 1 and g = 0.
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@ Start with a finite group G and a disjoint triple (Aq, A2, A3)
of ssg’s:
(A1) NX(A2) NX(As) = {16}

@ Weget X =Y/G,where Y = Cy x Gy x Cs.

Question: How to compute h0(X, Q) ) = hO(Y,QL)G?
@ The idea is to use Kiinneth’s formula:
HO(Y, Q%)% = (H°(C1,Qt,) ® H(C2, Q)%
(H°(C1,Q¢,) @ HY(Cs,98,))¢ & (HY(C2, QL) ® HO(Cs, Q)

Similar for 1-forms and 3-forms.
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The threefold case n = 3

@ Start with a finite group G and a disjoint triple (Aq, A2, A3)
of ssg’s:
(A1) NX(A2) NX(As) = {16}

@ Weget X =Y/G,where Y = Cy x Gy x Cs.
Question: How to compute h0(X, Q) ) = hO(Y,QL)G?
@ The idea is to use Kiinneth’s formula:
HO(Y, Q%)% = (H°(C1,Qt,) ® H(C2, Q)%
(H(Cy,Q¢,) ® HY(Cs,Q¢,))¢ @ (HY(Ce, Qp,) @ HY(Cs,Qt,))¢

Similar for 1-forms and 3-forms.

@ We need to understand the G-module structure of
H°(C,QL), where C — PL is a G-Cover.
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ord(g;) = m; = every eigenvalue of g;(g;) is of the form

£, = exp(@), 1<a<m.
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@ Let A= (g,...,9r) be a corresponding ssg of type
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@ Let A= (g,...,9r) be a corresponding ssg of type
[my, ..., my].

@ v:G— GL(H(C,Q}), g+ (wr (971)*(w)).

@ There is a decomposition of ¢ in irreducible
representations

H(C,Q) = V" @ ...@ V.
We want to compute the numbers ny, ..., ng (character x,).
@ Pick g; from A and g; : G — GL(V}) irreducible.
ord(g;) = m; = every eigenvalue of g;(g;) is of the form
£x = exp(Z19) 4 < a < m;.
@ Define N, := # eigenvalues of g;(g;) equal to £, .
@ Formula of Chevalley-Weil:

room
nj:—ij+ZZN/7a(1—%)+O’,

i=1 a=1

where d; = dim(V;) and o = 1 if g; is trivial else o = 0.
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To calculate the eigenvalues of ;(g;) it suffices to know the
character x; of ;:
° Xj(g}‘) is the k-th powersum of the eigenvalues.

@ Use Newton’s identities to recover the characteristic
polynomial f; of o;(g;) from these powersums.

@ The roots of f; are powers of &y,.

@ Character tables for finite groups can be computed with
MAGMA.
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The threefold case n = 3

= Implementation in MAGMA:

@ input: The triple of ssg’s (A1, Ao, Az) and the character
table of G.

e Compute the characters x,, of H*(C, Q).
@ The character y of HO(Y,Q2) is:

X = Xe1 X2 T X1 Xz T Xea Xeps

® q2(X) = hO(X, Q%) = h°(Y,Q5)¢ =< x, xtriv >
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Varieties Isogenous to a Product
The threefold case n = 3
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@ We are interested in 3-folds X isogenous to a product with
pg(X) =0, g1(X) = 0 and g2(X) > 2.

By Riemann-Roch: 21—401 (X)e2(X) = x(Ox) =14+ g > 3.

@ Ky is ample, ¢(X) = —Kx and c(X) is numerical
non-negative (Miyaoka [Mi87]).
= c¢1(X)c2(X) < 0, a contradiction!

@ We have to drop the assumption that G acts freely on
Y = Cy x Co x Cz and allow singularities.
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@ There are finitely many points on Y with non-trivial
stabilizer.

@ Stab(x,y,z) = Stab(x) n Stab(y) N Stab(z), which is
cyclic.
= X = Y/G has a finite number of cyclic quotient
singularities. Locally: quotient of C* by a diagonal linear
automorphism

exp(2r2) 0 0
0 exp(2z) 0
0 )

0 exp(2xe
where 1 < a, b, ¢ < n. We write 1(a, b, ¢).
@ Singularity is isolated iff
gcd(a, n) = ged(b,n) = ged(c,n) = 1.
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@ We want to allow canonical (or terminal) singularities only.
We can see this from the numbers n, a, b, c.

Theorem ([Reid87])

A cyclic quotient singularity of type %(a, b, c) is terminal (or
canonical) iff

o (ka+kb+ke)>1 for 1 <k<n-—1,

_1
" n

(respectively > 1). Here d denotes smallest residue mod n.

@ Consider a resolution of singularities:
X — Y/G, where Y = Cy x Cs x Cs.

By [F71] we have h°(X, Q%) = ho(Y, Q)¢
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@ The canonical volume is:

k3 48(g(C1) — 1)(9(C2) — 1)(9(Cs) — 1)
X |Gl

€ Q.

Theorem

Letc >0, and K3 < c. If g1(X) = 0, then we have the following
bounds:
i) |G| < |42vc-7],
i) <[5+ 4],
where |; is the number of branch points of f; : C; — IP’JC.
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@ Forc=16we get |G| <444 and [ <5 = a computer
search is possible. We find:

e eight different groups,
e largest group order |G| = 192,
e largest go = 6,
e smallest K3 = 4.
@ Remark: In the smooth case we have the following
equality:
K = —48x(Ox).

If we fix x(Ox) and g;(X) = 0, then we have

G| < |42/K3 - 7] = [168y/—21x(Ox)].
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