Varieties Isogenous to a Product

Christian Gleißner

February 28, 2013

Outline

(1) What are varieties isogenous to a product?

(2) The surface case $n=2$
(3) The threefold case $n=3$

Definition

A complex projective variety X is said to be isogenous to a product if X is a quotient

$$
X=\left(C_{1} \times \ldots \times C_{n}\right) / G
$$

where the C_{i} 's are curves of genus at least two, and G is a finite group acting freely on $C_{1} \times \ldots \times C_{n}$.

Definition

A complex projective variety X is said to be isogenous to a product if X is a quotient

$$
X=\left(C_{1} \times \ldots \times C_{n}\right) / G
$$

where the C_{i} 's are curves of genus at least two, and G is a finite group acting freely on $C_{1} \times \ldots \times C_{n}$.

Remark: For the rest of the talk we consider the unmixed case where the action of G on the Product $C_{1} \times \ldots \times C_{n}$ is diagonal i.e. $G=G \cap\left(\operatorname{Aut}\left(C_{1}\right) \times \ldots \times \operatorname{Aut}\left(C_{n}\right)\right)$.

We assume furthermore that G acts faithfully on each curve.

Motivation:

Motivation:

- find new examples of varieties of general type

Motivation:

- find new examples of varieties of general type
- interesting relations with group theory and computer algebra

The surface case $n=2$

Outline

(1) What are varieties isogenous to a product?

(2) The surface case $n=2$
(3) The threefold case $n=3$

Classifications for fixed invariants $p_{g}(X)=h^{0}\left(X, \Omega_{X}^{2}\right)$, $q(X)=h^{0}\left(X, \Omega_{X}^{1}\right)$:

- $p_{g}=0, q=0 \quad$ Bauer, Catanese, Grunewald [BCG08],
- $p_{g}=1, q=1 \quad$ Carnovale, Polizzi [CP09]
- $p_{g}=2, q=2 \quad$ Penegini [Pe10].

Classifications for fixed invariants $p_{g}(X)=h^{0}\left(X, \Omega_{X}^{2}\right)$, $q(X)=h^{0}\left(X, \Omega_{X}^{1}\right)$:

- $p_{g}=0, q=0 \quad$ Bauer, Catanese, Grunewald [BCG08],
- $p_{g}=1, q=1 \quad$ Carnovale, Polizzi [CP09]
- $p_{g}=2, q=2 \quad$ Penegini [Pe10].

Aim: Classification for the invariants $p_{g}=1$ and $q=0$.

- Start with expressing numerical invariants of $S=\left(C_{1} \times C_{2}\right) / G$ in terms of $g\left(C_{1}\right)$ and $g\left(C_{2}\right):$
- Start with expressing numerical invariants of $S=\left(C_{1} \times C_{2}\right) / G$ in terms of $g\left(C_{1}\right)$ and $g\left(C_{2}\right)$:

$$
K_{S}^{2}=\frac{8\left(g\left(C_{1}\right)-1\right)\left(g\left(C_{2}\right)-1\right)}{|G|}
$$

- Start with expressing numerical invariants of $S=\left(C_{1} \times C_{2}\right) / G$ in terms of $g\left(C_{1}\right)$ and $g\left(C_{2}\right)$:

$$
\begin{gathered}
K_{S}^{2}=\frac{8\left(g\left(C_{1}\right)-1\right)\left(g\left(C_{2}\right)-1\right)}{|G|}, \\
e(S)=\frac{4\left(g\left(C_{1}\right)-1\right)\left(g\left(C_{2}\right)-1\right)}{|G|}=\frac{1}{2} K_{S}^{2} .
\end{gathered}
$$

- Start with expressing numerical invariants of $S=\left(C_{1} \times C_{2}\right) / G$ in terms of $g\left(C_{1}\right)$ and $g\left(C_{2}\right)$:

$$
K_{S}^{2}=\frac{8\left(g\left(C_{1}\right)-1\right)\left(g\left(C_{2}\right)-1\right)}{|G|},
$$

$$
e(S)=\frac{4\left(g\left(C_{1}\right)-1\right)\left(g\left(C_{2}\right)-1\right)}{|G|}=\frac{1}{2} K_{S}^{2} .
$$

By Noether-formula $12 \chi\left(\mathcal{O}_{S}\right)=K_{S}^{2}+e(S)$ we get

- Start with expressing numerical invariants of

$$
S=\left(C_{1} \times C_{2}\right) / G \text { in terms of } g\left(C_{1}\right) \text { and } g\left(C_{2}\right)
$$

$$
K_{S}^{2}=\frac{8\left(g\left(C_{1}\right)-1\right)\left(g\left(C_{2}\right)-1\right)}{|G|}
$$

$$
e(S)=\frac{4\left(g\left(C_{1}\right)-1\right)\left(g\left(C_{2}\right)-1\right)}{|G|}=\frac{1}{2} K_{S}^{2}
$$

By Noether-formula $12 \chi\left(\mathcal{O}_{S}\right)=K_{S}^{2}+e(S)$ we get

$$
\chi\left(\mathcal{O}_{S}\right)=\frac{\left(g\left(C_{1}\right)-1\right)\left(g\left(C_{2}\right)-1\right)}{|G|}
$$

- Start with expressing numerical invariants of

$$
S=\left(C_{1} \times C_{2}\right) / G \text { in terms of } g\left(C_{1}\right) \text { and } g\left(C_{2}\right)
$$

$$
K_{S}^{2}=\frac{8\left(g\left(C_{1}\right)-1\right)\left(g\left(C_{2}\right)-1\right)}{|G|}
$$

$$
e(S)=\frac{4\left(g\left(C_{1}\right)-1\right)\left(g\left(C_{2}\right)-1\right)}{|G|}=\frac{1}{2} K_{S}^{2}
$$

By Noether-formula $12 \chi\left(\mathcal{O}_{S}\right)=K_{S}^{2}+e(S)$ we get

$$
\chi\left(\mathcal{O}_{S}\right)=\frac{\left(g\left(C_{1}\right)-1\right)\left(g\left(C_{2}\right)-1\right)}{|G|} .
$$

In our case $p_{g}=1, q=0 \Longrightarrow \chi\left(\mathcal{O}_{s}\right)=2$. It follows

$$
|G|=\frac{\left(g\left(C_{1}\right)-1\right)\left(g\left(C_{2}\right)-1\right)}{2}, \quad K_{S}^{2}=16 \text { and } e(S)=8
$$

Since we only consider unmixed actions we obtain two

 G-Coverings$$
f_{i}: C_{i} \rightarrow C_{i} / G, \quad i=1,2 .
$$

Since we only consider unmixed actions we obtain two G-Coverings

$$
f_{i}: C_{i} \rightarrow C_{i} / G, \quad i=1,2 .
$$

Using Künneth's formula we get

$$
H^{0}\left(C_{1} \times C_{2}, \Omega_{C_{1} \times C_{2}}^{1}\right)^{G}=H^{0}\left(C_{1}, \Omega_{C_{1}}^{1}\right)^{G} \oplus H^{0}\left(C_{2}, \Omega_{C_{2}}^{1}\right)^{G} .
$$

Since we only consider unmixed actions we obtain two G-Coverings

$$
f_{i}: C_{i} \rightarrow C_{i} / G, \quad i=1,2 .
$$

Using Künneth's formula we get

$$
H^{0}\left(C_{1} \times C_{2}, \Omega_{C_{1} \times C_{2}}^{1}\right)^{G}=H^{0}\left(C_{1}, \Omega_{C_{1}}^{1}\right)^{G} \oplus H^{0}\left(C_{2}, \Omega_{C_{2}}^{1}\right)^{G} .
$$

Since $q(S)=h^{0}\left(C_{1} \times C_{2}, \Omega_{C_{1} \times C_{2}}^{1}\right)^{G}$ and we have fixed $q(S)=0$

$$
\Longrightarrow g\left(C_{i} / G\right)=0 .
$$

Since we only consider unmixed actions we obtain two G-Coverings

$$
f_{i}: C_{i} \rightarrow C_{i} / G, \quad i=1,2
$$

Using Künneth's formula we get

$$
H^{0}\left(C_{1} \times C_{2}, \Omega_{C_{1} \times C_{2}}^{1}\right)^{G}=H^{0}\left(C_{1}, \Omega_{C_{1}}^{1}\right)^{G} \oplus H^{0}\left(C_{2}, \Omega_{C_{2}}^{1}\right)^{G} .
$$

Since $q(S)=h^{0}\left(C_{1} \times C_{2}, \Omega_{C_{1} \times C_{2}}^{1}\right)^{G}$ and we have fixed $q(S)=0$

$$
\Longrightarrow g\left(C_{i} / G\right)=0
$$

Thus the holomorphic maps f_{i} are ramified coverings of $\mathbb{P}_{\mathbb{C}}^{1}$.

Since we only consider unmixed actions we obtain two G-Coverings

$$
f_{i}: C_{i} \rightarrow C_{i} / G, \quad i=1,2
$$

Using Künneth's formula we get

$$
H^{0}\left(C_{1} \times C_{2}, \Omega_{C_{1} \times C_{2}}^{1}\right)^{G}=H^{0}\left(C_{1}, \Omega_{C_{1}}^{1}\right)^{G} \oplus H^{0}\left(C_{2}, \Omega_{C_{2}}^{1}\right)^{G} .
$$

Since $q(S)=h^{0}\left(C_{1} \times C_{2}, \Omega_{C_{1} \times C_{2}}^{1}\right)^{G}$ and we have fixed $q(S)=0$

$$
\Longrightarrow g\left(C_{i} / G\right)=0
$$

Thus the holomorphic maps f_{i} are ramified coverings of $\mathbb{P}_{\mathbb{C}}^{1}$.

- Study G-Covers of $\mathbb{P}_{\mathbb{C}}^{1}$ in greater detail.

Definition

Let G be a finite group, $2 \leq m_{1} \leq \ldots \leq m_{r}$ integers. A spherical system of generators of G (ssg) of type [m_{1}, \ldots, m_{r}] is a r-tuple $A=\left(g_{1}, \ldots, g_{r}\right)$ of elements of G s.t.

- $G=<A>$,
- $g_{1} \cdot \ldots \cdot g_{r}=1_{G}$,
- $\exists \tau \in \mathfrak{S}_{r}$ s.t. $\operatorname{ord}\left(g_{i}\right)=m_{\tau(i)}$.

Definition

Let G be a finite group, $2 \leq m_{1} \leq \ldots \leq m_{r}$ integers. A spherical system of generators of $G(\mathrm{ssg})$ of type [m_{1}, \ldots, m_{r}] is a r-tuple $A=\left(g_{1}, \ldots, g_{r}\right)$ of elements of G s.t.

- $G=<A>$,
- $g_{1} \cdot \ldots \cdot g_{r}=1_{G}$,
- $\exists \tau \in \mathfrak{S}_{r}$ s.t. $\operatorname{ord}\left(g_{i}\right)=m_{\tau(i)}$.

We choose a geometric basis:

- generators $\gamma_{1}, \ldots, \gamma_{r}$ of $\pi_{1}\left(\mathbb{P}_{\mathbb{C}}^{1}-\left\{P_{1}, \ldots, P_{r}\right\}\right)$

Definition

Let G be a finite group, $2 \leq m_{1} \leq \ldots \leq m_{r}$ integers. A spherical system of generators of $G(\mathrm{ssg})$ of type [m_{1}, \ldots, m_{r}] is a r-tuple $A=\left(g_{1}, \ldots, g_{r}\right)$ of elements of G s.t.

- $G=<A>$,
- $g_{1} \cdot \ldots \cdot g_{r}=1_{G}$,
- $\exists \tau \in \mathfrak{S}_{r}$ s.t. $\operatorname{ord}\left(g_{i}\right)=m_{\tau(i)}$.

We choose a geometric basis:

- generators $\gamma_{1}, \ldots, \gamma_{r}$ of $\pi_{1}\left(\mathbb{P}_{\mathbb{C}}^{1}-\left\{P_{1}, \ldots, P_{r}\right\}\right)$
- $\gamma_{1} \cdot \ldots \cdot \gamma_{r}=1$

Definition

Let G be a finite group, $2 \leq m_{1} \leq \ldots \leq m_{r}$ integers. A spherical system of generators of $G(\mathrm{ssg})$ of type [m_{1}, \ldots, m_{r}] is a r-tuple $A=\left(g_{1}, \ldots, g_{r}\right)$ of elements of G s.t.

- $G=<A>$,
- $g_{1} \cdot \ldots \cdot g_{r}=1_{G}$,
- $\exists \tau \in \mathfrak{S}_{r}$ s.t. $\operatorname{ord}\left(g_{i}\right)=m_{\tau(i)}$.

We choose a geometric basis:

- generators $\gamma_{1}, \ldots, \gamma_{r}$ of $\pi_{1}\left(\mathbb{P}_{\mathbb{C}}^{1}-\left\{P_{1}, \ldots, P_{r}\right\}\right)$
- $\gamma_{1} \cdot \ldots \cdot \gamma_{r}=1$
- and a monodromy $\pi_{1}\left(\mathbb{P}_{\mathbb{C}}^{1}-\left\{P_{1}, \ldots, P_{r}\right\}\right) \rightarrow G$.

Definition

Let G be a finite group, $2 \leq m_{1} \leq \ldots \leq m_{r}$ integers. A spherical system of generators of $G(\mathrm{ssg})$ of type [m_{1}, \ldots, m_{r}] is a r-tuple $A=\left(g_{1}, \ldots, g_{r}\right)$ of elements of G s.t.

- $G=<A>$,
- $g_{1} \cdot \ldots \cdot g_{r}=1_{G}$,
- $\exists \tau \in \mathfrak{S}_{r}$ s.t. $\operatorname{ord}\left(g_{i}\right)=m_{\tau(i)}$.

We choose a geometric basis:

- generators $\gamma_{1}, \ldots, \gamma_{r}$ of $\pi_{1}\left(\mathbb{P}_{\mathbb{C}}^{1}-\left\{P_{1}, \ldots, P_{r}\right\}\right)$
- $\gamma_{1} \cdot \ldots \cdot \gamma_{r}=1$
- and a monodromy $\pi_{1}\left(\mathbb{P}_{\mathbb{C}}^{1}-\left\{P_{1}, \ldots, P_{r}\right\}\right) \rightarrow G$.
\Longrightarrow unramified G-cover $C^{*} \rightarrow \mathbb{P}_{\mathbb{C}}^{1}-\left\{P_{1}, \ldots, P_{r}\right\}$.

There is a unique extension to a ramified G-cover: $C \rightarrow \mathbb{P}_{\mathbb{C}}^{1}$.

There is a unique extension to a ramified G-cover: $C \rightarrow \mathbb{P}_{\mathbb{C}}^{1}$.

Theorem (Riemann's existence theorem)

A finite group G acts as a group of automorphisms of some compact Riemann surface C s.t. $C / G \simeq \mathbb{P}_{\mathbb{C}}^{1}$ iff

- \exists ssg of type $\left[m_{1}, \ldots, m_{r}\right]$,
- Hurwitz' formula holds:

$$
2 g(C)-2=|G|\left(-2+\sum_{i=1}^{r}\left(1-\frac{1}{m_{i}}\right)\right) .
$$

- Let $A=\left(g_{1}, \ldots, g_{r}\right)$ be a ssg of type $T=\left[m_{1}, \ldots, m_{r}\right]$ for G finite. We define the stabilizer set:
- Let $A=\left(g_{1}, \ldots, g_{r}\right)$ be a ssg of type $T=\left[m_{1}, \ldots, m_{r}\right]$ for G finite. We define the stabilizer set:

$$
\Sigma(A):=\bigcup_{g \in G} \bigcup_{i=1}^{r} \bigcup_{j=1}^{m_{i}}\left\{g \cdot g_{i}^{j} \cdot g^{-1}\right\}
$$

- Let $A=\left(g_{1}, \ldots, g_{r}\right)$ be a ssg of type $T=\left[m_{1}, \ldots, m_{r}\right]$ for G finite. We define the stabilizer set:

$$
\Sigma(A):=\bigcup_{g \in G} \bigcup_{i=1}^{r} \bigcup_{j=1}^{m_{i}}\left\{g \cdot g_{i}^{j} \cdot g^{-1}\right\}
$$

- A pair $\left(A_{1}, A_{2}\right)$ of ssg's is called disjoint

$$
\Sigma\left(A_{1}\right) \cap \Sigma\left(A_{2}\right)=\left\{1_{G}\right\}
$$

- Let $A=\left(g_{1}, \ldots, g_{r}\right)$ be a ssg of type $T=\left[m_{1}, \ldots, m_{r}\right]$ for G finite. We define the stabilizer set:

$$
\Sigma(A):=\bigcup_{g \in G} \bigcup_{i=1}^{r} \bigcup_{j=1}^{m_{i}}\left\{g \cdot g_{i}^{j} \cdot g^{-1}\right\}
$$

- A pair $\left(A_{1}, A_{2}\right)$ of ssg's is called disjoint

$$
\Sigma\left(A_{1}\right) \cap \Sigma\left(A_{2}\right)=\left\{1_{G}\right\}
$$

- Geometrically disjoint means that G acts without fixed points on $C_{1} \times C_{2}$.
\Longrightarrow We have a group theoretic description of surfaces isogenous to a product:
\Longrightarrow We have a group theoretic description of surfaces isogenous to a product:
- Given $S=\left(C_{1} \times C_{2}\right) / G$ we can attach a disjoint pair of ssg's

$$
\left(A_{1}(S), A_{2}(S)\right) \text { of type }\left(T_{1}(S), T_{2}(S)\right)
$$

\Longrightarrow We have a group theoretic description of surfaces isogenous to a product:

- Given $S=\left(C_{1} \times C_{2}\right) / G$ we can attach a disjoint pair of ssg's

$$
\left(A_{1}(S), A_{2}(S)\right) \text { of type }\left(T_{1}(S), T_{2}(S)\right)
$$

- Vice versa, the data above determine a surface isogenous to a product.

Theorem (finiteness of classification)

There are only finitely many groups G, acting fixed point free and diagonally on a product $C_{1} \times C_{2},\left(g\left(C_{i}\right) \geq 2\right)$, such that $p_{g}(S)=1$ and $q(S)=0$, where

$$
S=\left(C_{1} \times C_{2}\right) / G
$$

Theorem (finiteness of classification)

There are only finitely many groups G, acting fixed point free and diagonally on a product $C_{1} \times C_{2},\left(g\left(C_{i}\right) \geq 2\right)$, such that $p_{g}(S)=1$ and $q(S)=0$, where

$$
S=\left(C_{1} \times C_{2}\right) / G
$$

proof: We use Hurwitz' formula: $\overline{2 g\left(C_{1}\right)}-2=|G|\left(-2+\sum_{i=1}^{r}\left(1-\frac{1}{m_{i}}\right)\right) \geq 2$ and similary for C_{2}.

Theorem (finiteness of classification)

There are only finitely many groups G, acting fixed point free and diagonally on a product $C_{1} \times C_{2},\left(g\left(C_{i}\right) \geq 2\right)$, such that $p_{g}(S)=1$ and $q(S)=0$, where

$$
S=\left(C_{1} \times C_{2}\right) / G
$$

proof: We use Hurwitz' formula: $\overline{2 g\left(C_{1}\right)}-2=|G|\left(-2+\sum_{i=1}^{r}\left(1-\frac{1}{m_{i}}\right)\right) \geq 2$ and similary for C_{2}. Note that $-2+\sum_{i=1}^{r}\left(1-\frac{1}{m_{i}}\right) \geq \frac{1}{42}$. The minimum is obtained for the tuple $[2,3,7]$ (Klein's quartic curve).

Theorem (finiteness of classification)

There are only finitely many groups G, acting fixed point free and diagonally on a product $C_{1} \times C_{2},\left(g\left(C_{i}\right) \geq 2\right)$, such that $p_{g}(S)=1$ and $q(S)=0$, where

$$
S=\left(C_{1} \times C_{2}\right) / G
$$

proof: We use Hurwitz' formula: $\overline{2 g\left(C_{1}\right)}-2=|G|\left(-2+\sum_{i=1}^{r}\left(1-\frac{1}{m_{i}}\right)\right) \geq 2$ and similary for C_{2}. Note that $-2+\sum_{i=1}^{r}\left(1-\frac{1}{m_{i}}\right) \geq \frac{1}{42}$. The minimum is obtained for the tuple $[2,3,7]$ (Klein's quartic curve). Since we have $K_{S}^{2}=16$

Theorem (finiteness of classification)

There are only finitely many groups G, acting fixed point free and diagonally on a product $C_{1} \times C_{2},\left(g\left(C_{i}\right) \geq 2\right)$, such that $p_{g}(S)=1$ and $q(S)=0$, where

$$
S=\left(C_{1} \times C_{2}\right) / G
$$

proof: We use Hurwitz' formula:
$\overline{2 g\left(C_{1}\right)}-2=|G|\left(-2+\sum_{i=1}^{r}\left(1-\frac{1}{m_{i}}\right)\right) \geq 2$ and similary for C_{2}.
Note that $-2+\sum_{i=1}^{r}\left(1-\frac{1}{m_{i}}\right) \geq \frac{1}{42}$. The minimum is obtained for the tuple $[2,3,7]$ (Klein's quartic curve). Since we have $K_{S}^{2}=16$

$$
\Longrightarrow 16=K_{S}^{2}=\frac{8\left(g\left(C_{1}\right)-1\right)\left(g\left(C_{2}\right)-1\right)}{|G|} \geq \frac{2|G|^{2}}{42^{2}|G|}
$$

therefore $|G| \leq 14112$.

The surface case $n=2$

- Let $\left(A_{1}(S), A_{2}(S)\right)$ be a disjoint pair of ssg's of type

$$
\left(T_{1}(S), T_{2}(S)\right)=\left(\left[n_{1}, . ., n_{r}\right],\left[m_{1}, \ldots, m_{s}\right]\right)
$$

corresponding to a surface S with $p_{g}=1$ and $q=0$.

- Let $\left(A_{1}(S), A_{2}(S)\right)$ be a disjoint pair of ssg's of type

$$
\left(T_{1}(S), T_{2}(S)\right)=\left(\left[n_{1}, . ., n_{r}\right],\left[m_{1}, \ldots, m_{s}\right]\right)
$$

corresponding to a surface S with $p_{g}=1$ and $q=0$. We can show, as in the last theorem:
i) $r, s \leq 8$,
ii) $n_{i}, m_{j} \leq 30$.

- Let $\left(A_{1}(S), A_{2}(S)\right)$ be a disjoint pair of ssg's of type

$$
\left(T_{1}(S), T_{2}(S)\right)=\left(\left[n_{1}, . ., n_{r}\right],\left[m_{1}, \ldots, m_{s}\right]\right)
$$

corresponding to a surface S with $p_{g}=1$ and $q=0$.
We can show, as in the last theorem:
i) $r, s \leq 8$,
ii) $n_{i}, m_{j} \leq 30$.

- It is now possible to classify all surfaces isogenous to a product with $p_{g}=1$ and $q=0$ of unmixed type, using the computer algebra system MAGMA.
- Let $\left(A_{1}(S), A_{2}(S)\right)$ be a disjoint pair of ssg's of type

$$
\left(T_{1}(S), T_{2}(S)\right)=\left(\left[n_{1}, . ., n_{r}\right],\left[m_{1}, \ldots, m_{s}\right]\right)
$$

corresponding to a surface S with $p_{g}=1$ and $q=0$. We can show, as in the last theorem:
i) $r, s \leq 8$,
ii) $n_{i}, m_{j} \leq 30$.

- It is now possible to classify all surfaces isogenous to a product with $p_{g}=1$ and $q=0$ of unmixed type, using the computer algebra system MAGMA.

Theorem (-)

There are exactly 49 families of surfaces isogenous to a product of unmixed type with $p_{g}=1$ and $q=0$.

The threefold case $n=3$

Outline

(1) What are varieties isogenous to a product?

(2) The surface case $n=2$
(3) The threefold case $n=3$

- Start with a finite group G and a disjoint triple $\left(A_{1}, A_{2}, A_{3}\right)$ of ssg's:
- Start with a finite group G and a disjoint triple $\left(A_{1}, A_{2}, A_{3}\right)$ of ssg's:

$$
\Sigma\left(A_{1}\right) \cap \Sigma\left(A_{2}\right) \cap \Sigma\left(A_{3}\right)=\left\{1_{G}\right\}
$$

- Start with a finite group G and a disjoint triple $\left(A_{1}, A_{2}, A_{3}\right)$ of ssg's:

$$
\Sigma\left(A_{1}\right) \cap \Sigma\left(A_{2}\right) \cap \Sigma\left(A_{3}\right)=\left\{1_{G}\right\}
$$

- We get $X=Y / G$, where $Y=C_{1} \times C_{2} \times C_{3}$.
- Start with a finite group G and a disjoint triple $\left(A_{1}, A_{2}, A_{3}\right)$ of ssg's:

$$
\Sigma\left(A_{1}\right) \cap \Sigma\left(A_{2}\right) \cap \Sigma\left(A_{3}\right)=\left\{1_{G}\right\}
$$

- We get $X=Y / G$, where $Y=C_{1} \times C_{2} \times C_{3}$.

Question: How to compute $h^{0}\left(X, \Omega_{X}^{i}\right)=h^{0}\left(Y, \Omega_{Y}^{i}\right)^{G}$?

- Start with a finite group G and a disjoint triple $\left(A_{1}, A_{2}, A_{3}\right)$ of ssg's:

$$
\Sigma\left(A_{1}\right) \cap \Sigma\left(A_{2}\right) \cap \Sigma\left(A_{3}\right)=\left\{1_{G}\right\}
$$

- We get $X=Y / G$, where $Y=C_{1} \times C_{2} \times C_{3}$.

Question: How to compute $h^{0}\left(X, \Omega_{X}^{i}\right)=h^{0}\left(Y, \Omega_{Y}^{i}\right)^{G}$?

- The idea is to use Künneth's formula:
- Start with a finite group G and a disjoint triple $\left(A_{1}, A_{2}, A_{3}\right)$ of ssg's:

$$
\Sigma\left(A_{1}\right) \cap \Sigma\left(A_{2}\right) \cap \Sigma\left(A_{3}\right)=\left\{1_{G}\right\}
$$

- We get $X=Y / G$, where $Y=C_{1} \times C_{2} \times C_{3}$.

Question: How to compute $h^{0}\left(X, \Omega_{X}^{i}\right)=h^{0}\left(Y, \Omega_{Y}^{i}\right)^{G}$?

- The idea is to use Künneth's formula:

$$
\begin{gathered}
H^{0}\left(Y, \Omega_{Y}^{2}\right)^{G}=\left(H^{0}\left(C_{1}, \Omega_{C_{1}}^{1}\right) \otimes H^{0}\left(C_{2}, \Omega_{C_{2}}^{1}\right)\right)^{G} \oplus \\
\left(H^{0}\left(C_{1}, \Omega_{C_{1}}^{1}\right) \otimes H^{0}\left(C_{3}, \Omega_{C_{3}}^{1}\right)\right)^{G} \oplus\left(H^{0}\left(C_{2}, \Omega_{C_{2}}^{1}\right) \otimes H^{0}\left(C_{3}, \Omega_{C_{3}}^{1}\right)\right)^{G}
\end{gathered}
$$

- Start with a finite group G and a disjoint triple $\left(A_{1}, A_{2}, A_{3}\right)$ of ssg's:

$$
\Sigma\left(A_{1}\right) \cap \Sigma\left(A_{2}\right) \cap \Sigma\left(A_{3}\right)=\left\{1_{G}\right\}
$$

- We get $X=Y / G$, where $Y=C_{1} \times C_{2} \times C_{3}$.

Question: How to compute $h^{0}\left(X, \Omega_{X}^{i}\right)=h^{0}\left(Y, \Omega_{Y}^{i}\right)^{G}$?

- The idea is to use Künneth's formula:

$$
\begin{gathered}
H^{0}\left(Y, \Omega_{Y}^{2}\right)^{G}=\left(H^{0}\left(C_{1}, \Omega_{C_{1}}^{1}\right) \otimes H^{0}\left(C_{2}, \Omega_{C_{2}}^{1}\right)\right)^{G} \oplus \\
\left(H^{0}\left(C_{1}, \Omega_{C_{1}}^{1}\right) \otimes H^{0}\left(C_{3}, \Omega_{C_{3}}^{1}\right)\right)^{G} \oplus\left(H^{0}\left(C_{2}, \Omega_{C_{2}}^{1}\right) \otimes H^{0}\left(C_{3}, \Omega_{C_{3}}^{1}\right)\right)^{G}
\end{gathered}
$$

Similar for 1 -forms and 3 -forms.

- Start with a finite group G and a disjoint triple $\left(A_{1}, A_{2}, A_{3}\right)$ of ssg's:

$$
\Sigma\left(A_{1}\right) \cap \Sigma\left(A_{2}\right) \cap \Sigma\left(A_{3}\right)=\left\{1_{G}\right\}
$$

- We get $X=Y / G$, where $Y=C_{1} \times C_{2} \times C_{3}$.

Question: How to compute $h^{0}\left(X, \Omega_{X}^{i}\right)=h^{0}\left(Y, \Omega_{Y}^{i}\right)^{G}$?

- The idea is to use Künneth's formula:

$$
\begin{gathered}
H^{0}\left(Y, \Omega_{Y}^{2}\right)^{G}=\left(H^{0}\left(C_{1}, \Omega_{C_{1}}^{1}\right) \otimes H^{0}\left(C_{2}, \Omega_{C_{2}}^{1}\right)\right)^{G} \oplus \\
\left(H^{0}\left(C_{1}, \Omega_{C_{1}}^{1}\right) \otimes H^{0}\left(C_{3}, \Omega_{C_{3}}^{1}\right)\right)^{G} \oplus\left(H^{0}\left(C_{2}, \Omega_{C_{2}}^{1}\right) \otimes H^{0}\left(C_{3}, \Omega_{C_{3}}^{1}\right)\right)^{G}
\end{gathered}
$$

Similar for 1 -forms and 3 -forms.

- We need to understand the G-module structure of $H^{0}\left(C, \Omega_{C}^{1}\right)$, where $C \rightarrow \mathbb{P}_{\mathbb{C}}^{1}$ is a G-Cover.
- Let $A=\left(g_{1}, \ldots, g_{r}\right)$ be a corresponding ssg of type $\left[m_{1}, \ldots, m_{r}\right]$.
- Let $A=\left(g_{1}, \ldots, g_{r}\right)$ be a corresponding ssg of type $\left[m_{1}, \ldots, m_{r}\right]$.
- $\varphi: G \rightarrow G L\left(H^{0}\left(C, \Omega_{C}^{1}\right)\right), \quad g \mapsto\left(\omega \mapsto\left(g^{-1}\right)^{*}(\omega)\right)$.
- Let $A=\left(g_{1}, \ldots, g_{r}\right)$ be a corresponding ssg of type $\left[m_{1}, \ldots, m_{r}\right]$.
- $\varphi: G \rightarrow G L\left(H^{0}\left(C, \Omega_{C}^{1}\right)\right), \quad g \mapsto\left(\omega \mapsto\left(g^{-1}\right)^{*}(\omega)\right)$.
- There is a decomposition of φ in irreducible representations

$$
H^{0}\left(C, \Omega_{C}^{1}\right)=V_{1}^{n_{1}} \oplus \ldots \oplus V_{k}^{n_{k}} .
$$

- Let $A=\left(g_{1}, \ldots, g_{r}\right)$ be a corresponding ssg of type $\left[m_{1}, \ldots, m_{r}\right]$.
- $\varphi: G \rightarrow G L\left(H^{0}\left(C, \Omega_{C}^{1}\right)\right), \quad g \mapsto\left(\omega \mapsto\left(g^{-1}\right)^{*}(\omega)\right)$.
- There is a decomposition of φ in irreducible representations

$$
H^{0}\left(C, \Omega_{C}^{1}\right)=V_{1}^{n_{1}} \oplus \ldots \oplus V_{k}^{n_{k}} .
$$

We want to compute the numbers n_{1}, \ldots, n_{k} (character χ_{φ}).

- Let $A=\left(g_{1}, \ldots, g_{r}\right)$ be a corresponding ssg of type $\left[m_{1}, \ldots, m_{r}\right]$.
- $\varphi: G \rightarrow G L\left(H^{0}\left(C, \Omega_{C}^{1}\right)\right), \quad g \mapsto\left(\omega \mapsto\left(g^{-1}\right)^{*}(\omega)\right)$.
- There is a decomposition of φ in irreducible representations

$$
H^{0}\left(C, \Omega_{C}^{1}\right)=V_{1}^{n_{1}} \oplus \ldots \oplus V_{k}^{n_{k}} .
$$

We want to compute the numbers n_{1}, \ldots, n_{k} (character χ_{φ}).

- Pick g_{i} from A and $\varrho_{j}: G \rightarrow G L\left(V_{j}\right)$ irreducible.
- Let $A=\left(g_{1}, \ldots, g_{r}\right)$ be a corresponding ssg of type $\left[m_{1}, \ldots, m_{r}\right]$.
- $\varphi: G \rightarrow G L\left(H^{0}\left(C, \Omega_{C}^{1}\right)\right), \quad g \mapsto\left(\omega \mapsto\left(g^{-1}\right)^{*}(\omega)\right)$.
- There is a decomposition of φ in irreducible representations

$$
H^{0}\left(C, \Omega_{C}^{1}\right)=V_{1}^{n_{1}} \oplus \ldots \oplus V_{k}^{n_{k}} .
$$

We want to compute the numbers n_{1}, \ldots, n_{k} (character χ_{φ}).

- Pick g_{i} from A and $\varrho_{j}: G \rightarrow G L\left(V_{j}\right)$ irreducible. $\operatorname{ord}\left(g_{i}\right)=m_{i} \Longrightarrow$ every eigenvalue of $\varrho_{j}\left(g_{i}\right)$ is of the form $\xi_{m_{i}}^{\alpha}=\exp \left(\frac{2 \pi \sqrt{-1} \alpha}{m_{i}}\right), 1 \leq \alpha \leq m_{i}$.
- Let $A=\left(g_{1}, \ldots, g_{r}\right)$ be a corresponding ssg of type $\left[m_{1}, \ldots, m_{r}\right]$.
- $\varphi: G \rightarrow G L\left(H^{0}\left(C, \Omega_{C}^{1}\right)\right), \quad g \mapsto\left(\omega \mapsto\left(g^{-1}\right)^{*}(\omega)\right)$.
- There is a decomposition of φ in irreducible representations

$$
H^{0}\left(C, \Omega_{C}^{1}\right)=V_{1}^{n_{1}} \oplus \ldots \oplus V_{k}^{n_{k}} .
$$

We want to compute the numbers n_{1}, \ldots, n_{k} (character χ_{φ}).

- Pick g_{i} from A and $\varrho_{j}: G \rightarrow G L\left(V_{j}\right)$ irreducible. $\operatorname{ord}\left(g_{i}\right)=m_{i} \Longrightarrow$ every eigenvalue of $\varrho_{j}\left(g_{i}\right)$ is of the form $\xi_{m_{i}}^{\alpha}=\exp \left(\frac{2 \pi \sqrt{-1} \alpha}{m_{i}}\right), 1 \leq \alpha \leq m_{i}$.
- Define $N_{i, \alpha}:=\#$ eigenvalues of $\varrho_{j}\left(g_{i}\right)$ equal to $\xi_{m_{i}}^{\alpha}$.
- Let $A=\left(g_{1}, \ldots, g_{r}\right)$ be a corresponding ssg of type $\left[m_{1}, \ldots, m_{r}\right]$.
- $\varphi: G \rightarrow G L\left(H^{0}\left(C, \Omega_{C}^{1}\right)\right), \quad g \mapsto\left(\omega \mapsto\left(g^{-1}\right)^{*}(\omega)\right)$.
- There is a decomposition of φ in irreducible representations

$$
H^{0}\left(C, \Omega_{C}^{1}\right)=V_{1}^{n_{1}} \oplus \ldots \oplus V_{k}^{n_{k}} .
$$

We want to compute the numbers n_{1}, \ldots, n_{k} (character χ_{φ}).

- Pick g_{i} from A and $\varrho_{j}: G \rightarrow G L\left(V_{j}\right)$ irreducible. $\operatorname{crd}\left(g_{i}\right)=m_{i} \Longrightarrow$ every eigenvalue of $\varrho_{j}\left(g_{i}\right)$ is of the form $\xi_{m_{i}}^{\alpha}=\exp \left(\frac{2 \pi \sqrt{-1} \alpha}{m_{i}}\right), 1 \leq \alpha \leq m_{i}$.
- Define $N_{i, \alpha}:=\#$ eigenvalues of $g_{j}\left(g_{i}\right)$ equal to $\xi_{m_{i}}^{\alpha}$.
- Formula of Chevalley-Weil:

$$
n_{j}=-d_{j}+\sum_{i=1}^{r} \sum_{\alpha=1}^{m_{i}} N_{i, \alpha}\left(1-\frac{\alpha}{m_{i}}\right)+\sigma,
$$

where $d_{j}=\operatorname{dim}\left(V_{j}\right)$ and $\sigma=1$ if ϱ_{j} is trivial else $\sigma_{\bar{z}}=0$,

To calculate the eigenvalues of $\varrho_{j}\left(g_{i}\right)$ it suffices to know the character χ_{j} of ϱ_{j} :

To calculate the eigenvalues of $\varrho_{j}\left(g_{i}\right)$ it suffices to know the character χ_{j} of ϱ_{j} :

- $\chi_{j}\left(g_{i}^{k}\right)$ is the k-th powersum of the eigenvalues.

To calculate the eigenvalues of $\varrho_{j}\left(g_{i}\right)$ it suffices to know the character χ_{j} of ϱ_{j} :

- $\chi_{j}\left(g_{i}^{k}\right)$ is the k-th powersum of the eigenvalues.
- Use Newton's identities to recover the characteristic polynomial $f_{i j}$ of $\varrho_{j}\left(g_{i}\right)$ from these powersums.

To calculate the eigenvalues of $\varrho_{j}\left(g_{i}\right)$ it suffices to know the character χ_{j} of ϱ_{j} :

- $\chi_{j}\left(g_{i}^{k}\right)$ is the k-th powersum of the eigenvalues.
- Use Newton's identities to recover the characteristic polynomial $f_{i j}$ of $\varrho_{j}\left(g_{i}\right)$ from these powersums.
- The roots of $f_{i j}$ are powers of $\xi_{m_{i}}$.

To calculate the eigenvalues of $\varrho_{j}\left(g_{i}\right)$ it suffices to know the character χ_{j} of ϱ_{j} :

- $\chi_{j}\left(g_{i}^{k}\right)$ is the k-th powersum of the eigenvalues.
- Use Newton's identities to recover the characteristic polynomial $f_{i j}$ of $\varrho_{j}\left(g_{i}\right)$ from these powersums.
- The roots of $f_{i j}$ are powers of $\xi_{m_{i}}$.
- Character tables for finite groups can be computed with MAGMA.

To calculate the eigenvalues of $\varrho_{j}\left(g_{i}\right)$ it suffices to know the character χ_{j} of ϱ_{j} :

- $\chi_{j}\left(g_{i}^{k}\right)$ is the k-th powersum of the eigenvalues.
- Use Newton's identities to recover the characteristic polynomial $f_{i j}$ of $\varrho_{j}\left(g_{i}\right)$ from these powersums.
- The roots of $f_{i j}$ are powers of $\xi_{m_{i}}$.
- Character tables for finite groups can be computed with MAGMA.
\Longrightarrow Implementation in MAGMA:
\Longrightarrow Implementation in MAGMA:
- input: The triple of ssg's $\left(A_{1}, A_{2}, A_{3}\right)$ and the character table of G.
\Longrightarrow Implementation in MAGMA:
- input: The triple of ssg's $\left(A_{1}, A_{2}, A_{3}\right)$ and the character table of G.
- Compute the characters $\chi_{\varphi_{i}}$ of $H^{0}\left(C, \Omega_{C_{i}}^{1}\right)$.
\Longrightarrow Implementation in MAGMA:
- input: The triple of ssg's $\left(A_{1}, A_{2}, A_{3}\right)$ and the character table of G.
- Compute the characters $\chi_{\varphi_{i}}$ of $H^{0}\left(C, \Omega_{C_{i}}^{1}\right)$.
- The character χ of $H^{0}\left(Y, \Omega_{Y}^{2}\right)$ is:

$$
\chi=\chi_{\varphi_{1}} \chi_{\varphi_{2}}+\chi_{\varphi_{1}} \chi_{\varphi_{3}}+\chi_{\varphi_{2}} \chi_{\varphi_{3}}
$$

\Longrightarrow Implementation in MAGMA:

- input: The triple of ssg's $\left(A_{1}, A_{2}, A_{3}\right)$ and the character table of G.
- Compute the characters $\chi_{\varphi_{i}}$ of $H^{0}\left(C, \Omega_{C_{i}}^{1}\right)$.
- The character χ of $H^{0}\left(Y, \Omega_{Y}^{2}\right)$ is:

$$
\chi=\chi_{\varphi_{1}} \chi_{\varphi_{2}}+\chi_{\varphi_{1}} \chi_{\varphi_{3}}+\chi_{\varphi_{2}} \chi_{\varphi_{3}}
$$

- $q_{2}(X)=h^{0}\left(X, \Omega_{X}^{2}\right)=h^{0}\left(Y, \Omega_{Y}^{2}\right)^{G}=<\chi, \chi_{\text {triv }}>$.
- We are interested in 3-folds X isogenous to a product with $p_{g}(X)=0, q_{1}(X)=0$ and $q_{2}(X) \geq 2$.
- We are interested in 3-folds X isogenous to a product with $p_{g}(X)=0, q_{1}(X)=0$ and $q_{2}(X) \geq 2$.

By Riemann-Roch: $\frac{1}{24} c_{1}(X) c_{2}(X)=\chi\left(\mathcal{O}_{X}\right)=1+q_{2} \geq 3$.

- We are interested in 3-folds X isogenous to a product with $p_{g}(X)=0, q_{1}(X)=0$ and $q_{2}(X) \geq 2$.

By Riemann-Roch: $\frac{1}{24} c_{1}(X) c_{2}(X)=\chi\left(\mathcal{O}_{X}\right)=1+q_{2} \geq 3$.

- K_{X} is ample, $c_{1}(X)=-K_{X}$ and $c_{2}(X)$ is numerical non-negative (Miyaoka [Mi87]).
- We are interested in 3-folds X isogenous to a product with $p_{g}(X)=0, q_{1}(X)=0$ and $q_{2}(X) \geq 2$.

By Riemann-Roch: $\frac{1}{24} c_{1}(X) c_{2}(X)=\chi\left(\mathcal{O}_{x}\right)=1+q_{2} \geq 3$.

- K_{X} is ample, $c_{1}(X)=-K_{X}$ and $c_{2}(X)$ is numerical non-negative (Miyaoka [Mi87]).
$\Longrightarrow c_{1}(X) c_{2}(X)<0$, a contradiction!
- We are interested in 3-folds X isogenous to a product with $p_{g}(X)=0, q_{1}(X)=0$ and $q_{2}(X) \geq 2$.

By Riemann-Roch: $\frac{1}{24} c_{1}(X) c_{2}(X)=\chi\left(\mathcal{O}_{X}\right)=1+q_{2} \geq 3$.

- K_{X} is ample, $c_{1}(X)=-K_{X}$ and $c_{2}(X)$ is numerical non-negative (Miyaoka [Mi87]).
$\Longrightarrow c_{1}(X) c_{2}(X)<0$, a contradiction!
- We have to drop the assumption that G acts freely on $Y=C_{1} \times C_{2} \times C_{3}$ and allow singularities.
- There are finitely many points on Y with non-trivial stabilizer.
- There are finitely many points on Y with non-trivial stabilizer.
- $\operatorname{Stab}(x, y, z)=\operatorname{Stab}(x) \cap \operatorname{Stab}(y) \cap \operatorname{Stab}(z)$, which is cyclic.
- There are finitely many points on Y with non-trivial stabilizer.
- $\operatorname{Stab}(x, y, z)=\operatorname{Stab}(x) \cap \operatorname{Stab}(y) \cap \operatorname{Stab}(z)$, which is cyclic.
$\Longrightarrow X=Y / G$ has a finite number of cyclic quotient singularities.
- There are finitely many points on Y with non-trivial stabilizer.
- $\operatorname{Stab}(x, y, z)=\operatorname{Stab}(x) \cap \operatorname{Stab}(y) \cap \operatorname{Stab}(z)$, which is cyclic.
$\Longrightarrow X=Y / G$ has a finite number of cyclic quotient singularities. Locally: quotient of \mathbb{C}^{3} by a diagonal linear automorphism
- There are finitely many points on Y with non-trivial stabilizer.
- $\operatorname{Stab}(x, y, z)=\operatorname{Stab}(x) \cap \operatorname{Stab}(y) \cap \operatorname{Stab}(z)$, which is cyclic.
$\Longrightarrow X=Y / G$ has a finite number of cyclic quotient singularities. Locally: quotient of \mathbb{C}^{3} by a diagonal linear automorphism

$$
\left(\begin{array}{ccc}
\exp \left(\frac{2 \pi i a}{n}\right) & 0 & 0 \\
0 & \exp \left(\frac{2 \pi i b}{n}\right) & 0 \\
0 & 0 & \exp \left(\frac{2 \pi i c}{n}\right)
\end{array}\right)
$$

where $1 \leq a, b, c \leq n$. We write $\frac{1}{n}(a, b, c)$.

- There are finitely many points on Y with non-trivial stabilizer.
- $\operatorname{Stab}(x, y, z)=\operatorname{Stab}(x) \cap \operatorname{Stab}(y) \cap \operatorname{Stab}(z)$, which is cyclic.
$\Longrightarrow X=Y / G$ has a finite number of cyclic quotient singularities. Locally: quotient of \mathbb{C}^{3} by a diagonal linear automorphism

$$
\left(\begin{array}{ccc}
\exp \left(\frac{2 \pi i a}{n}\right) & 0 & 0 \\
0 & \exp \left(\frac{2 \pi i b}{n}\right) & 0 \\
0 & 0 & \exp \left(\frac{2 \pi i c}{n}\right)
\end{array}\right)
$$

where $1 \leq a, b, c \leq n$. We write $\frac{1}{n}(a, b, c)$.

- Singularity is isolated iff

$$
\operatorname{gcd}(a, n)=\operatorname{gcd}(b, n)=\operatorname{gcd}(c, n)=1
$$

- We want to allow canonical (or terminal) singularities only. We can see this from the numbers n, a, b, c.
- We want to allow canonical (or terminal) singularities only. We can see this from the numbers n, a, b, c.

Theorem ([Reid87])

A cyclic quotient singularity of type $\frac{1}{n}(a, b, c)$ is terminal (or canonical) iff

$$
\alpha_{k}:=\frac{1}{n}(\overline{k a}+\overline{k b}+\overline{k c})>1 \text { for } 1 \leq k \leq n-1,
$$

(respectively ≥ 1). Here \bar{d} denotes smallest residue mod n.

- We want to allow canonical (or terminal) singularities only. We can see this from the numbers n, a, b, c.

Theorem ([Reid87])

A cyclic quotient singularity of type $\frac{1}{n}(a, b, c)$ is terminal (or canonical) iff

$$
\alpha_{k}:=\frac{1}{n}(\overline{k a}+\overline{k b}+\overline{k c})>1 \text { for } 1 \leq k \leq n-1,
$$

(respectively ≥ 1). Here \bar{d} denotes smallest residue mod n.

- Consider a resolution of singularities:

$$
\widetilde{X} \rightarrow Y / G, \text { where } Y=C_{1} \times C_{2} \times C_{3}
$$

By [F71] we have $h^{0}\left(\widetilde{X}, \Omega_{\tilde{X}}^{i}\right)=h^{0}\left(Y, \Omega_{Y}^{i}\right)^{G}$

- The canonical volume is:

$$
K_{X}^{3}=\frac{48\left(g\left(C_{1}\right)-1\right)\left(g\left(C_{2}\right)-1\right)\left(g\left(C_{3}\right)-1\right)}{|G|} \in \mathbb{Q}
$$

- The canonical volume is:

$$
K_{X}^{3}=\frac{48\left(g\left(C_{1}\right)-1\right)\left(g\left(C_{2}\right)-1\right)\left(g\left(C_{3}\right)-1\right)}{|G|} \in \mathbb{Q}
$$

Theorem

Let $c>0$, and $K_{X}^{3} \leq c$. If $q_{1}(X)=0$, then we have the following bounds:
i) $|G| \leq\lfloor 42 \sqrt{c \cdot 7}\rfloor$,
ii) $l_{i} \leq\left\lfloor\frac{c}{12}+4\right\rfloor$,
where I_{i} is the number of branch points of $f_{i}: C_{i} \rightarrow \mathbb{P}_{\mathbb{C}}^{1}$.

- For $c=16$ we get $|G| \leq 444$ and $l_{i} \leq 5 \Longrightarrow$ a computer search is possible. We find:
- For $c=16$ we get $|G| \leq 444$ and $l_{i} \leq 5 \Longrightarrow$ a computer search is possible. We find:
- eight different groups,
- largest group order $|G|=192$,
- largest $q_{2}=6$,
- smallest $K_{X}^{3}=4$.
- For $c=16$ we get $|G| \leq 444$ and $I_{i} \leq 5 \Longrightarrow$ a computer search is possible. We find:
- eight different groups,
- largest group order $|G|=192$,
- largest $q_{2}=6$,
- smallest $K_{X}^{3}=4$.
- Remark: In the smooth case we have the following equality:

$$
K_{X}^{3}=-48 \chi\left(\mathcal{O}_{X}\right)
$$

If we fix $\chi\left(\mathcal{O}_{X}\right)$ and $q_{1}(X)=0$, then we have

$$
|G| \leq\left\lfloor 42 \sqrt{K_{X}^{3} \cdot 7}\right\rfloor=\left\lfloor 168 \sqrt{-21 \chi\left(\mathcal{O}_{x}\right)}\right\rfloor .
$$

I．Bauer，F．Catanese，F．Grunewald，The classification of surfaces with $p_{g}=q=0$ isogenus to a product．Pure Appl．Math．Q．，4，no．2，part1，（2008）， 547－586．
F．Catanese，Fibred surfaces，varieties isogenus to a product and related moduli spaces．Amer．J．Math．，122，（2000），1－44．

G．Carnovale，F．Polizzi，The classification of surfaces with $p_{g}=q=1$ isogenus to a product of curves．Adv．Geom．，9，no．2，（2009），233－256．

Über die Struktur der Funktionenkörper zu hyperabelschen Gruppen，I．J． Reine．Angew．Math．， 247 （1971），97－117．

P．A．Griffiths，Variations on a Theorem of Abel，Inventiones math．35，（1976）， 321－390．

Y．Miyaoka，The Chern classes and Kodaira dimension of a minimal variety． Advanced Studies in Math．，Vol．10，Kinokuniya，Tokyo，（1987），449－477．

M．Penegini，The Classification of Isotrivially Fibred Surfaces with $p_{g}=q=2$ ， and topics on Beauville Surfaces．PhD thesis，Universität Bayreuth，（2010）．M．Reid，Young person＇s guide to canonical singularities，in＇Algebraic geometry， Proc．Summer Res．Inst．，Brunswick／Maine 1985，part 1，Proc．Symp．Pure Math． 46 （1987），345－414．

S．T．Yau，On the Ricci curvature of a compact Kähler manifold and the complex Monge－Ampere equation．I，Comm．Pure Appl．Math． 31 （1978），339－411．

