Christian Gleißner

February 28, 2013

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

What are varieties isogenous to a product?

# Outline



What are varieties isogenous to a product?

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへで





What are varieties isogenous to a product?

#### Definition

A complex projective variety *X* is said to be *isogenous to a product* if *X* is a quotient

$$X = (C_1 \times ... \times C_n)/G,$$

where the  $C_i$ 's are curves of genus at least two, and G is a finite group acting *freely* on  $C_1 \times ... \times C_n$ .

▲□▶ ▲□▶ ▲三▶ ▲三▶ - 三 - のへで

What are varieties isogenous to a product?

#### Definition

A complex projective variety *X* is said to be *isogenous to a product* if *X* is a quotient

$$X = (C_1 \times ... \times C_n)/G,$$

where the  $C_i$ 's are curves of genus at least two, and G is a finite group acting *freely* on  $C_1 \times ... \times C_n$ .

**Remark:** For the rest of the talk we consider the *unmixed* case where the action of *G* on the Product  $C_1 \times ... \times C_n$  is diagonal i.e.  $G = G \cap (Aut(C_1) \times ... \times Aut(C_n))$ .

We assume furthermore that *G* acts faithfully on each curve.

What are varieties isogenous to a product?

## Motivation:

What are varieties isogenous to a product?

Motivation:

• find new examples of varieties of general type

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ □ のへぐ

What are varieties isogenous to a product?

Motivation:

- find new examples of varieties of general type
- interesting relations with group theory and computer algebra

<日 > < 同 > < 目 > < 目 > < 目 > < 目 > < 0 < 0</p>

The surface case n = 2









▲□ > ▲圖 > ▲目 > ▲目 > → 目 - のへで

Classifications for fixed invariants  $p_g(X) = h^0(X, \Omega_X^2)$ ,  $q(X) = h^0(X, \Omega_X^1)$ :

•  $p_g = 0, q = 0$  Bauer, Catanese, Grunewald [BCG08],

◆□▶ ◆□▶ ◆□▶ ◆□▶ → □ ・ クタペ

- $p_g = 1, q = 1$  Carnovale, Polizzi [CP09]
- $p_g = 2, q = 2$  Penegini [Pe10].

Classifications for fixed invariants  $p_g(X) = h^0(X, \Omega_X^2)$ ,  $q(X) = h^0(X, \Omega_X^1)$ :

•  $p_g = 0, q = 0$  Bauer, Catanese, Grunewald [BCG08],

(日) (日) (日) (日) (日) (日) (日)

- $p_g = 1, q = 1$  Carnovale, Polizzi [CP09]
- $p_g = 2, q = 2$  Penegini [Pe10].

Aim: Classification for the invariants  $p_g = 1$  and q = 0.

 Start with expressing numerical invariants of S = (C<sub>1</sub> × C<sub>2</sub>)/G in terms of g(C<sub>1</sub>) and g(C<sub>2</sub>):

• Start with expressing numerical invariants of  $S = (C_1 \times C_2)/G$  in terms of  $g(C_1)$  and  $g(C_2)$ :

$$K_S^2 = \frac{o(g(C_1) - 1)(g(C_2) - 1)}{|G|},$$

The surface case n = 2

 Start with expressing numerical invariants of S = (C<sub>1</sub> × C<sub>2</sub>)/G in terms of g(C<sub>1</sub>) and g(C<sub>2</sub>):

$$K_S^2 = \frac{8(g(C_1) - 1)(g(C_2) - 1)}{|G|},$$

$$e(S) = rac{4(g(C_1)-1)(g(C_2)-1)}{|G|} = rac{1}{2}K_S^2.$$

The surface case n = 2

 Start with expressing numerical invariants of S = (C<sub>1</sub> × C<sub>2</sub>)/G in terms of g(C<sub>1</sub>) and g(C<sub>2</sub>):

$$K_S^2 = \frac{8(g(C_1) - 1)(g(C_2) - 1)}{|G|},$$

$$e(S) = rac{4(g(C_1)-1)(g(C_2)-1)}{|G|} = rac{1}{2}K_S^2.$$

(日) (日) (日) (日) (日) (日) (日)

By Noether-formula  $12\chi(\mathcal{O}_{\mathcal{S}}) = K_{\mathcal{S}}^2 + e(\mathcal{S})$  we get

The surface case n = 2

 Start with expressing numerical invariants of S = (C<sub>1</sub> × C<sub>2</sub>)/G in terms of g(C<sub>1</sub>) and g(C<sub>2</sub>):

$$K_S^2 = \frac{8(g(C_1) - 1)(g(C_2) - 1)}{|G|},$$

$$e(S) = rac{4(g(C_1)-1)(g(C_2)-1)}{|G|} = rac{1}{2}K_S^2.$$

By Noether-formula  $12\chi(\mathcal{O}_{\mathcal{S}})=\mathcal{K}_{\mathcal{S}}^2+e(\mathcal{S})$  we get

$$\chi(\mathcal{O}_S) = \frac{(g(C_1) - 1)(g(C_2) - 1)}{|G|}$$

(日) (日) (日) (日) (日) (日) (日)

 Start with expressing numerical invariants of S = (C<sub>1</sub> × C<sub>2</sub>)/G in terms of g(C<sub>1</sub>) and g(C<sub>2</sub>):

$$K_S^2 = \frac{8(g(C_1) - 1)(g(C_2) - 1)}{|G|},$$

$$e(S) = rac{4(g(C_1)-1)(g(C_2)-1)}{|G|} = rac{1}{2}K_S^2.$$

By Noether-formula  $12\chi(\mathcal{O}_{\mathcal{S}})=\mathcal{K}_{\mathcal{S}}^2+e(\mathcal{S})$  we get

$$\chi(\mathcal{O}_{S}) = \frac{(g(C_{1}) - 1)(g(C_{2}) - 1)}{|G|}$$

<u>In our case</u>  $p_g = 1, q = 0 \implies \chi(\mathcal{O}_S) = 2$ . It follows

$$|G| = \frac{(g(C_1) - 1)(g(C_2) - 1)}{2}, \quad K_S^2 = 16 \text{ and } e(S) = 8.$$

Since we only consider unmixed actions we obtain two *G*-Coverings

$$f_i: C_i \rightarrow C_i/G, i = 1, 2$$

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ □ のへぐ

Since we only consider unmixed actions we obtain two *G*-Coverings

$$f_i: C_i \rightarrow C_i/G, i = 1, 2.$$

Using Künneth's formula we get

$$H^0(\mathcal{C}_1 \times \mathcal{C}_2, \Omega^1_{\mathcal{C}_1 \times \mathcal{C}_2})^G = H^0(\mathcal{C}_1, \Omega^1_{\mathcal{C}_1})^G \oplus H^0(\mathcal{C}_2, \Omega^1_{\mathcal{C}_2})^G.$$

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ □ のへぐ

Since we only consider unmixed actions we obtain two *G*-Coverings

$$f_i: C_i \rightarrow C_i/G, i = 1, 2.$$

Using Künneth's formula we get

$$H^{0}(C_{1} \times C_{2}, \Omega^{1}_{C_{1} \times C_{2}})^{G} = H^{0}(C_{1}, \Omega^{1}_{C_{1}})^{G} \oplus H^{0}(C_{2}, \Omega^{1}_{C_{2}})^{G}.$$

Since  $q(S) = h^0(C_1 \times C_2, \Omega^1_{C_1 \times C_2})^G$  and we have fixed q(S) = 0 $\implies g(C_i/G) = 0.$ 

<日 > < 同 > < 目 > < 目 > < 目 > < 目 > < 0 < 0</p>

Since we only consider unmixed actions we obtain two *G*-Coverings

$$f_i: C_i \rightarrow C_i/G, i = 1, 2.$$

Using Künneth's formula we get

$$H^0(\mathcal{C}_1 \times \mathcal{C}_2, \Omega^1_{\mathcal{C}_1 \times \mathcal{C}_2})^G = H^0(\mathcal{C}_1, \Omega^1_{\mathcal{C}_1})^G \oplus H^0(\mathcal{C}_2, \Omega^1_{\mathcal{C}_2})^G.$$

Since  $q(S) = h^0(C_1 \times C_2, \Omega^1_{C_1 \times C_2})^G$  and we have fixed q(S) = 0 $\implies g(C_i/G) = 0.$ 

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Thus the holomorphic maps  $f_i$  are *ramified* coverings of  $\mathbb{P}^1_{\mathbb{C}}$ .

Since we only consider unmixed actions we obtain two *G*-Coverings

$$f_i: C_i \rightarrow C_i/G, i = 1, 2.$$

Using Künneth's formula we get

$$H^0(\mathcal{C}_1 \times \mathcal{C}_2, \Omega^1_{\mathcal{C}_1 \times \mathcal{C}_2})^G = H^0(\mathcal{C}_1, \Omega^1_{\mathcal{C}_1})^G \oplus H^0(\mathcal{C}_2, \Omega^1_{\mathcal{C}_2})^G.$$

Since  $q(S) = h^0(C_1 \times C_2, \Omega^1_{C_1 \times C_2})^G$  and we have fixed q(S) = 0 $\implies g(C_i/G) = 0.$ 

Thus the holomorphic maps  $f_i$  are *ramified* coverings of  $\mathbb{P}^1_{\mathbb{C}}$ .

# • Study *G*-Covers of $\mathbb{P}^1_{\mathbb{C}}$ in greater detail.

#### Definition

Let *G* be a finite group,  $2 \le m_1 \le ... \le m_r$  integers. A spherical system of generators of *G* (ssg) of type  $[m_1, ..., m_r]$  is a *r*-tuple  $A = (g_1, ..., g_r)$  of elements of *G* s.t.

▲□▶ ▲□▶ ▲三▶ ▲三▶ - 三 - のへで

• 
$$G = \langle A \rangle$$
,

• 
$$g_1 \cdot \ldots \cdot g_r = \mathbf{1}_G$$
,

• 
$$\exists \ au \in \mathfrak{S}_r \ \ s.t. \ \ ord(g_i) = m_{ au(i)}.$$

#### Definition

Let *G* be a finite group,  $2 \le m_1 \le ... \le m_r$  integers. A spherical system of generators of *G* (ssg) of type  $[m_1, ..., m_r]$  is a *r*-tuple  $A = (g_1, ..., g_r)$  of elements of *G* s.t.

• 
$$G = \langle A \rangle$$
,

• 
$$g_1 \cdot \ldots \cdot g_r = \mathbf{1}_G$$
,

• 
$$\exists \ \tau \in \mathfrak{S}_r \ s.t. \ ord(g_i) = m_{\tau(i)}.$$

We choose a geometric basis:

• generators  $\gamma_1, \ldots, \gamma_r$  of  $\pi_1(\mathbb{P}^1_{\mathbb{C}} - \{P_1, \ldots, P_r\})$ 

#### Definition

Let *G* be a finite group,  $2 \le m_1 \le ... \le m_r$  integers. A spherical system of generators of *G* (ssg) of type  $[m_1, ..., m_r]$  is a *r*-tuple  $A = (g_1, ..., g_r)$  of elements of *G* s.t.

• 
$$G = \langle A \rangle$$
,

• 
$$g_1 \cdot \ldots \cdot g_r = \mathbf{1}_G$$
,

• 
$$\exists \ au \in \mathfrak{S}_r \ s.t. \ ord(g_i) = m_{\tau(i)}.$$

We choose a geometric basis:

• generators  $\gamma_1, \ldots, \gamma_r$  of  $\pi_1(\mathbb{P}^1_{\mathbb{C}} - \{P_1, \ldots, P_r\})$ 

• 
$$\gamma_1 \cdot \ldots \cdot \gamma_r = 1$$

#### Definition

Let *G* be a finite group,  $2 \le m_1 \le ... \le m_r$  integers. A spherical system of generators of *G* (ssg) of type  $[m_1, ..., m_r]$  is a *r*-tuple  $A = (g_1, ..., g_r)$  of elements of *G* s.t.

• 
$$G = \langle A \rangle$$
,

• 
$$g_1 \cdot \ldots \cdot g_r = \mathbf{1}_G$$
,

• 
$$\exists \ \tau \in \mathfrak{S}_r \ s.t. \ ord(g_i) = m_{\tau(i)}.$$

We choose a geometric basis:

• generators  $\gamma_1, \ldots, \gamma_r$  of  $\pi_1(\mathbb{P}^1_{\mathbb{C}} - \{P_1, \ldots, P_r\})$ 

• 
$$\gamma_1 \cdot \ldots \cdot \gamma_r = \mathbf{1}$$

• and a monodromy  $\pi_1(\mathbb{P}^1_{\mathbb{C}} - \{P_1, \dots, P_r\}) \twoheadrightarrow G.$ 

### Definition

Let *G* be a finite group,  $2 \le m_1 \le ... \le m_r$  integers. A spherical system of generators of *G* (ssg) of type  $[m_1, ..., m_r]$  is a *r*-tuple  $A = (g_1, ..., g_r)$  of elements of *G* s.t.

• 
$$G = \langle A \rangle$$
,

• 
$$g_1 \cdot \ldots \cdot g_r = \mathbf{1}_G$$
,

• 
$$\exists \tau \in \mathfrak{S}_r \ s.t. \ ord(g_i) = m_{\tau(i)}.$$

We choose a geometric basis:

• generators  $\gamma_1, \ldots, \gamma_r$  of  $\pi_1(\mathbb{P}^1_{\mathbb{C}} - \{P_1, \ldots, P_r\})$ 

• 
$$\gamma_1 \cdot \ldots \cdot \gamma_r = \mathbf{1}$$

• and a monodromy  $\pi_1(\mathbb{P}^1_{\mathbb{C}} - \{P_1, \ldots, P_r\}) \twoheadrightarrow G.$ 

 $\implies \text{unramified } G\text{-cover } C^* \to \mathbb{P}^1_{\mathbb{C}} - \{P_1, \dots, P_r\}.$ 

## There is a unique extension to a ramified *G*-cover: $C \to \mathbb{P}^1_{\mathbb{C}}$ .

There is a unique extension to a ramified *G*-cover:  $C \to \mathbb{P}^1_{\mathbb{C}}$ .

#### Theorem (Riemann's existence theorem)

A finite group G acts as a group of automorphisms of some compact Riemann surface C s.t.  $C/G \simeq \mathbb{P}^1_{\mathbb{C}}$  iff

•  $\exists$  ssg of type  $[m_1, ..., m_r]$ ,

• Hurwitz' formula holds:

$$2g(C) - 2 = |G|(-2 + \sum_{i=1}^{r}(1 - \frac{1}{m_i})).$$

(日) (日) (日) (日) (日) (日) (日)

• Let  $A = (g_1, ..., g_r)$  be a ssg of type  $T = [m_1, ..., m_r]$  for G finite. We define the *stabilizer set*:

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ □ のへぐ

• Let  $A = (g_1, ..., g_r)$  be a ssg of type  $T = [m_1, ..., m_r]$  for G finite. We define the *stabilizer set*:

$$\Sigma(A) := \bigcup_{g \in G} \bigcup_{i=1}^{r} \bigcup_{j=1}^{m_i} \{g \cdot g_i^j \cdot g^{-1}\}$$

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ □ のへぐ

• Let  $A = (g_1, ..., g_r)$  be a ssg of type  $T = [m_1, ..., m_r]$  for G finite. We define the *stabilizer set*:

$$\Sigma(A) := \bigcup_{g \in G} \bigcup_{i=1}^{r} \bigcup_{j=1}^{m_i} \{g \cdot g_i^j \cdot g^{-1}\}$$

• A pair  $(A_1, A_2)$  of ssg's is called *disjoint*  $\iff$ 

$$\Sigma(A_1) \cap \Sigma(A_2) = \{\mathbf{1}_G\}$$

<日 > < 同 > < 目 > < 目 > < 目 > < 目 > < 0 < 0</p>

• Let  $A = (g_1, ..., g_r)$  be a ssg of type  $T = [m_1, ..., m_r]$  for G finite. We define the *stabilizer set*:

$$\Sigma(A) := \bigcup_{g \in G} \bigcup_{i=1}^{r} \bigcup_{j=1}^{m_i} \{g \cdot g_i^j \cdot g^{-1}\}$$

• A pair  $(A_1, A_2)$  of ssg's is called *disjoint*  $\iff$ 

$$\Sigma(A_1) \cap \Sigma(A_2) = \{\mathbf{1}_G\}$$

 Geometrically disjoint means that G acts without fixed points on C<sub>1</sub> × C<sub>2</sub>.  $\implies$  We have a group theoretic description of surfaces isogenous to a product:

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ □ のへぐ

 $\implies$  We have a group theoretic description of surfaces isogenous to a product:

Given S = (C<sub>1</sub> × C<sub>2</sub>)/G we can attach a disjoint pair of ssg's
 (A<sub>1</sub>(S), A<sub>2</sub>(S)) of type (T<sub>1</sub>(S), T<sub>2</sub>(S)).

<日 > < 同 > < 目 > < 目 > < 目 > < 目 > < 0 < 0</p>

 $\implies$  We have a group theoretic description of surfaces isogenous to a product:

- Given S = (C<sub>1</sub> × C<sub>2</sub>)/G we can attach a disjoint pair of ssg's
   (A<sub>1</sub>(S), A<sub>2</sub>(S)) of type (T<sub>1</sub>(S), T<sub>2</sub>(S)).
- Vice versa, the data above determine a surface isogenous to a product.

<日 > < 同 > < 目 > < 目 > < 目 > < 目 > < 0 < 0</p>

### Theorem (finiteness of classification)

There are only finitely many groups G, acting fixed point free and diagonally on a product  $C_1 \times C_2$ ,  $(g(C_i) \ge 2)$ , such that  $p_g(S) = 1$  and q(S) = 0, where

$$S = (C_1 \times C_2)/G.$$

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへぐ
#### Theorem (finiteness of classification)

There are only finitely many groups G, acting fixed point free and diagonally on a product  $C_1 \times C_2$ ,  $(g(C_i) \ge 2)$ , such that  $p_g(S) = 1$  and q(S) = 0, where

$$S=(C_1\times C_2)/G.$$

proof: We use Hurwitz' formula:  $2g(C_1) - 2 = |G|(-2 + \sum_{i=1}^r (1 - \frac{1}{m_i})) \ge 2$  and similarly for  $C_2$ .

### Theorem (finiteness of classification)

There are only finitely many groups G, acting fixed point free and diagonally on a product  $C_1 \times C_2$ ,  $(g(C_i) \ge 2)$ , such that  $p_g(S) = 1$  and q(S) = 0, where

$$S=(C_1\times C_2)/G.$$

proof: We use Hurwitz' formula:

 $2g(C_1) - 2 = |G|(-2 + \sum_{i=1}^r (1 - \frac{1}{m_i})) \ge 2$  and similarly for  $C_2$ . Note that  $-2 + \sum_{i=1}^r (1 - \frac{1}{m_i}) \ge \frac{1}{42}$ . The minimum is obtained for the tuple [2, 3, 7] (Klein's quartic curve).

#### Theorem (finiteness of classification)

There are only finitely many groups G, acting fixed point free and diagonally on a product  $C_1 \times C_2$ ,  $(g(C_i) \ge 2)$ , such that  $p_g(S) = 1$  and q(S) = 0, where

$$S = (C_1 \times C_2)/G.$$

proof: We use Hurwitz' formula:

 $2g(C_1) - 2 = |G|(-2 + \sum_{i=1}^r (1 - \frac{1}{m_i})) \ge 2$  and similarly for  $C_2$ . Note that  $-2 + \sum_{i=1}^r (1 - \frac{1}{m_i}) \ge \frac{1}{42}$ . The minimum is obtained for the tuple [2, 3, 7] (Klein's quartic curve). Since we have  $K_S^2 = 16$ 

#### Theorem (finiteness of classification)

There are only finitely many groups G, acting fixed point free and diagonally on a product  $C_1 \times C_2$ ,  $(g(C_i) \ge 2)$ , such that  $p_g(S) = 1$  and q(S) = 0, where

$$S=(C_1\times C_2)/G.$$

proof: We use Hurwitz' formula:

 $2g(C_1) - 2 = |G|(-2 + \sum_{i=1}^r (1 - \frac{1}{m_i})) \ge 2$  and similarly for  $C_2$ . Note that  $-2 + \sum_{i=1}^r (1 - \frac{1}{m_i}) \ge \frac{1}{42}$ . The minimum is obtained for the tuple [2, 3, 7] (Klein's quartic curve). Since we have  $K_S^2 = 16$ 

$$\implies 16 = K_S^2 = rac{8(g(C_1) - 1)(g(C_2) - 1)}{|G|} \ge rac{2|G|^2}{42^2|G|}$$

therefore  $|G| \leq 14112$ .

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ● ◆ ○ ○ ○

The surface case n = 2

• Let  $(A_1(S), A_2(S))$  be a disjoint pair of ssg's of type  $(T_1(S), T_2(S)) = ([n_1, ..., n_r], [m_1, ..., m_s])$ 

corresponding to a surface *S* with  $p_g = 1$  and q = 0.

(日)

• Let  $(A_1(S), A_2(S))$  be a disjoint pair of ssg's of type

 $(T_1(S), T_2(S)) = ([n_1, ..., n_r], [m_1, ..., m_s])$ 

corresponding to a surface *S* with  $p_g = 1$  and q = 0. We can show, as in the last theorem:

i) 
$$r, s \le 8$$
,  
ii)  $n_i, m_j \le 30$ .

• Let  $(A_1(S), A_2(S))$  be a disjoint pair of ssg's of type

 $(T_1(S), T_2(S)) = ([n_1, ..., n_r], [m_1, ..., m_s])$ 

corresponding to a surface *S* with  $p_g = 1$  and q = 0. We can show, as in the last theorem:

i) 
$$r, s \le 8$$
,

ii) 
$$n_i, m_j \le 30.$$

• It is now possible to classify all surfaces isogenous to a product with  $p_g = 1$  and q = 0 of unmixed type, using the computer algebra system MAGMA.

• Let  $(A_1(S), A_2(S))$  be a disjoint pair of ssg's of type

 $(T_1(S), T_2(S)) = ([n_1, ..., n_r], [m_1, ..., m_s])$ 

corresponding to a surface *S* with  $p_g = 1$  and q = 0. We can show, as in the last theorem:

i) 
$$r, s \le 8,$$

ii) 
$$n_i, m_j \le 30.$$

• It is now possible to classify all surfaces isogenous to a product with  $p_g = 1$  and q = 0 of unmixed type, using the computer algebra system MAGMA.

#### Theorem (-)

There are exactly 49 families of surfaces isogenous to a product of unmixed type with  $p_g = 1$  and q = 0.

The threefold case n = 3









◆□ > ◆□ > ◆豆 > ◆豆 > ̄豆 = 釣へで

Start with a finite group G and a disjoint triple (A<sub>1</sub>, A<sub>2</sub>, A<sub>3</sub>) of ssg's:

The threefold case n = 3

Start with a finite group G and a disjoint triple (A<sub>1</sub>, A<sub>2</sub>, A<sub>3</sub>) of ssg's:

 $\Sigma(A_1) \cap \Sigma(A_2) \cap \Sigma(A_3) = \{1_G\}$ 

(日)

The threefold case n = 3

• Start with a finite group *G* and a disjoint triple (*A*<sub>1</sub>, *A*<sub>2</sub>, *A*<sub>3</sub>) of ssg's:

$$\Sigma(A_1) \cap \Sigma(A_2) \cap \Sigma(A_3) = \{1_G\}$$

(ロ)、(型)、(E)、(E)、(E)、(O)へ(C)

• We get 
$$X = Y/G$$
, where  $Y = C_1 \times C_2 \times C_3$ .

The threefold case n = 3

Start with a finite group G and a disjoint triple (A<sub>1</sub>, A<sub>2</sub>, A<sub>3</sub>) of ssg's:

$$\Sigma(A_1) \cap \Sigma(A_2) \cap \Sigma(A_3) = \{1_G\}$$

<日 > < 同 > < 目 > < 目 > < 目 > < 目 > < 0 < 0</p>

• We get X = Y/G, where  $Y = C_1 \times C_2 \times C_3$ .

Question: How to compute  $h^0(X, \Omega_X^i) = h^0(Y, \Omega_Y^i)^G$ ?

• Start with a finite group *G* and a disjoint triple (*A*<sub>1</sub>, *A*<sub>2</sub>, *A*<sub>3</sub>) of ssg's:

$$\Sigma(A_1) \cap \Sigma(A_2) \cap \Sigma(A_3) = \{1_G\}$$

• We get X = Y/G, where  $Y = C_1 \times C_2 \times C_3$ .

Question: How to compute  $h^0(X, \Omega_X^i) = h^0(Y, \Omega_Y^i)^G$ ?

• The idea is to use Künneth's formula:

• Start with a finite group *G* and a disjoint triple (*A*<sub>1</sub>, *A*<sub>2</sub>, *A*<sub>3</sub>) of ssg's:

$$\Sigma(A_1) \cap \Sigma(A_2) \cap \Sigma(A_3) = \{1_G\}$$

• We get X = Y/G, where  $Y = C_1 \times C_2 \times C_3$ .

Question: How to compute  $h^0(X, \Omega_X^i) = h^0(Y, \Omega_Y^i)^G$ ? • The idea is to use Künneth's formula:

 $\begin{aligned} H^{0}(Y,\Omega_{Y}^{2})^{G} &= (H^{0}(C_{1},\Omega_{C_{1}}^{1}) \otimes H^{0}(C_{2},\Omega_{C_{2}}^{1}))^{G} \oplus \\ (H^{0}(C_{1},\Omega_{C_{1}}^{1}) \otimes H^{0}(C_{3},\Omega_{C_{3}}^{1}))^{G} \oplus (H^{0}(C_{2},\Omega_{C_{2}}^{1}) \otimes H^{0}(C_{3},\Omega_{C_{3}}^{1}))^{G} \end{aligned}$ 

• Start with a finite group *G* and a disjoint triple (*A*<sub>1</sub>, *A*<sub>2</sub>, *A*<sub>3</sub>) of ssg's:

$$\Sigma(A_1) \cap \Sigma(A_2) \cap \Sigma(A_3) = \{1_G\}$$

• We get X = Y/G, where  $Y = C_1 \times C_2 \times C_3$ .

Question: How to compute  $h^0(X, \Omega_X^i) = h^0(Y, \Omega_Y^i)^G$ ? • The idea is to use Künneth's formula:

 $\begin{aligned} H^{0}(Y,\Omega_{Y}^{2})^{G} &= (H^{0}(C_{1},\Omega_{C_{1}}^{1}) \otimes H^{0}(C_{2},\Omega_{C_{2}}^{1}))^{G} \oplus \\ (H^{0}(C_{1},\Omega_{C_{1}}^{1}) \otimes H^{0}(C_{3},\Omega_{C_{3}}^{1}))^{G} \oplus (H^{0}(C_{2},\Omega_{C_{2}}^{1}) \otimes H^{0}(C_{3},\Omega_{C_{3}}^{1}))^{G} \\ \text{Similar for 1-forms and 3-forms.} \end{aligned}$ 

• Start with a finite group *G* and a disjoint triple (*A*<sub>1</sub>, *A*<sub>2</sub>, *A*<sub>3</sub>) of ssg's:

$$\Sigma(A_1) \cap \Sigma(A_2) \cap \Sigma(A_3) = \{1_G\}$$

• We get X = Y/G, where  $Y = C_1 \times C_2 \times C_3$ .

Question: How to compute  $h^0(X, \Omega_X^i) = h^0(Y, \Omega_Y^i)^G$ ?

The idea is to use Künneth's formula:

 $H^0(Y, \Omega^2_Y)^G = (H^0(\mathcal{C}_1, \Omega^1_{\mathcal{C}_1}) \otimes H^0(\mathcal{C}_2, \Omega^1_{\mathcal{C}_2}))^G \oplus$ 

 $(H^0(C_1,\Omega^1_{C_1})\otimes H^0(C_3,\Omega^1_{C_3}))^G\oplus (H^0(C_2,\Omega^1_{C_2})\otimes H^0(C_3,\Omega^1_{C_3}))^G$ 

Similar for 1-forms and 3-forms.

• We need to understand the *G*-module structure of  $H^0(C, \Omega^1_C)$ , where  $C \to \mathbb{P}^1_{\mathbb{C}}$  is a *G*-Cover.

The threefold case n = 3

Let A = (g<sub>1</sub>,...,g<sub>r</sub>) be a corresponding ssg of type [m<sub>1</sub>,...,m<sub>r</sub>].

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ □ のへぐ

The threefold case n = 3

- Let A = (g<sub>1</sub>,...,g<sub>r</sub>) be a corresponding ssg of type [m<sub>1</sub>,...,m<sub>r</sub>].
- $\varphi: G \to GL(H^0(C, \Omega^1_C)), \quad g \mapsto (\omega \mapsto (g^{-1})^*(\omega)).$

(日)

The threefold case n = 3

- Let A = (g<sub>1</sub>,...,g<sub>r</sub>) be a corresponding ssg of type [m<sub>1</sub>,...,m<sub>r</sub>].
- $\varphi: G \to GL(H^0(C, \Omega^1_C)), \quad g \mapsto (\omega \mapsto (g^{-1})^*(\omega)).$
- There is a decomposition of φ in irreducible representations

$$H^0(\mathcal{C},\Omega^1_{\mathcal{C}})=V_1^{n_1}\oplus...\oplus V_k^{n_k}.$$

- Let  $A = (g_1, ..., g_r)$  be a corresponding ssg of type  $[m_1, ..., m_r]$ .
- $\varphi: G \to GL(H^0(C, \Omega^1_C)), \quad g \mapsto (\omega \mapsto (g^{-1})^*(\omega)).$
- There is a decomposition of φ in irreducible representations

$$H^0(\mathcal{C},\Omega^1_{\mathcal{C}})=V_1^{n_1}\oplus...\oplus V_k^{n_k}.$$

We want to compute the numbers  $n_1, ..., n_k$  (character  $\chi_{\varphi}$ ).

- Let  $A = (g_1, ..., g_r)$  be a corresponding ssg of type  $[m_1, ..., m_r]$ .
- $\varphi: G \to GL(H^0(\mathcal{C}, \Omega^1_{\mathcal{C}})), \quad g \mapsto (\omega \mapsto (g^{-1})^*(\omega)).$
- There is a decomposition of φ in irreducible representations

$$H^0(\mathcal{C},\Omega^1_{\mathcal{C}})=V_1^{n_1}\oplus...\oplus V_k^{n_k}.$$

We want to compute the numbers  $n_1, ..., n_k$  (character  $\chi_{\varphi}$ ).

• Pick  $g_i$  from A and  $\varrho_i : G \to GL(V_i)$  irreducible.

- Let  $A = (g_1, ..., g_r)$  be a corresponding ssg of type  $[m_1, ..., m_r]$ .
- $\varphi: G \to GL(H^0(\mathcal{C}, \Omega^1_{\mathcal{C}})), \quad g \mapsto (\omega \mapsto (g^{-1})^*(\omega)).$
- There is a decomposition of φ in irreducible representations

$$H^0(\mathcal{C},\Omega^1_{\mathcal{C}})=V_1^{n_1}\oplus...\oplus V_k^{n_k}.$$

We want to compute the numbers  $n_1, ..., n_k$  (character  $\chi_{\varphi}$ ).

(日) (日) (日) (日) (日) (日) (日)

• Pick  $g_i$  from A and  $\varrho_j : G \to GL(V_j)$  irreducible.  $ord(g_i) = m_i \implies$  every eigenvalue of  $\varrho_j(g_i)$  is of the form  $\xi^{\alpha}_{m_i} = exp(\frac{2\pi\sqrt{-1}\alpha}{m_i}), 1 \le \alpha \le m_i.$ 

- Let  $A = (g_1, ..., g_r)$  be a corresponding ssg of type  $[m_1, ..., m_r]$ .
- $\varphi: G \to GL(H^0(\mathcal{C}, \Omega^1_{\mathcal{C}})), \quad g \mapsto (\omega \mapsto (g^{-1})^*(\omega)).$
- There is a decomposition of φ in irreducible representations

$$H^0(\mathcal{C},\Omega^1_{\mathcal{C}})=V_1^{n_1}\oplus...\oplus V_k^{n_k}.$$

We want to compute the numbers  $n_1, ..., n_k$  (character  $\chi_{\varphi}$ ).

• Pick  $g_i$  from A and  $\varrho_j : G \to GL(V_j)$  irreducible.  $ord(g_i) = m_i \implies$  every eigenvalue of  $\varrho_j(g_i)$  is of the form  $\xi^{\alpha}_{m_i} = exp(\frac{2\pi\sqrt{-1}\alpha}{m_i}), 1 \le \alpha \le m_i.$ 

(日) (日) (日) (日) (日) (日) (日)

Define N<sub>i,α</sub> := # eigenvalues of ρ<sub>j</sub>(g<sub>i</sub>) equal to ξ<sup>α</sup><sub>m<sub>i</sub></sub>.

- Let  $A = (g_1, ..., g_r)$  be a corresponding ssg of type  $[m_1, ..., m_r]$ .
- $\varphi: G \to GL(H^0(C, \Omega^1_C)), \quad g \mapsto (\omega \mapsto (g^{-1})^*(\omega)).$
- There is a decomposition of φ in irreducible representations

$$H^0(\mathcal{C},\Omega^1_{\mathcal{C}})=V_1^{n_1}\oplus...\oplus V_k^{n_k}.$$

We want to compute the numbers  $n_1, ..., n_k$  (character  $\chi_{\varphi}$ ).

- Pick  $g_i$  from A and  $\varrho_j : G \to GL(V_j)$  irreducible.  $ord(g_i) = m_i \implies$  every eigenvalue of  $\varrho_j(g_i)$  is of the form  $\xi^{\alpha}_{m_i} = exp(\frac{2\pi\sqrt{-1}\alpha}{m_i}), 1 \le \alpha \le m_i.$
- Define N<sub>i,α</sub> := # eigenvalues of ρ<sub>j</sub>(g<sub>i</sub>) equal to ξ<sup>α</sup><sub>mi</sub>.
- Formula of Chevalley-Weil:

$$n_j = -d_j + \sum_{i=1}^r \sum_{\alpha=1}^{m_i} N_{i,\alpha} (1 - \frac{\alpha}{m_i}) + \sigma_j$$

where  $d_j = dim(V_j)$  and  $\sigma = 1$  if  $\rho_j$  is trivial else  $\sigma_z = 0$ .

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ □ のへぐ

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

•  $\chi_j(g_i^k)$  is the *k*-th powersum of the eigenvalues.

- $\chi_j(g_i^k)$  is the *k*-th powersum of the eigenvalues.
- Use Newton's identities to recover the characteristic polynomial *f<sub>ij</sub>* of *ρ<sub>i</sub>(g<sub>i</sub>)* from these powersums.

- $\chi_j(g_i^k)$  is the *k*-th powersum of the eigenvalues.
- Use Newton's identities to recover the characteristic polynomial *f<sub>ij</sub>* of *ρ<sub>j</sub>(g<sub>i</sub>)* from these powersums.

• The roots of  $f_{ij}$  are powers of  $\xi_{m_i}$ .

- $\chi_j(g_i^k)$  is the *k*-th powersum of the eigenvalues.
- Use Newton's identities to recover the characteristic polynomial *f<sub>ij</sub>* of *ρ<sub>j</sub>(g<sub>i</sub>)* from these powersums.
- The roots of  $f_{ij}$  are powers of  $\xi_{m_i}$ .
- Character tables for finite groups can be computed with MAGMA.

(日) (日) (日) (日) (日) (日) (日)

- $\chi_j(g_i^k)$  is the *k*-th powersum of the eigenvalues.
- Use Newton's identities to recover the characteristic polynomial *f<sub>ij</sub>* of *ρ<sub>j</sub>(g<sub>i</sub>)* from these powersums.
- The roots of  $f_{ij}$  are powers of  $\xi_{m_i}$ .
- Character tables for finite groups can be computed with MAGMA.

(日) (日) (日) (日) (日) (日) (日)

## $\implies$ Implementation in MAGMA:

- $\implies$  Implementation in MAGMA:
  - input: The triple of ssg's (*A*<sub>1</sub>, *A*<sub>2</sub>, *A*<sub>3</sub>) and the character table of *G*.

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ □ のへぐ

- $\implies$  Implementation in MAGMA:
  - input: The triple of ssg's (*A*<sub>1</sub>, *A*<sub>2</sub>, *A*<sub>3</sub>) and the character table of *G*.

<日 > < 同 > < 目 > < 目 > < 目 > < 目 > < 0 < 0</p>

• Compute the characters  $\chi_{\varphi_i}$  of  $H^0(C, \Omega^1_{C_i})$ .

- $\implies$  Implementation in MAGMA:
  - input: The triple of ssg's (*A*<sub>1</sub>, *A*<sub>2</sub>, *A*<sub>3</sub>) and the character table of *G*.
  - Compute the characters  $\chi_{\varphi_i}$  of  $H^0(C, \Omega^1_{C_i})$ .
  - The character  $\chi$  of  $H^0(Y, \Omega_Y^2)$  is:

$$\chi = \chi_{\varphi_1}\chi_{\varphi_2} + \chi_{\varphi_1}\chi_{\varphi_3} + \chi_{\varphi_2}\chi_{\varphi_3}$$

(日) (日) (日) (日) (日) (日) (日)
- $\implies$  Implementation in MAGMA:
  - input: The triple of ssg's (*A*<sub>1</sub>, *A*<sub>2</sub>, *A*<sub>3</sub>) and the character table of *G*.
  - Compute the characters  $\chi_{\varphi_i}$  of  $H^0(C, \Omega^1_{C_i})$ .
  - The character  $\chi$  of  $H^0(Y, \Omega_Y^2)$  is:

$$\chi = \chi_{\varphi_1}\chi_{\varphi_2} + \chi_{\varphi_1}\chi_{\varphi_3} + \chi_{\varphi_2}\chi_{\varphi_3}$$

• 
$$q_2(X) = h^0(X, \Omega_X^2) = h^0(Y, \Omega_Y^2)^G = <\chi, \chi_{triv} >.$$

・ロト・西ト・西ト・日下 ひゃぐ

• We are interested in 3-folds X isogenous to a product with  $p_g(X) = 0$ ,  $q_1(X) = 0$  and  $q_2(X) \ge 2$ .

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

• We are interested in 3-folds X isogenous to a product with  $p_g(X) = 0$ ,  $q_1(X) = 0$  and  $q_2(X) \ge 2$ .

By Riemann-Roch:  $\frac{1}{24}c_1(X)c_2(X) = \chi(\mathcal{O}_X) = 1 + q_2 \ge 3.$ 

• We are interested in 3-folds X isogenous to a product with  $p_g(X) = 0$ ,  $q_1(X) = 0$  and  $q_2(X) \ge 2$ .

By Riemann-Roch: 
$$\frac{1}{24}c_1(X)c_2(X) = \chi(\mathcal{O}_X) = 1 + q_2 \ge 3.$$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

 K<sub>X</sub> is ample, c<sub>1</sub>(X) = -K<sub>X</sub> and c<sub>2</sub>(X) is numerical non-negative (Miyaoka [Mi87]).

• We are interested in 3-folds X isogenous to a product with  $p_g(X) = 0$ ,  $q_1(X) = 0$  and  $q_2(X) \ge 2$ .

By Riemann-Roch: 
$$\frac{1}{24}c_1(X)c_2(X) = \chi(\mathcal{O}_X) = 1 + q_2 \ge 3.$$

(日) (日) (日) (日) (日) (日) (日)

K<sub>X</sub> is ample, c<sub>1</sub>(X) = −K<sub>X</sub> and c<sub>2</sub>(X) is numerical non-negative (Miyaoka [Mi87]).
 ⇒ c<sub>1</sub>(X)c<sub>2</sub>(X) < 0, a contradiction!</li>

• We are interested in 3-folds X isogenous to a product with  $p_g(X) = 0$ ,  $q_1(X) = 0$  and  $q_2(X) \ge 2$ .

By Riemann-Roch: 
$$\frac{1}{24}c_1(X)c_2(X) = \chi(\mathcal{O}_X) = 1 + q_2 \ge 3.$$

- *K<sub>X</sub>* is ample, *c*<sub>1</sub>(*X*) = −*K<sub>X</sub>* and *c*<sub>2</sub>(*X*) is numerical non-negative (Miyaoka [Mi87]).
   ⇒ *c*<sub>1</sub>(*X*)*c*<sub>2</sub>(*X*) < 0, a contradiction!</li>
- We have to drop the assumption that *G* acts freely on  $Y = C_1 \times C_2 \times C_3$  and allow *singularities*.

There are finitely many points on Y with non-trivial stabilizer.

Varieties Isogenous to a Product

The threefold case n = 3

- There are finitely many points on Y with non-trivial stabilizer.
- Stab(x, y, z) = Stab(x) ∩ Stab(y) ∩ Stab(z), which is cyclic.

(日)

- There are finitely many points on Y with non-trivial stabilizer.
- Stab(x, y, z) = Stab(x) ∩ Stab(y) ∩ Stab(z), which is cyclic.

 $\implies$  X = Y/G has a finite number of *cyclic quotient* singularities.

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三■ - のへぐ

- There are finitely many points on *Y* with non-trivial stabilizer.
- Stab(x, y, z) = Stab(x) ∩ Stab(y) ∩ Stab(z), which is cyclic.

 $\implies$  X = Y/G has a finite number of *cyclic quotient* singularities. Locally: quotient of  $\mathbb{C}^3$  by a diagonal linear automorphism

- There are finitely many points on Y with non-trivial stabilizer.
- Stab(x, y, z) = Stab(x) ∩ Stab(y) ∩ Stab(z), which is cyclic.

 $\implies$  X = Y/G has a finite number of *cyclic quotient* singularities. Locally: quotient of  $\mathbb{C}^3$  by a diagonal linear automorphism

$$\begin{pmatrix} \exp(\frac{2\pi i a}{n}) & 0 & 0\\ 0 & \exp(\frac{2\pi i b}{n}) & 0\\ 0 & 0 & \exp(\frac{2\pi i c}{n}) \end{pmatrix}$$

where  $1 \le a, b, c \le n$ . We write  $\frac{1}{n}(a, b, c)$ .

- There are finitely many points on Y with non-trivial stabilizer.
- Stab(x, y, z) = Stab(x) ∩ Stab(y) ∩ Stab(z), which is cyclic.

 $\implies$  X = Y/G has a finite number of *cyclic quotient* singularities. Locally: quotient of  $\mathbb{C}^3$  by a diagonal linear automorphism

$$\begin{pmatrix} \exp(\frac{2\pi i a}{n}) & 0 & 0 \\ 0 & \exp(\frac{2\pi i b}{n}) & 0 \\ 0 & 0 & \exp(\frac{2\pi i c}{n}) \end{pmatrix}$$

where  $1 \le a, b, c \le n$ . We write  $\frac{1}{n}(a, b, c)$ .

Singularity is *isolated* iff
 gcd(a, n) = gcd(b, n) = gcd(c, n) = 1.

• We want to allow *canonical (or terminal) singularities only.* We can see this from the numbers *n*, *a*, *b*, *c*.

• We want to allow *canonical (or terminal) singularities only*. We can see this from the numbers *n*, *a*, *b*, *c*.

## Theorem ([Reid87])

A cyclic quotient singularity of type  $\frac{1}{n}(a, b, c)$  is terminal (or canonical) iff

$$\alpha_k := \frac{1}{n}(\overline{ka} + \overline{kb} + \overline{kc}) > 1 \text{ for } 1 \le k \le n-1,$$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

(respectively  $\geq$  1). Here  $\overline{d}$  denotes smallest residue mod n.

• We want to allow *canonical (or terminal) singularities only*. We can see this from the numbers *n*, *a*, *b*, *c*.

## Theorem ([Reid87])

A cyclic quotient singularity of type  $\frac{1}{n}(a, b, c)$  is terminal (or canonical) iff

$$\alpha_k := \frac{1}{n}(\overline{ka} + \overline{kb} + \overline{kc}) > 1 \text{ for } 1 \le k \le n - 1,$$

(respectively  $\geq$  1). Here  $\overline{d}$  denotes smallest residue mod n.

• Consider a resolution of singularities:

$$\widetilde{X} \to Y/G$$
, where  $Y = C_1 \times C_2 \times C_3$ .

By [F71] we have  $h^0(\widetilde{X}, \Omega^i_{\widetilde{X}}) = h^0(Y, \Omega^i_Y)^G$ 

• The canonical volume is:

$$\mathcal{K}^3_X = rac{48(g(\mathcal{C}_1)-1)(g(\mathcal{C}_2)-1)(g(\mathcal{C}_3)-1)}{|\mathcal{G}|} \in \mathbb{Q}.$$

• The canonical volume is:

$$\mathcal{K}^3_X = rac{48(g(\mathcal{C}_1)-1)(g(\mathcal{C}_2)-1)(g(\mathcal{C}_3)-1)}{|G|} \in \mathbb{Q}.$$

## Theorem

Let c > 0, and  $K_X^3 \le c$ . If  $q_1(X) = 0$ , then we have the following bounds:

i) 
$$|G| \leq \lfloor 42\sqrt{c \cdot 7} \rfloor$$
,  
ii)  $l_i \leq \lfloor \frac{c}{12} + 4 \rfloor$ ,  
where  $l_i$  is the number of branch points of  $f_i : C_i \to \mathbb{P}^1_{\mathbb{C}}$ .

(ロ) (型) (主) (主) (三) の(で)

• For c = 16 we get  $|G| \le 444$  and  $l_i \le 5 \implies$  a computer search is possible. We find:

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ □ のへぐ

• For c = 16 we get  $|G| \le 444$  and  $I_i \le 5 \implies$  a computer search is possible. We find:

- eight different groups,
- largest group order |G| = 192,
- largest  $q_2 = 6$ ,

• smallest 
$$K_X^3 = 4$$
.

- For c = 16 we get  $|G| \le 444$  and  $I_i \le 5 \implies$  a computer search is possible. We find:
  - eight different groups,
  - largest group order |G| = 192,
  - largest *q*<sub>2</sub> = 6,
  - smallest  $K_X^3 = 4$ .
- Remark: In the smooth case we have the following equality:

$$K_X^3 = -48\chi(\mathcal{O}_X).$$

If we fix  $\chi(\mathcal{O}_X)$  and  $q_1(X) = 0$ , then we have

$$|G| \leq \lfloor 42\sqrt{K_X^3 \cdot 7} \rfloor = \lfloor 168\sqrt{-21\chi(\mathcal{O}_X)} \rfloor$$

(日) (日) (日) (日) (日) (日) (日)

I. Bauer, F. Catanese, F. Grunewald, *The classification of surfaces with*  $p_g = q = 0$  *isogenus to a product*. Pure Appl. Math. Q., **4**, no.2, part1, (2008), 547–586.



F. Catanese, *Fibred surfaces, varieties isogenus to a product and related moduli spaces.* Amer. J. Math., **122**, (2000), 1–44.



G. Carnovale, F. Polizzi, *The classification of surfaces with*  $p_g = q = 1$  *isogenus to a product of curves.* Adv. Geom., **9**, no.2, (2009), 233–256.



Über die Struktur der Funktionenkörper zu hyperabelschen Gruppen, I. J. Reine.Angew. Math., **247** (1971), 97–117.

P. A. Griffiths, *Variations on a Theorem of Abel*, Inventiones math. **35**, (1976), 321–390.



Y. Miyaoka, *The Chern classes and Kodaira dimension of a minimal variety*. Advanced Studies in Math., Vol. **10**, Kinokuniya, Tokyo, (1987), 449–477.



M. Penegini, *The Classification of Isotrivially Fibred Surfaces with*  $p_g = q = 2$ , *and topics on Beauville Surfaces.* PhD thesis, Universität Bayreuth, (2010).

M. Reid, *Young person's guide to canonical singularities*, in ' Algebraic geometry, Proc. Summer Res. Inst., Brunswick/Maine 1985, part 1, Proc. Symp. Pure Math. **46** (1987), 345–414.

S. T. Yau, On the Ricci curvature of a compact Kähler manifold and the complex Monge- Ampere equation. I, Comm. Pure Appl. Math. **31** (1978), 339–411.