On the Classification of Threefolds Isogenous to a Product

Christian Gleißner

University of Trento

Definition

A complex projective variety X is said to be isogenous to a product if X is a quotient

$$
X=\left(C_{1} \times \ldots \times C_{n}\right) / G
$$

where the C_{i} 's are smooth curves of genus at least two, and G is a finite group acting freely on $C_{1} \times \ldots \times C_{n}$.

Definition

A complex projective variety X is said to be isogenous to a product if X is a quotient

$$
X=\left(C_{1} \times \ldots \times C_{n}\right) / G
$$

where the C_{i} 's are smooth curves of genus at least two, and G is a finite group acting freely on $C_{1} \times \ldots \times C_{n}$.

- the quotient map $\pi: C_{1} \times \ldots \times C_{n} \rightarrow\left(C_{1} \times \ldots \times C_{n}\right) / G=X$ is unramified,

Definition

A complex projective variety X is said to be isogenous to a product if X is a quotient

$$
X=\left(C_{1} \times \ldots \times C_{n}\right) / G
$$

where the C_{i} 's are smooth curves of genus at least two, and G is a finite group acting freely on $C_{1} \times \ldots \times C_{n}$.

- the quotient map $\pi: C_{1} \times \ldots \times C_{n} \rightarrow\left(C_{1} \times \ldots \times C_{n}\right) / G=X$ is unramified,
$\Rightarrow \quad X$ is smooth, minimal, of general type i.e. $\kappa(X)=n$ and K_{X} is ample
- simple formulas for the invariants in terms of the genera $g\left(C_{i}\right)=h^{0}\left(C_{i}, \Omega_{C_{i}}^{1}\right)$ and the group order:

Properties and Motivation

- simple formulas for the invariants in terms of the genera $g\left(C_{i}\right)=h^{0}\left(C_{i}, \Omega_{C_{i}}^{1}\right)$ and the group order:

Formulas for the invariants:

- simple formulas for the invariants in terms of the genera $g\left(C_{i}\right)=h^{0}\left(C_{i}, \Omega_{C_{i}}^{1}\right)$ and the group order:

Formulas for the invariants:

$$
\chi\left(\mathcal{O}_{X}\right)=\frac{(-1)^{n}}{|G|} \prod_{i=1}^{n}\left(g\left(C_{i}\right)-1\right)
$$

- simple formulas for the invariants in terms of the genera $g\left(C_{i}\right)=h^{0}\left(C_{i}, \Omega_{C_{i}}^{1}\right)$ and the group order:

Formulas for the invariants:

$$
\chi\left(\mathcal{O}_{X}\right)=\frac{(-1)^{n}}{|G|} \prod_{i=1}^{n}\left(g\left(C_{i}\right)-1\right), \quad K_{X}^{n}=(-1)^{n} n!2^{n} \chi\left(\mathcal{O}_{X}\right)
$$

- simple formulas for the invariants in terms of the genera $g\left(C_{i}\right)=h^{0}\left(C_{i}, \Omega_{C_{i}}^{1}\right)$ and the group order:

Formulas for the invariants:

$$
\begin{gathered}
\chi\left(\mathcal{O}_{X}\right)=\frac{(-1)^{n}}{|G|} \prod_{i=1}^{n}\left(g\left(C_{i}\right)-1\right), \quad K_{X}^{n}=(-1)^{n} n!2^{n} \chi\left(\mathcal{O}_{X}\right) \\
e(X)=2^{n} \chi\left(\mathcal{O}_{X}\right)
\end{gathered}
$$

- simple formulas for the invariants in terms of the genera $g\left(C_{i}\right)=h^{0}\left(C_{i}, \Omega_{C_{i}}^{1}\right)$ and the group order:

Formulas for the invariants:

$$
\begin{gathered}
\chi\left(\mathcal{O}_{X}\right)=\frac{(-1)^{n}}{|G|} \prod_{i=1}^{n}\left(g\left(C_{i}\right)-1\right), \quad K_{X}^{n}=(-1)^{n} n!2^{n} \chi\left(\mathcal{O}_{X}\right) \\
e(X)=2^{n} \chi\left(\mathcal{O}_{X}\right) .
\end{gathered}
$$

Motivation:

- simple formulas for the invariants in terms of the genera $g\left(C_{i}\right)=h^{0}\left(C_{i}, \Omega_{C_{i}}^{1}\right)$ and the group order:

Formulas for the invariants:

$$
\begin{gathered}
\chi\left(\mathcal{O}_{X}\right)=\frac{(-1)^{n}}{|G|} \prod_{i=1}^{n}\left(g\left(C_{i}\right)-1\right), \quad K_{X}^{n}=(-1)^{n} n!2^{n} \chi\left(\mathcal{O}_{X}\right) \\
e(X)=2^{n} \chi\left(\mathcal{O}_{X}\right) .
\end{gathered}
$$

Motivation:

Why shall we consider varieties isogenous to a product?

- simple formulas for the invariants in terms of the genera $g\left(C_{i}\right)=h^{0}\left(C_{i}, \Omega_{C_{i}}^{1}\right)$ and the group order:

Formulas for the invariants:

$$
\begin{gathered}
\chi\left(\mathcal{O}_{X}\right)=\frac{(-1)^{n}}{|G|} \prod_{i=1}^{n}\left(g\left(C_{i}\right)-1\right), \quad K_{X}^{n}=(-1)^{n} n!2^{n} \chi\left(\mathcal{O}_{X}\right) \\
e(X)=2^{n} \chi\left(\mathcal{O}_{X}\right) .
\end{gathered}
$$

Motivation:

Why shall we consider varieties isogenous to a product?

- find new examples of varieties of general type,
- simple formulas for the invariants in terms of the genera $g\left(C_{i}\right)=h^{0}\left(C_{i}, \Omega_{C_{i}}^{1}\right)$ and the group order:

Formulas for the invariants:

$$
\begin{gathered}
\chi\left(\mathcal{O}_{X}\right)=\frac{(-1)^{n}}{|G|} \prod_{i=1}^{n}\left(g\left(C_{i}\right)-1\right), \quad K_{X}^{n}=(-1)^{n} n!2^{n} \chi\left(\mathcal{O}_{X}\right) \\
e(X)=2^{n} \chi\left(\mathcal{O}_{X}\right) .
\end{gathered}
$$

Motivation:

Why shall we consider varieties isogenous to a product?

- find new examples of varieties of general type,
- interesting relations with group theory and computer algebra.
- take the Fermat curve $C:=\left\{x^{5}+y^{5}+z^{5}=0\right\} \subset \mathbb{P}_{\mathbb{C}}^{2}$ of degree five
- take the Fermat curve $C:=\left\{x^{5}+y^{5}+z^{5}=0\right\} \subset \mathbb{P}_{\mathbb{C}}^{2}$ of degree five
- we define two group actions $\psi_{i}: \mathbb{Z} / 5 \times \mathbb{Z} / 5 \rightarrow \operatorname{Aut}(C)$ via
- take the Fermat curve $C:=\left\{x^{5}+y^{5}+z^{5}=0\right\} \subset \mathbb{P}_{\mathbb{C}}^{2}$ of degree five
- we define two group actions $\psi_{i}: \mathbb{Z} / 5 \times \mathbb{Z} / 5 \rightarrow \operatorname{Aut}(C)$ via

$$
\psi_{1}(a, b)([x: y: z]):=\left[\xi^{a} x: \xi^{b} y: z\right],
$$

- take the Fermat curve $C:=\left\{x^{5}+y^{5}+z^{5}=0\right\} \subset \mathbb{P}_{\mathbb{C}}^{2}$ of degree five
- we define two group actions $\psi_{i}: \mathbb{Z} / 5 \times \mathbb{Z} / 5 \rightarrow \operatorname{Aut}(C)$ via

$$
\begin{aligned}
& \psi_{1}(a, b)([x: y: z]):=\left[\xi^{a} x: \xi^{b} y: z\right], \\
& \psi_{2}(a, b)([x: y: z]):=\left[\xi^{a+3 b} x: \xi^{2 a+4 b} y: z\right], \quad \text { where } \xi:=\exp \left(\frac{2 \pi \sqrt{ }-1}{5}\right) .
\end{aligned}
$$

- take the Fermat curve $C:=\left\{x^{5}+y^{5}+z^{5}=0\right\} \subset \mathbb{P}_{\mathbb{C}}^{2}$ of degree five
- we define two group actions $\psi_{i}: \mathbb{Z} / 5 \times \mathbb{Z} / 5 \rightarrow \operatorname{Aut}(C)$ via

$$
\begin{aligned}
& \psi_{1}(a, b)([x: y: z]):=\left[\xi^{a} x: \xi^{b} y: z\right], \\
& \psi_{2}(a, b)([x: y: z]):=\left[\xi^{a+3 b} x: \xi^{2 a+4 b} y: z\right], \quad \text { where } \xi:=\exp \left(\frac{2 \pi \sqrt{ }-1}{5}\right) .
\end{aligned}
$$

We define an action of $\mathbb{Z} / 5 \times \mathbb{Z} / 5$ on the product $C \times C$ by $\psi_{1} \times \psi_{2}$.

- take the Fermat curve $C:=\left\{x^{5}+y^{5}+z^{5}=0\right\} \subset \mathbb{P}_{\mathbb{C}}^{2}$ of degree five
- we define two group actions $\psi_{i}: \mathbb{Z} / 5 \times \mathbb{Z} / 5 \rightarrow \operatorname{Aut}(C)$ via

$$
\begin{aligned}
& \psi_{1}(a, b)([x: y: z]):=\left[\xi^{a} x: \xi^{b} y: z\right], \\
& \psi_{2}(a, b)([x: y: z]):=\left[\xi^{a+3 b} x: \xi^{2 a+4 b} y: z\right], \quad \text { where } \xi:=\exp \left(\frac{2 \pi \sqrt{ }-1}{5}\right) .
\end{aligned}
$$

We define an action of $\mathbb{Z} / 5 \times \mathbb{Z} / 5$ on the product $C \times C$ by $\psi_{1} \times \psi_{2}$.
The action on the product is free

- take the Fermat curve $C:=\left\{x^{5}+y^{5}+z^{5}=0\right\} \subset \mathbb{P}_{\mathbb{C}}^{2}$ of degree five
- we define two group actions $\psi_{i}: \mathbb{Z} / 5 \times \mathbb{Z} / 5 \rightarrow \operatorname{Aut}(C)$ via

$$
\begin{aligned}
& \psi_{1}(a, b)([x: y: z]):=\left[\xi^{a} x: \xi^{b} y: z\right], \\
& \psi_{2}(a, b)([x: y: z]):=\left[\xi^{a+3 b} x: \xi^{2 a+4 b} y: z\right], \quad \text { where } \xi:=\exp \left(\frac{2 \pi \sqrt{ }-1}{5}\right) .
\end{aligned}
$$

We define an action of $\mathbb{Z} / 5 \times \mathbb{Z} / 5$ on the product $C \times C$ by $\psi_{1} \times \psi_{2}$.
The action on the product is free $\Rightarrow S:=(C \times C) / G$ is a surface isogenous to a product.

- take the Fermat curve $C:=\left\{x^{5}+y^{5}+z^{5}=0\right\} \subset \mathbb{P}_{\mathbb{C}}^{2}$ of degree five
- we define two group actions $\psi_{i}: \mathbb{Z} / 5 \times \mathbb{Z} / 5 \rightarrow \operatorname{Aut}(C)$ via

$$
\begin{aligned}
& \psi_{1}(a, b)([x: y: z]):=\left[\xi^{a} x: \xi^{b} y: z\right], \\
& \psi_{2}(a, b)([x: y: z]):=\left[\xi^{a+3 b} x: \xi^{2 a+4 b} y: z\right], \quad \text { where } \xi:=\exp \left(\frac{2 \pi \sqrt{ }-1}{5}\right) .
\end{aligned}
$$

We define an action of $\mathbb{Z} / 5 \times \mathbb{Z} / 5$ on the product $C \times C$ by $\psi_{1} \times \psi_{2}$.
The action on the product is free $\Rightarrow S:=(C \times C) / G$ is a surface isogenous to a product.

- $g(C)=\frac{1}{2}(5-1)(5-2)=6$
- take the Fermat curve $C:=\left\{x^{5}+y^{5}+z^{5}=0\right\} \subset \mathbb{P}_{\mathbb{C}}^{2}$ of degree five
- we define two group actions $\psi_{i}: \mathbb{Z} / 5 \times \mathbb{Z} / 5 \rightarrow \operatorname{Aut}(C)$ via

$$
\begin{aligned}
& \psi_{1}(a, b)([x: y: z]):=\left[\xi^{a} x: \xi^{b} y: z\right], \\
& \psi_{2}(a, b)([x: y: z]):=\left[\xi^{a+3 b} x: \xi^{2 a+4 b} y: z\right], \quad \text { where } \xi:=\exp \left(\frac{2 \pi \sqrt{ }-1}{5}\right) .
\end{aligned}
$$

We define an action of $\mathbb{Z} / 5 \times \mathbb{Z} / 5$ on the product $C \times C$ by $\psi_{1} \times \psi_{2}$.
The action on the product is free $\Rightarrow S:=(C \times C) / G$ is a surface isogenous to a product.

- $g(C)=\frac{1}{2}(5-1)(5-2)=6 \quad \Rightarrow \quad \chi\left(\mathcal{O}_{S}\right)=\frac{(g(C)-1)^{2}}{25}=1$.

For a surface S of general type it holds $\chi\left(\mathcal{O}_{S}\right) \geq 1$.

For a surface S of general type it holds $\chi\left(\mathcal{O}_{S}\right) \geq 1$.

Boundary case:

For a surface S of general type it holds $\chi\left(\mathcal{O}_{S}\right) \geq 1$.

Boundary case:
$\chi\left(\mathcal{O}_{S}\right)=1$

For a surface S of general type it holds $\chi\left(\mathcal{O}_{S}\right) \geq 1$.

Boundary case:
$\chi\left(\mathcal{O}_{S}\right)=1 \quad \Leftrightarrow \quad p_{g}=q$,

For a surface S of general type it holds $\chi\left(\mathcal{O}_{S}\right) \geq 1$.

Boundary case:

$$
\chi\left(\mathcal{O}_{S}\right)=1 \quad \Leftrightarrow \quad p_{g}=q, \quad \text { where } \quad p_{g}:=h^{0}\left(S, \Omega_{S}^{2}\right)
$$

For a surface S of general type it holds $\chi\left(\mathcal{O}_{S}\right) \geq 1$.

Boundary case: $\chi\left(\mathcal{O}_{S}\right)=1 \Leftrightarrow p_{g}=q, \quad$ where $\quad p_{g}:=h^{0}\left(S, \Omega_{S}^{2}\right) \quad$ and $\quad q:=h^{0}\left(S, \Omega_{S}^{1}\right)$.

For a surface S of general type it holds $\chi\left(\mathcal{O}_{S}\right) \geq 1$.

Boundary case:
$\chi\left(\mathcal{O}_{S}\right)=1 \Leftrightarrow p_{g}=q, \quad$ where $\quad p_{g}:=h^{0}\left(S, \Omega_{S}^{2}\right)$ and $q:=h^{0}\left(S, \Omega_{S}^{1}\right)$.
\Rightarrow we have a complete classification of all surfaces isogenous to a product with $\chi\left(\mathcal{O}_{S}\right)=1$.

For a surface S of general type it holds $\chi\left(\mathcal{O}_{S}\right) \geq 1$.

Boundary case:

$$
\chi\left(\mathcal{O}_{S}\right)=1 \quad \Leftrightarrow \quad p_{g}=q, \quad \text { where } \quad p_{g}:=h^{0}\left(S, \Omega_{S}^{2}\right) \quad \text { and } \quad q:=h^{0}\left(S, \Omega_{S}^{1}\right) .
$$

\Rightarrow we have a complete classification of all surfaces isogenous to a product with

$$
\chi\left(\mathcal{O}_{S}\right)=1
$$

By the classical inequalities from surface geography

$$
2 p_{g} \leq K_{S}^{2} \quad \text { if } \quad q \geq 1 \quad \text { (Debarre) } \quad \text { and } \quad K_{S}^{2} \leq 9 \chi\left(\mathcal{O}_{S}\right)=9 \quad(\mathrm{BMY})
$$

For a surface S of general type it holds $\chi\left(\mathcal{O}_{S}\right) \geq 1$.

Boundary case:

$$
\chi\left(\mathcal{O}_{S}\right)=1 \quad \Leftrightarrow \quad p_{g}=q, \quad \text { where } \quad p_{g}:=h^{0}\left(S, \Omega_{S}^{2}\right) \quad \text { and } \quad q:=h^{0}\left(S, \Omega_{S}^{1}\right)
$$

\Rightarrow we have a complete classification of all surfaces isogenous to a product with

$$
\chi\left(\mathcal{O}_{S}\right)=1
$$

By the classical inequalities from surface geography

$$
\begin{gathered}
2 p_{g} \leq K_{S}^{2} \quad \text { if } \quad q \geq 1 \quad \text { (Debarre) } \quad \text { and } \quad K_{S}^{2} \leq 9 \chi\left(\mathcal{O}_{S}\right)=9 \quad(\mathrm{BMY}) . \\
\Rightarrow \quad \text { we conclude: } \quad 0 \leq p_{g}=q \leq 4
\end{gathered}
$$

For a surface S of general type it holds $\chi\left(\mathcal{O}_{S}\right) \geq 1$.

Boundary case:

$$
\chi\left(\mathcal{O}_{S}\right)=1 \quad \Leftrightarrow \quad p_{g}=q, \quad \text { where } \quad p_{g}:=h^{0}\left(S, \Omega_{S}^{2}\right) \quad \text { and } \quad q:=h^{0}\left(S, \Omega_{S}^{1}\right)
$$

\Rightarrow we have a complete classification of all surfaces isogenous to a product with

$$
\chi\left(\mathcal{O}_{S}\right)=1
$$

By the classical inequalities from surface geography

$$
\begin{gathered}
2 p_{g} \leq K_{S}^{2} \quad \text { if } \quad q \geq 1 \quad \text { (Debarre) and } \quad K_{S}^{2} \leq 9 \chi\left(\mathcal{O}_{S}\right)=9 \quad(\mathrm{BMY}) \\
\Rightarrow \quad \text { we conclude: } \quad 0 \leq p_{g}=q \leq 4
\end{gathered}
$$

The classifications are due to

For a surface S of general type it holds $\chi\left(\mathcal{O}_{S}\right) \geq 1$.

Boundary case:

$$
\chi\left(\mathcal{O}_{S}\right)=1 \quad \Leftrightarrow \quad p_{g}=q, \quad \text { where } \quad p_{g}:=h^{0}\left(S, \Omega_{S}^{2}\right) \quad \text { and } \quad q:=h^{0}\left(S, \Omega_{S}^{1}\right)
$$

\Rightarrow we have a complete classification of all surfaces isogenous to a product with

$$
\chi\left(\mathcal{O}_{S}\right)=1
$$

By the classical inequalities from surface geography

$$
\begin{gathered}
2 p_{g} \leq K_{S}^{2} \quad \text { if } \quad q \geq 1 \quad \text { (Debarre) and } \quad K_{S}^{2} \leq 9 \chi\left(\mathcal{O}_{S}\right)=9 \quad(\mathrm{BMY}) \\
\Rightarrow \quad \text { we conclude: } \quad 0 \leq p_{g}=q \leq 4
\end{gathered}
$$

The classifications are due to

- Bauer, Catanese, Grunewald [BCG08] for $p_{g}=q=0$,

For a surface S of general type it holds $\chi\left(\mathcal{O}_{S}\right) \geq 1$.

Boundary case:

$$
\chi\left(\mathcal{O}_{S}\right)=1 \quad \Leftrightarrow \quad p_{g}=q, \quad \text { where } \quad p_{g}:=h^{0}\left(S, \Omega_{S}^{2}\right) \quad \text { and } \quad q:=h^{0}\left(S, \Omega_{S}^{1}\right)
$$

\Rightarrow we have a complete classification of all surfaces isogenous to a product with

$$
\chi\left(\mathcal{O}_{S}\right)=1
$$

By the classical inequalities from surface geography

$$
\begin{gathered}
2 p_{g} \leq K_{S}^{2} \quad \text { if } \quad q \geq 1 \quad \text { (Debarre) } \quad \text { and } \quad K_{S}^{2} \leq 9 \chi\left(\mathcal{O}_{S}\right)=9 \quad(\mathrm{BMY}) \\
\\
\Rightarrow \quad \text { we conclude: } \quad 0 \leq p_{g}=q \leq 4
\end{gathered}
$$

The classifications are due to

- Bauer, Catanese, Grunewald [BCG08] for $p_{g}=q=0$,
- Carnovale, Polizzi [CP09] for $p_{g}=q=1$ and

For a surface S of general type it holds $\chi\left(\mathcal{O}_{S}\right) \geq 1$.

Boundary case:

$$
\chi\left(\mathcal{O}_{S}\right)=1 \quad \Leftrightarrow \quad p_{g}=q, \quad \text { where } \quad p_{g}:=h^{0}\left(S, \Omega_{S}^{2}\right) \quad \text { and } \quad q:=h^{0}\left(S, \Omega_{S}^{1}\right)
$$

\Rightarrow we have a complete classification of all surfaces isogenous to a product with

$$
\chi\left(\mathcal{O}_{S}\right)=1
$$

By the classical inequalities from surface geography

$$
\begin{gathered}
2 p_{g} \leq K_{S}^{2} \quad \text { if } \quad q \geq 1 \quad \text { (Debarre) } \quad \text { and } \quad K_{S}^{2} \leq 9 \chi\left(\mathcal{O}_{S}\right)=9 \quad(\mathrm{BMY}) \\
\quad \Rightarrow \quad \text { we conclude: } \quad 0 \leq p_{g}=q \leq 4
\end{gathered}
$$

The classifications are due to

- Bauer, Catanese, Grunewald [BCG08] for $p_{g}=q=0$,
- Carnovale, Polizzi [CP09] for $p_{g}=q=1$ and
- Penegini [Pe10] for $p_{g}=q=2$.

All minimal surfaces of general type with $p_{g}=q=3$ and 4 are classified!

All minimal surfaces of general type with $p_{g}=q=3$ and 4 are classified!

- In the case $p_{g}=q=4$ the surface S is a product of two genus two curves (see [Bea82]).

All minimal surfaces of general type with $p_{g}=q=3$ and 4 are classified!

- In the case $p_{g}=q=4$ the surface S is a product of two genus two curves (see [Bea82]).
- In the case $p_{g}=q=3$ it is either the symmetric square of a curve of genus three or

All minimal surfaces of general type with $p_{g}=q=3$ and 4 are classified!

- In the case $p_{g}=q=4$ the surface S is a product of two genus two curves (see [Bea82]).
- In the case $p_{g}=q=3$ it is either the symmetric square of a curve of genus three or

$$
S=(C \times D) /\langle\tau\rangle, \quad \text { where } \quad \operatorname{ord}(\tau)=2, \quad g(C)=3, \quad g(D)=2
$$

All minimal surfaces of general type with $p_{g}=q=3$ and 4 are classified!

- In the case $p_{g}=q=4$ the surface S is a product of two genus two curves (see [Bea82]).
- In the case $p_{g}=q=3$ it is either the symmetric square of a curve of genus three or

$$
S=(C \times D) /\langle\tau\rangle, \quad \text { where } \quad \operatorname{ord}(\tau)=2, \quad g(C)=3, \quad g(D)=2
$$

(see [CCML98, Pir02, HP02]).

We want to achieve analogous classification results in higher dimension.

We want to achieve analogous classification results in higher dimension.
(As a first step in dimension three.)

Theorem (Catanese)

Let D_{1}, \ldots, D_{k} be pairwise non-isomorphic curves with $g\left(D_{i}\right) \geq 2$, then

$$
\operatorname{Aut}\left(D_{1}^{n_{1}} \times \ldots \times D_{k}^{n_{k}}\right)=\left(\operatorname{Aut}\left(D_{1}\right)^{n_{1}} \rtimes \mathfrak{S}_{n_{1}}\right) \times \ldots \times\left(\operatorname{Aut}\left(D_{k}\right)^{n_{k}} \rtimes \mathfrak{S}_{n_{k}}\right)
$$

for all positive integers n_{i}.

Theorem (Catanese)

Let D_{1}, \ldots, D_{k} be pairwise non-isomorphic curves with $g\left(D_{i}\right) \geq 2$, then

$$
\operatorname{Aut}\left(D_{1}^{n_{1}} \times \ldots \times D_{k}^{n_{k}}\right)=\left(\operatorname{Aut}\left(D_{1}\right)^{n_{1}} \rtimes \mathfrak{S}_{n_{1}}\right) \times \ldots \times\left(\operatorname{Aut}\left(D_{k}\right)^{n_{k}} \rtimes \mathfrak{S}_{n_{k}}\right)
$$

for all positive integers n_{i}.

Let $X=\left(C_{1} \times \ldots \times C_{n}\right) / G$ be a variety isogenous to a product.

Theorem (Catanese)

Let D_{1}, \ldots, D_{k} be pairwise non-isomorphic curves with $g\left(D_{i}\right) \geq 2$, then

$$
\operatorname{Aut}\left(D_{1}^{n_{1}} \times \ldots \times D_{k}^{n_{k}}\right)=\left(\operatorname{Aut}\left(D_{1}\right)^{n_{1}} \rtimes \mathfrak{S}_{n_{1}}\right) \times \ldots \times\left(\operatorname{Aut}\left(D_{k}\right)^{n_{k}} \rtimes \mathfrak{S}_{n_{k}}\right)
$$

for all positive integers n_{i}.

Let $X=\left(C_{1} \times \ldots \times C_{n}\right) / G$ be a variety isogenous to a product.
Then $G / G^{0} \leq \mathfrak{S}_{n}, \quad$ where $\quad G^{0}:=G \cap\left[\operatorname{Aut}\left(C_{1}\right) \times \ldots \times \operatorname{Aut}\left(C_{n}\right)\right]$.

Theorem (Catanese)

Let D_{1}, \ldots, D_{k} be pairwise non-isomorphic curves with $g\left(D_{i}\right) \geq 2$, then

$$
\operatorname{Aut}\left(D_{1}^{n_{1}} \times \ldots \times D_{k}^{n_{k}}\right)=\left(\operatorname{Aut}\left(D_{1}\right)^{n_{1}} \rtimes \mathfrak{S}_{n_{1}}\right) \times \ldots \times\left(\operatorname{Aut}\left(D_{k}\right)^{n_{k}} \rtimes \mathfrak{S}_{n_{k}}\right)
$$

for all positive integers n_{i}.

Let $X=\left(C_{1} \times \ldots \times C_{n}\right) / G$ be a variety isogenous to a product.
Then $G / G^{0} \leq \mathfrak{S}_{n}, \quad$ where $\quad G^{0}:=G \cap\left[\operatorname{Aut}\left(C_{1}\right) \times \ldots \times \operatorname{Aut}\left(C_{n}\right)\right]$.

Definition

A variety X isogenous to a product is of unmixed type iff $G^{0}=G$, otherwise we say that X is of mixed type.

- in Beauvilles example we had an explicit description in terms of equations
- in Beauvilles example we had an explicit description in terms of equations
- in general it is hard to work with equations
- in Beauvilles example we had an explicit description in terms of equations
- in general it is hard to work with equations \Rightarrow abstract description
- in Beauvilles example we had an explicit description in terms of equations
- in general it is hard to work with equations \Rightarrow abstract description
- idea: attach to a variety isogenous to a product

$$
X \simeq\left(C_{1} \times \ldots \times C_{n}\right) / G
$$

certain kind of combinatorial data:

- in Beauvilles example we had an explicit description in terms of equations
- in general it is hard to work with equations \Rightarrow abstract description
- idea: attach to a variety isogenous to a product

$$
X \simeq\left(C_{1} \times \ldots \times C_{n}\right) / G
$$

certain kind of combinatorial data: the group G, the genera $g\left(C_{i}\right)$ etc.

From now on we focus on the simplest case in dimension three:

From now on we focus on the simplest case in dimension three:

Our assumptions:

From now on we focus on the simplest case in dimension three:

Our assumptions:

- the action on $C_{1} \times C_{2} \times C_{3}$ is unmixed i.e

From now on we focus on the simplest case in dimension three:

Our assumptions:

- the action on $C_{1} \times C_{2} \times C_{3}$ is unmixed i.e

$$
g(x, y, z)=(g \cdot x, g \cdot y, g \cdot z) \quad \forall \quad g \in G
$$

From now on we focus on the simplest case in dimension three:

Our assumptions:

- the action on $C_{1} \times C_{2} \times C_{3}$ is unmixed i.e

$$
g(x, y, z)=(g \cdot x, g \cdot y, g \cdot z) \quad \forall \quad g \in G
$$

- Gembeds in $\operatorname{Aut}\left(C_{i}\right)$ for all $1 \leq i \leq 3$

From now on we focus on the simplest case in dimension three:

Our assumptions:

- the action on $C_{1} \times C_{2} \times C_{3}$ is unmixed i.e

$$
g(x, y, z)=(g \cdot x, g \cdot y, g \cdot z) \quad \forall g \in G
$$

- Gembeds in $\operatorname{Aut}\left(C_{i}\right)$ for all $1 \leq i \leq 3$
\Rightarrow to go on, we need to understand faithful group actions on curves in greater detail

A faithful group action $\psi: G \rightarrow \operatorname{Aut}(C)$ is given and completely determined by:

Riemann's Existence Theorem

A faithful group action $\psi: G \rightarrow \operatorname{Aut}(C)$ is given and completely determined by:

- a compact Riemann surface C^{\prime},

Riemann’s Existence Theorem

A faithful group action $\psi: G \rightarrow \operatorname{Aut}(C)$ is given and completely determined by:

- a compact Riemann surface C^{\prime},
- a finite set $\mathcal{B} \subset C^{\prime}$ (the branch points) and

Riemann's Existence Theorem

A faithful group action $\psi: G \rightarrow \operatorname{Aut}(C)$ is given and completely determined by:

- a compact Riemann surface C^{\prime},
- a finite set $\mathcal{B} \subset C^{\prime}$ (the branch points) and
- a surjective homomorphism $\eta: \pi_{1}\left(C^{\prime} \backslash \mathcal{B}, q_{0}\right) \rightarrow G$

Riemann's Existence Theorem

A faithful group action $\psi: G \rightarrow \operatorname{Aut}(C)$ is given and completely determined by:

- a compact Riemann surface C^{\prime},
- a finite set $\mathcal{B} \subset C^{\prime}$ (the branch points) and
- a surjective homomorphism $\eta: \pi_{1}\left(C^{\prime} \backslash \mathcal{B}, q_{0}\right) \rightarrow G \quad$ (the monodromy map).

Riemann's Existence Theorem

A faithful group action $\psi: G \rightarrow \operatorname{Aut}(C)$ is given and completely determined by:

- a compact Riemann surface C^{\prime},
- a finite set $\mathcal{B} \subset C^{\prime}$ (the branch points) and
- a surjective homomorphism $\eta: \pi_{1}\left(C^{\prime} \backslash \mathcal{B}, q_{0}\right) \rightarrow G \quad$ (the monodromy map).

The fundamental group of $C^{\prime} \backslash \mathcal{B}$ has a presentation of the form

Riemann's Existence Theorem

A faithful group action $\psi: G \rightarrow \operatorname{Aut}(C)$ is given and completely determined by:

- a compact Riemann surface C^{\prime},
- a finite set $\mathcal{B} \subset C^{\prime}$ (the branch points) and
- a surjective homomorphism $\eta: \pi_{1}\left(C^{\prime} \backslash \mathcal{B}, q_{0}\right) \rightarrow G \quad$ (the monodromy map).

The fundamental group of $C^{\prime} \backslash \mathcal{B}$ has a presentation of the form

$$
\pi_{1}\left(C^{\prime} \backslash \mathcal{B}, q_{0}\right)=\left\langle\gamma_{1}, \ldots, \gamma_{r}, \alpha_{1}, \beta_{1}, \ldots, \alpha_{g^{\prime}}, \beta_{g^{\prime}} \mid \gamma_{1} \cdots \gamma_{r} \cdot \prod_{i=1}^{g^{\prime}}\left[\alpha_{i}, \beta_{i}\right]\right\rangle
$$

Riemann's Existence Theorem

A faithful group action $\psi: G \rightarrow \operatorname{Aut}(C)$ is given and completely determined by:

- a compact Riemann surface C^{\prime},
- a finite set $\mathcal{B} \subset C^{\prime}$ (the branch points) and
- a surjective homomorphism $\eta: \pi_{1}\left(C^{\prime} \backslash \mathcal{B}, q_{0}\right) \rightarrow G \quad$ (the monodromy map).

The fundamental group of $C^{\prime} \backslash \mathcal{B}$ has a presentation of the form

$$
\pi_{1}\left(C^{\prime} \backslash \mathcal{B}, q_{0}\right)=\left\langle\gamma_{1}, \ldots, \gamma_{r}, \alpha_{1}, \beta_{1}, \ldots, \alpha_{g^{\prime}}, \beta_{g^{\prime}} \mid \gamma_{1} \cdots \gamma_{r} \cdot \prod_{i=1}^{g^{\prime}}\left[\alpha_{i}, \beta_{i}\right]\right\rangle
$$

- The images of the generators of $\pi_{1}\left(C^{\prime} \backslash \mathcal{B}, q_{0}\right)$ under the monodromy map

$$
h_{i}:=\eta\left(\gamma_{i}\right), \quad a_{i}:=\eta\left(\alpha_{i}\right) \quad \text { and } \quad b_{i}:=\eta\left(\beta_{i}\right)
$$

- The images of the generators of $\pi_{1}\left(C^{\prime} \backslash \mathcal{B}, q_{0}\right)$ under the monodromy map

$$
h_{i}:=\eta\left(\gamma_{i}\right), \quad a_{i}:=\eta\left(\alpha_{i}\right) \quad \text { and } \quad b_{i}:=\eta\left(\beta_{i}\right)
$$

generate G and fulfill the relation

- The images of the generators of $\pi_{1}\left(C^{\prime} \backslash \mathcal{B}, q_{0}\right)$ under the monodromy map

$$
h_{i}:=\eta\left(\gamma_{i}\right), \quad a_{i}:=\eta\left(\alpha_{i}\right) \quad \text { and } \quad b_{i}:=\eta\left(\beta_{i}\right)
$$

generate G and fulfill the relation

$$
h_{1} \cdots h_{r} \cdot \prod_{i=1}^{g^{\prime}}\left[a_{i}, b_{i}\right]=1_{G} .
$$

Riemann's Existence Theorem

- The images of the generators of $\pi_{1}\left(C^{\prime} \backslash \mathcal{B}, q_{0}\right)$ under the monodromy map

$$
h_{i}:=\eta\left(\gamma_{i}\right), \quad a_{i}:=\eta\left(\alpha_{i}\right) \quad \text { and } \quad b_{i}:=\eta\left(\beta_{i}\right)
$$

generate G and fulfill the relation

$$
h_{1} \cdots h_{r} \cdot \prod_{i=1}^{g^{\prime}}\left[a_{i}, b_{i}\right]=1_{G} .
$$

Definition

Let $m_{1}, \ldots, m_{r} \geq 2$ and $g^{\prime} \geq 0$ be integers and G be a finite group.

Riemann's Existence Theorem

- The images of the generators of $\pi_{1}\left(C^{\prime} \backslash \mathcal{B}, q_{0}\right)$ under the monodromy map

$$
h_{i}:=\eta\left(\gamma_{i}\right), \quad a_{i}:=\eta\left(\alpha_{i}\right) \quad \text { and } \quad b_{i}:=\eta\left(\beta_{i}\right)
$$

generate G and fulfill the relation

$$
h_{1} \cdots h_{r} \cdot \prod_{i=1}^{g^{\prime}}\left[a_{i}, b_{i}\right]=1_{G} .
$$

Definition

Let $m_{1}, \ldots, m_{r} \geq 2$ and $g^{\prime} \geq 0$ be integers and G be a finite group. A generating vector of type $\left[g^{\prime} ; m_{1}, \ldots, m_{r}\right.$] is a tuple of elements

Riemann's Existence Theorem

- The images of the generators of $\pi_{1}\left(C^{\prime} \backslash \mathcal{B}, q_{0}\right)$ under the monodromy map

$$
h_{i}:=\eta\left(\gamma_{i}\right), \quad a_{i}:=\eta\left(\alpha_{i}\right) \quad \text { and } \quad b_{i}:=\eta\left(\beta_{i}\right)
$$

generate G and fulfill the relation

$$
h_{1} \cdots h_{r} \cdot \prod_{i=1}^{g^{\prime}}\left[a_{i}, b_{i}\right]=1_{G} .
$$

Definition

Let $m_{1}, \ldots, m_{r} \geq 2$ and $g^{\prime} \geq 0$ be integers and G be a finite group. A generating vector of type $\left[g^{\prime} ; m_{1}, \ldots, m_{r}\right.$] is a tuple of elements

$$
\left(h_{1}, \ldots, h_{r}, a_{1}, b_{1}, \ldots, a_{g^{\prime}}, b_{g^{\prime}}\right)
$$

Riemann's Existence Theorem

- The images of the generators of $\pi_{1}\left(C^{\prime} \backslash \mathcal{B}, q_{0}\right)$ under the monodromy map

$$
h_{i}:=\eta\left(\gamma_{i}\right), \quad a_{i}:=\eta\left(\alpha_{i}\right) \quad \text { and } \quad b_{i}:=\eta\left(\beta_{i}\right)
$$

generate G and fulfill the relation

$$
h_{1} \cdots h_{r} \cdot \prod_{i=1}^{g^{\prime}}\left[a_{i}, b_{i}\right]=1_{G} .
$$

Definition

Let $m_{1}, \ldots, m_{r} \geq 2$ and $g^{\prime} \geq 0$ be integers and G be a finite group. A generating vector of type $\left[g^{\prime} ; m_{1}, \ldots, m_{r}\right.$] is a tuple of elements

$$
\left(h_{1}, \ldots, h_{r}, a_{1}, b_{1}, \ldots, a_{g^{\prime}}, b_{g^{\prime}}\right)
$$

such that

Riemann's Existence Theorem

- The images of the generators of $\pi_{1}\left(C^{\prime} \backslash \mathcal{B}, q_{0}\right)$ under the monodromy map

$$
h_{i}:=\eta\left(\gamma_{i}\right), \quad a_{i}:=\eta\left(\alpha_{i}\right) \quad \text { and } \quad b_{i}:=\eta\left(\beta_{i}\right)
$$

generate G and fulfill the relation

$$
h_{1} \cdots h_{r} \cdot \prod_{i=1}^{g^{\prime}}\left[a_{i}, b_{i}\right]=1_{G} .
$$

Definition

Let $m_{1}, \ldots, m_{r} \geq 2$ and $g^{\prime} \geq 0$ be integers and G be a finite group. A generating vector of type $\left[g^{\prime} ; m_{1}, \ldots, m_{r}\right.$] is a tuple of elements

$$
\left(h_{1}, \ldots, h_{r}, a_{1}, b_{1}, \ldots, a_{g^{\prime}}, b_{g^{\prime}}\right)
$$

such that

- $G=\left\langle h_{1}, \ldots, h_{r}, a_{1}, b_{1}, \ldots, a_{g^{\prime}}, b_{g^{\prime}}\right\rangle$,

Riemann's Existence Theorem

- The images of the generators of $\pi_{1}\left(C^{\prime} \backslash \mathcal{B}, q_{0}\right)$ under the monodromy map

$$
h_{i}:=\eta\left(\gamma_{i}\right), \quad a_{i}:=\eta\left(\alpha_{i}\right) \quad \text { and } \quad b_{i}:=\eta\left(\beta_{i}\right)
$$

generate G and fulfill the relation

$$
h_{1} \cdots h_{r} \cdot \prod_{i=1}^{g^{\prime}}\left[a_{i}, b_{i}\right]=1_{G} .
$$

Definition

Let $m_{1}, \ldots, m_{r} \geq 2$ and $g^{\prime} \geq 0$ be integers and G be a finite group. A generating vector of type $\left[g^{\prime} ; m_{1}, \ldots, m_{r}\right.$] is a tuple of elements

$$
\left(h_{1}, \ldots, h_{r}, a_{1}, b_{1}, \ldots, a_{g^{\prime}}, b_{g^{\prime}}\right)
$$

such that

- $G=\left\langle h_{1}, \ldots, h_{r}, a_{1}, b_{1}, \ldots, a_{g^{\prime}}, b_{g^{\prime}}\right\rangle$,
- $h_{1} \cdots h_{r} \cdot \prod_{i=1}^{g^{\prime}}\left[a_{i}, b_{i}\right]=1_{G}$,

Riemann's Existence Theorem

- The images of the generators of $\pi_{1}\left(C^{\prime} \backslash \mathcal{B}, q_{0}\right)$ under the monodromy map

$$
h_{i}:=\eta\left(\gamma_{i}\right), \quad a_{i}:=\eta\left(\alpha_{i}\right) \quad \text { and } \quad b_{i}:=\eta\left(\beta_{i}\right)
$$

generate G and fulfill the relation

$$
h_{1} \cdots h_{r} \cdot \prod_{i=1}^{g^{\prime}}\left[a_{i}, b_{i}\right]=1_{G} .
$$

Definition

Let $m_{1}, \ldots, m_{r} \geq 2$ and $g^{\prime} \geq 0$ be integers and G be a finite group. A generating vector of type $\left[g^{\prime} ; m_{1}, \ldots, m_{r}\right.$] is a tuple of elements

$$
\left(h_{1}, \ldots, h_{r}, a_{1}, b_{1}, \ldots, a_{g^{\prime}}, b_{g^{\prime}}\right)
$$

such that

- $G=\left\langle h_{1}, \ldots, h_{r}, a_{1}, b_{1}, \ldots, a_{g^{\prime}}, b_{g^{\prime}}\right\rangle$,
- $h_{1} \cdots h_{r} \cdot \prod_{i=1}^{g^{\prime}}\left[a_{i}, b_{i}\right]=1_{G}$,
- $\operatorname{ord}\left(h_{i}\right)=m_{i} \quad$ for all $1 \leq i \leq r$.
- given a threefold isogenous to a product

$$
X=\left(C_{1} \times C_{2} \times C_{3}\right) / G
$$

Group theoretical description

- given a threefold isogenous to a product

$$
X=\left(C_{1} \times C_{2} \times C_{3}\right) / G
$$

we choose three generating vectors V_{1}, V_{2} and V_{3} corresponding to the induced group actions

$$
\psi_{i}: G \rightarrow \operatorname{Aut}\left(C_{i}\right)
$$

(Riemann's Existence Theorem)

Group theoretical description

- given a threefold isogenous to a product

$$
X=\left(C_{1} \times C_{2} \times C_{3}\right) / G
$$

we choose three generating vectors V_{1}, V_{2} and V_{3} corresponding to the induced group actions

$$
\psi_{i}: G \rightarrow \operatorname{Aut}\left(C_{i}\right)
$$

(Riemann's Existence Theorem)

- the 4-tuple (G, V_{1}, V_{2}, V_{3}) is called an algebraic datum of X
- given a threefold isogenous to a product

$$
X=\left(C_{1} \times C_{2} \times C_{3}\right) / G
$$

we choose three generating vectors V_{1}, V_{2} and V_{3} corresponding to the induced group actions

$$
\psi_{i}: G \rightarrow \operatorname{Aut}\left(C_{i}\right)
$$

(Riemann's Existence Theorem)

- the 4-tuple (G, V_{1}, V_{2}, V_{3}) is called an algebraic datum of X
- we define the stabilizer set of a generating vector
$V=\left(h_{1}, \ldots, h_{r}, a_{1}, b_{1}, \ldots, a_{g^{\prime}}, b_{g^{\prime}}\right)$ as
- given a threefold isogenous to a product

$$
X=\left(C_{1} \times C_{2} \times C_{3}\right) / G
$$

we choose three generating vectors V_{1}, V_{2} and V_{3} corresponding to the induced group actions

$$
\psi_{i}: G \rightarrow \operatorname{Aut}\left(C_{i}\right)
$$

(Riemann's Existence Theorem)

- the 4-tuple (G, V_{1}, V_{2}, V_{3}) is called an algebraic datum of X
- we define the stabilizer set of a generating vector
$V=\left(h_{1}, \ldots, h_{r}, a_{1}, b_{1}, \ldots, a_{g^{\prime}}, b_{g^{\prime}}\right)$ as

$$
\Sigma_{V}:=\bigcup_{g \in G} \bigcup_{i \in \mathbb{Z}} \bigcup_{j=1}^{r}\left\{g h_{j}^{i} g^{-1}\right\}
$$

- given a threefold isogenous to a product

$$
X=\left(C_{1} \times C_{2} \times C_{3}\right) / G
$$

we choose three generating vectors V_{1}, V_{2} and V_{3} corresponding to the induced group actions

$$
\psi_{i}: G \rightarrow \operatorname{Aut}\left(C_{i}\right)
$$

(Riemann's Existence Theorem)

- the 4-tuple (G, V_{1}, V_{2}, V_{3}) is called an algebraic datum of X
- we define the stabilizer set of a generating vector
$V=\left(h_{1}, \ldots, h_{r}, a_{1}, b_{1}, \ldots, a_{g^{\prime}}, b_{g^{\prime}}\right)$ as

$$
\Sigma_{V}:=\bigcup_{g \in G} \bigcup_{i \in \mathbb{Z}} \bigcup_{j=1}^{r}\left\{g h_{j}^{i} g^{-1}\right\}
$$

- the freeness of the G-action on the product $C_{1} \times C_{2} \times C_{3}$ is reflected by the condition
- given a threefold isogenous to a product

$$
X=\left(C_{1} \times C_{2} \times C_{3}\right) / G
$$

we choose three generating vectors V_{1}, V_{2} and V_{3} corresponding to the induced group actions

$$
\psi_{i}: G \rightarrow \operatorname{Aut}\left(C_{i}\right)
$$

(Riemann's Existence Theorem)

- the 4-tuple (G, V_{1}, V_{2}, V_{3}) is called an algebraic datum of X
- we define the stabilizer set of a generating vector
$V=\left(h_{1}, \ldots, h_{r}, a_{1}, b_{1}, \ldots, a_{g^{\prime}}, b_{g^{\prime}}\right)$ as

$$
\Sigma_{V}:=\bigcup_{g \in G} \bigcup_{i \in \mathbb{Z}} \bigcup_{j=1}^{r}\left\{g h_{j}^{i} g^{-1}\right\}
$$

- the freeness of the G-action on the product $C_{1} \times C_{2} \times C_{3}$ is reflected by the condition

$$
\Sigma_{V_{1}} \cap \Sigma_{V_{2}} \cap \Sigma_{V_{3}}=\left\{1_{G}\right\} .
$$

Riemann's Existence Theorem also provides a way back:

Riemann's Existence Theorem also provides a way back:

- Let $\left(G, V_{1}, V_{2}, V_{3}\right)$ be a 4-tuple, where V_{i} are generating vectors for the group G such that

Riemann's Existence Theorem also provides a way back:

- Let $\left(G, V_{1}, V_{2}, V_{3}\right)$ be a 4-tuple, where V_{i} are generating vectors for the group G such that

$$
\Sigma_{V_{1}} \cap \Sigma_{V_{2}} \cap \Sigma_{V_{3}}=\left\{1_{G}\right\}
$$

Riemann's Existence Theorem also provides a way back:

- Let $\left(G, V_{1}, V_{2}, V_{3}\right)$ be a 4-tuple, where V_{i} are generating vectors for the group G such that

$$
\Sigma_{V_{1}} \cap \Sigma_{V_{2}} \cap \Sigma_{V_{3}}=\left\{1_{G}\right\}
$$

then $\left(G, V_{1}, V_{2}, V_{3}\right)$ is an algebraic datum of a threefold X isogenous to a product.

Riemann's Existence Theorem also provides a way back:

- Let $\left(G, V_{1}, V_{2}, V_{3}\right)$ be a 4-tuple, where V_{i} are generating vectors for the group G such that

$$
\Sigma_{V_{1}} \cap \Sigma_{V_{2}} \cap \Sigma_{V_{3}}=\left\{1_{G}\right\}
$$

then $\left(G, V_{1}, V_{2}, V_{3}\right)$ is an algebraic datum of a threefold X isogenous to a product.
certain geometric properties of X are encoded in $\left(G, V_{1}, V_{2}, V_{3}\right)$

Riemann's Existence Theorem also provides a way back:

- Let $\left(G, V_{1}, V_{2}, V_{3}\right)$ be a 4-tuple, where V_{i} are generating vectors for the group G such that

$$
\Sigma_{V_{1}} \cap \Sigma_{V_{2}} \cap \Sigma_{V_{3}}=\left\{1_{G}\right\}
$$

then $\left(G, V_{1}, V_{2}, V_{3}\right)$ is an algebraic datum of a threefold X isogenous to a product.
certain geometric properties of X are encoded in $\left(G, V_{1}, V_{2}, V_{3}\right)$

In the following, we show that:

Riemann's Existence Theorem also provides a way back:

- Let $\left(G, V_{1}, V_{2}, V_{3}\right)$ be a 4-tuple, where V_{i} are generating vectors for the group G such that

$$
\Sigma_{V_{1}} \cap \Sigma_{V_{2}} \cap \Sigma_{V_{3}}=\left\{1_{G}\right\}
$$

then $\left(G, V_{1}, V_{2}, V_{3}\right)$ is an algebraic datum of a threefold X isogenous to a product.
certain geometric properties of X are encoded in $\left(G, V_{1}, V_{2}, V_{3}\right)$

In the following, we show that:

- the Hodge numbers $h^{p, q}(X):=\operatorname{dim} H^{p, q}(X)=\operatorname{dim} H^{q}\left(X, \Omega_{X}^{p}\right)$ and

Riemann's Existence Theorem also provides a way back:

- Let $\left(G, V_{1}, V_{2}, V_{3}\right)$ be a 4-tuple, where V_{i} are generating vectors for the group G such that

$$
\Sigma_{V_{1}} \cap \Sigma_{V_{2}} \cap \Sigma_{V_{3}}=\left\{1_{G}\right\}
$$

then $\left(G, V_{1}, V_{2}, V_{3}\right)$ is an algebraic datum of a threefold X isogenous to a product.
certain geometric properties of X are encoded in $\left(G, V_{1}, V_{2}, V_{3}\right)$

In the following, we show that:

- the Hodge numbers $h^{p, q}(X):=\operatorname{dim} H^{p, q}(X)=\operatorname{dim} H^{q}\left(X, \Omega_{X}^{p}\right)$ and
- the fundamental group $\pi_{1}(X)$ can be determined from an algebraic datum (G, V_{1}, V_{2}, V_{3}) of X.

We start with the Hodge numbers of X

We start with the Hodge numbers of X

- the G action on $C_{1} \times C_{2} \times C_{3}$ induces representations

Hodge Theory and Representations

We start with the Hodge numbers of X

- the G action on $C_{1} \times C_{2} \times C_{3}$ induces representations

$$
\phi_{p, q}: G \rightarrow G L\left(H^{p, q}\left(C_{1} \times C_{2} \times C_{3}\right)\right), \quad g \mapsto\left[\omega \mapsto\left(g^{-1}\right)^{*} \omega\right]
$$

Hodge Theory and Representations

We start with the Hodge numbers of X

- the G action on $C_{1} \times C_{2} \times C_{3}$ induces representations

$$
\phi_{p, q}: G \rightarrow G L\left(H^{p, q}\left(C_{1} \times C_{2} \times C_{3}\right)\right), \quad g \mapsto\left[\omega \mapsto\left(g^{-1}\right)^{*} \omega\right]
$$

with characters $\chi_{p, q}$

Hodge Theory and Representations

We start with the Hodge numbers of X

- the G action on $C_{1} \times C_{2} \times C_{3}$ induces representations

$$
\phi_{p, q}: G \rightarrow G L\left(H^{p, q}\left(C_{1} \times C_{2} \times C_{3}\right)\right), \quad g \mapsto\left[\omega \mapsto\left(g^{-1}\right)^{*} \omega\right]
$$

with characters $\chi_{p, q}$

- let $\chi_{\text {triv }}$ be the trivial character of G, then

Hodge Theory and Representations

We start with the Hodge numbers of X

- the G action on $C_{1} \times C_{2} \times C_{3}$ induces representations

$$
\phi_{p, q}: G \rightarrow G L\left(H^{p, q}\left(C_{1} \times C_{2} \times C_{3}\right)\right), \quad g \mapsto\left[\omega \mapsto\left(g^{-1}\right)^{*} \omega\right]
$$

with characters $\chi_{p, q}$

- let $\chi_{\text {triv }}$ be the trivial character of G, then

$$
\Rightarrow \quad h^{p, q}(X)=\operatorname{dim} H^{p, q}\left(C_{1} \times C_{2} \times C_{3}\right)^{G}=\left\langle\chi_{p, q}, \chi_{\text {triv }}\right\rangle
$$

Hodge Theory and Representations

We start with the Hodge numbers of X

- the G action on $C_{1} \times C_{2} \times C_{3}$ induces representations

$$
\phi_{p, q}: G \rightarrow G L\left(H^{p, q}\left(C_{1} \times C_{2} \times C_{3}\right)\right), \quad g \mapsto\left[\omega \mapsto\left(g^{-1}\right)^{*} \omega\right]
$$

with characters $\chi_{p, q}$

- let $\chi_{\text {triv }}$ be the trivial character of G, then

$$
\Rightarrow \quad h^{p, q}(X)=\operatorname{dim} H^{p, q}\left(C_{1} \times C_{2} \times C_{3}\right)^{G}=\left\langle\chi_{p, q}, \chi_{\text {triv }}\right\rangle
$$

- the G action on C_{i} also induces representations:

Hodge Theory and Representations

We start with the Hodge numbers of X

- the G action on $C_{1} \times C_{2} \times C_{3}$ induces representations

$$
\phi_{p, q}: G \rightarrow G L\left(H^{p, q}\left(C_{1} \times C_{2} \times C_{3}\right)\right), \quad g \mapsto\left[\omega \mapsto\left(g^{-1}\right)^{*} \omega\right]
$$

with characters $\chi_{p, q}$

- let $\chi_{\text {triv }}$ be the trivial character of G, then

$$
\Rightarrow \quad h^{p, q}(X)=\operatorname{dim} H^{p, q}\left(C_{1} \times C_{2} \times C_{3}\right)^{G}=\left\langle\chi_{p, q}, \chi_{\text {triv }}\right\rangle
$$

- the G action on C_{i} also induces representations:

$$
\varphi_{i}: G \rightarrow G L\left(H^{1,0}\left(C_{i}\right)\right)
$$

We start with the Hodge numbers of X

- the G action on $C_{1} \times C_{2} \times C_{3}$ induces representations

$$
\phi_{p, q}: G \rightarrow G L\left(H^{p, q}\left(C_{1} \times C_{2} \times C_{3}\right)\right), \quad g \mapsto\left[\omega \mapsto\left(g^{-1}\right)^{*} \omega\right]
$$

with characters $\chi_{p, q}$

- let $\chi_{\text {triv }}$ be the trivial character of G, then

$$
\Rightarrow \quad h^{p, q}(X)=\operatorname{dim} H^{p, q}\left(C_{1} \times C_{2} \times C_{3}\right)^{G}=\left\langle\chi_{p, q}, \chi_{\text {triv }}\right\rangle
$$

- the G action on C_{i} also induces representations:

$$
\varphi_{i}: G \rightarrow G L\left(H^{1,0}\left(C_{i}\right)\right)
$$

Idea: determine the characters $\chi_{p, q}$ in terms of the characters $\chi_{\varphi_{i}}$

Hodge Theory and Representations

The relation between the characters $\chi_{p, q}$ and $\chi_{\varphi_{i}}$ is provided by Künneth's formula:

Hodge Theory and Representations

The relation between the characters $\chi_{p, q}$ and $\chi_{\varphi_{i}}$ is provided by Künneth's formula:

$$
H^{p, q}\left(C_{1} \times C_{2} \times C_{3}\right)=\bigoplus_{\substack{s_{1}+s_{2}+s_{3}=p \\ t_{1}+t_{2}+t_{3}=q}} H^{s_{1}, t_{1}}\left(C_{1}\right) \otimes H^{s_{2}, t_{2}}\left(C_{2}\right) \otimes H^{s_{3}, t_{3}}\left(C_{3}\right)
$$

Hodge Theory and Representations

The relation between the characters $\chi_{p, q}$ and $\chi_{\varphi_{i}}$ is provided by Künneth's formula:

$$
H^{p, q}\left(C_{1} \times C_{2} \times C_{3}\right)=\bigoplus_{\substack{s_{1}+s_{2}+s_{3}=p \\ t_{1}+t_{2}+t_{3}=q}} H^{s_{1}, t_{1}}\left(C_{1}\right) \otimes H^{s_{2}, t_{2}}\left(C_{2}\right) \otimes H^{s_{3}, t_{3}}\left(C_{3}\right)
$$

Proposition

- $\chi_{1,0}=\chi_{\varphi_{1}}+\chi_{\varphi_{2}}+\chi_{\varphi_{3}}$,
- $\chi_{1,1}=2 \mathfrak{R e}\left(\chi_{\varphi_{1}} \overline{\chi_{\varphi_{2}}}+\chi_{\varphi_{1}} \overline{\chi_{\varphi_{3}}}+\chi_{\varphi_{2}} \overline{\chi_{\varphi_{3}}}\right)+3 \chi_{\text {triv }}$,
- $\chi_{2,0}=\chi_{\varphi_{1}} \chi_{\varphi_{2}}+\chi_{\varphi_{1}} \chi_{\varphi_{3}}+\chi_{\varphi_{2}} \chi_{\varphi_{3}}$,
- $\chi_{2,1}=\overline{\chi_{\varphi_{1}}} \chi_{\varphi_{2}} \chi_{\varphi_{3}}+\chi_{\varphi_{1}} \overline{\chi_{\varphi_{2}}} \chi_{\varphi_{3}}+\chi_{\varphi_{1}} \chi_{\varphi_{2}} \overline{\chi_{\varphi_{3}}}+2\left(\chi_{\varphi_{1}}+\chi_{\varphi_{2}}+\chi_{\varphi_{3}}\right)$,
- $\chi_{3,0}=\chi_{\varphi_{1}} \chi_{\varphi_{2}} \chi_{\varphi_{3}}$,
- $\chi_{q, p}=\overline{\chi p, q}$.

Hodge Theory and Representations

The relation between the characters $\chi_{p, q}$ and $\chi_{\varphi_{i}}$ is provided by Künneth's formula:

$$
H^{p, q}\left(C_{1} \times C_{2} \times C_{3}\right)=\bigoplus_{\substack{s_{1}+s_{2}+s_{3}=p \\ t_{1}+t_{2}+t_{3}=q}} H^{s_{1}, t_{1}}\left(C_{1}\right) \otimes H^{s_{2}, t_{2}}\left(C_{2}\right) \otimes H^{s_{3}, t_{3}}\left(C_{3}\right)
$$

Proposition

- $\chi_{1,0}=\chi_{\varphi_{1}}+\chi_{\varphi_{2}}+\chi_{\varphi_{3}}$,
- $\chi_{1,1}=2 \mathfrak{R e}\left(\chi_{\varphi_{1}} \overline{\chi_{\varphi_{2}}}+\chi_{\varphi_{1}} \overline{\chi_{\varphi_{3}}}+\chi_{\varphi_{2}} \overline{\chi_{\varphi_{3}}}\right)+3 \chi_{\text {triv }}$,
- $\chi_{2,0}=\chi_{\varphi_{1}} \chi_{\varphi_{2}}+\chi_{\varphi_{1}} \chi_{\varphi_{3}}+\chi_{\varphi_{2}} \chi_{\varphi_{3}}$,
- $\chi_{2,1}=\overline{\chi_{\varphi_{1}}} \chi_{\varphi_{2}} \chi_{\varphi_{3}}+\chi_{\varphi_{1}} \overline{\chi_{\varphi_{2}}} \chi_{\varphi_{3}}+\chi_{\varphi_{1}} \chi_{\varphi_{2}} \overline{\chi_{\varphi_{3}}}+2\left(\chi_{\varphi_{1}}+\chi_{\varphi_{2}}+\chi_{\varphi_{3}}\right)$,
- $\chi_{3,0}=\chi_{\varphi_{1}} \chi_{\varphi_{2}} \chi_{\varphi_{3}}$,
- $\chi_{q, p}=\overline{\chi_{p, q}}$.
$\Rightarrow \quad$ it remains determine the character of a representation $\varphi: G \rightarrow G L\left(H^{1,0}(C)\right)$ induced by an action $\psi: G \rightarrow \operatorname{Aut}(C)$ in terms of a generating vector

Hodge Theory and Representations

The relation between the characters $\chi_{p, q}$ and $\chi_{\varphi_{i}}$ is provided by Künneth's formula:

$$
H^{p, q}\left(C_{1} \times C_{2} \times C_{3}\right)=\bigoplus_{\substack{s_{1}+s_{2}+s_{3}=p \\ t_{1}+t_{2}+t_{3}=q}} H^{s_{1}, t_{1}}\left(C_{1}\right) \otimes H^{s_{2}, t_{2}}\left(C_{2}\right) \otimes H^{s_{3}, t_{3}}\left(C_{3}\right)
$$

Proposition

- $\chi_{1,0}=\chi_{\varphi_{1}}+\chi_{\varphi_{2}}+\chi_{\varphi_{3}}$,
- $\chi_{1,1}=2 \mathfrak{R e}\left(\chi_{\varphi_{1}} \overline{\chi_{\varphi_{2}}}+\chi_{\varphi_{1}} \overline{\chi_{\varphi_{3}}}+\chi_{\varphi_{2}} \overline{\chi_{\varphi_{3}}}\right)+3 \chi_{\text {triv }}$,
- $\chi_{2,0}=\chi_{\varphi_{1}} \chi_{\varphi_{2}}+\chi_{\varphi_{1}} \chi_{\varphi_{3}}+\chi_{\varphi_{2}} \chi_{\varphi_{3}}$,
- $\chi_{2,1}=\overline{\chi_{\varphi_{1}}} \chi_{\varphi_{2}} \chi_{\varphi_{3}}+\chi_{\varphi_{1}} \overline{\chi_{\varphi_{2}}} \chi_{\varphi_{3}}+\chi_{\varphi_{1}} \chi_{\varphi_{2}} \overline{\chi_{\varphi_{3}}}+2\left(\chi_{\varphi_{1}}+\chi_{\varphi_{2}}+\chi_{\varphi_{3}}\right)$,
- $\chi_{3,0}=\chi_{\varphi_{1}} \chi_{\varphi_{2}} \chi_{\varphi_{3}}$,
- $\chi_{q, p}=\overline{\chi p, q}$.
$\Rightarrow \quad$ it remains determine the character of a representation $\varphi: G \rightarrow G L\left(H^{1,0}(C)\right)$ induced by an action $\psi: G \rightarrow \operatorname{Aut}(C)$ in terms of a generating vector

$$
V=\left(h_{1}, \ldots, h_{r}, a_{1}, b_{1}, \ldots, a_{g^{\prime}}, b_{g^{\prime}}\right)
$$

- There is a decomposition of the character χ_{φ} in irreducible characters
- There is a decomposition of the character χ_{φ} in irreducible characters

$$
\chi_{\varphi}=\sum_{\chi \in \operatorname{Irr}(G)}\left\langle\chi, \chi_{\varphi}\right\rangle \cdot \chi
$$

- There is a decomposition of the character χ_{φ} in irreducible characters

$$
\chi_{\varphi}=\sum_{\chi \in \operatorname{Irr}(G)}\left\langle\chi, \chi_{\varphi}\right\rangle \cdot \chi
$$

$\Rightarrow \quad$ we need to determine the multiplicities $\left\langle\chi, \chi_{\varphi}\right\rangle$

- There is a decomposition of the character χ_{φ} in irreducible characters

$$
\chi_{\varphi}=\sum_{\chi \in \operatorname{Irr}(G)}\left\langle\chi, \chi_{\varphi}\right\rangle \cdot \chi
$$

$\Rightarrow \quad$ we need to determine the multiplicities $\left\langle\chi, \chi_{\varphi}\right\rangle$

- pick h_{i} from V and an irreducible representation ϱ with character χ.
- There is a decomposition of the character χ_{φ} in irreducible characters

$$
\chi_{\varphi}=\sum_{\chi \in \operatorname{Irr}(G)}\left\langle\chi, \chi_{\varphi}\right\rangle \cdot \chi
$$

$\Rightarrow \quad$ we need to determine the multiplicities $\left\langle\chi, \chi_{\varphi}\right\rangle$

- pick h_{i} from V and an irreducible representation ϱ with character χ.
- $\operatorname{ord}\left(h_{i}\right)=m_{i}$
- There is a decomposition of the character χ_{φ} in irreducible characters

$$
\chi_{\varphi}=\sum_{\chi \in \operatorname{Irr}(G)}\left\langle\chi, \chi_{\varphi}\right\rangle \cdot \chi
$$

$\Rightarrow \quad$ we need to determine the multiplicities $\left\langle\chi, \chi_{\varphi}\right\rangle$

- pick h_{i} from V and an irreducible representation ϱ with character χ.
- $\operatorname{ord}\left(h_{i}\right)=m_{i} \Longrightarrow$ every eigenvalue of $\varrho\left(h_{i}\right)$ is of the form
- There is a decomposition of the character χ_{φ} in irreducible characters

$$
\chi_{\varphi}=\sum_{\chi \in \operatorname{Irr}(G)}\left\langle\chi, \chi_{\varphi}\right\rangle \cdot \chi
$$

$\Rightarrow \quad$ we need to determine the multiplicities $\left\langle\chi, \chi_{\varphi}\right\rangle$

- pick h_{i} from V and an irreducible representation ϱ with character χ.
- $\operatorname{ord}\left(h_{i}\right)=m_{i} \Longrightarrow$ every eigenvalue of $\varrho\left(h_{i}\right)$ is of the form

$$
\xi_{m_{i}}^{\alpha}=\exp \left(\frac{2 \pi \sqrt{-1} \alpha}{m_{i}}\right) \text { for some } 1 \leq \alpha \leq m_{i}
$$

- There is a decomposition of the character χ_{φ} in irreducible characters

$$
\chi_{\varphi}=\sum_{\chi \in \operatorname{Irr}(G)}\left\langle\chi, \chi_{\varphi}\right\rangle \cdot \chi
$$

$\Rightarrow \quad$ we need to determine the multiplicities $\left\langle\chi, \chi_{\varphi}\right\rangle$

- pick h_{i} from V and an irreducible representation ϱ with character χ.
- $\operatorname{ord}\left(h_{i}\right)=m_{i} \Longrightarrow$ every eigenvalue of $\varrho\left(h_{i}\right)$ is of the form

$$
\xi_{m_{i}}^{\alpha}=\exp \left(\frac{2 \pi \sqrt{-1} \alpha}{m_{i}}\right) \text { for some } 1 \leq \alpha \leq m_{i}
$$

- define $N_{i, \alpha}:=$ \# eigenvalues of $\varrho\left(h_{i}\right)$ equal to $\xi_{m_{i}}^{\alpha}$.
- There is a decomposition of the character χ_{φ} in irreducible characters

$$
\chi_{\varphi}=\sum_{\chi \in \operatorname{Irr}(G)}\left\langle\chi, \chi_{\varphi}\right\rangle \cdot \chi
$$

$\Rightarrow \quad$ we need to determine the multiplicities $\left\langle\chi, \chi_{\varphi}\right\rangle$

- pick h_{i} from V and an irreducible representation ϱ with character χ.
- $\operatorname{ord}\left(h_{i}\right)=m_{i} \Longrightarrow$ every eigenvalue of $\varrho\left(h_{i}\right)$ is of the form

$$
\xi_{m_{i}}^{\alpha}=\exp \left(\frac{2 \pi \sqrt{-1} \alpha}{m_{i}}\right) \text { for some } 1 \leq \alpha \leq m_{i}
$$

- define $N_{i, \alpha}:=$ \# eigenvalues of $\varrho\left(h_{i}\right)$ equal to $\xi_{m_{i}}^{\alpha}$.
- Formula of Chevalley-Weil:
- There is a decomposition of the character χ_{φ} in irreducible characters

$$
\chi_{\varphi}=\sum_{\chi \in \operatorname{Irr}(G)}\left\langle\chi, \chi_{\varphi}\right\rangle \cdot \chi
$$

$\Rightarrow \quad$ we need to determine the multiplicities $\left\langle\chi, \chi_{\varphi}\right\rangle$

- pick h_{i} from V and an irreducible representation ϱ with character χ.
- $\operatorname{ord}\left(h_{i}\right)=m_{i} \Longrightarrow$ every eigenvalue of $\varrho\left(h_{i}\right)$ is of the form

$$
\xi_{m_{i}}^{\alpha}=\exp \left(\frac{2 \pi \sqrt{-1} \alpha}{m_{i}}\right) \text { for some } 1 \leq \alpha \leq m_{i}
$$

- define $N_{i, \alpha}:=$ \# eigenvalues of $\varrho\left(h_{i}\right)$ equal to $\xi_{m_{i}}^{\alpha}$.
- Formula of Chevalley-Weil:

$$
\left\langle\chi, \chi_{\varphi}\right\rangle=\chi\left(1_{G}\right)\left(g^{\prime}-1\right)+\sum_{i=1}^{r} \sum_{\alpha=1}^{m_{i}-1} \frac{\alpha \cdot N_{i, \alpha}}{m_{i}}+\left\langle\chi, \chi_{\text {triv }}\right\rangle .
$$

Computational problem:

Computational problem:
it is very hard to determine the irreducible representations of a given finite group G

Computational problem:

it is very hard to determine the irreducible representations of a given finite group G

- to calculate the eigenvalues of $\varrho\left(h_{i}\right)$, enough information is encoded in the character χ.

Computational problem:

it is very hard to determine the irreducible representations of a given finite group G

- to calculate the eigenvalues of $\varrho\left(h_{i}\right)$, enough information is encoded in the character χ.
$\Rightarrow \quad$ the character table of any finite group G can be determined using the computer algebra system MAGMA.

Computational problem:

it is very hard to determine the irreducible representations of a given finite group G

- to calculate the eigenvalues of $\varrho\left(h_{i}\right)$, enough information is encoded in the character χ.
$\Rightarrow \quad$ the character table of any finite group G can be determined using the computer algebra system MAGMA.

The strategy is the following:

Computational problem:

it is very hard to determine the irreducible representations of a given finite group G

- to calculate the eigenvalues of $\varrho\left(h_{i}\right)$, enough information is encoded in the character χ.
$\Rightarrow \quad$ the character table of any finite group G can be determined using the computer algebra system MAGMA.

The strategy is the following:

- $\chi\left(h_{i}^{k}\right)$ is the k-th powersum of the eigenvalues of $\varrho\left(h_{i}\right)$

Computational problem:

it is very hard to determine the irreducible representations of a given finite group G

- to calculate the eigenvalues of $\varrho\left(h_{i}\right)$, enough information is encoded in the character χ.
$\Rightarrow \quad$ the character table of any finite group G can be determined using the computer algebra system MAGMA.

The strategy is the following:

- $\chi\left(h_{i}^{k}\right)$ is the k-th powersum of the eigenvalues of $\varrho\left(h_{i}\right)$
- we use Newton's identities to determine the characteristic polynomial of $\varrho\left(h_{i}\right)$ from these powersums

Computational problem:

it is very hard to determine the irreducible representations of a given finite group G

- to calculate the eigenvalues of $\varrho\left(h_{i}\right)$, enough information is encoded in the character χ.
$\Rightarrow \quad$ the character table of any finite group G can be determined using the computer algebra system MAGMA.

The strategy is the following:

- $\chi\left(h_{i}^{k}\right)$ is the k-th powersum of the eigenvalues of $\varrho\left(h_{i}\right)$
- we use Newton's identities to determine the characteristic polynomial of $\varrho\left(h_{i}\right)$ from these powersums
- the characteristic polynomial is easy to factorize, because its roots are powers of $\xi_{m_{i}}$

To compute the fundamental group of a threefold X isogenous to a product we follow [DP10].

To compute the fundamental group of a threefold X isogenous to a product we follow [DP10].

```
Definition
Let g' \geq0 and m}\mp@subsup{m}{1}{},\ldots,\mp@subsup{m}{r}{}\geq2\mathrm{ be integers.
```

To compute the fundamental group of a threefold X isogenous to a product we follow [DP10].

Definition

Let $g^{\prime} \geq 0$ and $m_{1}, \ldots, m_{r} \geq 2$ be integers. The orbifold surface group of type $T=\left[g^{\prime} ; m_{1}, \ldots, m_{r}\right]$ is defined as:

To compute the fundamental group of a threefold X isogenous to a product we follow [DP10].

Definition

Let $g^{\prime} \geq 0$ and $m_{1}, \ldots, m_{r} \geq 2$ be integers. The orbifold surface group of type $T=\left[g^{\prime} ; m_{1}, \ldots, m_{r}\right]$ is defined as:

$$
\mathbb{T}(T):=\left\langle c_{1}, \ldots, c_{r}, d_{1}, e_{1}, \ldots, d_{g^{\prime}}, e_{g^{\prime}} \mid c_{1}^{m_{1}}, \ldots, c_{r}^{m_{r}}, c_{1} \cdot \ldots \cdot c_{r} \cdot \prod_{i=1}^{g^{\prime}}\left[d_{i}, e_{i}\right]\right\rangle
$$

To compute the fundamental group of a threefold X isogenous to a product we follow [DP10].

Definition

Let $g^{\prime} \geq 0$ and $m_{1}, \ldots, m_{r} \geq 2$ be integers. The orbifold surface group of type $T=\left[g^{\prime} ; m_{1}, \ldots, m_{r}\right]$ is defined as:

$$
\mathbb{T}(T):=\left\langle c_{1}, \ldots, c_{r}, d_{1}, e_{1}, \ldots, d_{g^{\prime}}, e_{g^{\prime}} \mid c_{1}^{m_{1}}, \ldots, c_{r}^{m_{r}}, c_{1} \cdot \ldots \cdot c_{r} \cdot \prod_{i=1}^{g^{\prime}}\left[d_{i}, e_{i}\right]\right\rangle
$$

- the generating vectors V_{i} in an algebraic datum $\left(G, V_{1}, V_{2}, V_{3}\right)$ of X determine surjective group homomorphisms $p_{i}: \mathbb{T}\left(T_{i}\right) \rightarrow G$,

To compute the fundamental group of a threefold X isogenous to a product we follow [DP10].

Definition

Let $g^{\prime} \geq 0$ and $m_{1}, \ldots, m_{r} \geq 2$ be integers. The orbifold surface group of type $T=\left[g^{\prime} ; m_{1}, \ldots, m_{r}\right]$ is defined as:

$$
\mathbb{T}(T):=\left\langle c_{1}, \ldots, c_{r}, d_{1}, e_{1}, \ldots, d_{g^{\prime}}, e_{g^{\prime}} \mid c_{1}^{m_{1}}, \ldots, c_{r}^{m_{r}}, c_{1} \cdot \ldots \cdot c_{r} \cdot \prod_{i=1}^{g^{\prime}}\left[d_{i}, e_{i}\right]\right\rangle
$$

- the generating vectors V_{i} in an algebraic datum (G, V_{1}, V_{2}, V_{3}) of X determine surjective group homomorphisms $p_{i}: \mathbb{T}\left(T_{i}\right) \rightarrow G$,
- $\pi_{1}(X) \simeq\left\{(x, y, z) \in \mathbb{T}\left(T_{1}\right) \times \mathbb{T}\left(T_{2}\right) \times \mathbb{T}\left(T_{3}\right) \mid p_{1}(x)=p_{2}(y)=p_{3}(z)\right\}$

Aim:

give an algorithm to classify threefolds X isogenous to a product with a fixed value of $\chi\left(\mathcal{O}_{X}\right)$

Aim:
 give an algorithm to classify threefolds X isogenous to a product with a fixed value of $\chi\left(\mathcal{O}_{X}\right)$

Input: a negative integer χ

Aim:

give an algorithm to classify threefolds X isogenous to a product with a fixed value of $\chi\left(\mathcal{O}_{X}\right)$

Input: a negative integer χ
Output: a "finite list" of all threefolds X isogenous to a product with $\chi\left(\mathcal{O}_{X}\right)=\chi$.

An algebraic datum (G, V_{1}, V_{2}, V_{3}) of a threefold X isogenous to a product induces a numerical datum

$$
\left(n, T_{1}, T_{2}, T_{3}\right)
$$

An algebraic datum $\left(G, V_{1}, V_{2}, V_{3}\right)$ of a threefold X isogenous to a product induces a numerical datum

$$
\left(n, T_{1}, T_{2}, T_{3}\right)
$$

Here $n=|G|$ and $T_{i}=\left[g_{i}^{\prime} ; m_{i, 1}, \ldots, m_{i, r_{i}}\right]$ are the types of the generating vectors V_{i}.

An algebraic datum $\left(G, V_{1}, V_{2}, V_{3}\right)$ of a threefold X isogenous to a product induces a numerical datum

$$
\left(n, T_{1}, T_{2}, T_{3}\right)
$$

Here $n=|G|$ and $T_{i}=\left[g_{i}^{\prime} ; m_{i, 1}, \ldots, m_{i, r_{i}}\right]$ are the types of the generating vectors V_{i}.

- derive combinatorial constraints on the numerical data: inequalities, divisibility conditions etc. in terms of $\chi\left(\mathcal{O}_{X}\right)$.

An algebraic datum $\left(G, V_{1}, V_{2}, V_{3}\right)$ of a threefold X isogenous to a product induces a numerical datum

$$
\left(n, T_{1}, T_{2}, T_{3}\right)
$$

Here $n=|G|$ and $T_{i}=\left[g_{i}^{\prime} ; m_{i, 1}, \ldots, m_{i, r_{i}}\right]$ are the types of the generating vectors V_{i}.

- derive combinatorial constraints on the numerical data: inequalities, divisibility conditions etc. in terms of $\chi\left(\mathcal{O}_{X}\right)$.
- the constraints should imply that the numerical data of all threefolds X isogenous to a product with $\chi\left(\mathcal{O}_{X}\right)=\chi$ form a finite list.

An algebraic datum $\left(G, V_{1}, V_{2}, V_{3}\right)$ of a threefold X isogenous to a product induces a numerical datum

$$
\left(n, T_{1}, T_{2}, T_{3}\right)
$$

Here $n=|G|$ and $T_{i}=\left[g_{i}^{\prime} ; m_{i, 1}, \ldots, m_{i, r_{i}}\right]$ are the types of the generating vectors V_{i}.

- derive combinatorial constraints on the numerical data: inequalities, divisibility conditions etc. in terms of $\chi\left(\mathcal{O}_{X}\right)$.
- the constraints should imply that the numerical data of all threefolds X isogenous to a product with $\chi\left(\mathcal{O}_{X}\right)=\chi$ form a finite list.

1st Step in the classification: compute the finite list of abstract numerical data i.e. the set of abstract 4-tuples of the form (n, T_{1}, T_{2}, T_{3}), which fulfill the constraints.

An algebraic datum $\left(G, V_{1}, V_{2}, V_{3}\right)$ of a threefold X isogenous to a product induces a numerical datum

$$
\left(n, T_{1}, T_{2}, T_{3}\right)
$$

Here $n=|G|$ and $T_{i}=\left[g_{i}^{\prime} ; m_{i, 1}, \ldots, m_{i, r_{i}}\right]$ are the types of the generating vectors V_{i}.

- derive combinatorial constraints on the numerical data: inequalities, divisibility conditions etc. in terms of $\chi\left(\mathcal{O}_{X}\right)$.
- the constraints should imply that the numerical data of all threefolds X isogenous to a product with $\chi\left(\mathcal{O}_{X}\right)=\chi$ form a finite list.

1st Step in the classification: compute the finite list of abstract numerical data i.e. the set of abstract 4-tuples of the form (n, T_{1}, T_{2}, T_{3}), which fulfill the constraints.
$\Rightarrow \quad$ list of candidates for the numerical data

Proposition
Let $X=\left(C_{1} \times C_{2} \times C_{3}\right) / G$ be a threefold isogenous to a product, then

$$
n=|G| \leq 168 \sqrt{-21 \chi\left(\mathcal{O}_{X}\right)}
$$

Proposition

Let $X=\left(C_{1} \times C_{2} \times C_{3}\right) / G$ be a threefold isogenous to a product, then

$$
n=|G| \leq 168 \sqrt{-21 \chi\left(\mathcal{O}_{X}\right)}
$$

proof:

Proposition

Let $X=\left(C_{1} \times C_{2} \times C_{3}\right) / G$ be a threefold isogenous to a product, then

$$
n=|G| \leq 168 \sqrt{-21 \chi\left(\mathcal{O}_{X}\right)}
$$

proof:

- according to Hurwitz it holds $|G| \leq\left|\operatorname{Aut}\left(C_{i}\right)\right| \leq 84\left(g\left(C_{i}\right)-1\right)$

Proposition

Let $X=\left(C_{1} \times C_{2} \times C_{3}\right) / G$ be a threefold isogenous to a product, then

$$
n=|G| \leq 168 \sqrt{-21 \chi\left(\mathcal{O}_{X}\right)}
$$

proof:

- according to Hurwitz it holds $|G| \leq\left|\operatorname{Aut}\left(C_{i}\right)\right| \leq 84\left(g\left(C_{i}\right)-1\right)$
- we conclude

$$
-\chi\left(\mathcal{O}_{X}\right)=\frac{1}{|G|} \prod_{i=1}^{3}\left(g\left(C_{i}\right)-1\right) \geq \frac{|G|^{2}}{84^{3}}
$$

Additional constraints:

the entries of the types $T_{i}=\left[g_{i}^{\prime} ; m_{i, 1}, \ldots, m_{i, r_{i}}\right]$ fulfill:

Additional constraints:

the entries of the types $T_{i}=\left[g_{i}^{\prime} ; m_{i, 1}, \ldots, m_{i, r_{i}}\right]$ fulfill:

- $g_{i}^{\prime} \leq 1-\chi\left(\mathcal{O}_{X}\right)$,

Additional constraints:

the entries of the types $T_{i}=\left[g_{i}^{\prime} ; m_{i, 1}, \ldots, m_{i, r_{i}}\right]$ fulfill:

- $g_{i}^{\prime} \leq 1-\chi\left(\mathcal{O}_{X}\right)$,
- $m_{i, j}$ divides the group order n,

Additional constraints:

the entries of the types $T_{i}=\left[g_{i}^{\prime} ; m_{i, 1}, \ldots, m_{i, r_{i}}\right]$ fulfill:

- $g_{i}^{\prime} \leq 1-\chi\left(\mathcal{O}_{X}\right)$,
- $m_{i, j}$ divides the group order n,
- Hurwitz' formula holds:

$$
g_{i}-1=\frac{|G|}{2}\left(2 g_{i}^{\prime}-2+\sum_{j=1}^{r_{i}-i}\left(1-\frac{1}{m_{i, j}}\right)\right), \quad g_{i}^{\prime}=g\left(C_{i} / G\right)
$$

Additional constraints:

the entries of the types $T_{i}=\left[g_{i}^{\prime} ; m_{i, 1}, \ldots, m_{i, r_{i}}\right]$ fulfill:

- $g_{i}^{\prime} \leq 1-\chi\left(\mathcal{O}_{X}\right)$,
- $m_{i, j}$ divides the group order n,
- Hurwitz' formula holds:

$$
g_{i}-1=\frac{|G|}{2}\left(2 g_{i}^{\prime}-2+\sum_{j=1}^{r_{i}-i}\left(1-\frac{1}{m_{i, j}}\right)\right), \quad g_{i}^{\prime}=g\left(C_{i} / G\right)
$$

- $\left(g_{i}-1\right) \mid n \cdot \chi\left(\mathcal{O}_{X}\right)$.

Additional constraints:

the entries of the types $T_{i}=\left[g_{i}^{\prime} ; m_{i, 1}, \ldots, m_{i, r_{i}}\right]$ fulfill:

- $g_{i}^{\prime} \leq 1-\chi\left(\mathcal{O}_{X}\right)$,
- $m_{i, j}$ divides the group order n,
- Hurwitz' formula holds:

$$
g_{i}-1=\frac{|G|}{2}\left(2 g_{i}^{\prime}-2+\sum_{j=1}^{r_{i}-i}\left(1-\frac{1}{m_{i, j}}\right)\right), \quad g_{i}^{\prime}=g\left(C_{i} / G\right)
$$

- $\left(g_{i}-1\right) \mid n \cdot \chi\left(\mathcal{O}_{X}\right)$.

$$
\Rightarrow \quad \text { only finitely many numerical data }\left(n, T_{1}, T_{2}, T_{3}\right)
$$

Input: a negative integer χ (the holomorphic Euler characteristic)

Input: a negative integer χ (the holomorphic Euler characteristic)
1st Step: here we determine the set of (abstract) numerical data i.e. the finite set of tuples of the form

$$
\left(n, T_{1}, T_{2}, T_{3}\right), \quad \text { where } \quad T_{i}=\left[g_{i}^{\prime} ; m_{i, 1}, \ldots, m_{i, r_{i}}\right]
$$

that satisfy the constraints from above.

Input: a negative integer χ (the holomorphic Euler characteristic)
1st Step: here we determine the set of (abstract) numerical data i.e. the finite set of tuples of the form

$$
\left(n, T_{1}, T_{2}, T_{3}\right), \quad \text { where } \quad T_{i}=\left[g_{i}^{\prime} ; m_{i, 1}, \ldots, m_{i, r_{i}}\right]
$$

that satisfy the constraints from above.
2nd Step: here we search for algebraic data. More precisely:

Input: a negative integer χ (the holomorphic Euler characteristic)
1st Step: here we determine the set of (abstract) numerical data i.e. the finite set of tuples of the form

$$
\left(n, T_{1}, T_{2}, T_{3}\right), \quad \text { where } \quad T_{i}=\left[g_{i}^{\prime} ; m_{i, 1}, \ldots, m_{i, r_{i}}\right]
$$

that satisfy the constraints from above.
2nd Step: here we search for algebraic data. More precisely:

- for each abstract numerical datum (n, T_{1}, T_{2}, T_{3}) found in the 1 st step we run through the groups G of order n and determine all 4-tuples of the form

$$
\left(G, V_{1}, V_{2}, V_{3}\right)
$$

where V_{i} is a generating vector of type T_{i}.

Input: a negative integer χ (the holomorphic Euler characteristic)
1st Step: here we determine the set of (abstract) numerical data i.e. the finite set of tuples of the form

$$
\left(n, T_{1}, T_{2}, T_{3}\right), \quad \text { where } \quad T_{i}=\left[g_{i}^{\prime} ; m_{i, 1}, \ldots, m_{i, r_{i}}\right]
$$

that satisfy the constraints from above.
2nd Step: here we search for algebraic data. More precisely:

- for each abstract numerical datum (n, T_{1}, T_{2}, T_{3}) found in the 1 st step we run through the groups G of order n and determine all 4-tuples of the form

$$
\left(G, V_{1}, V_{2}, V_{3}\right)
$$

where V_{i} is a generating vector of type T_{i}.

- for each 4-tuple (G, V_{1}, V_{2}, V_{3}) we check the freeness condition

$$
\Sigma_{V_{1}} \cap \Sigma_{V_{2}} \cap \Sigma_{V_{3}}=\left\{1_{G}\right\}
$$

Input: a negative integer χ (the holomorphic Euler characteristic)
1st Step: here we determine the set of (abstract) numerical data i.e. the finite set of tuples of the form

$$
\left(n, T_{1}, T_{2}, T_{3}\right), \quad \text { where } \quad T_{i}=\left[g_{i}^{\prime} ; m_{i, 1}, \ldots, m_{i, r_{i}}\right]
$$

that satisfy the constraints from above.
2nd Step: here we search for algebraic data. More precisely:

- for each abstract numerical datum (n, T_{1}, T_{2}, T_{3}) found in the 1 st step we run through the groups G of order n and determine all 4-tuples of the form

$$
\left(G, V_{1}, V_{2}, V_{3}\right)
$$

where V_{i} is a generating vector of type T_{i}.

- for each 4-tuple (G, V_{1}, V_{2}, V_{3}) we check the freeness condition

$$
\Sigma_{V_{1}} \cap \Sigma_{V_{2}} \cap \Sigma_{V_{3}}=\left\{1_{G}\right\} .
$$

if it holds there exists a threefold X isogenous to a product with $\chi\left(\mathcal{O}_{X}\right)=\chi$ and algebraic datum (G, V_{1}, V_{2}, V_{3}).

Input: a negative integer χ (the holomorphic Euler characteristic)
1st Step: here we determine the set of (abstract) numerical data i.e. the finite set of tuples of the form

$$
\left(n, T_{1}, T_{2}, T_{3}\right), \quad \text { where } \quad T_{i}=\left[g_{i}^{\prime} ; m_{i, 1}, \ldots, m_{i, r_{i}}\right]
$$

that satisfy the constraints from above.
2nd Step: here we search for algebraic data. More precisely:

- for each abstract numerical datum (n, T_{1}, T_{2}, T_{3}) found in the 1 st step we run through the groups G of order n and determine all 4 -tuples of the form

$$
\left(G, V_{1}, V_{2}, V_{3}\right)
$$

where V_{i} is a generating vector of type T_{i}.

- for each 4-tuple (G, V_{1}, V_{2}, V_{3}) we check the freeness condition

$$
\Sigma_{V_{1}} \cap \Sigma_{V_{2}} \cap \Sigma_{V_{3}}=\left\{1_{G}\right\} .
$$

if it holds there exists a threefold X isogenous to a product with $\chi\left(\mathcal{O}_{X}\right)=\chi$ and algebraic datum (G, V_{1}, V_{2}, V_{3}).

- for each threefold X that we found we determine the Hodge numbers and print the occurrence

$$
\left[G, T_{1}, T_{2}, T_{3}, h^{p, q}\right]
$$

We run a MAGMA implementation of the algorithm for the input value $\chi=-1$

We run a MAGMA implementation of the algorithm for the input value $\chi=-1$

- $n=|G| \leq\lfloor 168 \sqrt{-21 \chi}\rfloor=769$

We run a MAGMA implementation of the algorithm for the input value $\chi=-1$

- $n=|G| \leq\lfloor 168 \sqrt{-21 \chi}\rfloor=769$
- there are 11.715.855 isomorphism classes of groups G with $|G| \leq 769$

We run a MAGMA implementation of the algorithm for the input value $\chi=-1$

- $n=|G| \leq\lfloor 168 \sqrt{-21 \chi}\rfloor=769$
- there are 11.715 .855 isomorphism classes of groups G with $|G| \leq 769$
- all of them are contained in MAGMA's database of small groups

We run a MAGMA implementation of the algorithm for the input value $\chi=-1$

- $n=|G| \leq\lfloor 168 \sqrt{-21 \chi}\rfloor=769$
- there are 11.715 .855 isomorphism classes of groups G with $|G| \leq 769$
- all of them are contained in MAGMA's database of small groups
- however, for only 38 group orders n there exists types T_{i} fulfilling the constraints

We run a MAGMA implementation of the algorithm for the input value $\chi=-1$

- $n=|G| \leq\lfloor 168 \sqrt{-21 \chi}\rfloor=769$
- there are 11.715 .855 isomorphism classes of groups G with $|G| \leq 769$
- all of them are contained in MAGMA's database of small groups
- however, for only 38 group orders n there exists types T_{i} fulfilling the constraints
- $\Rightarrow \quad$ the number of groups we need to consider (in Step 2) drops to 4393

We run a MAGMA implementation of the algorithm for the input value $\chi=-1$

- $n=|G| \leq\lfloor 168 \sqrt{-21 \chi}\rfloor=769$
- there are 11.715 .855 isomorphism classes of groups G with $|G| \leq 769$
- all of them are contained in MAGMA's database of small groups
- however, for only 38 group orders n there exists types T_{i} fulfilling the constraints
- $\Rightarrow \quad$ the number of groups we need to consider (in Step 2) drops to 4393

Theorem (Frapporti,-)

Let X be a threefold isogenous to a product of unmixed type with $\chi\left(\mathcal{O}_{X}\right)=-1$. Then X is minimal of general type and there are 54 possibilities for

$$
\left[G, T_{1}, T_{2}, T_{3}, h^{p, q}\right] .
$$

G	T_{1}	T_{2}	T_{3}	$h^{3,0}$	$h^{2,0}$	$h^{1,0}$	$h^{1,1}$	$h^{2,1}$
\mathscr{A}_{5}	$\left[0 ; 2^{3}, 3\right]$	$\left[0 ; 2,5^{2}\right]$	$\left[0 ; 3^{2}, 5\right]$	2	0	0	3	6
$G L\left(2, \mathbb{F}_{3}\right)$	$[0 ; 2,3,8]$	$[0 ; 2,3,8]$	$[2 ;-]$	5	5	2	11	17
$G L\left(2, \mathbb{F}_{3}\right)$	$[0 ; 2,3,8]$	$[0 ; 2,3,8]$	$[2 ;-]$	4	4	2	13	18
$\mathcal{S}_{4} \times \mathbb{Z}_{2}$	$\left[0 ; 2^{5}\right]$	$[0 ; 2,4,6]$	$[0 ; 2,4,6]$	3	1	0	5	9
$S L\left(2, \mathbb{F}_{3}\right)$	$\left[0 ; 3^{2}, 4\right]$	$\left[0 ; 3^{2}, 4\right]$	$[2 ;-]$	5	5	2	13	19
$\mathbb{Z}_{3} \rtimes \varphi \mathcal{D}_{4}$	$[0 ; 2,4,6]$	$[0 ; 2,4,6]$	$[2 ;-]$	5	5	2	11	17
$\mathbb{Z}_{3} \rtimes \varphi \mathcal{D}_{4}$	$[0 ; 2,4,6]$	$[0 ; 2,4,6]$	$[2 ;-]$	4	4	2	13	18
\mathcal{S}_{4}	$\left[0 ; 2^{3}, 4\right]$	$\left[0 ; 2^{2}, 3^{2}\right]$	$\left[0 ; 3,4^{2}\right]$	3	1	0	5	9
$S D_{16}$	$[0 ; 2,4,8]$	$[0 ; 2,4,8]$	$[2 ;-]$	5	5	2	11	17
$S D 16$	$[0 ; 2,4,8]$	$[0 ; 2,4,8]$	$[2 ;-]$	4	4	2	13	18
$\mathcal{D}_{4} \times \mathbb{Z}_{2}$	$\left[0 ; 2^{5}\right]$	$\left[0 ; 2^{3}, 4\right]$	$\left[0 ; 2^{3}, 4\right]$	3	1	0	5	9
$\mathcal{D}_{4} \times \mathbb{Z}_{2}$	$\left[0 ; 2^{5}\right]$	$\left[0 ; 2^{3}, 4\right]$	$\left[0 ; 2^{3}, 4\right]$	4	2	0	7	12
$D_{i c 12}$	$\left[0 ; 3,4^{2}\right]$	$\left[0 ; 3,4^{2}\right]$	$[2 ;-]$	5	5	2	13	19
$\mathbb{Z}_{3} \times \mathbb{Z}_{2}^{2}$	$\left[0 ; 2,6^{2}\right]$	$\left[0 ; 2,6^{2}\right]$	$[2 ;-]$	6	6	2	11	18
$\mathbb{Z}_{3} \times \mathbb{Z}_{2}^{2}$	$\left[0 ; 2,6^{2}\right]$	$\left[0 ; 2,6^{2}\right]$	$[2 ;-]$	5	5	2	11	17
$\mathbb{Z}_{3} \times \mathbb{Z}_{2}^{2}$	$\left[0 ; 2,6^{2}\right]$	$\left[0 ; 2,6^{2}\right]$	$[2 ;-]$	4	4	2	13	18
$\mathbb{Z}_{3} \times \mathbb{Z}_{2}^{2}$	$\left[0 ; 2,6^{2}\right]$	$\left[0 ; 2,6^{2}\right]$	$[2 ;-]$	4	4	2	15	20
\mathcal{D}_{6}	$\left[0 ; 2^{3}, 3\right]$	$\left[0 ; 2^{3}, 6\right]$	$\left[1 ; 2^{2}\right]$	4	3	1	9	14
\mathcal{D}_{6}	$\left[0 ; 2^{3}, 3\right]$	$\left[0 ; 2^{3}, 3\right]$	$[2 ;-]$	5	5	2	13	19
\mathcal{D}_{6}	$\left[0 ; 2^{5}\right]$	$\left[0 ; 2^{3}, 3\right]$	$[1 ; 3]$	4	3	1	9	14
\mathbb{Z}_{10}	$[0 ; 2,5,10]$	$[0 ; 2,5,10]$	$[2 ;-]$	5	5	2	13	19
\mathbb{Z}_{10}	$[0 ; 2,5,10]$	$[0 ; 2,5,10]$	$[2 ;-]$	6	6	2	11	18
\mathbb{Z}_{10}	$[0 ; 2,5,10]$	$[0 ; 2,5,10]$	$[2 ;-]$	4	4	2	15	20

G	T_{1}	T_{2}	T_{3}	$h^{3,0}$	$h^{2,0}$	$h^{1,0}$	$h^{1,1}$	$h^{2,1}$
Q	$\left[0 ; 4^{3}\right]$	$\left[0 ; 4^{3}\right]$	$[2 ;-]$	5	5	2	13	19
\mathbb{Z}_{8}	$\left[0 ; 2,8^{2}\right]$	$\left[0 ; 2,8^{2}\right]$	$[2 ;-]$	6	6	2	11	18
\mathbb{Z}_{8}	$\left[0 ; 2,8^{2}\right]$	$\left[0 ; 2,8^{2}\right]$	$[2 ;-]$	4	4	2	15	20
\mathcal{D}_{4}	$\left[0 ; 2^{3}, 4\right]$	$[1 ; 2]$	$\left[1 ; 2^{2}\right]$	4	4	2	11	16
\mathcal{D}_{4}	$\left[0 ; 2^{3}, 4\right]$	$\left[0 ; 2^{2}, 4^{2}\right]$	$\left[1 ; 2^{2}\right]$	4	3	1	9	14
\mathcal{D}_{4}	$\left[0 ; 2^{3}, 4\right]$	$\left[0 ; 2^{3}, 4\right]$	$[2 ;-]$	5	5	2	13	19
\mathcal{D}_{4}	$\left[0 ; 2^{6}\right]$	$\left[0 ; 2^{3}, 4\right]$	$[1 ; 2]$	4	3	1	9	14
\mathbb{Z}_{2}^{3}	$\left[0 ; 2^{5}\right]$	$\left[0 ; 2^{5}\right]$	$\left[0 ; 2^{5}\right]$	5	3	0	9	15
\mathbb{Z}_{2}^{3}	$\left[0 ; 2^{5}\right]$	$\left[0 ; 2^{5}\right]$	$\left[0 ; 2^{5}\right]$	4	2	0	7	12
\mathbb{Z}_{6}	$\left[0 ; 3,6^{2}\right]$	$\left[0 ; 3,6^{2}\right]$	$[2 ;-]$	6	6	2	11	18
\mathbb{Z}_{6}	$\left[0 ; 3,6^{2}\right]$	$\left[0 ; 3,6^{2}\right]$	$[2 ;-]$	4	4	2	15	20
\mathfrak{S}_{3}	$\left[0 ; 2^{2}, 3^{2}\right]$	$\left[1 ; 2^{2}\right]$	$[1 ; 3]$	4	4	2	11	16
\mathbb{Z}_{6}	$\left[0 ; 2^{2}, 3^{2}\right]$	$\left[0 ; 3,6^{2}\right]$	$[2 ;-]$	5	5	2	13	19
\mathbb{Z}_{6}	$\left[0 ; 2^{2}, 3^{2}\right]$	$\left[0 ; 2^{2}, 3^{2}\right]$	$[2 ;-]$	6	6	2	15	22
\mathfrak{S}_{3}	$\left[0 ; 2^{2}, 3^{2}\right]$	$\left[0 ; 2^{2}, 3^{2}\right]$	$[2 ;-]$	5	5	2	13	19
\mathfrak{S}_{3}	$\left[0 ; 2^{6}\right]$	$\left[0 ; 2^{2}, 3^{2}\right]$	$[1 ; 3]$	4	3	1	9	14
\mathbb{Z}_{5}	$\left[0 ; 5^{3}\right]$	$\left[0 ; 5^{3}\right]$	$[2 ;-]$	6	6	2	11	18
\mathbb{Z}_{5}	$\left[0 ; 5^{3}\right]$	$\left[0 ; 5^{3}\right]$	$[2 ;-]$	5	5	2	13	19
\mathbb{Z}_{5}	$\left[0 ; 5^{3}\right]$	$\left[0 ; 5^{3}\right]$	$[2 ;-]$	4	4	2	15	20

G	T_{1}	T_{2}	T_{3}	$h^{3,0}$	$h^{2,0}$	$h^{1,0}$	$h^{1,1}$	$h^{2,1}$
\mathbb{Z}_{4}	$\left[0 ; 2^{2}, 4^{2}\right]$	$\left[0 ; 2^{2}, 4^{2}\right]$	$[2 ;-]$	6	6	2	15	22
\mathbb{Z}_{2}^{2}	$\left[0 ; 2^{5}\right]$	$\left[1 ; 2^{2}\right]$	$\left[1 ; 2^{2}\right]$	5	5	2	13	19
\mathbb{Z}_{2}^{2}	$\left[0 ; 2^{5}\right]$	$\left[1 ; 2^{2}\right]$	$\left[1 ; 2^{2}\right]$	4	4	2	11	16
\mathbb{Z}_{2}^{2}	$\left[0 ; 2^{5}\right]$	$\left[0 ; 2^{6}\right]$	$\left[1 ; 2^{2}\right]$	6	5	1	13	20
\mathbb{Z}_{2}^{2}	$\left[0 ; 2^{5}\right]$	$\left[0 ; 2^{6}\right]$	$\left[1 ; 2^{2}\right]$	5	4	1	11	17
\mathbb{Z}_{2}^{2}	$\left[0 ; 2^{5}\right]$	$\left[0 ; 2^{5}\right]$	$[2 ;-]$	5	5	2	13	19
\mathbb{Z}_{2}^{2}	$\left[0 ; 2^{5}\right]$	$\left[0 ; 2^{5}\right]$	$[2 ;-]$	6	6	2	15	22
\mathbb{Z}_{3}	$\left[0 ; 3^{4}\right]$	$\left[0 ; 3^{4}\right]$	$[2 ;-]$	6	6	2	15	22
\mathbb{Z}_{2}	$\left[1 ; 2^{2}\right]$	$\left[1 ; 2^{2}\right]$	$[2 ;-]$	6	8	4	19	26
\mathbb{Z}_{2}	$\left[0 ; 2^{6}\right]$	$\left[1 ; 2^{2}\right]$	$[2 ;-]$	6	7	3	17	24
\mathbb{Z}_{2}	$\left[0 ; 2^{6}\right]$	$\left[0 ; 2^{6}\right]$	$[2 ;-]$	8	8	2	19	28
$\{1\}$	$[2 ;-]$	$[2 ;-]$	$[2 ;-]$	8	12	6	27	36

G	T_{1}	T_{2}	T_{3}	$h^{3,0}$	$h^{2,0}$	$h^{1,0}$	$h^{1,1}$	$h^{2,1}$
\mathbb{Z}_{4}	$\left[0 ; 2^{2}, 4^{2}\right]$	$\left[0 ; 2^{2}, 4^{2}\right]$	$[2 ;-]$	6	6	2	15	22
\mathbb{Z}_{2}^{2}	$\left[0 ; 2^{5}\right]$	$\left[1 ; 2^{2}\right]$	$\left[1 ; 2^{2}\right]$	5	5	2	13	19
\mathbb{Z}_{2}^{2}	$\left[0 ; 2^{5}\right]$	$\left[1 ; 2^{2}\right]$	$\left[1 ; 2^{2}\right]$	4	4	2	11	16
\mathbb{Z}_{2}^{2}	$\left[0 ; 2^{5}\right]$	$\left[0 ; 2^{6}\right]$	$\left[1 ; 2^{2}\right]$	6	5	1	13	20
\mathbb{Z}_{2}^{2}	$\left[0 ; 2^{5}\right]$	$\left[0 ; 2^{6}\right]$	$\left[1 ; 2^{2}\right]$	5	4	1	11	17
\mathbb{Z}_{2}^{2}	$\left[0 ; 2^{5}\right]$	$\left[0 ; 2^{5}\right]$	$[2 ;-]$	5	5	2	13	19
\mathbb{Z}_{2}^{2}	$\left[0 ; 2^{5}\right]$	$\left[0 ; 2^{5}\right]$	$[2 ;-]$	6	6	2	15	22
\mathbb{Z}_{3}	$\left[0 ; 3^{4}\right]$	$\left[0 ; 3^{4}\right]$	$[2 ;-]$	6	6	2	15	22
\mathbb{Z}_{2}	$\left[1 ; 2^{2}\right]$	$\left[1 ; 2^{2}\right]$	$[2 ;-]$	6	8	4	19	26
\mathbb{Z}_{2}	$\left[0 ; 2^{6}\right]$	$\left[1 ; 2^{2}\right]$	$[2 ;-]$	6	7	3	17	24
\mathbb{Z}_{2}	$\left[0 ; 2^{6}\right]$	$\left[0 ; 2^{6}\right]$	$[2 ;-]$	8	8	2	19	28
$\{1\}$	$[2 ;-]$	$[2 ;-]$	$[2 ;-]$	8	12	6	27	36

Notation:

G	T_{1}	T_{2}	T_{3}	$h^{3,0}$	$h^{2,0}$	$h^{1,0}$	$h^{1,1}$	$h^{2,1}$
\mathbb{Z}_{4}	$\left[0 ; 2^{2}, 4^{2}\right]$	$\left[0 ; 2^{2}, 4^{2}\right]$	$[2 ;-]$	6	6	2	15	22
\mathbb{Z}_{2}^{2}	$\left[0 ; 2^{5}\right]$	$\left[1 ; 2^{2}\right]$	$\left[1 ; 2^{2}\right]$	5	5	2	13	19
\mathbb{Z}_{2}^{2}	$\left[0 ; 2^{5}\right]$	$\left[1 ; 2^{2}\right]$	$\left[1 ; 2^{2}\right]$	4	4	2	11	16
\mathbb{Z}_{2}^{2}	$\left[0 ; 2^{5}\right]$	$\left[0 ; 2^{6}\right]$	$\left[1 ; 2^{2}\right]$	6	5	1	13	20
\mathbb{Z}_{2}^{2}	$\left[0 ; 2^{5}\right]$	$\left[0 ; 2^{6}\right]$	$\left[1 ; 2^{2}\right]$	5	4	1	11	17
\mathbb{Z}_{2}^{2}	$\left[0 ; 2^{5}\right]$	$\left[0 ; 2^{5}\right]$	$[2 ;-]$	5	5	2	13	19
\mathbb{Z}_{2}^{2}	$\left[0 ; 2^{5}\right]$	$\left[0 ; 2^{5}\right]$	$[2 ;-]$	6	6	2	15	22
\mathbb{Z}_{3}	$\left[0 ; 3^{4}\right]$	$\left[0 ; 3^{4}\right]$	$[2 ;-]$	6	6	2	15	22
\mathbb{Z}_{2}	$\left[1 ; 2^{2}\right]$	$\left[1 ; 2^{2}\right]$	$[2 ;-]$	6	8	4	19	26
\mathbb{Z}_{2}	$\left[0 ; 2^{6}\right]$	$\left[1 ; 2^{2}\right]$	$[2 ;-]$	6	7	3	17	24
\mathbb{Z}_{2}	$\left[0 ; 2^{6}\right]$	$\left[0 ; 2^{6}\right]$	$[2 ;-]$	8	8	2	19	28
$\{1\}$	$[2 ;-]$	$[2 ;-]$	$[2 ;-]$	8	12	6	27	36

Notation:

- in the table we abbreviate the types: for example $[0 ; 2,2,4,4]$ is written as [$0 ; 2^{2}, 4^{2}$],

G	T_{1}	T_{2}	T_{3}	$h^{3,0}$	$h^{2,0}$	$h^{1,0}$	$h^{1,1}$	$h^{2,1}$
\mathbb{Z}_{4}	$\left[0 ; 2^{2}, 4^{2}\right]$	$\left[0 ; 2^{2}, 4^{2}\right]$	$[2 ;-]$	6	6	2	15	22
\mathbb{Z}_{2}^{2}	$\left[0 ; 2^{5}\right]$	$\left[1 ; 2^{2}\right]$	$\left[1 ; 2^{2}\right]$	5	5	2	13	19
\mathbb{Z}_{2}^{2}	$\left[0 ; 2^{5}\right]$	$\left[1 ; 2^{2}\right]$	$\left[1 ; 2^{2}\right]$	4	4	2	11	16
\mathbb{Z}_{2}^{2}	$\left[0 ; 2^{5}\right]$	$\left[0 ; 2^{6}\right]$	$\left[1 ; 2^{2}\right]$	6	5	1	13	20
\mathbb{Z}_{2}^{2}	$\left[0 ; 2^{5}\right]$	$\left[0 ; 2^{6}\right]$	$\left[1 ; 2^{2}\right]$	5	4	1	11	17
\mathbb{Z}_{2}^{2}	$\left[0 ; 2^{5}\right]$	$\left[0 ; 2^{5}\right]$	$[2 ;-]$	5	5	2	13	19
\mathbb{Z}_{2}^{2}	$\left[0 ; 2^{5}\right]$	$\left[0 ; 2^{5}\right]$	$[2 ;-]$	6	6	2	15	22
\mathbb{Z}_{3}	$\left[0 ; 3^{4}\right]$	$\left[0 ; 3^{4}\right]$	$[2 ;-]$	6	6	2	15	22
\mathbb{Z}_{2}	$\left[1 ; 2^{2}\right]$	$\left[1 ; 2^{2}\right]$	$[2 ;-]$	6	8	4	19	26
\mathbb{Z}_{2}	$\left[0 ; 2^{6}\right]$	$\left[1 ; 2^{2}\right]$	$[2 ;-]$	6	7	3	17	24
\mathbb{Z}_{2}	$\left[0 ; 2^{6}\right]$	$\left[0 ; 2^{6}\right]$	$[2 ;-]$	8	8	2	19	28
$\{1\}$	$[2 ;-]$	$[2 ;-]$	$[2 ;-]$	8	12	6	27	36

Notation:

- in the table we abbreviate the types: for example $[0 ; 2,2,4,4]$ is written as [$0 ; 2^{2}, 4^{2}$],
- the cyclic group $\mathbb{Z} / n \mathbb{Z}$ is denoted by \mathbb{Z}_{n},

G	T_{1}	T_{2}	T_{3}	$h^{3,0}$	$h^{2,0}$	$h^{1,0}$	$h^{1,1}$	$h^{2,1}$
\mathbb{Z}_{4}	$\left[0 ; 2^{2}, 4^{2}\right]$	$\left[0 ; 2^{2}, 4^{2}\right]$	$[2 ;-]$	6	6	2	15	22
\mathbb{Z}_{2}^{2}	$\left[0 ; 2^{5}\right]$	$\left[1 ; 2^{2}\right]$	$\left[1 ; 2^{2}\right]$	5	5	2	13	19
\mathbb{Z}_{2}^{2}	$\left[0 ; 2^{5}\right]$	$\left[1 ; 2^{2}\right]$	$\left[1 ; 2^{2}\right]$	4	4	2	11	16
\mathbb{Z}_{2}^{2}	$\left[0 ; 2^{5}\right]$	$\left[0 ; 2^{6}\right]$	$\left[1 ; 2^{2}\right]$	6	5	1	13	20
\mathbb{Z}_{2}^{2}	$\left[0 ; 2^{5}\right]$	$\left[0 ; 2^{6}\right]$	$\left[1 ; 2^{2}\right]$	5	4	1	11	17
\mathbb{Z}_{2}^{2}	$\left[0 ; 2^{5}\right]$	$\left[0 ; 2^{5}\right]$	$[2 ;-]$	5	5	2	13	19
\mathbb{Z}_{2}^{2}	$\left[0 ; 2^{5}\right]$	$\left[0 ; 2^{5}\right]$	$[2 ;-]$	6	6	2	15	22
\mathbb{Z}_{3}	$\left[0 ; 3^{4}\right]$	$\left[0 ; 3^{4}\right]$	$[2 ;-]$	6	6	2	15	22
\mathbb{Z}_{2}	$\left[1 ; 2^{2}\right]$	$\left[1 ; 2^{2}\right]$	$[2 ;-]$	6	8	4	19	26
\mathbb{Z}_{2}	$\left[0 ; 2^{6}\right]$	$\left[1 ; 2^{2}\right]$	$[2 ;-]$	6	7	3	17	24
\mathbb{Z}_{2}	$\left[0 ; 2^{6}\right]$	$\left[0 ; 2^{6}\right]$	$[2 ;-]$	8	8	2	19	28
$\{1\}$	$[2 ;-]$	$[2 ;-]$	$[2 ;-]$	8	12	6	27	36

Notation:

- in the table we abbreviate the types: for example $[0 ; 2,2,4,4]$ is written as $\left[0 ; 2^{2}, 4^{2}\right]$,
- the cyclic group $\mathbb{Z} / n \mathbb{Z}$ is denoted by \mathbb{Z}_{n},
- $S D 2^{n}:=\langle a, b| a^{2^{(n-1)}}=b^{2}=1$, $\left.b a b=a^{2^{(n-1)}-1}\right\rangle$ is the semidihedral group of order 2^{n},

G	T_{1}	T_{2}	T_{3}	$h^{3,0}$	$h^{2,0}$	$h^{1,0}$	$h^{1,1}$	$h^{2,1}$
\mathbb{Z}_{4}	$\left[0 ; 2^{2}, 4^{2}\right]$	$\left[0 ; 2^{2}, 4^{2}\right]$	$[2 ;-]$	6	6	2	15	22
\mathbb{Z}_{2}^{2}	$\left[0 ; 2^{5}\right]$	$\left[1 ; 2^{2}\right]$	$\left[1 ; 2^{2}\right]$	5	5	2	13	19
\mathbb{Z}_{2}^{2}	$\left[0 ; 2^{5}\right]$	$\left[1 ; 2^{2}\right]$	$\left[1 ; 2^{2}\right]$	4	4	2	11	16
\mathbb{Z}_{2}^{2}	$\left[0 ; 2^{5}\right]$	$\left[0 ; 2^{6}\right]$	$\left[1 ; 2^{2}\right]$	6	5	1	13	20
\mathbb{Z}_{2}^{2}	$\left[0 ; 2^{5}\right]$	$\left[0 ; 2^{6}\right]$	$\left[1 ; 2^{2}\right]$	5	4	1	11	17
\mathbb{Z}_{2}^{2}	$\left[0 ; 2^{5}\right]$	$\left[0 ; 2^{5}\right]$	$[2 ;-]$	5	5	2	13	19
\mathbb{Z}_{2}^{2}	$\left[0 ; 2^{5}\right]$	$\left[0 ; 2^{5}\right]$	$[2 ;-]$	6	6	2	15	22
\mathbb{Z}_{3}	$\left[0 ; 3^{4}\right]$	$\left[0 ; 3^{4}\right]$	$[2 ;-]$	6	6	2	15	22
\mathbb{Z}_{2}	$\left[1 ; 2^{2}\right]$	$\left[1 ; 2^{2}\right]$	$[2 ;-]$	6	8	4	19	26
\mathbb{Z}_{2}	$\left[0 ; 2^{6}\right]$	$\left[1 ; 2^{2}\right]$	$[2 ;-]$	6	7	3	17	24
\mathbb{Z}_{2}	$\left[0 ; 2^{6}\right]$	$\left[0 ; 2^{6}\right]$	$[2 ;-]$	8	8	2	19	28
$\{1\}$	$[2 ;-]$	$[2 ;-]$	$[2 ;-]$	8	12	6	27	36

Notation:

- in the table we abbreviate the types: for example $[0 ; 2,2,4,4]$ is written as $\left[0 ; 2^{2}, 4^{2}\right]$,
- the cyclic group $\mathbb{Z} / n \mathbb{Z}$ is denoted by \mathbb{Z}_{n},
- $S D 2^{n}:=\langle a, b| a^{2^{(n-1)}}=b^{2}=1$, $\left.b a b=a^{2^{(n-1)}-1}\right\rangle$ is the semidihedral group of order 2^{n},
- Dic4n := $\left\langle a, b, c \mid a^{n}=b^{2}=c^{2}=a b c\right\rangle$ is the diyclic group of order $4 n$,

G	T_{1}	T_{2}	T_{3}	$h^{3,0}$	$h^{2,0}$	$h^{1,0}$	$h^{1,1}$	$h^{2,1}$
\mathbb{Z}_{4}	$\left[0 ; 2^{2}, 4^{2}\right]$	$\left[0 ; 2^{2}, 4^{2}\right]$	$[2 ;-]$	6	6	2	15	22
\mathbb{Z}_{2}^{2}	$\left[0 ; 2^{5}\right]$	$\left[1 ; 2^{2}\right]$	$\left[1 ; 2^{2}\right]$	5	5	2	13	19
\mathbb{Z}_{2}^{2}	$\left[0 ; 2^{5}\right]$	$\left[1 ; 2^{2}\right]$	$\left[1 ; 2^{2}\right]$	4	4	2	11	16
\mathbb{Z}_{2}^{2}	$\left[0 ; 2^{5}\right]$	$\left[0 ; 2^{6}\right]$	$\left[1 ; 2^{2}\right]$	6	5	1	13	20
\mathbb{Z}_{2}^{2}	$\left[0 ; 2^{5}\right]$	$\left[0 ; 2^{6}\right]$	$\left[1 ; 2^{2}\right]$	5	4	1	11	17
\mathbb{Z}_{2}^{2}	$\left[0 ; 2^{5}\right]$	$\left[0 ; 2^{5}\right]$	$[2 ;-]$	5	5	2	13	19
\mathbb{Z}_{2}^{2}	$\left[0 ; 2^{5}\right]$	$\left[0 ; 2^{5}\right]$	$[2 ;-]$	6	6	2	15	22
\mathbb{Z}_{3}	$\left[0 ; 3^{4}\right]$	$\left[0 ; 3^{4}\right]$	$[2 ;-]$	6	6	2	15	22
\mathbb{Z}_{2}	$\left[1 ; 2^{2}\right]$	$\left[1 ; 2^{2}\right]$	$[2 ;-]$	6	8	4	19	26
\mathbb{Z}_{2}	$\left[0 ; 2^{6}\right]$	$\left[1 ; 2^{2}\right]$	$[2 ;-]$	6	7	3	17	24
\mathbb{Z}_{2}	$\left[0 ; 2^{6}\right]$	$\left[0 ; 2^{6}\right]$	$[2 ;-]$	8	8	2	19	28
$\{1\}$	$[2 ;-]$	$[2 ;-]$	$[2 ;-]$	8	12	6	27	36

Notation:

- in the table we abbreviate the types: for example $[0 ; 2,2,4,4]$ is written as [$0 ; 2^{2}, 4^{2}$],
- the cyclic group $\mathbb{Z} / n \mathbb{Z}$ is denoted by \mathbb{Z}_{n},
- $S D 2^{n}:=\langle a, b| a^{2^{(n-1)}}=b^{2}=1$, $\left.b a b=a^{2^{(n-1)}-1}\right\rangle$ is the semidihedral group of order 2^{n},
- Dic $4 n:=\left\langle a, b, c \mid a^{n}=b^{2}=c^{2}=a b c\right\rangle$ is the diyclic group of order $4 n$,
- $\mathbb{Z}_{3} \rtimes_{\varphi} \mathcal{D}_{4}$ is the (unique) semidirect product where $\operatorname{Ker}(\varphi)$ is the Klein four-group.

Problems:

- the computation is very time (and memory) consuming

Problems:

- the computation is very time (and memory) consuming
\Rightarrow we need 11 h 6 min on a 3 GHz Intel Xenon X5450 workstation

Problems:

- the computation is very time (and memory) consuming
\Rightarrow we need 11 h 6 min on a 3 GHz Intel Xenon X5450 workstation
- for input values $\chi<-1$ we can not finish the computation in a "reasonable time"

Problems:

- the computation is very time (and memory) consuming
\Rightarrow we need 11 h 6 min on a 3 GHz Intel Xenon X5450 workstation
- for input values $\chi<-1$ we can not finish the computation in a "reasonable time"

What happens in the mixed case $G^{0} \neq G$?

Problems:

- the computation is very time (and memory) consuming
\Rightarrow we need 11 h 6 min on a 3 GHz Intel Xenon X5450 workstation
- for input values $\chi<-1$ we can not finish the computation in a "reasonable time"

What happens in the mixed case $G^{0} \neq G$?

$$
G / G^{0} \leq \mathfrak{S}_{3}
$$

Problems:

- the computation is very time (and memory) consuming
\Rightarrow we need 11 h 6 min on a 3 GHz Intel Xenon X5450 workstation
- for input values $\chi<-1$ we can not finish the computation in a "reasonable time"

What happens in the mixed case $G^{0} \neq G$?

$$
G / G^{0} \leq \mathfrak{S}_{3} \quad \Rightarrow \quad \text { three subcases: }
$$

Problems:

- the computation is very time (and memory) consuming
\Rightarrow we need 11 h 6 min on a 3 GHz Intel Xenon X5450 workstation
- for input values $\chi<-1$ we can not finish the computation in a "reasonable time"

What happens in the mixed case $G^{0} \neq G$?

$$
G / G^{0} \leq \mathfrak{S}_{3} \quad \Rightarrow \quad \text { three subcases: } \quad G / G^{0}=\mathbb{Z} / 2 \mathbb{Z}, \quad \mathbb{Z} / 3 \mathbb{Z} \text { or } \mathfrak{S}_{3}
$$

Problems:

- the computation is very time (and memory) consuming
\Rightarrow we need 11 h 6 min on a 3 GHz Intel Xenon X5450 workstation
- for input values $\chi<-1$ we can not finish the computation in a "reasonable time"

What happens in the mixed case $G^{0} \neq G$?

$$
G / G^{0} \leq \mathfrak{S}_{3} \quad \Rightarrow \quad \text { three subcases: } \quad G / G^{0}=\mathbb{Z} / 2 \mathbb{Z}, \quad \mathbb{Z} / 3 \mathbb{Z} \text { or } \mathfrak{S}_{3}
$$

- we can give a similar algorithm to classify these varieties for a fixed value of $\chi\left(\mathcal{O}_{X}\right)$ in the sense above

Problems:

- the computation is very time (and memory) consuming
\Rightarrow we need 11 h 6 min on a 3 GHz Intel Xenon X5450 workstation
- for input values $\chi<-1$ we can not finish the computation in a "reasonable time"

What happens in the mixed case $G^{0} \neq G$?

$$
G / G^{0} \leq \mathfrak{S}_{3} \quad \Rightarrow \quad \text { three subcases: } \quad G / G^{0}=\mathbb{Z} / 2 \mathbb{Z}, \quad \mathbb{Z} / 3 \mathbb{Z} \text { or } \mathfrak{S}_{3} .
$$

- we can give a similar algorithm to classify these varieties for a fixed value of $\chi\left(\mathcal{O}_{X}\right)$ in the sense above
- there are 108 examples in the mixed case

Product quotient threefolds

- The notion of a product quotient variety X generalizes the definition of a variety isogenous to a product by allowing non-free group actions.

Product quotient threefolds

- The notion of a product quotient variety X generalizes the definition of a variety isogenous to a product by allowing non-free group actions.
- We study these varieties in dimension three under the following assumptions:
- The notion of a product quotient variety X generalizes the definition of a variety isogenous to a product by allowing non-free group actions.
- We study these varieties in dimension three under the following assumptions:

Our assumptions:

Product quotient threefolds

- The notion of a product quotient variety X generalizes the definition of a variety isogenous to a product by allowing non-free group actions.
- We study these varieties in dimension three under the following assumptions:

Our assumptions:

- X has canonical singularities,
- The notion of a product quotient variety X generalizes the definition of a variety isogenous to a product by allowing non-free group actions.
- We study these varieties in dimension three under the following assumptions:

Our assumptions:

- X has canonical singularities,
- G acts diagonally on the product and faithfully on each factor.
- The notion of a product quotient variety X generalizes the definition of a variety isogenous to a product by allowing non-free group actions.
- We study these varieties in dimension three under the following assumptions:

Our assumptions:

- X has canonical singularities,
- G acts diagonally on the product and faithfully on each factor.
X canonical
- The notion of a product quotient variety X generalizes the definition of a variety isogenous to a product by allowing non-free group actions.
- We study these varieties in dimension three under the following assumptions:

Our assumptions:

- X has canonical singularities,
- G acts diagonally on the product and faithfully on each factor.
X canonical \Rightarrow there is a proper birational morphism $\rho: \widehat{X} \rightarrow X$, such that \widehat{X} is terminal and $\rho^{*}\left(K_{X}\right) \sim_{Q}$-lin. $K_{\bar{x}}$
- The notion of a product quotient variety X generalizes the definition of a variety isogenous to a product by allowing non-free group actions.
- We study these varieties in dimension three under the following assumptions:

Our assumptions:

- X has canonical singularities,
- G acts diagonally on the product and faithfully on each factor.
X canonical \Rightarrow there is a proper birational morphism $\rho: \widehat{X} \rightarrow X$, such that \widehat{X} is terminal and $\rho^{*}\left(K_{X}\right) \sim_{\mathbb{Q} \text {-lin. }} K_{\widehat{X}}$

Aim: study the geography of \widehat{X} i.e. the relations between the Chern invariants

$$
\chi\left(\mathcal{O}_{\widehat{X}}\right), \quad e(\widehat{X}) \quad \text { and } \quad K_{\widehat{X}}^{3}
$$

- there are finitely many points (x, y, z) on $C_{1} \times C_{2} \times C_{3}$ with non-trivial stabilizer.
- there are finitely many points (x, y, z) on $C_{1} \times C_{2} \times C_{3}$ with non-trivial stabilizer.
- the stabilizer

$$
\operatorname{Stab}(x, y, z)=\operatorname{Stab}(x) \cap \operatorname{Stab}(y) \cap \operatorname{Stab}(z)
$$

is cyclic

- there are finitely many points (x, y, z) on $C_{1} \times C_{2} \times C_{3}$ with non-trivial stabilizer.
- the stabilizer

$$
\operatorname{Stab}(x, y, z)=\operatorname{Stab}(x) \cap \operatorname{Stab}(y) \cap \operatorname{Stab}(z)
$$

is cyclic
\Rightarrow finitely many isolated cyclic quotient singularities:

- there are finitely many points (x, y, z) on $C_{1} \times C_{2} \times C_{3}$ with non-trivial stabilizer.
- the stabilizer

$$
\operatorname{Stab}(x, y, z)=\operatorname{Stab}(x) \cap \operatorname{Stab}(y) \cap \operatorname{Stab}(z)
$$

is cyclic
\Rightarrow finitely many isolated cyclic quotient singularities:
locally X is a quotient of \mathbb{C}^{3} by a diagonal linear automorphism

$$
\left(\begin{array}{ccc}
\exp \left(\frac{2 \pi i}{n}\right) & 0 & 0 \\
0 & \exp \left(\frac{2 \pi i a}{n}\right) & 0 \\
0 & 0 & \exp \left(\frac{2 \pi i b}{n}\right)
\end{array}\right)
$$

- there are finitely many points (x, y, z) on $C_{1} \times C_{2} \times C_{3}$ with non-trivial stabilizer.
- the stabilizer

$$
\operatorname{Stab}(x, y, z)=\operatorname{Stab}(x) \cap \operatorname{Stab}(y) \cap \operatorname{Stab}(z)
$$

is cyclic
\Rightarrow finitely many isolated cyclic quotient singularities:
locally X is a quotient of \mathbb{C}^{3} by a diagonal linear automorphism

$$
\left(\begin{array}{ccc}
\exp \left(\frac{2 \pi i}{n}\right) & 0 & 0 \\
0 & \exp \left(\frac{2 \pi i a}{n}\right) & 0 \\
0 & 0 & \exp \left(\frac{2 \pi i b}{n}\right)
\end{array}\right)
$$

- Isolated canonical cyclic quotient singularities in dimension three are classified by Morrison [Mor85].
- there are finitely many points (x, y, z) on $C_{1} \times C_{2} \times C_{3}$ with non-trivial stabilizer.
- the stabilizer

$$
\operatorname{Stab}(x, y, z)=\operatorname{Stab}(x) \cap \operatorname{Stab}(y) \cap \operatorname{Stab}(z)
$$

is cyclic
\Rightarrow finitely many isolated cyclic quotient singularities:
locally X is a quotient of \mathbb{C}^{3} by a diagonal linear automorphism

$$
\left(\begin{array}{ccc}
\exp \left(\frac{2 \pi i}{n}\right) & 0 & 0 \\
0 & \exp \left(\frac{2 \pi i a}{n}\right) & 0 \\
0 & 0 & \exp \left(\frac{2 \pi i b}{n}\right)
\end{array}\right)
$$

- Isolated canonical cyclic quotient singularities in dimension three are classified by Morrison [Mor85].
\Rightarrow we can explicitly compute \widehat{X} and derive relations between the Chern invariants $\chi\left(\mathcal{O}_{\widehat{X}}\right), e(\widehat{X})$ and $K_{\widehat{X}}^{3}$.

Proposition

The following inequalities hold:

$$
\text { I) } 48 \chi\left(\mathcal{O}_{\hat{\chi}}\right)+K_{\widehat{X}}^{3} \geq 0
$$

Proposition

The following inequalities hold:

$$
\text { I) } 48 \chi\left(\mathcal{O}_{\hat{X}}\right)+K_{\hat{X}}^{3} \geq 0 \quad \text { and } \quad \text { II) } 6 e(\widehat{X})+K_{\hat{X}}^{3} \geq 0 .
$$

Proposition

The following inequalities hold:

$$
\begin{array}{ll}
\text { I) } 48 \chi\left(\mathcal{O}_{\hat{\chi}}\right)+K_{\widehat{X}}^{3} \geq 0 \quad \text { and } & \text { II) } 6 e(\widehat{X})+K_{\widehat{X}}^{3} \geq 0 .
\end{array}
$$

I) is an equality if and only if \widehat{X} is smooth,

Proposition

The following inequalities hold:

$$
\begin{array}{lll}
\text { I) } 48 \chi\left(\mathcal{O}_{\hat{X}}\right)+K_{\widehat{\chi}}^{3} \geq 0 \quad \text { and } & \text { II) } 6 e(\widehat{X})+K_{\tilde{\chi}}^{3} \geq 0 .
\end{array}
$$

I) is an equality if and only if \widehat{X} is smooth,
II) is an equality if and only if X is smooth i.e. a threefold isogenous to a product.

Proposition

The following inequalities hold:

$$
\begin{array}{lll}
\text { I) } 48 \chi\left(\mathcal{O}_{\hat{X}}\right)+K_{\widehat{\chi}}^{3} \geq 0 \quad \text { and } & \text { II) } 6 e(\widehat{X})+K_{\tilde{\chi}}^{3} \geq 0 .
\end{array}
$$

I) is an equality if and only if \widehat{X} is smooth,
II) is an equality if and only if X is smooth i.e. a threefold isogenous to a product.

- moreover $K_{\hat{X}}^{3} \geq 4$

Proposition

The following inequalities hold:
I) $48 \chi\left(\mathcal{O}_{\hat{X}}\right)+K_{\hat{X}}^{3} \geq 0$ and
II) $6 e(\widehat{X})+K_{\widehat{X}}^{3} \geq 0$.
I) is an equality if and only if \widehat{X} is smooth,
II) is an equality if and only if X is smooth i.e. a threefold isogenous to a product.

- moreover $K_{\hat{X}}^{3} \geq 4$
- in the case where \widehat{X} is smooth, we have a way to determine the Hodge numbers of \widehat{X} and an algorithm to classify these varieties for a fixed value of $\chi\left(\mathcal{O}_{\hat{X}}\right)$ in the sense above.

I．Bauer，F．Catanese，F．Grunewald，The classification of surfaces with $p_{g}=q=0$ isogenus to a product．Pure Appl．Math．Q．，4，no．2，part1，（2008）， 547－586．
（R）A．Beauville．L＇inégalité $p_{g} \geq 2 q-4$ pour les surfaces de type général．Bull．Soc． Math．France，110，（1982），343－346．

F．Catanese，Fibred surfaces，varieties isogenus to a product and related moduli spaces．Amer．J．Math．，122，（2000），1－44．

F．Catanese，C．Ciliberto，and M．Mendes Lopes．On the classification of irregular surfaces of general type with nonbirational bicanonical map．Trans．Amer．Math． Soc．，350，（1998），275－308．

G．Carnovale，F．Polizzi，The classification of surfaces with $p_{g}=q=1$ isogenus to a product of curves．Adv．Geom．，9，no．2，（2009），233－256．

T．Dedieu and F．Perroni，The fundamental group of a quotient of a product of curves．J．Group Theory，15，（2012），439－453．

D．Frapporti，C．Gleißner，On threefolds isogenous to a product of curves．arXiv： 1412．6365v2，（2014）．

C．D．Hacon and R．Pardini，Surfaces with $p_{g}=q=3$ ．Trans．Amer．Math．Soc．， 354，（2002），2631－2638．

D．R．Morrison，Canonical quotient singularities in dimension three．Proceedings of the American Mathematical Society，Vol．93，No．3，（1985），393－396．
青
M．Penegini，The Classification of Isotrivially Fibred Surfaces with $p_{g}=q=2$ ， and topics on Beauville Surfaces．PhD thesis，Universität Bayreuth，（2010）．
G. P. Pirola, Surfaces with $p_{g}=q=3$. Manuscripta Math., 108, (2002), 163-170.

