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A complex projective variety X is said to be isogenous to a product if X is a quotient

X =(Cy x ... x Cn)/G,
freely on Cy X ... x Chp.

where the C;’s are smooth curves of genus at least two, and G is a finite group acting
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X =(Cy x ... x Cn)/G,
freely on Cy X ... x Chp.

where the C;’s are smooth curves of genus at least two, and G is a finite group acting

@ the quotient map w: Cy X ... x Cp — (Cy X ... x Cp)/G = X is unramified,
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A complex projective variety X is said to be isogenous to a product if X is a quotient

X =(Cy x ... x Cn)/G,
freely on Cy X ... x Chp.

where the C;’s are smooth curves of genus at least two, and G is a finite group acting

@ the quotient map w: Cy X ... x Cp — (Cy X ... x Cp)/G = X is unramified,

= X is smooth, minimal, of general type i.e. x(X) = nand Ky is ample
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the group order:

o simple formulas for the invariants in terms of the genera g(C;) = h°(C;, Q};i) and
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x(0x) = EV T (g - 1),
Gl i3
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the group order:

o simple formulas for the invariants in terms of the genera g(C;) = h°(C;, Q}%) and

Formulas for the invariants:
x(0x) = EV T (g - 1),
Gl i3

K§ = (—1)"n! 2"x(Ox)

e(X) = 2"x(Ox).
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the group order:

o simple formulas for the invariants in terms of the genera g(C;) = h°(C;, Q}%) and

X(Ox) = ﬁg; I1 (a(c) - 1),

i=1

K§ = (—1)"n! 2"x(Ox)

e(X) = 2"x(Ox).
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the group order:

o simple formulas for the invariants in terms of the genera g(C;) = h°(C;, Q}%) and

X(Ox) = ﬁg; I1 (a(c) - 1),

i=1

K§ = (—1)"n! 2"x(Ox)

e(X) = 2"x(Ox).

Why shall we consider varieties isogenous to a product?
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the group order:

o simple formulas for the invariants in terms of the genera g(C;) = h°(C;, Q};i) and

X(Ox) = (Tgf I1 (a(c) - 1),

i=1

K§ = (—1)"n! 2"x(Ox)

e(X) = 2"x(Ox).

Why shall we consider varieties isogenous to a product?
@ find new examples of varieties of general type,
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the group order:

o simple formulas for the invariants in terms of the genera g(C;) = h°(C;, Q};i) and

X(Ox) = (Tgf I1 (a(c) - 1),

i=1

K§ = (—1)"n! 2"x(Ox)

e(X) = 2"x(Ox).

Why shall we consider varieties isogenous to a product?
@ find new examples of varieties of general type,

@ interesting relations with group theory and computer algebra.
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o take the Fermat curve C := {x5 + y% + 25 = 0} C P2 of degree five
«O> «Fr < > > QA
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o take the Fermat curve C := {x5 + y% + 25 = 0} C P2 of degree five

@ we define two group actions v;: Z/5 x Z/5 — Aut(C) via
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o take the Fermat curve C := {x5 + y% + 25 = 0} C P2 of degree five

@ we define two group actions v;: Z/5 x Z/5 — Aut(C) via

Yi(ab)([x:y:2]) =[x : €% : 2],
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o take the Fermat curve C := {x5 + y% + 25 = 0} C P2 of degree five
@ we define two group actions v;: Z/5 x Z/5 — Aut(C) via

Yi(ab)([x:y:2]) =[x : €% : 2],

va(a b)([x 1 y : 2]) := [€3F30x - 2H4by - 2],

where £ := exp (

2m/—1

5 )
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o take the Fermat curve C := {x5 + y% + 25 = 0} C P2 of degree five

@ we define two group actions v;: Z/5 x Z/5 — Aut(C) via

Yi(ab)([x:y:2]) =[x : €% : 2],

va(a b)([x 1 y : 2]) := [€3F30x - 2H4by - 2],

where £ := exp (2"‘5).
We define an action of Z/5 x Z/5 on the product C x C by 11 X 1)o.
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o take the Fermat curve C := {x5 + y% + 25 = 0} C P2 of degree five

@ we define two group actions v;: Z/5 x Z/5 — Aut(C) via

vi(ab)([x:y:2)) = [ : €% : 2],

va(a b)([x 1 y : 2]) := [€3F30x - 2H4by - 2],

where £ := exp (2"‘5).
We define an action of Z/5 x Z/5 on the product C x C by 11 X 1)o.

The action on the product is free
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o take the Fermat curve C := {x5 + y% + 25 = 0} C P2 of degree five
@ we define two group actions v;: Z/5 x Z/5 — Aut(C) via

vi(ab)([x:y:2)) = [ : €% : 2],

va(a b)([x 1 y : 2]) := [€3F30x - 2H4by - 2],

where £ := exp (

27/ —1
We define an action of Z/5 x Z/5 on the product C x C by 11 X 1)o.

5—)-
The action on the product is free
product.

= §:=(Cx C)/Gis asurface isogenous to a

(=]

=

Christian GleiBner

DA



o take the Fermat curve C := {x5 + y% + 25 = 0} C P2 of degree five
@ we define two group actions v;: Z/5 x Z/5 — Aut(C) via

vi(ab)([x:y:2)) = [ : €% : 2],

va(a b)([x 1 y : 2]) := [€3F30x - 2H4by - 2],

where £ := exp (

27/ —1
We define an action of Z/5 x Z/5 on the product C x C by 11 X 1)o.

5—)-
The action on the product is free
product.

= §:=(Cx C)/Gis asurface isogenous to a
1
°9(0)=5;6-1)(5-2)=6
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o take the Fermat curve C := {x5 + y% + 25 = 0} C P2 of degree five
@ we define two group actions v;: Z/5 x Z/5 — Aut(C) via

vi(ab)([x:y:2)) = [ : €% : 2],

va(a b)([x 1 y : 2]) := [€3F30x - 2H4by - 2],

where £ := exp (

27/ —1
We define an action of Z/5 x Z/5 on the product C x C by 11 X 1)o.

5 )-
The action on the product is free
product.

= §:=(Cx C)/Gis asurface isogenous to a
1
°09(0)=5;6-1)6-2)=6 = x(Os)=

(9(0) —1)?

=1.
25
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For a surface S of general type it holds x(Og) > 1.
«O» «F»r < > 4 P NEd
~ OntheClassification of Threefolds Isogenous toa Product  Trento, Nov 30. 2016 Christian Gleifner
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For a surface S of general type it holds x(Og) > 1.
x(0s) =1

& pg=4q, where pg:=h(S 02)
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For a surface S of general type it holds x(Og) > 1.
x(0s) =1

& pg=4q, where pg:=h'(5,02%) and q:=h’(S,Ql).
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For a surface S of general type it holds x(Og) > 1.
x(0s) =1

& pg=4q, where pg:=h'(5,02%) and q:=h’(S,Ql).

x(0g) = 1.

«O> «Fr < > > QA

= we have a complete classification of all surfaces isogenous to a product with



For a surface S of general type it holds x(Og) > 1.

x(0s) =1

& pg=4q, where pg:=h'(5,02%) and q:=h’(S,Ql).

= we have a complete classification of all surfaces isogenous to a product with
x(0g) = 1.

By the classical inequalities from surface geography
2pg<KZ if q>1

(Debarre) and K2 < 9x(0gs) =9

(BMY).
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For a surface S of general type it holds x(Og) > 1.

x(0s) =1

& pg=4q, where pg:=h'(5,02%) and q:=h’(S,Ql).

= we have a complete classification of all surfaces isogenous to a product with
x(0g) = 1.

By the classical inequalities from surface geography
2pg<KZ if q>1

(Debarre) and K2 < 9x(0gs) =9

(BMY).
= we conclude:

0<pg=g<4
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For a surface S of general type it holds x(Og) > 1.

x(0s) =1

& pg=4q, where pg:=h'(5,02%) and q:=h’(S,Ql).

= we have a complete classification of all surfaces isogenous to a product with
x(0g) = 1.

By the classical inequalities from surface geography
2pg < Kg if g>1 (Debarre) and Kg <9x(0s) =9 (BMY).
= we conclude:

0<pg=qg<4
The classifications are due to
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For a surface S of general type it holds x(Og) > 1.

x(0s) =1

& pg=4q, where pg:=h'(5,02%) and q:=h’(S,Ql).

= we have a complete classification of all surfaces isogenous to a product with
x(0g) = 1.

By the classical inequalities from surface geography
2pg < Kg if g>1 (Debarre) and Kg <9x(0s) =9 (BMY).
= we conclude:

0<pg=qg<4
The classifications are due to

@ Bauer, Catanese, Grunewald [BCG08] for pg = g = 0,
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For a surface S of general type it holds x(Og) > 1.

x(0s) =1

& pg=4q, where pg:=h'(5,02%) and q:=h’(S,Ql).

= we have a complete classification of all surfaces isogenous to a product with
x(0g) = 1.

By the classical inequalities from surface geography

2pg < Kg if g>1 (Debarre) and Kg <9x(0s) =9 (BMY).
= we conclude: 0<pg=qg<4

The classifications are due to

@ Bauer, Catanese, Grunewald [BCG08] for pg = g = 0,
@ Carnovale, Polizzi [CP09] for py = g = 1 and
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For a surface S of general type it holds x(Og) > 1.

x(0s) =1

& pg=4q, where pg:=h'(5,02%) and q:=h’(S,Ql).

= we have a complete classification of all surfaces isogenous to a product with
x(0g) = 1.

By the classical inequalities from surface geography
2pg<KZ if q>1

(Debarre) and K2 < 9x(0gs) =9

(BMY).
= we conclude:

0<pg=qg<4
The classifications are due to

@ Bauer, Catanese, Grunewald [BCG08] for pg = g = 0,
@ Carnovale, Polizzi [CP09] for py = g = 1 and
@ Penegini [Pe10] for pg = q = 2.
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All minimal surfaces of general type with pg = g = 3 and 4 are classified!
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All minimal surfaces of general type with pg = g = 3 and 4 are classified!

J
[Bea82]).

@ Inthe case pg = q = 4 the surface S is a product of two genus two curves (see
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All minimal surfaces of general type with pg = g = 3 and 4 are classified!

J
[Bea82]).

@ Inthe case pg = q = 4 the surface S is a product of two genus two curves (see
or

@ In the case p; = q = 3 itis either the symmetric square of a curve of genus three
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All minimal surfaces of general type with pg = g = 3 and 4 are classified!

@ Inthe case pg = q = 4 the surface S is a product of two genus two curves (see
[Bea82]).

or

@ In the case p; = q = 3 itis either the symmetric square of a curve of genus three
S=(CxD)/{r), where ord(T)=2,

9(C) =3, g(D)=2.
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All minimal surfaces of general type with pg = g = 3 and 4 are classified!

@ Inthe case pg = q = 4 the surface S is a product of two genus two curves (see
[Bea82]).

or

@ In the case p; = q = 3 itis either the symmetric square of a curve of genus three
S=(CxD)/(r), where ord(r)=2, g(C)=3,

g(D)=2.
(see [CCML98, Pir02, HP02)).
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We want to achieve analogous classification results in higher dimension.




We want to achieve analogous classification results in higher dimension.

(As a first step in dimension three.)
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Let Dy, ..., D be pairwise non-isomorphic curves with g(D;) > 2, then

Aut(Df' x ... x D) = (Aut(Dy)™ x Gn,) x ... x (Aut(Dyx)"™ x &p,)
for all positive integers n;.

(=]

=

Christian GleiBner

DA



Let Dy, ..., D be pairwise non-isomorphic curves with g(D;) > 2, then

Aut(Df' x ... x D) = (Aut(Dy)™ x Gn,) x ... x (Aut(Dyx)"™ x &p,)
for all positive integers n;.

Let X = (Cy x ... x Cn)/G be a variety isogenous to a product.
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Let Dy, ..., D be pairwise non-isomorphic curves with g(D;) > 2, then

Aut(Df' x ... x D) = (Aut(Dy)™ x Gn,) x ... x (Aut(Dyx)"™ x &p,)
for all positive integers n;.

Let X = (Cy x ... x Cn)/G be a variety isogenous to a product.

Then G/G° < &p, where G°:=Gn [Aut(Cy) x ... x Aut(Cn)].

(=]

=

Christian GleiBner

DA



Let Dy, ..., D be pairwise non-isomorphic curves with g(D;) > 2, then

Aut(Df' x ... x D) = (Aut(Dy)™ x Gn,) x ... x (Aut(Dyx)"™ x &p,)
for all positive integers n;.

Let X = (Cy x ... x Cn)/G be a variety isogenous to a product.

Then G/G° < &p, where G°:=Gn [Aut(Cy) x ... x Aut(Cn)].

A variety X isogenous to a product is of unmixed type iff G° = G, otherwise we say
that X is of mixed type.
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@ in Beauvilles example we had an explicit description in terms of equations
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= abstract description
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@ in Beauvilles example we had an explicit description in terms of equations

@ in general it is hard to work with equations

= abstract description
@ idea: attach to a variety isogenous to a product

X~ (Cyx...xCn)/G,
certain kind of combinatorial data:
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@ in Beauvilles example we had an explicit description in terms of equations

@ in general it is hard to work with equations

= abstract description
@ idea: attach to a variety isogenous to a product

X~ (Cyx...xCn)/G,
certain kind of combinatorial data:

the group G, the genera g(C;) etc.
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From now on we focus on the simplest case in dimension three:
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From now on we focus on the simplest case in dimension three:

@ the action on Cy x C> x Cj is unmixed i.e
9(x,y,2)=(9-x,9-y,9-2) ¥V g€G
«O» «Fr «=r < P NEd
~ Onthe Classification of Threefolds Isogenous toa Product  Trento, Nov 30. 2016 Christian Gleifner




From now on we focus on the simplest case in dimension three:

@ the action on C; x C, x Cj is unmixed i.e

9(x,y,2)=(9-x,9-y,9-2) ¥V g€G
@ Gembeds in Aut(C;) forall1 < i <3
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From now on we focus on the simplest case in dimension three:

@ the action on C; x C, x Cj is unmixed i.e

9(x,y,2)=(9-x,9-y,9-2) V g€G
@ Gembeds in Aut(C;) forall1 < i <3
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A faithful group action ¢: G — Aut(C) is given and completely determined by:
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@ a compact Riemann surface C’,

@ afinite set B ¢ C’ (the branch points) and
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A faithful group action ¢: G — Aut(C) is given and completely determined by:
@ a compact Riemann surface C’,

@ afinite set B ¢ C’ (the branch points) and

@ a surjective homomorphism n: my (C'\ B, qo) — G
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A faithful group action ¢: G — Aut(C) is given and completely determined by:
@ a compact Riemann surface C’,

@ afinite set B ¢ C’ (the branch points) and
@ a surjective homomorphism n: my (C'\ B, qo) — G

(the monodromy map).
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A faithful group action ¢: G — Aut(C) is given and completely determined by:
@ a compact Riemann surface C’,

@ afinite set B ¢ C’ (the branch points) and
@ a surjective homomorphism n: 1 (C'\ B,qy) — G

(the monodromy map).
The fundamental group of C’ \ B has a presentation of the form
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A faithful group action ¢: G — Aut(C) is given and completely determined by:
@ a compact Riemann surface C’,

@ afinite set B ¢ C’ (the branch points) and
@ a surjective homomorphism n: 1 (C'\ B,qy) — G

(the monodromy map).
The fundamental group of C’ \ B has a presentation of the form

J
7r1(Cl\Baq0) :<’Y1a a'Yfaahﬁ‘h"wag'aﬂg’ |’Y1 ""YI"H[O‘I'MBI']>'
i=1
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Riemann’s Existence Theorem

A faithful group action ¢ : G — Aut(C) is given and completely determined by:

@ a compact Riemann surface C’,
@ afinite set B ¢ C’ (the branch points) and

@ a surjective homomorphism n: w1 (C’\ B,qo) — G (the monodromy map).

The fundamental group of C’ \ B has a presentation of the form

m(C'\B, Q) = (Y, v 01, B1, - agr, By | v+ - [ [lei Bi)-

On the Classification of Threefolds Isogenous to a Product Trento, Nov 30. 2016 Christian GleiBner



hi :=n(v),

@ The images of the generators of mr; (C’ \ B, qo) under the monodromy map

aj:==n(a;) and b;:=n(p)
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hi == (i),
generate G and fulfill the relation

@ The images of the generators of mr; (C’ \ B, qo) under the monodromy map

aj:==n(a;) and b;:=n(p)
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hi == (i),
generate G and fulfill the relation

@ The images of the generators of mr; (C’ \ B, qo) under the monodromy map

aj:==n(a;) and b;:=n(p)

g/
- hr-Tlan b] = 16

i=1
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@ The images of the generators of mr; (C’ \ B, qo) under the monodromy map
hi==mn(v), a:=mn(a;) and b;j:=n(B)
generate G and fulfill the relation

g/
hy---hy - Jlai, b] = 16

i=1

Let my,...,m, > 2and g’ > 0 be integers and G be a finite group.

[ o = = vae



@ The images of the generators of mr; (C’ \ B, qo) under the monodromy map
hi==mn(v), a:=mn(a;) and b;j:=n(B)
generate G and fulfill the relation

g/
- hr-Tlan b] = 16

i=1

Let my,...,m, > 2 and g’ > 0 be integers and G be a finite group. A generating
vector of type [g’; my, ..., my] is a tuple of elements

[ o = = vae



@ The images of the generators of mr; (C’ \ B, qo) under the monodromy map
hi==mn(v), a:=mn(a;) and b;j:=n(B)
generate G and fulfill the relation

g/
- hr-Tlan b] = 16

i=1

Let my,...,m, > 2 and g’ > 0 be integers and G be a finite group. A generating
vector of type [g’; my, ..., my] is a tuple of elements

(h1,...,h,,a1,b1,...,ag/,bg,),

[ o = = vae



@ The images of the generators of mr; (C’ \ B, qo) under the monodromy map
hi==mn(v), a:=mn(a;) and b;j:=n(B)
generate G and fulfill the relation

g/
- hr-Tlan b] = 16

i=1

Let my,...,m, > 2 and g’ > 0 be integers and G be a finite group. A generating
vector of type [g’; my, ..., my] is a tuple of elements

(h1,...,h,,a1,b1,...,ag/,bg,),

such that
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@ The images of the generators of mr; (C’ \ B, qo) under the monodromy map
hi==mn(v), a:=mn(a;) and b;j:=n(B)
generate G and fulfill the relation

g/
- hr-Tlan b] = 16

i=1

Let my,...,m, > 2 and g’ > 0 be integers and G be a finite group. A generating
vector of type [g’; my, ..., my] is a tuple of elements

(h1,...,h,,a1,b1,...,ag/,bg,),

such that
e G= (h1,.‘.,hr,a1,b1,...,ag/,bg/),

[ o = = vae



@ The images of the generators of mr; (C’ \ B, qo) under the monodromy map
hi:==n(vi), a:=n(a;) and b;:=n(B)

generate G and fulfill the relation

g/
- hr-Tlan b] = 16

i=1

Let my,...,m, > 2 and g’ > 0 be integers and G be a finite group. A generating
vector of type [g’; my, ..., my] is a tuple of elements

(h1,...,h,,a1,b1,...,ag/,bg,),

such that
e G= (h1,.‘.,hr,a1,b1,...,ag/,bg/),

/

g
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i=1

[ o = = vae



@ The images of the generators of mr; (C’ \ B, qo) under the monodromy map
hi:==n(vi), a:=n(a;) and b;:=n(B)

generate G and fulfill the relation

g/
- hr-Tlan b] = 16

i=1

Let my,...,m, > 2 and g’ > 0 be integers and G be a finite group. A generating
vector of type [g’; my, ..., my] is a tuple of elements

(h1,...,h,,a1,b1,...,ag/,bg,),

such that
e G= (h1,.‘.,hr,a1,b1,...,ag/,bg/),

/

g
o hy---he-[]lai bl = 1a

i=1
@ ord(h)) =m; forall1 <i<r.

[ o = = vae



@ given a threefold isogenous to a product

X= (C1 X C2 X C3)/G,
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@ given a threefold isogenous to a product

X = (C1 X Cz X C3)/G,
group actions

we choose three generating vectors V4, V» and V3 corresponding to the induced

¥i: G — Aut(Cj)
(Riemann’s Existence Theorem)
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@ given a threefold isogenous to a product

X= (C1 X 02 X C3)/G,

we choose three generating vectors V4, V» and V3 corresponding to the induced
group actions

¥i: G — Aut(Cj)
(Riemann’s Existence Theorem)

@ the 4-tuple (G, V4, Vo, V) is called an algebraic datum of X
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@ given a threefold isogenous to a product
X =(C1 x G2 x G3)/G,
we choose three generating vectors V4, V» and V3 corresponding to the induced
group actions
¥i: G — Aut(Cj)
(Riemann’s Existence Theorem)

@ the 4-tuple (G, V4, Vo, V) is called an algebraic datum of X

@ we define the stabilizer set of a generating vector
V= (h1,...,hr,a1,b1,...,ag/,bg/) as

o = =

o

Christian GleiBner



@ given a threefold isogenous to a product
X =(C1 x G2 x G3)/G,
we choose three generating vectors V4, V» and V3 corresponding to the induced
group actions
¥i: G — Aut(Cj)
(Riemann’s Existence Theorem)

@ the 4-tuple (G, V4, Vo, V) is called an algebraic datum of X

@ we define the stabilizer set of a generating vector
V= (h1,...,hr,a1,b1,...,ag/,bg/) as

v=U U LrJ{gh}-'g*‘

geGieZ j=1

o = =

o
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Group theoretical description

@ given a threefold isogenous to a product
X= (C1 X Cz X Cg)/G,
we choose three generating vectors V4, V» and V3 corresponding to the induced

group actions
¥i: G — Aut(Cj)

(Riemann’s Existence Theorem)

@ the 4-tuple (G, V4, Vo, V) is called an algebraic datum of X

@ we define the stabilizer set of a generating vector
V=(h,....,hr,a1,bq,...,84,by) as

== U U U {oro

geEGIEZ j=1

@ the freeness of the G-action on the product C; x C, x Cj is reflected by the
condition
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Group theoretical description

@ given a threefold isogenous to a product
X= (C1 X Cz X Cg)/G,
we choose three generating vectors V4, V» and V3 corresponding to the induced

group actions
¥i: G — Aut(Cj)

(Riemann’s Existence Theorem)
@ the 4-tuple (G, V4, Vo, V) is called an algebraic datum of X

@ we define the stabilizer set of a generating vector
V=(h,....,hr,a1,bq,...,84,by) as

== U U U {oro

geEGIEZ j=1

@ the freeness of the G-action on the product C; x C, x Cj is reflected by the
condition

ZV1 N ZVZ N ZVS = {16}-
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Riemann’s Existence Theorem also provides a way back:
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Riemann’s Existence Theorem also provides a way back:

@ Let (G, V4, Vo, V3) be a 4-tuple, where V; are generating vectors for the group G
such that
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Riemann’s Existence Theorem also provides a way back:

@ Let (G, V4, Vo, V3) be a 4-tuple, where V; are generating vectors for the group G
such that

Ty, NXy, NXy, = {16},
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Riemann’s Existence Theorem also provides a way back:

@ Let (G, V4, Vo, V3) be a 4-tuple, where V; are generating vectors for the group G
such that

Ty, NXy, NXy, = {16},

then (G, V4, Vo, V3) is an algebraic datum of a threefold X isogenous to a product.
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Riemann’s Existence Theorem also provides a way back:

@ Let (G, V4, Vo, V3) be a 4-tuple, where V; are generating vectors for the group G
such that

Ty, Nxy, Nxy = {1g},
then (G, V4, Vo, V3) is an algebraic datum of a threefold X isogenous to a product.

certain geometric properties of X are encoded in (G, Vy, Vo, V3)

J
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Riemann’s Existence Theorem also provides a way back:

@ Let (G, V4, Vo, V3) be a 4-tuple, where V; are generating vectors for the group G
such that

Ty, NXy, NXy, = {16},

then (G, V4, Vo, V3) is an algebraic datum of a threefold X isogenous to a product.

certain geometric properties of X are encoded in (G, Vy, Vo, V3)
In the following, we show that:

J
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Riemann’s Existence Theorem also provides a way back:

@ Let (G, V4, Vo, V3) be a 4-tuple, where V; are generating vectors for the group G
such that

Ty, NXy, NXy, = {16},

then (G, V4, Vo, V3) is an algebraic datum of a threefold X isogenous to a product.

certain geometric properties of X are encoded in (G, Vy, Vo, V3)
In the following, we show that:

J

@ the Hodge numbers hP-9(X) := dim HP-9(X) = dim HI(X, Qf() and
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Group theoretical description

Riemann’s Existence Theorem also provides a way back:

@ Let (G, V4, Vo, V3) be a 4-tuple, where V; are generating vectors for the group G
such that

Ty, Nxy, Nxy = {1g},
then (G, V4, Vo, V3) is an algebraic datum of a threefold X isogenous to a product.

certain geometric properties of X are encoded in (G, Vi, Vs, V3)

In the following, we show that:
@ the Hodge numbers hP-9(X) := dim HP-9(X) = dim HI(X, Qf() and

@ the fundamental group ¢ (X) can be determined from an algebraic datum
(G7 V17 V2y V3) of X.
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We start with the Hodge numbers of X
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We start with the Hodge numbers of X

@ the G action on C; x C, x Cs induces representations
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We start with the Hodge numbers of X
@ the G action on C; x C, x Cs induces representations

¢p,q: G— GL(Hp’q(C1 X Cg X Cs)),

g wr (971wl
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We start with the Hodge numbers of X

@ the G action on C; x C, x Cs induces representations

¢p,q: G— GL(Hp’q(C1 X Cg X Cs)),
with characters xp,q

g wr (971wl
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We start with the Hodge numbers of X

@ the G action on C; x C, x Cs induces representations

¢p,q: G— GL(Hp’q(C1 X Cg X Cs)),
with characters xp,q

g we (g7 .
@ let x4y be the trivial character of G, then
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We start with the Hodge numbers of X

@ the G action on C; x C, x Cs induces representations

¢pyq! G— GL(Hp’q(C1 X Cg X Cs)),
with characters xp,q

g we (g7 .
@ let x4y be the trivial character of G, then

= hP9(X) = dim H"9(Cy x Ca x C3)% = (xp.q Xtriv)
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We start with the Hodge numbers of X

@ the G action on C; x C, x Cs induces representations

#p,q: G— GL(HP9(Cy x Ca x G3)), g+ [wr (g7") w].
with characters xp,q
@ let x4y be the trivial character of G, then

= hP9(X) = dim H"9(Cy x Ca x C3)% = (xp.q Xtriv)

@ the G action on C; also induces representations:
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We start with the Hodge numbers of X

@ the G action on C; x C, x Cs induces representations

¢pyq! G— GL(Hp’q(C1 X Cg X C3)),
with characters xp,q

g lwe (g1l

@ let x4y be the trivial character of G, then

= hP9(X) = dim H"9(Cy x Ca x C3)% = (xp.q Xtriv)

@ the G action on C; also induces representations:

@it G— GL(H"(C))
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We start with the Hodge numbers of X

@ the G action on C; x C, x Cs induces representations

¢pyq! G— GL(Hp’q(C1 X Cg X C3)),
with characters xp,q

g we— (g7 ]
@ let x4y be the trivial character of G, then

= hP9(X) = dim H"9(Cy x Ca x C3)% = (xp.q Xtriv)

@ the G action on C; also induces representations:
@it G— GL(H"(C))

Idea: determine the characters xp,q in terms of the characters x,;
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The relation between the characters xp,q and x.,; is provided by Kiinneth’s formula:
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HPI(Ci x Cox C3) = B

HEO1 (Cr) @ HE2e (Cp) @ H5(C)
S1+So+S3=p
t+t+i3=q

The relation between the characters xp,q and x.,; is provided by Kiinneth’s formula:
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The relation between the characters xp,q and x.,; is provided by Kiinneth’s formula:

HPA(Ci x Cox Cg) = @D H™N(Cr) ® H2%(Cp) @ H5(Cs)

S1+8Sp+83=p
t+t+i=q

@ X1,0 = Xo1 T Xz T Xepgs

@ X1,1 = 2R€(Xp1 Xpp + X1 Xz T Xeoo Xpz) + 3Xtrivs

@ X2,0 = X1 X2 T Xeo1 Xopg T Xeop X3

® X2,1 = Xo1 X2 Xes + Xeo1 XeaXeg + Xeo1 X2 Xeog T 2(Xe1 + Xwo + Xeo3)s
@ X3,0 = X1 Xp2Xe3s

® Xq.,p = Xp,q-
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The relation between the characters xp,q and x.,; is provided by Kiinneth’s formula:

HPA(Ci x Cox Cg) = @D H™N(Cr) ® H2%(Cp) @ H5(Cs)
S1+8Sp+S3=p
t+th+13=q

@ X1,0 = Xo1 T Xz T Xepgs

@ X1,1 = 2R€(Xp1 Xpp + X1 Xz T Xeoo Xpz) + 3Xtrivs

@ X2,0 = X1 X2 T Xeo1 Xopg T Xeop X3

® X2,1 = Xo1 X2 Xes + Xeo1 XeaXeg + Xeo1 X2 Xeog T 2(Xe1 + Xwo + Xeo3)s
@ X3,0 = X1 Xp2Xe3s

® Xq.,p = Xp,q-

= it remains determine the character of a representation ¢: G — GL(H'°(C))
induced by an action ¢: G — Aut(C) in terms of a generating vector
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The relation between the characters xp,q and x.,; is provided by Kiinneth’s formula:

HPA(Ci x Cox Cg) = @D H™N(Cr) ® H2%(Cp) @ H5(Cs)
S1+8Sp+S3=p
t+th+13=q

9 X1,0 = X1 + Xeo + Xegs

@ X1,1 = 2R€(Xp1 Xpp + X1 Xz T Xeoo Xpz) + 3Xtrivs

@ X2,0 = Xp1 Xz T X1 Xepg T Xep2 Xep3s

® X2,1 = Xo1 X2 Xes + Xeo1 XeaXeg + Xeo1 X2 Xeog T 2(Xe1 + Xwo + Xeo3)s
@ X3,0 = X1 Xp2Xe3s

® Xg.p = Xp,q-

= it remains determine the character of a representation ¢: G — GL(H'°(C))
induced by an action ¢: G — Aut(C) in terms of a generating vector

V=(h1,...,h,,a1,b1,...,ag/,bg/).
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@ There is a decomposition of the character x,, in irreducible characters
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@ There is a decomposition of the character x,, in irreducible characters

Xe = D (6Xe) X

X€EIr(G)
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@ There is a decomposition of the character x,, in irreducible characters

Xe= > (GXe) X
XEIr(G)
= we need to determine the multiplicities (x, x,)
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@ There is a decomposition of the character x,, in irreducible characters

Xe= > (GXe) X
XEIr(G)
= we need to determine the multiplicities (x, x,)

@ pick h; from V and an irreducible representation ¢ with character .

(=]

=

Christian GleiBner

DA



@ There is a decomposition of the character x,, in irreducible characters

Xe= > (GXe) X
XEIr(G)
= we need to determine the multiplicities (x, x,)

@ pick h; from V and an irreducible representation ¢ with character x.
@ ord(h;)) = m;
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@ There is a decomposition of the character x,, in irreducible characters

Xe= > (GXe) X
XEIr(G)
= we need to determine the multiplicities (x, x,)

@ pick h; from V and an irreducible representation ¢ with character .
@ ord(h;) = m; = every eigenvalue of o(h;) is of the form
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@ There is a decomposition of the character x,, in irreducible characters

Xe= > (GXe) X
XEIr(G)
= we need to determine the multiplicities (x, x,)

@ pick h; from V and an irreducible representation ¢ with character .
@ ord(h;) = m; = every eigenvalue of o(h;) is of the form

2w/ —1
Em = exp(%) forsome 1 <a<m
i
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@ There is a decomposition of the character x,, in irreducible characters

Xe= > (GXe) X
XEIr(G)
= we need to determine the multiplicities (x, x,)

@ pick h; from V and an irreducible representation ¢ with character .
@ ord(h;) = m; = every eigenvalue of o(h;) is of the form

27/ —1
Em = exp(%) forsome 1 <a<m
i
o define N; , := # eigenvalues of o(h;) equal to &3,
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@ There is a decomposition of the character x,, in irreducible characters

Xe= > (GXe) X
XEIr(G)
= we need to determine the multiplicities (x, x,)

@ pick h; from V and an irreducible representation ¢ with character .
@ ord(h;) = m; = every eigenvalue of o(h;) is of the form

2w/ —1
Em = exp(%) forsome 1 <a<m
i
o define N; , := # eigenvalues of o(h;) equal to &3,
@ Formula of Chevalley-Weil:
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@ There is a decomposition of the character x,, in irreducible characters

Xe= > (GXe) X
xE€lrr(G)
= we need to determine the multiplicities (x, x,)

@ pick h; from V and an irreducible representation o with character x
@ ord(h;) = m; = every eigenvalue of o(h;) is of the form

2y —1a
6 - op(2717)
m

# eigenvalues of o(h;) equal to £
@ Formula of Chevalley-Weil

for some
@ define N; ,,

1S0{Sm,‘

r m,—1
<X7 Xﬁ0>

x(a)(g' =)+ Z

i=1 a=1

(O Xiriv) -
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it is very hard to determine the irreducible representations of a given finite group G l
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character x.

it is very hard to determine the irreducible representations of a given finite group G '

@ to calculate the eigenvalues of o(h;), enough information is encoded in the
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it is very hard to determine the irreducible representations of a given finite group G '

@ to calculate the eigenvalues of o(h;), enough information is encoded in the
character x.
=

the character table of any finite group G can be determined using the computer
algebra system MAGMA.
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it is very hard to determine the irreducible representations of a given finite group G '

@ to calculate the eigenvalues of o(h;), enough information is encoded in the
character x.
=

the character table of any finite group G can be determined using the computer
algebra system MAGMA.

The strategy is the following:
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it is very hard to determine the irreducible representations of a given finite group G I

@ to calculate the eigenvalues of o(h;), enough information is encoded in the
character x.
=

the character table of any finite group G can be determined using the computer
algebra system MAGMA.

The strategy is the following:

° x(h,’.‘) is the k-th powersum of the eigenvalues of o(h;)
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it is very hard to determine the irreducible representations of a given finite group G I

@ to calculate the eigenvalues of o(h;), enough information is encoded in the
character x.
=

the character table of any finite group G can be determined using the computer
algebra system MAGMA.

The strategy is the following:

° x(h,’.‘) is the k-th powersum of the eigenvalues of o(h;)
these powersums

@ we use Newton’s identities to determine the characteristic polynomial of o(h;) from
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Formula of Chevalley-Weil

Computational problem:

it is very hard to determine the irreducible representations of a given finite group G

@ to calculate the eigenvalues of o(h;), enough information is encoded in the
character .

= the character table of any finite group G can be determined using the computer
algebra system MAGMA.

The strategy is the following:

@ x(h¥)is the k-th powersum of the eigenvalues of o(h;)

@ we use Newton’s identities to determine the characteristic polynomial of o(h;) from
these powersums

@ the characteristic polynomial is easy to factorize, because its roots are powers of

ém;
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[DP10].

To compute the fundamental group of a threefold X isogenous to a product we follow
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To compute the fundamental group of a threefold X isogenous to a product we follow
[DP10].

Letg’ > 0andmy,...,m; > 2 be integers.
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[DP10].

To compute the fundamental group of a threefold X isogenous to a product we follow

T= [gl;m1a

., my] is defined as:

Letg’ > 0andmy,...,m; > 2 be integers. The orbifold surface group of type
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[DP10].

To compute the fundamental group of a threefold X isogenous to a product we follow

T= [gl;m1a

., my] is defined as:

Letg’ > 0andmy,...,m; > 2 be integers. The orbifold surface group of type

g/

¢ -] [ldi ei)-

i=1

m- m,
T(T) :=(Cy,...,Cr,dy,81,...,dg,80 | ], ..., ¢/, ¢
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[DP10].

To compute the fundamental group of a threefold X isogenous to a product we follow

Letg’ > 0and my,...,m; > 2 be integers. The orbifold surface group of type
T=1[g;m,...,m] is defined as:
g/
T(T)Z:<C1’ '7Cf7d1ye17 '7dg’7eg/|C:n1, ..,C;n’, Cq

¢ -] [ldi ei)-

i=1

@ the generating vectors V; in an algebraic datum (G, Vi, Vo, V3) of X determine
surjective group homomorphisms p;: T(T;) — G,
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[DP10].

To compute the fundamental group of a threefold X isogenous to a product we follow

Letg’ > 0and my,...,m; > 2 be integers. The orbifold surface group of type
T=1[g;m,...,m] is defined as:
g/
T(T)Z:<C1’ '7Cf7d1ye17 '7dg’7eg/|C:n1, ..,C;nr, Cq

¢ -] [ldi ei)-

i=1

@ the generating vectors V; in an algebraic datum (G, Vi, Vo, V3) of X determine
surjective group homomorphisms p;: T(T;) — G,

o | m(X) = {(x.y,2) € I(T1) x I(Ta) x U(T) | p1(x) = Pe(y) = Pa(2)} |
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x(Ox)
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give an algorithm to classify threefolds X isogenous to a product with a fixed value of
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give an algorithm to classify threefolds X isogenous to a product with a fixed value of
x(Ox)
Input: a negative integer x
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a
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x(Ox)

give an algorithm to classify threefolds X isogenous to a product with a fixed value of

Input: a negative integer x

Output: a "finite list" of all threefolds X isogenous to a product with x(Ox) = x.
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numerical datum

An algebraic datum (G, V4, V2, V3) of a threefold X isogenous to a product induces a

(na T1a T2v T3)
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numerical datum

An algebraic datum (G, V4, V2, V3) of a threefold X isogenous to a product induces a

(na T1v T2v T3)
Here n= |G| and T; = [g/; m; 1,

., mj ;] are the types of the generating vectors V;.
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numerical datum

An algebraic datum (G, V4, V2, V3) of a threefold X isogenous to a product induces a

(n) T1v T2v T3)
Here n= |G| and T; = [g/; m; 1,

., mj ;] are the types of the generating vectors V;.

@ derive combinatorial constraints on the numerical data: inequalities, divisibility
conditions etc. in terms of x(Ox).
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Combinatorics, Bounds and the Algorithm

An algebraic datum (G, V4, Va, V3) of a threefold X isogenous to a product induces a

numerical datum
(n7 T17 T27 T3)

Here n=|Gland T; = [g{; m; 1, ..., m; ;] are the types of the generating vectors V.

@ derive combinatorial constraints on the numerical data: inequalities, divisibility
conditions etc. in terms of x(Ox).

@ the constraints should imply that the numerical data of all threefolds X isogenous
to a product with x(Ox) = x form a finite list.
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Combinatorics, Bounds and the Algorithm

An algebraic datum (G, V4, Va, V3) of a threefold X isogenous to a product induces a
numerical datum
(n7 T17 T27 T3)

Here n=|Gland T; = [g{; m; 1, ..., m; ;] are the types of the generating vectors V.

@ derive combinatorial constraints on the numerical data: inequalities, divisibility
conditions etc. in terms of x(Ox).

@ the constraints should imply that the numerical data of all threefolds X isogenous
to a product with x(Ox) = x form a finite list.

1st Step in the classification: compute the finite list of abstract numerical datai.e.
the set of abstract 4-tuples of the form (n, Ty, Ty, T3), which fulfill the constraints.
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Combinatorics, Bounds and the Algorithm

An algebraic datum (G, V4, Va, V3) of a threefold X isogenous to a product induces a
numerical datum
(n7 T17 T27 T3)

Here n=|Gland T; = [g{; m; 1, ..., m; ;] are the types of the generating vectors V.

@ derive combinatorial constraints on the numerical data: inequalities, divisibility
conditions etc. in terms of x(Ox).

@ the constraints should imply that the numerical data of all threefolds X isogenous
to a product with x(Ox) = x form a finite list.

1st Step in the classification: compute the finite list of abstract numerical datai.e.
the set of abstract 4-tuples of the form (n, Ty, Ty, T3), which fulfill the constraints.

= list of candidates for the numerical data
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LetX = (Cy x Cy x C3)/G be a threefold isogenous to a product, then

n=|G| < 168/—21x(Ox).
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proof:

LetX = (Cy x Cy x C3)/G be a threefold isogenous to a product, then

n=|G| < 168/—21x(Ox).
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LetX = (Cy x Cy x C3)/G be a threefold isogenous to a product, then

n=|G| < 168y/—21x(Ox).
proof:

@ according to Hurwitz it holds |G| < |Aut(C;)| < 84(g(Ci) — 1)
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LetX = (Cy x Cy x C3)/G be a threefold isogenous to a product, then

n=|G| < 168y/—21x(Ox).
proof:

@ we conclude

@ according to Hurwitz it holds |G| < |Aut(C;)| < 84(g(Ci) — 1)

() = ] (a(ey—1) = 198
X X_|G|,-:1g i < a3
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the entries of the types T; = [g]; mj 1, ..., m; ] fulfill:
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the entries of the types T; = [g]; mj 1, ..., m; ] fulfill:
® g/ <1-—x(0x),
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the entries of the types T; = [g]; mj 1, ..., m; ] fulfill:
® g/ <1-—x(0x),

@ m; divides the group order n,
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the entries of the types T; = [g]; mj 1, ..., m; ] fulfill:
® g/ <1-—x(0x),

@ m; divides the group order n,

@ Hurwitz’ formula holds:

G
Qi—1=|2—|

ri—1
' 1
(29,4 -2+> (1- —)) g/ = 9(Ci/G)
j=1 m’,l
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the entries of the types T; = [g]; mj 1, ..., m; ] fulfill:

® g/ <1-—x(0x),

@ m; divides the group order n,

@ Hurwitz’ formula holds:

gi—1

® (gi—1)|n x(Ox).

_ 6l

2

ri—1
' 1
(29,4 -2+> (1- —)) g/ = 9(Ci/G)
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the entries of the types T; = [g]; mj 1, ..., m; ] fulfill:

® g/ <1-—x(0x),

@ m; divides the group order n,

@ Hurwitz’ formula holds:

gi—1

® (gi—1)|n x(Ox).

=

_ 6l

2

ri—1
’ 1
(29,4 -2+> (1- —)) g/ = 9(Ci/G)
j=1 m’,l

only finitely many numerical data (n, Ty, T, T3)
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Input: a negative integer x (the holomorphic Euler characteristic)
«O> «Fr < > > QA
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Input: a negative integer x (the holomorphic Euler characteristic)
tuples of the form

1st Step: here we determine the set of (abstract) numerical data i.e. the finite set of

(na T17 T27 T3)a

where T, =[g/;mj1,...,m;]
that satisfy the constraints from above.
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Input: a negative integer x (the holomorphic Euler characteristic)
tuples of the form

1st Step: here we determine the set of (abstract) numerical data i.e. the finite set of

(n, Ty, T2, T3), where T, =[g/;imjq,...,m;]
that satisfy the constraints from above.

2nd Step: here we search for algebraic data. More precisely:
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The Algorithm

Input: a negative integer x (the holomorphic Euler characteristic)

1st Step: here we determine the set of (abstract) numerical data i.e. the finite set of
tuples of the form

(n7 T1’ T2)T3)7 where 7—I = [g/{;mll,‘]:"')mll,l’,‘]

that satisfy the constraints from above.
2nd Step: here we search for algebraic data. More precisely:

@ for each abstract numerical datum (n, Tq, T, T3) found in the 1st step we run
through the groups G of order n and determine all 4-tuples of the form

(G, Vg, Vo, V),

where V; is a generating vector of type T;.
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The Algorithm

Input: a negative integer x (the holomorphic Euler characteristic)

1st Step: here we determine the set of (abstract) numerical data i.e. the finite set of
tuples of the form

(n7 T1’ T2)T3)7 where 7—I = [g/{;mll,‘]:"')mll,l’,‘]

that satisfy the constraints from above.
2nd Step: here we search for algebraic data. More precisely:

@ for each abstract numerical datum (n, Tq, T, T3) found in the 1st step we run
through the groups G of order n and determine all 4-tuples of the form

(G, Vg, Vo, V),

where V; is a generating vector of type T;.
@ for each 4-tuple (G, V4, Vo, V3) we check the freeness condition

ZV1 N ZVZ n ZVS = {16}
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The Algorithm

Input: a negative integer x (the holomorphic Euler characteristic)

1st Step: here we determine the set of (abstract) numerical data i.e. the finite set of
tuples of the form

(n7 T1’ T2)T3)7 where 7—I = [g/{;mll,‘]:"')mll,l’,‘]

that satisfy the constraints from above.
2nd Step: here we search for algebraic data. More precisely:

@ for each abstract numerical datum (n, Tq, T, T3) found in the 1st step we run
through the groups G of order n and determine all 4-tuples of the form

(G, Vg, Vo, V),

where V; is a generating vector of type T;.
@ for each 4-tuple (G, V4, Vo, V3) we check the freeness condition

ZV1 N ZVZ n ZVS = {16}

if it holds there exists a threefold X isogenous to a product with x(Ox) = x and
algebraic datum (G, V4, Vo, V3).
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The Algorithm

Input: a negative integer x (the holomorphic Euler characteristic)

1st Step: here we determine the set of (abstract) numerical data i.e. the finite set of
tuples of the form

(n7 T1’ T2)T3)7 where 7—I = [g/{;mll,‘]:"')mll,l’,‘]

that satisfy the constraints from above.
2nd Step: here we search for algebraic data. More precisely:

@ for each abstract numerical datum (n, Tq, T, T3) found in the 1st step we run
through the groups G of order n and determine all 4-tuples of the form

(G, Vg, Vo, V),
where V; is a generating vector of type T;.
@ for each 4-tuple (G, V4, Vo, V3) we check the freeness condition
ZV1 N ZVZ n ZVS = {16}

if it holds there exists a threefold X isogenous to a product with x(Ox) = x and
algebraic datum (G, V4, Vo, V3).
@ for each threefold X that we found we determine the Hodge numbers and print the

occurrence
[Gv T17 T27 T37 hp,q]_
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We run a MAGMA implementation of the algorithm for the input value x = —1
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We run a MAGMA implementation of the algorithm for the input value x = —1

e n=|G| < [168,/—21x] = 769

@ there are 11.715.855 isomorphism classes of groups G with |G| < 769
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We run a MAGMA implementation of the algorithm for the input value x = —1

e n=|G| < [168,/—21x] = 769

@ there are 11.715.855 isomorphism classes of groups G with |G| < 769

@ all of them are contained in MAGMA’s database of small groups
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We run a MAGMA implementation of the algorithm for the input value x = —1

e n=|G| < [168,/—21x| = 769
@ there are 11.715.855 isomorphism classes of groups G with |G| < 769
@ all of them are contained in MAGMA’s database of small groups

@ however, for only 38 group orders n there exists types T; fulfilling the constraints
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We run a MAGMA implementation of the algorithm for the input value x = —1 J

e n=|G| < [168\/—21x| =769

@ there are 11.715.855 isomorphism classes of groups G with |G| < 769

@ all of them are contained in MAGMA’s database of small groups

@ however, for only 38 group orders n there exists types T; fulfilling the constraints

@ = the number of groups we need to consider (in Step 2) drops to 4393
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The Main Computation

We run a MAGMA implementation of the algorithm for the input value x = —1

® n=|G| < |168,/—21x| = 769

@ there are 11.715.855 isomorphism classes of groups G with |G| < 769

@ all of them are contained in MAGMA’s database of small groups

@ however, for only 38 group orders n there exists types T; fulfilling the constraints
@ = the number of groups we need to consider (in Step 2) drops to 4393

Theorem (Frapporti,-)

Let X be a threefold isogenous to a product of unmixed type with x(Ox) = —1. Then
X is minimal of general type and there are 54 possibilities for

[Gv T1 ) T27 T37 hp’q]'
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o T T, T [ 13,0 [ 12,0 [ n1,0 [ IS [ 21 l
Ag [0:2%, 3] [0; 2, 52] [0;32, 5] 2 0 0 3 6
GL(2, Fg) [0;2,3, 8 [0;2,3, 8 2] 5 5 2 11 17
GL(2, Fg) [0;2,3, 8 [0;2,3, 8 2 -] 4 4 2 13 18
Sy X Zp [0;25] [0;2,4,6] [0:2,4,6] | 3 1 0 5 9
SL(2, F3) [0:32, 4] [0:32, 4] 2 -] 5 5 2 13 19
Zg X Dy | [0:2,4,6] [0;2, 4, 6] 2] 5 5 2 11 17
Zg X Dy | [0:2,4,6] [0;2, 4, 6] 2 -] 4 4 2 13 18
Sy [0:23, 4] [0;22, 82 [0;3, 42] 3 1 0 5 9
sD16 [0;2, 4, 8] [0;2, 4,8 2] 5 5 2 11 17
SD16 [0; 2, 4, 8] [0;2, 4, 8] 2 -] 4 4 2 13 18
Dy x Iy [0;25] [0;23, 4] [0;23, 4] 3 1 0 5 9
Dy X Zy 10; 25] [0;23, 4] [0;23, 4] 4 2 0 7 12
Dic12 [0;3, 42] [0;3, 42] 2 -] 5 5 2 13 19
73 x 73 [0: 2, 62] [0:2, 62] 2 -] 6 6 2 11 18
73 x 73 [0:2, 62] [0; 2, 62] 2 -] 5 5 2 11 17
73 x 73 [0:2, 62] [0:2, 62] 2 -] 4 4 2 13 18
Z3 x 73 [0: 2, 62] [0;2, 62] 2 -] 4 4 2 15 20
Dg [0;23,3] [0;23, 6] [1:22] 4 3 1 9 14
Dg [0:2%, 3] [0:2%, 3] 2 -] 5 5 2 13 19
Dg 10; 28] [0;23, 3] [1:3] 4 3 1 9 14
Z1o [0;2,5,10) | [0;2,5,10] | [2 —] 5 5 2 13 19
Z1o [0:2,5,10] | [0;2,5,10) | [2—] 6 6 2 11 18
Z1o [0:2,5,10] | [0:2,5,10] | [2—] 4 4 2 15 20
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l G [ T, T [ T [ 13,0 [ 2.0 [ 1,0 [ ot [ 2
Q [0; 43] [0; 43] 2-1 |5 5 2 13 19
Zg [0;2, 82 [0:2, 82] 2-1 | 6 6 2 11 18
Zg [0:2, 8] [0; 2, 82] -1 | 4 4 2 15 20
Dy | [0:2%,4] [1:2 [:22] | 4 4 2 11 16
Dy | [0:2%,4] [0:22,42] | [1;22] | 4 3 1 9 14
Dy | [0:28,4) [0:2%, 4] -1 |5 5 2 13 19
Dy | [0:2%) [0;23, 4] [1:2] 4 3 1 9 14
z3 [0; 25] [0; 28] ;2% | 5 3 0 9 15
73 [0; 25] [0; 25] 0:25] | 4 2 0 7 12
Zg [0; 3, 62] [0:3, 62] 2] | 6 6 2 11 18
Zg [0:3, 62] [0;3, 62] -1 | 4 4 2 15 20
S5 | 022,32 | [1;29 [1:3] 4 4 2 11 16
Zg [0;22,32] | [0;3,62] -1 |5 5 2 13 19
Zg 0:22,32] | [0:22,3%] | [2-] | 6 6 2 15 22
S3 | 0:22,3] | [022,3%] | 2] | 5 5 2 13 19
sz | [0:29 [0:22,32] | [1:9] 4 3 1 9 14
Zs [0; 53] [0;5%] 2-1 | 6 6 2 11 18
Zg [0: 53] [0; 5% -] | 5 5 2 13 19
Zg [0; 53] [0; 5% 2] | 4 4 2 15 20
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[ G [ T T, T3 [ 130 [ -0 [ h!,0 [ Al [ 121 ]
Zy 0:22,42] | 022,43 | 2-] | & 6 2 15 22
73 [0; 25] [1;22] ;22 | 5 5 2 13 19
73 [0; 25] [1;22] [:22] | 4 4 2 11 16
73 [0: 2] [0; 28] 22 | e 5 1 13 20
23 [0; 25] [0; 28] [:22] | 5 4 1 11 17
23 [0; 25] [0; 25] 21 |5 5 2 13 19
73 [0; 25] [0; 28] -1 | 6 6 2 15 22
Zgy [0:3%] [0;34] -] | 6 6 2 15 22
Zo [1:22] [1;22] -1 | 6 8 4 19 2
Zp [0; 28] [1;22] -1 1|86 7 3 17 24
Zp [0; 25] [0; 28 2-1 | 8 8 2 19 28
{1} 2 -] [2 -] [2; -] 8 12 6 27 36
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[c1n 1w Tw [@o]ee [0 wi @]
Zy 0:22,42] | 022,43 | 2-] | & 6 2 15 22
73 [0; 25] [1;22] ;22 | 5 5 2 13 19
73 0; 2% [1;22) 22 | 4 4 2 11 16
73 [0; 25] [0; 28 [:22] | 6 5 1 13 20
73 0; 29] [0;29] me? | s 4 1 19 17
7% | 029 [0;25] -] | 5 5 2 13 19
73 [0; 25] [0; 28] 2-1 | 6 6 2 15 22
Zg [0;34] [0;3% -1 | 6 6 2 15 22
Zy [1:22] [1;22] 2-1 | 6 8 4 19 26
Zp [0; 28] [1;22] -1 1|86 7 3 17 24
Zp [0; 28 [0; 28 -1 |8 8 2 19 28
{1} [2: -] 2 -] [2: -] 8 12 6 27 36
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I R S P W N W G

Zy 0:22,42] | 022,43 | 2-] | & 6 2 15 22
73 [0; 25] [1;22] ;22 | 5 5 2 13 19
73 [0; 25] [1;22] [:22] | 4 4 2 11 16
73 [0: 2] [0; 28] 22 | e 5 1 13 20
23 [0; 25] [0; 28] [:22] | 5 4 1 11 17
23 [0; 25] [0; 25] 21 |5 5 2 13 19
73 [0; 25] [0; 28] -1 | 6 6 2 15 22
Zgy [0:3%] [0;34] -] | 6 6 2 15 22
Zo [1:22] [1;22] -1 | 6 8 4 19 2
Zp [0; 28] [1;22] -1 1|86 7 3 17 24
Zp [0; 25] [0; 28 2-1 | 8 8 2 19 28
{1} 2 -] [2 -] [2; -] 8 12 6 27 36

Notation:

@ in the table we abbreviate the types: for example [0; 2,2, 4, 4] is written as
[0; 22,42,
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[ G [ T T, T3 [ 130 [ -0 [ h!,0 [ Al [ 121 ]
Zy 0:22,42] | 022,43 | 2-] | & 6 2 15 22
73 [0; 25] [1;22] ;22 | 5 5 2 13 19
73 [0; 25] [1;22] [:22] | 4 4 2 11 16
73 [0: 2] [0; 28] 22 | e 5 1 13 20
23 [0; 25] [0; 28] [:22] | 5 4 1 11 17
23 [0; 25] [0; 25] 21 |5 5 2 13 19
73 [0; 25] [0; 28] -1 | 6 6 2 15 22
Zgy [0:3%] [0;34] -] | 6 6 2 15 22
Zo [1:22] [1;22] -1 | 6 8 4 19 2
Zp [0; 28] [1;22] -1 1|86 7 3 17 24
Zp [0; 25] [0; 28 2-1 | 8 8 2 19 28
{1} 2 -] [2 -] [2; -] 8 12 6 27 36

Notation:

@ in the table we abbreviate the types: for example [0; 2,2, 4, 4] is written as

[0;22,47],

@ the cyclic group Z/nZ is denoted by Zn,
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I R S P W N W G

Zy 0:22,42] | 022,43 | 2-] | & 6 2 15 22
73 [0; 25] [1;22] ;22 | 5 5 2 13 19
73 [0; 25] [1;22] [:22] | 4 4 2 11 16
73 [0: 2] [0; 28] 22 | e 5 1 13 20
23 [0; 25] [0; 28] [:22] | 5 4 1 11 17
23 [0; 25] [0; 25] 21 |5 5 2 13 19
73 [0; 25] [0; 28] -1 | 6 6 2 15 22
Zgy [0:3%] [0;34] -] | 6 6 2 15 22
Zo [1:22] [1;22] -1 | 6 8 4 19 2
Zp [0; 28] [1;22] -1 1|86 7 3 17 24
Zp [0; 25] [0; 28 2-1 | 8 8 2 19 28
{1} 2 -] [2 -] [2; -] 8 12 6 27 36

Notation:

@ in the table we abbreviate the types: for example [0; 2,2, 4, 4] is written as
[0; 22,42],
@ the cyclic group Z/nZ is denoted by Zn,

o SD2" = (a,b| & "
order 27,

= b2 =1, bab= 2" "1y is the semidihedral group of
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I R S P W N W G

Zy 0:22,42] | 022,43 | 2-] | & 6 2 15 22
73 [0; 25] [1;22] ;22 | 5 5 2 13 19
73 [0; 25] [1;22] [:22] | 4 4 2 11 16
73 [0: 2] [0; 28] 22 | e 5 1 13 20
23 [0; 25] [0; 28] [:22] | 5 4 1 11 17
23 [0; 25] [0; 25] 21 |5 5 2 13 19
73 [0; 25] [0; 28] -1 | 6 6 2 15 22
Zgy [0:3%] [0;34] -] | 6 6 2 15 22
Zo [1:22] [1;22] -1 | 6 8 4 19 2
Zp [0; 28] [1;22] -1 1|86 7 3 17 24
Zp [0; 25] [0; 28 2-1 | 8 8 2 19 28
{1} 2 -] [2 -] [2; -] 8 12 6 27 36

Notation:

@ in the table we abbreviate the types: for example [0; 2,2, 4, 4] is written as
[0;22,42],

@ the cyclic group Z/nZ is denoted by Zp,

o SD2" = (a,b| & "
order 27,

@ Dic4n := (a,b,c| a" = b? = ¢ = abc) is the diyclic group of order 4n,

= b2 =1, bab= 2" "1y is the semidihedral group of
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I R S P W N W G

Zy 0:22,42] | 022,43 | 2-] | & 6 2 15 22
73 [0; 25] [1;22] ;22 | 5 5 2 13 19
73 [0; 25] [1;22] [:22] | 4 4 2 11 16
73 [0: 2] [0; 28] 22 | e 5 1 13 20
23 [0; 25] [0; 28] [:22] | 5 4 1 11 17
23 [0; 25] [0; 25] 21 |5 5 2 13 19
73 [0; 25] [0; 28] -1 | 6 6 2 15 22
Zgy [0; 3% [0;34] -] | 6 6 2 15 22
Zo [1:22] [1;22] -1 | 6 8 4 19 2
Zp [0; 28] [1;22] -1 1|86 7 3 17 24
Zp [0; 28 [0; 28 2-1 | 8 8 2 19 28
01y | - [2; ] 2-] | 8 12 6 27 36

Notation:

@ in the table we abbreviate the types: for example [0; 2,2, 4, 4] is written as
[0; 22,42],
@ the cyclic group Z/nZ is denoted by Zp,

o SD2" = (a,b| & "
order 27,

= b2 =1, bab= 2" "1y is the semidihedral group of

@ Dic4n := (a,b,c| a" = b? = ¢ = abc) is the diyclic group of order 4n,
@ Z3 %, Dy is the (unique) semidirect product where Ker () is the Klein four-group.
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@ the computation is very time (and memory) consuming

= we need 11h 6min on a 3GHz Intel Xenon X5450 workstation

@ for input values x < —1 we can not finish the computation in a "reasonable time"

What happens in the mixed case G° # G?
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Problems:

@ the computation is very time (and memory) consuming

= we need 11h 6min on a 3GHz Intel Xenon X5450 workstation

@ for input values x < —1 we can not finish the computation in a "reasonable time"

What happens in the mixed case G° # G?
G/G° < &3
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Problems:

@ the computation is very time (and memory) consuming

= we need 11h 6min on a 3GHz Intel Xenon X5450 workstation

@ for input values x < —1 we can not finish the computation in a "reasonable time"

What happens in the mixed case G° # G?
G/G° < &3

= three subcases:
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Problems:

@ the computation is very time (and memory) consuming

= we need 11h 6min on a 3GHz Intel Xenon X5450 workstation

@ for input values x < —1 we can not finish the computation in a "reasonable time"

What happens in the mixed case G° # G?
G/G° < &3

=

three subcases: G/G° =7/27, 7/3Z or &s.
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Problems:

@ the computation is very time (and memory) consuming

= we need 11h 6min on a 3GHz Intel Xenon X5450 workstation

@ for input values x < —1 we can not finish the computation in a "reasonable time"

What happens in the mixed case G° # G?

G/G° <63 = threesubcases: G/G° =7/2Z, 7/37 or Os.

@ we can give a similar algorithm to classify these varieties for a fixed value of
x(Ox) in the sense above
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Problems:

@ the computation is very time (and memory) consuming

= we need 11h 6min on a 3GHz Intel Xenon X5450 workstation

@ for input values x < —1 we can not finish the computation in a "reasonable time"

What happens in the mixed case G° # G?

G/G° <63 = threesubcases: G/G° =7/2Z, 7/37 or Os.

@ we can give a similar algorithm to classify these varieties for a fixed value of
x(Ox) in the sense above

@ there are 108 examples in the mixed case
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@ The notion of a product quotient variety X generalizes the definition of a variety
isogenous to a product by allowing non-free group actions.

(=]

=

Christian GleiBner

DA



@ The notion of a product quotient variety X generalizes the definition of a variety
isogenous to a product by allowing non-free group actions.

@ We study these varieties in dimension three under the following assumptions:
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@ The notion of a product quotient variety X generalizes the definition of a variety
isogenous to a product by allowing non-free group actions.

@ We study these varieties in dimension three under the following assumptions:

@ X has canonical singularities,
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@ The notion of a product quotient variety X generalizes the definition of a variety
isogenous to a product by allowing non-free group actions.

@ We study these varieties in dimension three under the following assumptions:

@ X has canonical singularities,

@ G acts diagonally on the product and faithfully on each factor.
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@ The notion of a product quotient variety X generalizes the definition of a variety
isogenous to a product by allowing non-free group actions.

@ We study these varieties in dimension three under the following assumptions:

@ X has canonical singularities,

@ G acts diagonally on the product and faithfully on each factor.

X canonical

(=]

=

Christian GleiBner

DA



@ The notion of a product quotient variety X generalizes the definition of a variety
isogenous to a product by allowing non-free group actions.

@ We study these varieties in dimension three under the following assumptions:

@ X has canonical singularities,

@ G acts diagonally on the product and faithfully on each factor.

X canonical =

terminal and p*(Kx) ~guin. K3

there is a proper birational morphism p: X — X, such that X is
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Product quotient threefolds

@ The notion of a product quotient variety X generalizes the definition of a variety
isogenous to a product by allowing non-free group actions.

@ We study these varieties in dimension three under the following assumptions:
Our assumptions:
@ X has canonical singularities,

@ G acts diagonally on the product and faithfully on each factor.

X canonical =- there is a proper birational morphism p: X — X, such that X is
terminal and p*(Kx) ~quin. Kg

Aim: study the geography of X i.e. the relations between the Chern invariants

x(0z), eX) and K2
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@ there are finitely many points (x, y, z) on C; x C, x C3 with non-trivial stabilizer.
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is cyclic

@ there are finitely many points (x, y, z) on C; x C, x C3 with non-trivial stabilizer.
@ the stabilizer

Stab(x, y, z) = Stab(x) N Stab(y) N Stab(z)
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is cyclic

@ there are finitely many points (x, y, z) on C; x C, x C3 with non-trivial stabilizer.
@ the stabilizer

Stab(x, y, z) = Stab(x) N Stab(y) N Stab(z)
=

finitely many isolated cyclic quotient singularities:
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is cyclic

@ there are finitely many points (x, y, z) on C; x C, x C3 with non-trivial stabilizer.
@ the stabilizer

Stab(x, y, z) = Stab(x) N Stab(y) N Stab(z)
=

finitely many isolated cyclic quotient singularities:

locally X is a quotient of C3 by a diagonal linear automorphism

exp (220) 0o 0
o' ee(zE) o
o 0 ep(zb)
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is cyclic

@ there are finitely many points (x, y, z) on C; x C, x C3 with non-trivial stabilizer.
@ the stabilizer

Stab(x, y, z) = Stab(x) N Stab(y) N Stab(z)
=

finitely many isolated cyclic quotient singularities:

locally X is a quotient of C3 by a diagonal linear automorphism

exp (220) 0o 0
0" ew(3) o
0 0

@ Isolated canonical cyclic quotient singularities in dimension three are classified by
Morrison [Mor85].
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The singularities

@ there are finitely many points (x, y, z) on C; x Co x Cs with non-trivial stabilizer.

@ the stabilizer
Stab(x, y,z) = Stab(x) N Stab(y) N Stab(z)

is cyclic
=- finitely many isolated cyclic quotient singularities:

locally X is a quotient of C3 by a diagonal linear automorphism

exp (&) 0o 0
0 exp (£22) 0
0 0 ep(3P)

@ Isolated canonical cyclic quotient singularities in dimension three are classified by
Morrison [Mor85].

= we can explicitly compute X and derive relations between the Chern
invariants x(Oy), e(X) and K)§(.
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The following inequalities hold:
1) 48x(03) + K3 >0
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The following inequalities hold:
1) 48x(03) + K3 >0  and

1) 6e(X) + K3 > 0.
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The following inequalities hold:
1) 48x(03) + K3 >0

and
1) is an equality if and only if X is smooth,

1) 6e(X) + K3 > 0.
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The following inequalities hold:
1) 48x(03) + K3 >0

and 1) 6e(X) + K% > 0.
1) is an equality if and only if X is smooth,

1) is an equality if and only if X is smooth i.e. a threefold isogenous to a product.
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The following inequalities hold:
1) 48x(03) + K3 >0

and
1) is an equality if and only if X is smooth,

1) 6e(X) + K3 > 0.

1) is an equality if and only if X is smooth i.e. a threefold isogenous to a product.

@ moreover K; >4
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The following inequalities hold:
1) 48x(Og) +KE>0 and  11) Be(X)+ K3 > 0.
1) is an equality if and only if X is smooth,

1) is an equality if and only if X is smooth i.e. a threefold isogenous to a product.

@ moreover K; >4

@ in the case where X is smooth, we have a way to determine the Hodge numbers

of X and an algorithm to classify these varieties for a fixed value of x(Oy) in the
sense above.
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