On the Classification of Threefolds Isogenous to a Product

Christian Gleißner

University of Trento

On the Classification of Threefolds Isogenous to a Product Trento, Nov 30. 2016 Christian Gleißner

Definition

A complex projective variety X is said to be isogenous to a product if X is a quotient

$$X = (C_1 \times ... \times C_n)/G,$$

where the C_i 's are smooth curves of genus at least two, and G is a finite group acting freely on $C_1 \times \ldots \times C_n$.

< 同 ト < 三 ト < 三 ト

Definition

A complex projective variety X is said to be isogenous to a product if X is a quotient

$$X = (C_1 \times ... \times C_n)/G,$$

where the C_i 's are smooth curves of genus at least two, and G is a finite group acting freely on $C_1 \times \ldots \times C_n$.

• the quotient map $\pi: C_1 \times ... \times C_n \rightarrow (C_1 \times ... \times C_n)/G = X$ is unramified,

Definition

A complex projective variety X is said to be isogenous to a product if X is a quotient

$$X = (C_1 \times ... \times C_n)/G,$$

where the C_i 's are smooth curves of genus at least two, and G is a finite group acting freely on $C_1 \times \ldots \times C_n$.

- the quotient map $\pi: C_1 \times ... \times C_n \rightarrow (C_1 \times ... \times C_n)/G = X$ is unramified,
 - \Rightarrow X is smooth, minimal, of general type i.e. $\kappa(X) = n$ and K_X is ample

Properties and Motivation

• simple formulas for the invariants in terms of the genera $g(C_i) = h^0(C_i, \Omega_{C_i}^1)$ and the group order:

・ロト ・ 四 ト ・ ヨ ト ・ ヨ ト

nac

Formulas for the invariants:

э

< A ▶

Formulas for the invariants:

$$\chi(\mathcal{O}_X) = \frac{(-1)^n}{|G|} \prod_{i=1}^n (g(C_i) - 1),$$

э

< A ▶

Formulas for the invariants:

$$\chi(\mathcal{O}_X) = \frac{(-1)^n}{|G|} \prod_{i=1}^n (g(C_i) - 1), \qquad K_X^n = (-1)^n n! \, 2^n \chi(\mathcal{O}_X)$$

国际 化国际

< A ▶

nac

э

 simple formulas for the invariants in terms of the genera g(C_i) = h⁰(C_i, Ω¹_{C_i}) and the group order:

Formulas for the invariants:

$$\chi(\mathcal{O}_X) = \frac{(-1)^n}{|G|} \prod_{i=1}^n (g(C_i) - 1), \qquad K_X^n = (-1)^n n! \ 2^n \chi(\mathcal{O}_X)$$

 $e(X)=2^n\chi(\mathcal{O}_X).$

< A ▶

nac

Formulas for the invariants:

$$\chi(\mathcal{O}_X) = \frac{(-1)^n}{|G|} \prod_{i=1}^n (g(C_i) - 1), \qquad K_X^n = (-1)^n n! \, 2^n \chi(\mathcal{O}_X)$$

 $e(X)=2^n\chi(\mathcal{O}_X).$

Motivation:

nar

э

 simple formulas for the invariants in terms of the genera g(C_i) = h⁰(C_i, Ω¹_{C_i}) and the group order:

Formulas for the invariants:

$$\chi(\mathcal{O}_X) = \frac{(-1)^n}{|G|} \prod_{i=1}^n (g(C_i) - 1), \qquad K_X^n = (-1)^n n! \ 2^n \chi(\mathcal{O}_X)$$

$$e(X)=2^n\chi(\mathcal{O}_X).$$

Motivation:

Why shall we consider varieties isogenous to a product?

< A ▶

프 + + 프 + -

Formulas for the invariants:

$$\chi(\mathcal{O}_X) = \frac{(-1)^n}{|G|} \prod_{i=1}^n (g(C_i) - 1), \qquad K_X^n = (-1)^n n! \, 2^n \chi(\mathcal{O}_X)$$

$$e(X)=2^n\chi(\mathcal{O}_X).$$

Motivation:

Why shall we consider varieties isogenous to a product?

• find new examples of varieties of general type,

< ∃ >

Formulas for the invariants:

$$\chi(\mathcal{O}_X) = \frac{(-1)^n}{|G|} \prod_{i=1}^n (g(C_i) - 1), \qquad K_X^n = (-1)^n n! \, 2^n \chi(\mathcal{O}_X)$$

$$e(X)=2^n\chi(\mathcal{O}_X).$$

Motivation:

Why shall we consider varieties isogenous to a product?

- find new examples of varieties of general type,
- interesting relations with group theory and computer algebra.

• take the Fermat curve $\mathcal{C}:=\{x^5+y^5+z^5=0\}\subset \mathbb{P}^2_{\mathbb{C}}$ of degree five

<ロ> <同> <同> < 同> < 同> < 同> < □> <

3

- take the Fermat curve $C := \{x^5 + y^5 + z^5 = 0\} \subset \mathbb{P}^2_{\mathbb{C}}$ of degree five
- we define two group actions $\psi_i \colon \mathbb{Z}/5 \times \mathbb{Z}/5 \to Aut(C)$ via

- take the Fermat curve $C := \{x^5 + y^5 + z^5 = 0\} \subset \mathbb{P}^2_{\mathbb{C}}$ of degree five
- we define two group actions $\psi_i \colon \mathbb{Z}/5 \times \mathbb{Z}/5 \to Aut(C)$ via

 $\psi_1(a,b)([x:y:z]) := [\xi^a x : \xi^b y : z],$

- take the Fermat curve $C := \{x^5 + y^5 + z^5 = 0\} \subset \mathbb{P}^2_{\mathbb{C}}$ of degree five
- we define two group actions $\psi_i \colon \mathbb{Z}/5 \times \mathbb{Z}/5 \to Aut(C)$ via

$$\psi_1(a,b)([x:y:z]) := [\xi^a x : \xi^b y : z],$$

$$\psi_2(a,b)([x:y:z]) := [\xi^{a+3b}x:\xi^{2a+4b}y:z], \text{ where } \xi := \exp\left(\frac{2\pi\sqrt{-1}}{5}\right).$$

- take the Fermat curve $C := \{x^5 + y^5 + z^5 = 0\} \subset \mathbb{P}^2_{\mathbb{C}}$ of degree five
- we define two group actions $\psi_i \colon \mathbb{Z}/5 \times \mathbb{Z}/5 \to Aut(C)$ via

$$\psi_1(a,b)([x:y:z]) := [\xi^a x : \xi^b y : z],$$

$$\psi_2(a,b)([x:y:z]) := [\xi^{a+3b}x:\xi^{2a+4b}y:z], \text{ where } \xi := \exp\left(\frac{2\pi\sqrt{-1}}{5}\right).$$

We define an action of $\mathbb{Z}/5 \times \mathbb{Z}/5$ on the product $C \times C$ by $\psi_1 \times \psi_2$.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - シスペ

- take the Fermat curve $\mathcal{C}:=\{x^5+y^5+z^5=0\}\subset \mathbb{P}^2_{\mathbb{C}}$ of degree five
- we define two group actions $\psi_i \colon \mathbb{Z}/5 \times \mathbb{Z}/5 \to Aut(C)$ via

$$\psi_1(a,b)([x:y:z]) := [\xi^a x : \xi^b y : z],$$

$$\psi_2(a,b)([x:y:z]) := [\xi^{a+3b}x:\xi^{2a+4b}y:z], \text{ where } \xi := \exp\left(\frac{2\pi\sqrt{-1}}{5}\right).$$

We define an action of $\mathbb{Z}/5 \times \mathbb{Z}/5$ on the product $C \times C$ by $\psi_1 \times \psi_2$.

The action on the product is free

- take the Fermat curve $C := \{x^5 + y^5 + z^5 = 0\} \subset \mathbb{P}^2_{\mathbb{C}}$ of degree five
- we define two group actions $\psi_i \colon \mathbb{Z}/5 \times \mathbb{Z}/5 \to Aut(C)$ via

 $\psi_1(a,b)([x:y:z]) := [\xi^a x : \xi^b y : z],$

$$\psi_2(a,b)([x:y:z]) := [\xi^{a+3b}x:\xi^{2a+4b}y:z], \text{ where } \xi := \exp\left(\frac{2\pi\sqrt{-1}}{5}\right).$$

We define an action of $\mathbb{Z}/5 \times \mathbb{Z}/5$ on the product $C \times C$ by $\psi_1 \times \psi_2$.

The action on the product is free \Rightarrow $S := (C \times C)/G$ is a surface isogenous to a product.

(日)

- take the Fermat curve $C := \{x^5 + y^5 + z^5 = 0\} \subset \mathbb{P}^2_{\mathbb{C}}$ of degree five
- we define two group actions $\psi_i \colon \mathbb{Z}/5 \times \mathbb{Z}/5 \to Aut(C)$ via

$$\psi_1(a,b)([x:y:z]) := [\xi^a x : \xi^b y : z],$$

$$\psi_2(a,b)([x:y:z]) := [\xi^{a+3b}x:\xi^{2a+4b}y:z], \text{ where } \xi := \exp\left(\frac{2\pi\sqrt{-1}}{5}\right).$$

We define an action of $\mathbb{Z}/5 \times \mathbb{Z}/5$ on the product $C \times C$ by $\psi_1 \times \psi_2$.

The action on the product is free \Rightarrow $S := (C \times C)/G$ is a surface isogenous to a product.

•
$$g(C) = \frac{1}{2}(5-1)(5-2) = 6$$

- take the Fermat curve $C := \{x^5 + y^5 + z^5 = 0\} \subset \mathbb{P}^2_{\mathbb{C}}$ of degree five
- we define two group actions $\psi_i \colon \mathbb{Z}/5 \times \mathbb{Z}/5 \to Aut(C)$ via

$$\psi_1(a,b)([x:y:z]) := [\xi^a x : \xi^b y : z],$$

$$\psi_2(a,b)([x:y:z]) := [\xi^{a+3b}x:\xi^{2a+4b}y:z], \text{ where } \xi := \exp\left(\frac{2\pi\sqrt{-1}}{5}\right).$$

We define an action of $\mathbb{Z}/5 \times \mathbb{Z}/5$ on the product $C \times C$ by $\psi_1 \times \psi_2$.

The action on the product is free \Rightarrow $S := (C \times C)/G$ is a surface isogenous to a product.

•
$$g(C) = \frac{1}{2}(5-1)(5-2) = 6 \Rightarrow \chi(\mathcal{O}_S) = \frac{(g(C)-1)^2}{25} = 1.$$

For a surface *S* of general type it holds $\chi(\mathcal{O}_S) \ge 1$.

・ロト ・ 四 ト ・ ヨ ト ・ ヨ ト

Ð.

For a surface *S* of general type it holds $\chi(\mathcal{O}_S) \ge 1$.

Boundary case:

・ロト ・ 四 ト ・ ヨ ト ・ ヨ ト

3

For a surface *S* of general type it holds $\chi(\mathcal{O}_S) \ge 1$.

Boundary case:	
$\chi(\mathcal{O}_S) = 1$	

<ロ> <同> <同> <巨> <巨>

990

For a surface *S* of general type it holds $\chi(\mathcal{O}_S) \ge 1$.

Boundary case:

 $\chi(\mathcal{O}_S) = 1 \quad \Leftrightarrow \quad p_g = q,$

・ロト ・ 四 ト ・ 回 ト ・ 回 ト

For a surface *S* of general type it holds $\chi(\mathcal{O}_S) \ge 1$.

Boundary case:

 $\chi(\mathcal{O}_S) = 1 \quad \Leftrightarrow \quad p_g = q, \quad \text{where} \quad p_g := h^0(S, \Omega_S^2)$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

For a surface *S* of general type it holds $\chi(\mathcal{O}_S) \ge 1$.

Boundary case:

$$\chi(\mathcal{O}_S) = 1 \quad \Leftrightarrow \quad p_g = q, \quad \text{where} \quad p_g := h^0(S, \Omega_S^2) \quad \text{and} \quad q := h^0(S, \Omega_S^1).$$

On the Classification of Threefolds Isogenous to a Product Trento, Nov 30. 2016 Christian Gleißner

・ロト ・ 四 ト ・ ヨ ト ・ ヨ ト

5900

For a surface *S* of general type it holds $\chi(\mathcal{O}_S) \ge 1$.

 \Rightarrow we have a complete classification of all surfaces isogenous to a product with $\chi(\mathcal{O}_S) = 1.$

For a surface *S* of general type it holds $\chi(\mathcal{O}_S) \ge 1$.

 \Rightarrow we have a complete classification of all surfaces isogenous to a product with $\chi(\mathcal{O}_S)=1.$

By the classical inequalities from surface geography

 $2p_g \leq K_S^2$ if $q \geq 1$ (Debarre) and $K_S^2 \leq 9\chi(\mathcal{O}_S) = 9$ (BMY).

For a surface *S* of general type it holds $\chi(\mathcal{O}_S) \ge 1$.

Boundary case:

$$\chi(\mathcal{O}_S) = 1 \iff p_g = q$$
, where $p_g := h^0(S, \Omega_S^2)$ and $q := h^0(S, \Omega_S^1)$.

 \Rightarrow $% \$ we have a complete classification of all surfaces isogenous to a product with $\chi(\mathcal{O}_S)=$ 1.

By the classical inequalities from surface geography

$$2p_g \leq K_S^2$$
 if $q \geq 1$ (Debarre) and $K_S^2 \leq 9\chi(\mathcal{O}_S) = 9$ (BMY).

 \Rightarrow we conclude: $0 \le p_g = q \le 4$.

▲□ ▶ ▲ 臣 ▶ ▲ 臣 ▶

For a surface *S* of general type it holds $\chi(\mathcal{O}_S) \ge 1$.

Boundary case:

$$\chi(\mathcal{O}_S) = 1 \iff p_g = q$$
, where $p_g := h^0(S, \Omega_S^2)$ and $q := h^0(S, \Omega_S^1)$.

 \Rightarrow $% \$ we have a complete classification of all surfaces isogenous to a product with $\chi(\mathcal{O}_S)=$ 1.

By the classical inequalities from surface geography

$$2p_g \leq K_S^2$$
 if $q \geq 1$ (Debarre) and $K_S^2 \leq 9\chi(\mathcal{O}_S) = 9$ (BMY).

$$\Rightarrow$$
 we conclude: $0 \le p_g = q \le 4$.

A B M A B M

The classifications are due to

For a surface *S* of general type it holds $\chi(\mathcal{O}_S) \ge 1$.

Boundary case:

$$\chi(\mathcal{O}_S) = 1 \iff p_g = q$$
, where $p_g := h^0(S, \Omega_S^2)$ and $q := h^0(S, \Omega_S^1)$.

 \Rightarrow ~ we have a complete classification of all surfaces isogenous to a product with $\chi(\mathcal{O}_S)=$ 1.

By the classical inequalities from surface geography

$$2p_g \leq K_S^2$$
 if $q \geq 1$ (Debarre) and $K_S^2 \leq 9\chi(\mathcal{O}_S) = 9$ (BMY).

$$\Rightarrow$$
 we conclude: $0 \le p_g = q \le 4$.

・ 同 ト ・ ヨ ト ・ ヨ ト …

The classifications are due to

• Bauer, Catanese, Grunewald [BCG08] for $p_g = q = 0$,

For a surface *S* of general type it holds $\chi(\mathcal{O}_S) \ge 1$.

Boundary case:

$$\chi(\mathcal{O}_S) = 1 \iff p_g = q$$
, where $p_g := h^0(S, \Omega_S^2)$ and $q := h^0(S, \Omega_S^1)$.

 \Rightarrow we have a complete classification of all surfaces isogenous to a product with $\chi(\mathcal{O}_S)=1.$

By the classical inequalities from surface geography

$$2p_g \leq K_S^2$$
 if $q \geq 1$ (Debarre) and $K_S^2 \leq 9\chi(\mathcal{O}_S) = 9$ (BMY).

$$\Rightarrow$$
 we conclude: $0 \le p_g = q \le 4$.

・ロッ ・雪 ・ ・ ヨ ・ ・

The classifications are due to

- Bauer, Catanese, Grunewald [BCG08] for $p_g = q = 0$,
- Carnovale, Polizzi [CP09] for $p_g = q = 1$ and

For a surface *S* of general type it holds $\chi(\mathcal{O}_S) \ge 1$.

Boundary case:

$$\chi(\mathcal{O}_S) = 1 \iff p_g = q$$
, where $p_g := h^0(S, \Omega_S^2)$ and $q := h^0(S, \Omega_S^1)$.

 \Rightarrow ~ we have a complete classification of all surfaces isogenous to a product with $\chi(\mathcal{O}_S)=$ 1.

By the classical inequalities from surface geography

$$2p_g \leq K_S^2$$
 if $q \geq 1$ (Debarre) and $K_S^2 \leq 9\chi(\mathcal{O}_S) = 9$ (BMY).

 \Rightarrow we conclude: $0 \le p_g = q \le 4$.

・ ロ ト ス 雪 ト ス 目 ト ス 目 ト

The classifications are due to

- Bauer, Catanese, Grunewald [BCG08] for $p_g = q = 0$,
- Carnovale, Polizzi [CP09] for $p_g = q = 1$ and
- Penegini [Pe10] for $p_g = q = 2$.

All minimal surfaces of general type with $p_g = q = 3$ and 4 are classified!

・ロト ・ 四 ト ・ ヨ ト ・ ヨ ト

990

э
• In the case $p_g = q = 4$ the surface S is a product of two genus two curves (see [Bea82]).

・ロッ ・雪 ・ ・ ヨ ・ ・

- In the case $p_g = q = 4$ the surface S is a product of two genus two curves (see [Bea82]).
- In the case $p_g = q = 3$ it is either the symmetric square of a curve of genus three or

・ロッ ・雪 ・ ・ ヨ ・ ・

- In the case $p_g = q = 4$ the surface *S* is a product of two genus two curves (see [Bea82]).
- In the case $p_g = q = 3$ it is either the symmetric square of a curve of genus three or

 $S = (C \times D)/\langle \tau \rangle$, where $ord(\tau) = 2$, g(C) = 3, g(D) = 2.

- In the case $p_g = q = 4$ the surface *S* is a product of two genus two curves (see [Bea82]).
- In the case $p_g = q = 3$ it is either the symmetric square of a curve of genus three or

$$S = (C \times D)/\langle \tau \rangle$$
, where $ord(\tau) = 2$, $g(C) = 3$, $g(D) = 2$.

(see [CCML98, Pir02, HP02]).

We want to achieve analogous classification results in higher dimension.

<ロ > < 回 > < 回 > < 回 > .

990

э

We want to achieve analogous classification results in higher dimension.

(As a first step in dimension three.)

< ロ > < 部 > < き > < き > -

э

Let D_1, \ldots, D_k be pairwise non-isomorphic curves with $g(D_i) \ge 2$, then

$$\operatorname{Aut}(D_1^{n_1} \times \ldots \times D_k^{n_k}) = (\operatorname{Aut}(D_1)^{n_1} \rtimes \mathfrak{S}_{n_1}) \times \ldots \times (\operatorname{Aut}(D_k)^{n_k} \rtimes \mathfrak{S}_{n_k})$$

for all positive integers n_i.

< A ▶

• E • • E •

э

Let D_1, \ldots, D_k be pairwise non-isomorphic curves with $g(D_i) \ge 2$, then

$$\operatorname{Aut}(D_1^{n_1} \times \ldots \times D_k^{n_k}) = (\operatorname{Aut}(D_1)^{n_1} \rtimes \mathfrak{S}_{n_1}) \times \ldots \times (\operatorname{Aut}(D_k)^{n_k} \rtimes \mathfrak{S}_{n_k})$$

for all positive integers n_i.

Let $X = (C_1 \times ... \times C_n)/G$ be a variety isogenous to a product.

< 同 ト < 三 ト < 三 ト

Let D_1, \ldots, D_k be pairwise non-isomorphic curves with $g(D_i) \ge 2$, then

$$\operatorname{Aut}(D_1^{n_1} \times \ldots \times D_k^{n_k}) = (\operatorname{Aut}(D_1)^{n_1} \rtimes \mathfrak{S}_{n_1}) \times \ldots \times (\operatorname{Aut}(D_k)^{n_k} \rtimes \mathfrak{S}_{n_k})$$

for all positive integers n_i.

Let $X = (C_1 \times ... \times C_n)/G$ be a variety isogenous to a product.

Then $G/G^0 \leq \mathfrak{S}_n$, where $G^0 := G \cap [\operatorname{Aut}(C_1) \times \ldots \times \operatorname{Aut}(C_n)]$.

Let D_1, \ldots, D_k be pairwise non-isomorphic curves with $g(D_i) \ge 2$, then

$$\operatorname{Aut}(D_1^{n_1} \times \ldots \times D_k^{n_k}) = (\operatorname{Aut}(D_1)^{n_1} \rtimes \mathfrak{S}_{n_1}) \times \ldots \times (\operatorname{Aut}(D_k)^{n_k} \rtimes \mathfrak{S}_{n_k})$$

for all positive integers n_i.

Let $X = (C_1 \times ... \times C_n)/G$ be a variety isogenous to a product.

Then $G/G^0 \leq \mathfrak{S}_n$, where $G^0 := G \cap [\operatorname{Aut}(C_1) \times \ldots \times \operatorname{Aut}(C_n)]$.

Definition

A variety X isogenous to a product is of <u>unmixed type</u> iff $G^0 = G$, otherwise we say that X is of <u>mixed type</u>.

• in Beauvilles example we had an explicit description in terms of equations

・ロト ・ 四 ト ・ ヨ ト ・ ヨ ト

990

э

- in Beauvilles example we had an explicit description in terms of equations
- in general it is hard to work with equations

・ ロ ト ・ 同 ト ・ 日 ト ・ 日 ト

э

- in Beauvilles example we had an explicit description in terms of equations
- in general it is hard to work with equations \Rightarrow abstract description

・ロト ・同 ト ・ ヨト ・ ヨト

- in Beauvilles example we had an explicit description in terms of equations
- in general it is hard to work with equations \Rightarrow abstract description
- idea: attach to a variety isogenous to a product

$$X \simeq (C_1 \times \ldots \times C_n)/G,$$

・ ロ ト ス 雪 ト ス ヨ ト

3

certain kind of combinatorial data:

- in Beauvilles example we had an explicit description in terms of equations
- in general it is hard to work with equations \Rightarrow abstract description
- idea: attach to a variety isogenous to a product

$$X \simeq (C_1 \times \ldots \times C_n)/G,$$

・ ロ ト ・ 同 ト ・ 日 ト ・ 日 ト

certain kind of *combinatorial data:* the group G, the genera $g(C_i)$ etc.

・ロト ・ 四 ト ・ ヨ ト ・ ヨ ト

3

Our assumptions:

・ロト ・ 四 ト ・ ヨ ト ・ ヨ ト

э

Our assumptions:

• the action on $C_1 \times C_2 \times C_3$ is unmixed i.e

э

< A ▶

Our assumptions:

• the action on $C_1 \times C_2 \times C_3$ is unmixed i.e

$$g(x, y, z) = (g \cdot x, g \cdot y, g \cdot z) \quad \forall \quad g \in G$$

э

< A ▶

Our assumptions:

• the action on $C_1 \times C_2 \times C_3$ is unmixed i.e

$$g(x, y, z) = (g \cdot x, g \cdot y, g \cdot z) \quad \forall \quad g \in G$$

・ 同 ト ・ ヨ ト ・ ヨ ト

3

• G embeds in Aut(C_i) for all $1 \le i \le 3$

Our assumptions:

• the action on $C_1 \times C_2 \times C_3$ is unmixed i.e

$$g(x, y, z) = (g \cdot x, g \cdot y, g \cdot z) \quad \forall \quad g \in G$$

• G embeds in $Aut(C_i)$ for all $1 \le i \le 3$

 \Rightarrow to go on, we need to understand faithful group actions on curves in greater detail

・ロッ ・雪 ・ ・ ヨ ・ ・

A faithful group action $\psi \colon G \to Aut(C)$ is given and completely determined by:

・ロト ・ 四 ト ・ ヨ ト ・ ヨ ト

990

A faithful group action $\psi \colon G \to Aut(C)$ is given and completely determined by:

• a compact Riemann surface C',

< ロ > < 部 > < き > < き > -

5900

A faithful group action ψ : $G \rightarrow Aut(C)$ is given and completely determined by:

- a compact Riemann surface C',
- a finite set $\mathcal{B} \subset C'$ (the branch points) and

・ロト ・ 雪 ト ・ ヨ ト ・

A faithful group action ψ : $G \rightarrow Aut(C)$ is given and completely determined by:

- a compact Riemann surface C',
- a finite set $\mathcal{B} \subset C'$ (the branch points) and
- a surjective homomorphism $\eta \colon \pi_1 \left(\mathcal{C}' \setminus \mathcal{B}, q_0 \right) o G$

- A faithful group action ψ : $G \rightarrow Aut(C)$ is given and completely determined by:
 - a compact Riemann surface C',
 - a finite set $\mathcal{B} \subset C'$ (the branch points) and
 - a surjective homomorphism $\eta \colon \pi_1(C' \setminus \mathcal{B}, q_0) \to G$ (the monodromy map).

A faithful group action ψ : $G \rightarrow Aut(C)$ is given and completely determined by:

- a compact Riemann surface C',
- a finite set $\mathcal{B} \subset C'$ (the branch points) and
- a surjective homomorphism $\eta \colon \pi_1(\mathcal{C}' \setminus \mathcal{B}, q_0) \to \mathcal{G}$ (the monodromy map).

The fundamental group of $C' \setminus \mathcal{B}$ has a presentation of the form

A faithful group action ψ : $G \rightarrow Aut(C)$ is given and completely determined by:

- a compact Riemann surface C',
- a finite set $\mathcal{B} \subset C'$ (the branch points) and
- a surjective homomorphism $\eta \colon \pi_1(\mathcal{C}' \setminus \mathcal{B}, q_0) \to \mathcal{G}$ (the monodromy map).

The fundamental group of $C' \setminus B$ has a presentation of the form

$$\pi_1(\mathcal{C}' \setminus \mathcal{B}, q_0) = \langle \gamma_1, \ldots, \gamma_r, \alpha_1, \beta_1, \ldots, \alpha_{g'}, \beta_{g'} \mid \gamma_1 \cdots \gamma_r \cdot \prod_{i=1}^{g'} [\alpha_i, \beta_i] \rangle.$$

A faithful group action ψ : $G \rightarrow Aut(C)$ is given and completely determined by:

- a compact Riemann surface C',
- a finite set $\mathcal{B} \subset C'$ (the branch points) and
- a surjective homomorphism $\eta \colon \pi_1(\mathcal{C}' \setminus \mathcal{B}, q_0) \to \mathcal{G}$ (the monodromy map).

The fundamental group of $\mathcal{C}' \setminus \mathcal{B}$ has a presentation of the form

$$\pi_1(\mathcal{C}'\setminus\mathcal{B},q_0)=\langle\gamma_1,\ldots,\gamma_r,\alpha_1,\beta_1,\ldots,\alpha_{g'},\beta_{g'}\mid\gamma_1\cdots\gamma_r\prod_{i=1}^{g'}[\alpha_i,\beta_i]\rangle.$$

(日)

• The images of the generators of $\pi_1(C' \setminus B, q_0)$ under the monodromy map

$$h_i := \eta(\gamma_i), \quad a_i := \eta(\alpha_i) \text{ and } b_i := \eta(\beta_i)$$

< ロ > < 部 > < き > < き > -

990

• The images of the generators of $\pi_1\left(\mathcal{C}'\setminus\mathcal{B},q_0
ight)$ under the monodromy map

$$h_i := \eta(\gamma_i), \quad a_i := \eta(\alpha_i) \text{ and } b_i := \eta(\beta_i)$$

generate G and fulfill the relation

・ロト ・四ト ・ヨト ・ヨト

• The images of the generators of $\pi_1\left(\mathcal{C}'\setminus\mathcal{B},q_0
ight)$ under the monodromy map

$$h_i := \eta(\gamma_i), \quad a_i := \eta(\alpha_i) \text{ and } b_i := \eta(\beta_i)$$

generate G and fulfill the relation

$$h_1 \cdots h_r \cdot \prod_{i=1}^{g'} [a_i, b_i] = 1_G$$

< ロ > < 部 > < き > < き > -

• The images of the generators of $\pi_1(\mathcal{C}'\setminus\mathcal{B},q_0)$ under the monodromy map

$$h_i := \eta(\gamma_i), \quad a_i := \eta(\alpha_i) \text{ and } b_i := \eta(\beta_i)$$

generate G and fulfill the relation

$$h_1 \cdots h_r \cdot \prod_{i=1}^{g'} [a_i, b_i] = 1_G.$$

Definition

Let $m_1, \ldots, m_r \ge 2$ and $g' \ge 0$ be integers and *G* be a finite group.

On the Classification of Threefolds Isogenous to a Product Trento, Nov 30. 2016 Christian Gleißner

naa

• The images of the generators of $\pi_1(C' \setminus B, q_0)$ under the monodromy map

$$h_i := \eta(\gamma_i), \quad a_i := \eta(\alpha_i) \text{ and } b_i := \eta(\beta_i)$$

generate G and fulfill the relation

$$h_1 \cdots h_r \cdot \prod_{i=1}^{g'} [a_i, b_i] = 1_G.$$

Definition

Let $m_1, \ldots, m_r \ge 2$ and $g' \ge 0$ be integers and *G* be a finite group. A *generating* vector of type $[g'; m_1, \ldots, m_r]$ is a tuple of elements

nan

• The images of the generators of $\pi_1(\mathcal{C}'\setminus\mathcal{B},q_0)$ under the monodromy map

$$h_i := \eta(\gamma_i), \quad a_i := \eta(\alpha_i) \text{ and } b_i := \eta(\beta_i)$$

generate G and fulfill the relation

$$h_1 \cdots h_r \cdot \prod_{i=1}^{g'} [a_i, b_i] = 1_G.$$

Definition

Let $m_1, \ldots, m_r \ge 2$ and $g' \ge 0$ be integers and *G* be a finite group. A *generating vector* of type $[g'; m_1, \ldots, m_r]$ is a tuple of elements

 $(h_1, \ldots, h_r, a_1, b_1, \ldots, a_{g'}, b_{g'}),$

On the Classification of Threefolds Isogenous to a Product Trento, Nov 30. 2016 Christian Gleißner

nan

• The images of the generators of $\pi_1(C' \setminus B, q_0)$ under the monodromy map

$$h_i := \eta(\gamma_i), \quad a_i := \eta(\alpha_i) \text{ and } b_i := \eta(\beta_i)$$

generate G and fulfill the relation

$$h_1 \cdots h_r \cdot \prod_{i=1}^{g'} [a_i, b_i] = 1_G.$$

Definition

Let $m_1, \ldots, m_r \ge 2$ and $g' \ge 0$ be integers and *G* be a finite group. A *generating vector* of type $[g'; m_1, \ldots, m_r]$ is a tuple of elements

$$(h_1, \ldots, h_r, a_1, b_1, \ldots, a_{g'}, b_{g'}),$$

naa

such that
Riemann's Existence Theorem

• The images of the generators of $\pi_1(C' \setminus B, q_0)$ under the monodromy map

$$h_i := \eta(\gamma_i), \quad a_i := \eta(\alpha_i) \text{ and } b_i := \eta(\beta_i)$$

generate G and fulfill the relation

$$h_1 \cdots h_r \cdot \prod_{i=1}^{g'} [a_i, b_i] = 1_G.$$

Definition

Let $m_1, \ldots, m_r \ge 2$ and $g' \ge 0$ be integers and *G* be a finite group. A *generating vector* of type $[g'; m_1, \ldots, m_r]$ is a tuple of elements

$$(h_1, \ldots, h_r, a_1, b_1, \ldots, a_{g'}, b_{g'}),$$

such that

•
$$G = \langle h_1, \ldots, h_r, a_1, b_1, \ldots, a_{g'}, b_{g'} \rangle$$
,

On the Classification of Threefolds Isogenous to a Product

nan

Riemann's Existence Theorem

• The images of the generators of $\pi_1(C' \setminus B, q_0)$ under the monodromy map

$$h_i := \eta(\gamma_i), \quad a_i := \eta(\alpha_i) \text{ and } b_i := \eta(\beta_i)$$

generate G and fulfill the relation

$$h_1 \cdots h_r \cdot \prod_{i=1}^{g'} [a_i, b_i] = 1_G.$$

Definition

Let $m_1, \ldots, m_r \ge 2$ and $g' \ge 0$ be integers and *G* be a finite group. A *generating vector* of type $[g'; m_1, \ldots, m_r]$ is a tuple of elements

$$(h_1, \ldots, h_r, a_1, b_1, \ldots, a_{g'}, b_{g'}),$$

such that

•
$$G = \langle h_1, ..., h_r, a_1, b_1, ..., a_{g'}, b_{g'} \rangle$$

•
$$h_1 \cdots h_r \cdot \prod_{i=1}^{g'} [a_i, b_i] = 1_G,$$

On the Classification of Threefolds Isogenous to a Product

nan

Riemann's Existence Theorem

• The images of the generators of $\pi_1(C' \setminus B, q_0)$ under the monodromy map

$$h_i := \eta(\gamma_i), \quad a_i := \eta(\alpha_i) \text{ and } b_i := \eta(\beta_i)$$

generate G and fulfill the relation

$$h_1 \cdots h_r \cdot \prod_{i=1}^{g'} [a_i, b_i] = 1_G.$$

Definition

Let $m_1, \ldots, m_r \ge 2$ and $g' \ge 0$ be integers and *G* be a finite group. A *generating vector* of type $[g'; m_1, \ldots, m_r]$ is a tuple of elements

$$(h_1, \ldots, h_r, a_1, b_1, \ldots, a_{g'}, b_{g'}),$$

such that

•
$$G = \langle h_1, ..., h_r, a_1, b_1, ..., a_{g'}, b_{g'} \rangle$$

•
$$h_1 \cdots h_r \cdot \prod_{i=1}^{g^r} [a_i, b_i] = 1_G,$$

• $\operatorname{ord}(h_i) = m_i$ for all $1 \le i \le r$

nan

• given a threefold isogenous to a product

$$X = (C_1 \times C_2 \times C_3)/G,$$

・ロト ・四ト ・ヨト・

990

given a threefold isogenous to a product

$$X = (C_1 \times C_2 \times C_3)/G,$$

we choose three generating vectors V_1 , V_2 and V_3 corresponding to the induced group actions

 $\psi_i \colon \boldsymbol{G} \to \operatorname{Aut}(\boldsymbol{C}_i)$

(Riemann's Existence Theorem)

given a threefold isogenous to a product

$$X = (C_1 \times C_2 \times C_3)/G,$$

we choose three generating vectors V_1 , V_2 and V_3 corresponding to the induced group actions

 $\psi_i \colon \boldsymbol{G} \to \operatorname{Aut}(\boldsymbol{C}_i)$

(Riemann's Existence Theorem)

• the 4-tuple (G, V₁, V₂, V₃) is called an algebraic datum of X

given a threefold isogenous to a product

$$X = (C_1 \times C_2 \times C_3)/G,$$

we choose three generating vectors V_1 , V_2 and V_3 corresponding to the induced group actions

 $\psi_i \colon G \to \operatorname{Aut}(C_i)$

(Riemann's Existence Theorem)

- the 4-tuple (G, V₁, V₂, V₃) is called an algebraic datum of X
- we define the *stabilizer set* of a generating vector $V = (h_1, \ldots, h_r, a_1, b_1, \ldots, a_{q'}, b_{q'})$ as

given a threefold isogenous to a product

$$X = (C_1 \times C_2 \times C_3)/G,$$

we choose three generating vectors V_1 , V_2 and V_3 corresponding to the induced group actions

 $\psi_i \colon G \to \operatorname{Aut}(C_i)$

(Riemann's Existence Theorem)

the 4-tuple (G, V₁, V₂, V₃) is called an algebraic datum of X

• we define the *stabilizer set* of a generating vector $V = (h_1, \ldots, h_r, a_1, b_1, \ldots, a_{g'}, b_{g'})$ as

$$\Sigma_V := \bigcup_{g \in G} \bigcup_{i \in \mathbb{Z}} \bigcup_{j=1}^r \left\{ gh_j^i g^{-1} \right\}$$

given a threefold isogenous to a product

$$X = (C_1 \times C_2 \times C_3)/G,$$

we choose three generating vectors V_1 , V_2 and V_3 corresponding to the induced group actions

 $\psi_i \colon G \to \operatorname{Aut}(C_i)$

(Riemann's Existence Theorem)

the 4-tuple (G, V₁, V₂, V₃) is called an algebraic datum of X

• we define the *stabilizer set* of a generating vector $V = (h_1, \ldots, h_r, a_1, b_1, \ldots, a_{a'}, b_{a'})$ as

$$\Sigma_V := \bigcup_{g \in G} \bigcup_{i \in \mathbb{Z}} \bigcup_{j=1}^r \left\{ gh_j^i g^{-1} \right\}$$

• the freeness of the *G*-action on the product $C_1 \times C_2 \times C_3$ is reflected by the condition

given a threefold isogenous to a product

$$X = (C_1 \times C_2 \times C_3)/G,$$

we choose three generating vectors V_1 , V_2 and V_3 corresponding to the induced group actions

 $\psi_i \colon G \to \operatorname{Aut}(C_i)$

(Riemann's Existence Theorem)

the 4-tuple (G, V₁, V₂, V₃) is called an algebraic datum of X

• we define the *stabilizer set* of a generating vector $V = (h_1, \ldots, h_r, a_1, b_1, \ldots, a_{q'}, b_{q'})$ as

$$\Sigma_V := \bigcup_{g \in G} \bigcup_{i \in \mathbb{Z}} \bigcup_{j=1}^r \left\{ g h_j^i g^{-1} \right\}$$

• the freeness of the *G*-action on the product $C_1 \times C_2 \times C_3$ is reflected by the condition

$$\Sigma_{V_1} \cap \Sigma_{V_2} \cap \Sigma_{V_3} = \{\mathbf{1}_G\}.$$

Riemann's Existence Theorem also provides a way back:

・ロト ・ 四 ト ・ ヨ ト ・ ヨ ト ・

990

Riemann's Existence Theorem also provides a way back:

• Let (*G*, *V*₁, *V*₂, *V*₃) be a 4-tuple, where *V_i* are generating vectors for the group *G* such that

・ ロ ト ・ 同 ト ・ 日 ト ・ 日 ト

Riemann's Existence Theorem also provides a way back:

• Let (*G*, *V*₁, *V*₂, *V*₃) be a 4-tuple, where *V_i* are generating vectors for the group *G* such that

$$\Sigma_{V_1} \cap \Sigma_{V_2} \cap \Sigma_{V_3} = \{\mathbf{1}_G\},\$$

・ ロ ト ・ 同 ト ・ 日 ト ・ 日 ト

Riemann's Existence Theorem also provides a way back:

• Let (*G*, *V*₁, *V*₂, *V*₃) be a 4-tuple, where *V_i* are generating vectors for the group *G* such that

$$\Sigma_{V_1} \cap \Sigma_{V_2} \cap \Sigma_{V_3} = \{\mathbf{1}_G\},\$$

then (G, V_1, V_2, V_3) is an algebraic datum of a threefold X isogenous to a product.

・ ロ ト ス 雪 ト ス ヨ ト ス ヨ ト

Riemann's Existence Theorem also provides a way back:

• Let (*G*, *V*₁, *V*₂, *V*₃) be a 4-tuple, where *V_i* are generating vectors for the group *G* such that

$$\Sigma_{V_1} \cap \Sigma_{V_2} \cap \Sigma_{V_3} = \{\mathbf{1}_G\},\$$

then (G, V_1, V_2, V_3) is an algebraic datum of a threefold X isogenous to a product.

certain geometric properties of X are encoded in (G, V_1, V_2, V_3)

Riemann's Existence Theorem also provides a way back:

• Let (*G*, *V*₁, *V*₂, *V*₃) be a 4-tuple, where *V_i* are generating vectors for the group *G* such that

$$\Sigma_{V_1} \cap \Sigma_{V_2} \cap \Sigma_{V_3} = \{\mathbf{1}_G\},\$$

then (G, V_1, V_2, V_3) is an algebraic datum of a threefold X isogenous to a product.

certain geometric properties of X are encoded in (G, V_1, V_2, V_3)

In the following, we show that:

Riemann's Existence Theorem also provides a way back:

• Let (*G*, *V*₁, *V*₂, *V*₃) be a 4-tuple, where *V_i* are generating vectors for the group *G* such that

$$\Sigma_{V_1} \cap \Sigma_{V_2} \cap \Sigma_{V_3} = \{\mathbf{1}_G\},\$$

then (G, V_1, V_2, V_3) is an algebraic datum of a threefold X isogenous to a product.

・ロト ・ 同ト ・ ヨト ・ ヨト - ヨ

certain geometric properties of X are encoded in (G, V_1, V_2, V_3)

In the following, we show that:

• the Hodge numbers $h^{p,q}(X) := \dim H^{p,q}(X) = \dim H^q(X, \Omega^p_X)$ and

Riemann's Existence Theorem also provides a way back:

• Let (*G*, *V*₁, *V*₂, *V*₃) be a 4-tuple, where *V_i* are generating vectors for the group *G* such that

$$\Sigma_{V_1} \cap \Sigma_{V_2} \cap \Sigma_{V_3} = \{\mathbf{1}_G\},\$$

then (G, V_1, V_2, V_3) is an algebraic datum of a threefold X isogenous to a product.

certain geometric properties of X are encoded in (G, V_1, V_2, V_3)

In the following, we show that:

- the Hodge numbers $h^{p,q}(X) := \dim H^{p,q}(X) = \dim H^q(X, \Omega_X^p)$ and
- the fundamental group $\pi_1(X)$ can be determined from an algebraic datum (G, V_1, V_2, V_3) of X.

・ロト ・ 同ト ・ ヨト ・ ヨト - ヨ

We start with the Hodge numbers of X

▲圖 ▶ ▲ 臣 ▶ ▲ 臣 ▶

5900

Э

We start with the Hodge numbers of X

• the G action on $C_1 \times C_2 \times C_3$ induces representations

э

< A ▶

We start with the Hodge numbers of X

• the G action on $C_1 \times C_2 \times C_3$ induces representations

 $\phi_{\mathcal{P},q} \colon G \to GL\big(H^{\mathcal{P},q}(C_1 \times C_2 \times C_3)\big), \qquad g \mapsto [\omega \mapsto (g^{-1})^* \omega].$

▲□ ▶ ▲ □ ▶ ▲ □ ▶

We start with the Hodge numbers of X

• the G action on $C_1 \times C_2 \times C_3$ induces representations

 $\phi_{\mathcal{P},q}\colon G\to GL\big(H^{\mathcal{P},q}(C_1\times C_2\times C_3)\big),\qquad g\mapsto [\omega\mapsto (g^{-1})^*\omega].$

with characters $\chi_{p,q}$

・ ロ ト ス 雪 ト ス ヨ ト ス ヨ ト

We start with the Hodge numbers of X

• the G action on $C_1 \times C_2 \times C_3$ induces representations

 $\phi_{\mathcal{P},q} \colon G \to GL\big(H^{\mathcal{P},q}(C_1 \times C_2 \times C_3)\big), \qquad g \mapsto [\omega \mapsto (g^{-1})^* \omega].$

with characters $\chi_{p,q}$

• let χ_{triv} be the trivial character of *G*, then

・ ロット 本語 マス ほう ス ほう 一日 -

We start with the Hodge numbers of X

• the G action on $C_1 \times C_2 \times C_3$ induces representations

$$\phi_{\mathcal{P},q} \colon \mathcal{G} \to \mathcal{GL}(\mathcal{H}^{\mathcal{P},q}(\mathcal{C}_1 \times \mathcal{C}_2 \times \mathcal{C}_3)), \qquad \mathcal{g} \mapsto [\omega \mapsto (\mathcal{g}^{-1})^* \omega]$$

with characters $\chi_{p,q}$

• let χ_{triv} be the trivial character of *G*, then

$$\Rightarrow \quad h^{p,q}(X) = \dim H^{p,q}(C_1 \times C_2 \times C_3)^G = \langle \chi_{p,q}, \chi_{triv} \rangle$$

A B F A B F

< A ▶

We start with the Hodge numbers of X

• the G action on $C_1 \times C_2 \times C_3$ induces representations

$$\phi_{\mathcal{P},q} \colon \mathcal{G} o \mathcal{GL} (\mathcal{H}^{\mathcal{P},q}(\mathcal{C}_1 \times \mathcal{C}_2 \times \mathcal{C}_3)), \qquad \mathcal{g} \mapsto [\omega \mapsto (\mathcal{g}^{-1})^* \omega]$$

with characters $\chi_{p,q}$

• let χ_{triv} be the trivial character of *G*, then

$$\Rightarrow h^{p,q}(X) = \dim H^{p,q}(C_1 \times C_2 \times C_3)^G = \langle \chi_{p,q}, \chi_{triv} \rangle$$

• the G action on C_i also induces representations:

We start with the Hodge numbers of X

• the G action on $C_1 \times C_2 \times C_3$ induces representations

$$\phi_{\mathcal{P},q} \colon \mathcal{G} o \mathcal{GL}ig(\mathcal{H}^{\mathcal{P},q}(\mathcal{C}_1 imes \mathcal{C}_2 imes \mathcal{C}_3)ig), \qquad \mathcal{g} \mapsto [\omega \mapsto (\mathcal{g}^{-1})^*\omega]$$

with characters $\chi_{p,q}$

• let χ_{triv} be the trivial character of *G*, then

$$\Rightarrow \quad h^{p,q}(X) = \dim H^{p,q}(C_1 \times C_2 \times C_3)^G = \langle \chi_{p,q}, \chi_{triv} \rangle$$

• the G action on C_i also induces representations:

$$\varphi_i \colon G \to GL(H^{1,0}(C_i))$$

We start with the Hodge numbers of X

• the G action on $C_1 \times C_2 \times C_3$ induces representations

$$\phi_{\mathcal{P},q} \colon \mathcal{G} o \mathcal{GL}ig(\mathcal{H}^{\mathcal{P},q}(\mathcal{C}_1 imes \mathcal{C}_2 imes \mathcal{C}_3)ig), \qquad \mathcal{g} \mapsto [\omega \mapsto (\mathcal{g}^{-1})^*\omega]$$

with characters $\chi_{p,q}$

• let χ_{triv} be the trivial character of *G*, then

$$\Rightarrow \quad h^{p,q}(X) = \dim H^{p,q}(C_1 \times C_2 \times C_3)^G = \langle \chi_{p,q}, \chi_{triv} \rangle$$

• the G action on C_i also induces representations:

$$\varphi_i \colon G \to GL(H^{1,0}(C_i))$$

- 4 回 ト 4 ヨ ト 4 ヨ ト

Idea: determine the characters $\chi_{p,q}$ in terms of the characters χ_{φ_i}

The relation between the characters $\chi_{p,q}$ and χ_{φ_i} is provided by Künneth's formula:

On the Classification of Threefolds Isogenous to a Product Trento, Nov 30. 2016 Christian Gleißner

<ロト < 回 > < 回 > < 回 > -

The relation between the characters $\chi_{p,q}$ and χ_{φ_i} is provided by Künneth's formula:

$$H^{p,q}(C_1 \times C_2 \times C_3) = \bigoplus_{\substack{s_1 + s_2 + s_3 = p \\ t_1 + t_2 + t_3 = q}} H^{s_1,t_1}(C_1) \otimes H^{s_2,t_2}(C_2) \otimes H^{s_3,t_3}(C_3)$$

On the Classification of Threefolds Isogenous to a Product Trento, Nov 30. 2016 Christian Gleißner

<ロト < 回 > < 回 > < 回 > -

The relation between the characters $\chi_{p,q}$ and χ_{φ_i} is provided by Künneth's formula:

$$H^{p,q}(C_1 \times C_2 \times C_3) = \bigoplus_{\substack{s_1 + s_2 + s_3 = p \\ t_1 + t_2 + t_3 = q}} H^{s_1,t_1}(C_1) \otimes H^{s_2,t_2}(C_2) \otimes H^{s_3,t_3}(C_3)$$

Proposition

• $\chi_{1,0} = \chi_{\varphi_1} + \chi_{\varphi_2} + \chi_{\varphi_3}$,

•
$$\chi_{1,1} = 2\Re e(\chi_{\varphi_1}\overline{\chi_{\varphi_2}} + \chi_{\varphi_1}\overline{\chi_{\varphi_3}} + \chi_{\varphi_2}\overline{\chi_{\varphi_3}}) + 3\chi_{triv}$$

•
$$\chi_{2,0} = \chi_{\varphi_1}\chi_{\varphi_2} + \chi_{\varphi_1}\chi_{\varphi_3} + \chi_{\varphi_2}\chi_{\varphi_3}$$

•
$$\chi_{2,1} = \overline{\chi_{\varphi_1}} \chi_{\varphi_2} \chi_{\varphi_3} + \chi_{\varphi_1} \overline{\chi_{\varphi_2}} \chi_{\varphi_3} + \chi_{\varphi_1} \chi_{\varphi_2} \overline{\chi_{\varphi_3}} + 2(\chi_{\varphi_1} + \chi_{\varphi_2} + \chi_{\varphi_3}),$$

•
$$\chi_{3,0} = \chi_{\varphi_1} \chi_{\varphi_2} \chi_{\varphi_3}$$
,

•
$$\chi_{q,p} = \overline{\chi_{p,q}}.$$

・ロッ ・雪 ・ ・ ヨ ・ ・

The relation between the characters $\chi_{p,q}$ and χ_{φ_i} is provided by Künneth's formula:

$$H^{p,q}(C_1 \times C_2 \times C_3) = \bigoplus_{\substack{s_1 + s_2 + s_3 = p \\ t_1 + t_2 + t_3 = q}} H^{s_1,t_1}(C_1) \otimes H^{s_2,t_2}(C_2) \otimes H^{s_3,t_3}(C_3)$$

Proposition

• $\chi_{1,0} = \chi_{\varphi_1} + \chi_{\varphi_2} + \chi_{\varphi_3}$,

•
$$\chi_{1,1} = 2\Re e(\chi_{\varphi_1}\overline{\chi_{\varphi_2}} + \chi_{\varphi_1}\overline{\chi_{\varphi_3}} + \chi_{\varphi_2}\overline{\chi_{\varphi_3}}) + 3\chi_{triv}$$

•
$$\chi_{2,0} = \chi_{\varphi_1}\chi_{\varphi_2} + \chi_{\varphi_1}\chi_{\varphi_3} + \chi_{\varphi_2}\chi_{\varphi_3}$$

•
$$\chi_{2,1} = \overline{\chi_{\varphi_1}} \chi_{\varphi_2} \chi_{\varphi_3} + \chi_{\varphi_1} \overline{\chi_{\varphi_2}} \chi_{\varphi_3} + \chi_{\varphi_1} \chi_{\varphi_2} \overline{\chi_{\varphi_3}} + 2(\chi_{\varphi_1} + \chi_{\varphi_2} + \chi_{\varphi_3}),$$

•
$$\chi_{3,0} = \chi_{\varphi_1} \chi_{\varphi_2} \chi_{\varphi_3}$$
,

•
$$\chi_{q,p} = \overline{\chi_{p,q}}.$$

⇒ it remains determine the character of a representation φ : $G \rightarrow GL(H^{1,0}(C))$ induced by an action ψ : $G \rightarrow Aut(C)$ in terms of a generating vector

・ ロ ト ・ 雪 ト ・ 目 ト ・

The relation between the characters $\chi_{p,q}$ and χ_{φ_i} is provided by Künneth's formula:

$$H^{p,q}(C_1 \times C_2 \times C_3) = \bigoplus_{\substack{s_1 + s_2 + s_3 = p \\ t_1 + t_2 + t_3 = q}} H^{s_1,t_1}(C_1) \otimes H^{s_2,t_2}(C_2) \otimes H^{s_3,t_3}(C_3)$$

Proposition

• $\chi_{1,0} = \chi_{\varphi_1} + \chi_{\varphi_2} + \chi_{\varphi_3}$,

•
$$\chi_{1,1} = 2\Re e(\chi_{\varphi_1}\overline{\chi_{\varphi_2}} + \chi_{\varphi_1}\overline{\chi_{\varphi_3}} + \chi_{\varphi_2}\overline{\chi_{\varphi_3}}) + 3\chi_{triv}$$
,

•
$$\chi_{2,0} = \chi_{\varphi_1}\chi_{\varphi_2} + \chi_{\varphi_1}\chi_{\varphi_3} + \chi_{\varphi_2}\chi_{\varphi_3}$$

•
$$\chi_{2,1} = \overline{\chi_{\varphi_1}} \chi_{\varphi_2} \chi_{\varphi_3} + \chi_{\varphi_1} \overline{\chi_{\varphi_2}} \chi_{\varphi_3} + \chi_{\varphi_1} \chi_{\varphi_2} \overline{\chi_{\varphi_3}} + 2(\chi_{\varphi_1} + \chi_{\varphi_2} + \chi_{\varphi_3}),$$

•
$$\chi_{3,0} = \chi_{\varphi_1} \chi_{\varphi_2} \chi_{\varphi_3}$$
,

•
$$\chi_{q,p} = \overline{\chi_{p,q}}.$$

⇒ it remains determine the character of a representation φ : $G \rightarrow GL(H^{1,0}(C))$ induced by an action ψ : $G \rightarrow Aut(C)$ in terms of a generating vector

$$V = (h_1, \ldots, h_r, a_1, b_1, \ldots, a_{g'}, b_{g'}).$$

・ ロ ト ・ 雪 ト ・ 目 ト ・

Formula of Chevalley-Weil

• There is a decomposition of the character χ_{φ} in irreducible characters

< ロ > < 部 > < き > < き > -

3

Formula of Chevalley-Weil

• There is a decomposition of the character χ_{φ} in irreducible characters

$$\chi_{\varphi} = \sum_{\chi \in \operatorname{Irr}(G)} \langle \chi, \chi_{\varphi} \rangle \cdot \chi$$

< ロ > < 部 > < き > < き > -

3

Formula of Chevalley-Weil

• There is a decomposition of the character χ_{φ} in irreducible characters

$$\chi_{\varphi} = \sum_{\chi \in \operatorname{Irr}(G)} \langle \chi, \chi_{\varphi} \rangle \cdot \chi$$

 \Rightarrow we need to determine the multiplicities $\langle \chi, \chi_{\varphi} \rangle$

<ロト < 回 > < 回 > < 回 > -

nac

• There is a decomposition of the character χ_{φ} in irreducible characters

$$\chi_{\varphi} = \sum_{\chi \in \operatorname{Irr}(G)} \langle \chi, \chi_{\varphi} \rangle \cdot \chi$$

- \Rightarrow we need to determine the multiplicities $\langle \chi, \chi_{\varphi} \rangle$
- pick h_i from V and an irreducible representation ρ with character χ .

・ロト ・ 雪 ト ・ ヨ ト ・
• There is a decomposition of the character χ_{φ} in irreducible characters

$$\chi_{\varphi} = \sum_{\chi \in \operatorname{Irr}(G)} \langle \chi, \chi_{\varphi} \rangle \cdot \chi$$

- \Rightarrow we need to determine the multiplicities $\langle \chi, \chi_{\varphi} \rangle$
- pick h_i from V and an irreducible representation ρ with character χ .
- $ord(h_i) = m_i$

• There is a decomposition of the character χ_{φ} in irreducible characters

$$\chi_{\varphi} = \sum_{\chi \in \operatorname{Irr}(G)} \langle \chi, \chi_{\varphi} \rangle \cdot \chi$$

- \Rightarrow we need to determine the multiplicities $\langle \chi, \chi_{\varphi} \rangle$
- pick h_i from V and an irreducible representation ρ with character χ .
- $\operatorname{ord}(h_i) = m_i \implies$ every eigenvalue of $\varrho(h_i)$ is of the form

• There is a decomposition of the character χ_{φ} in irreducible characters

$$\chi_{\varphi} = \sum_{\chi \in \operatorname{Irr}(G)} \langle \chi, \chi_{\varphi} \rangle \cdot \chi$$

- \Rightarrow we need to determine the multiplicities $\langle \chi, \chi_{\varphi} \rangle$
- pick h_i from V and an irreducible representation ρ with character χ .
- $\operatorname{ord}(h_i) = m_i \implies$ every eigenvalue of $\varrho(h_i)$ is of the form

$$\xi^{lpha}_{m_i} = expigg(rac{2\pi\sqrt{-1}lpha}{m_i}igg) \quad ext{for some} \quad 1 \leq lpha \leq m_i$$

• There is a decomposition of the character χ_{φ} in irreducible characters

$$\chi_{arphi} = \sum_{\chi \in \operatorname{Irr}(G)} \langle \chi, \chi_{arphi}
angle \cdot \chi$$

- \Rightarrow we need to determine the multiplicities $\langle \chi, \chi_{\varphi} \rangle$
- pick h_i from V and an irreducible representation ρ with character χ .
- $\operatorname{ord}(h_i) = m_i \implies$ every eigenvalue of $\varrho(h_i)$ is of the form

$$\xi^{lpha}_{m_i} = expigg(rac{2\pi\sqrt{-1}lpha}{m_i}igg) \quad ext{for some} \quad 1 \leq lpha \leq m_i$$

define N_{i,α} := # eigenvalues of ρ(h_i) equal to ξ^α_{m_i}.

• There is a decomposition of the character χ_{φ} in irreducible characters

$$\chi_{arphi} = \sum_{\chi \in \operatorname{Irr}(G)} \langle \chi, \chi_{arphi}
angle \cdot \chi$$

- \Rightarrow we need to determine the multiplicities $\langle \chi, \chi_{\varphi} \rangle$
- pick h_i from V and an irreducible representation ρ with character χ .
- $\operatorname{ord}(h_i) = m_i \implies$ every eigenvalue of $\varrho(h_i)$ is of the form

$$\xi^{lpha}_{m_i} = expigg(rac{2\pi\sqrt{-1}lpha}{m_i}igg) \quad ext{for some} \quad 1 \leq lpha \leq m_i$$

- define N_{i,α} := # eigenvalues of ρ(h_i) equal to ξ^α_{m_i}.
- Formula of Chevalley-Weil:

• There is a decomposition of the character χ_{φ} in irreducible characters

$$\chi_{\varphi} = \sum_{\chi \in \operatorname{Irr}(G)} \langle \chi, \chi_{\varphi} \rangle \cdot \chi$$

- \Rightarrow we need to determine the multiplicities $\langle \chi, \chi_{\varphi} \rangle$
- pick h_i from V and an irreducible representation ρ with character χ .
- $\operatorname{ord}(h_i) = m_i \implies$ every eigenvalue of $\varrho(h_i)$ is of the form

$$\xi^{lpha}_{m_i} = expigg(rac{2\pi\sqrt{-1}lpha}{m_i}igg) \quad ext{for some} \quad 1 \leq lpha \leq m_i$$

- define N_{i,α} := # eigenvalues of ρ(h_i) equal to ξ^α_{m_i}.
- Formula of Chevalley-Weil:

$$\langle \chi, \chi_{\varphi} \rangle = \chi(\mathbf{1}_G)(g'-1) + \sum_{i=1}^r \sum_{\alpha=1}^{m_i-1} \frac{\alpha \cdot N_{i,\alpha}}{m_i} + \langle \chi, \chi_{triv} \rangle.$$

< ロ > < 同 > < 回 > < 回 >

<ロ> <同> <同> < 同> < 同>

э

it is very hard to determine the irreducible representations of a given finite group G

▶ < ∃ >

-

< A ▶

it is very hard to determine the irreducible representations of a given finite group G

to calculate the eigenvalues of *ρ*(*h_i*), enough information is encoded in the character *χ*.

< A ▶

it is very hard to determine the irreducible representations of a given finite group G

- to calculate the eigenvalues of *ρ*(*h_i*), enough information is encoded in the character *χ*.
- \Rightarrow the character table of any finite group *G* can be determined using the computer algebra system MAGMA.

it is very hard to determine the irreducible representations of a given finite group G

- to calculate the eigenvalues of *ρ*(*h_i*), enough information is encoded in the character *χ*.
- \Rightarrow the character table of any finite group *G* can be determined using the computer algebra system MAGMA.

The strategy is the following:

it is very hard to determine the irreducible representations of a given finite group G

- to calculate the eigenvalues of *ρ*(*h_i*), enough information is encoded in the character *χ*.
- \Rightarrow the character table of any finite group *G* can be determined using the computer algebra system MAGMA.

The strategy is the following:

• $\chi(h_i^k)$ is the *k*-th powersum of the eigenvalues of $\varrho(h_i)$

it is very hard to determine the irreducible representations of a given finite group G

- to calculate the eigenvalues of *ρ*(*h_i*), enough information is encoded in the character *χ*.
- \Rightarrow the character table of any finite group *G* can be determined using the computer algebra system MAGMA.

The strategy is the following:

- $\chi(h_i^k)$ is the *k*-th powersum of the eigenvalues of $\varrho(h_i)$
- we use Newton's identities to determine the characteristic polynomial of $\varrho(h_i)$ from these powersums

< ロ > < 同 > < 回 > < 回 > .

it is very hard to determine the irreducible representations of a given finite group G

- to calculate the eigenvalues of *ρ*(*h_i*), enough information is encoded in the character *χ*.
- \Rightarrow the character table of any finite group *G* can be determined using the computer algebra system MAGMA.

The strategy is the following:

- $\chi(h_i^k)$ is the *k*-th powersum of the eigenvalues of $\varrho(h_i)$
- we use Newton's identities to determine the characteristic polynomial of $\varrho(h_i)$ from these powersums
- the characteristic polynomial is easy to factorize, because its roots are powers of ξ_{m_i}

< ロ > < 同 > < 回 > < 回 > .

・ロト ・ 四 ト ・ ヨ ト ・ ヨ ト ・

3

Definition

Let $g' \ge 0$ and $m_1, \ldots, m_r \ge 2$ be integers.

・ロッ ・雪 ・ ・ ヨ ・ ・

Definition

Let $g' \ge 0$ and $m_1, \ldots, m_r \ge 2$ be integers. The orbifold surface group of type $T = [g'; m_1, \ldots, m_r]$ is defined as:

・ロッ ・雪 ・ ・ ヨ ・ ・

Definition

Let $g' \ge 0$ and $m_1, \ldots, m_r \ge 2$ be integers. The orbifold surface group of type $T = [g'; m_1, \ldots, m_r]$ is defined as:

$$\mathbb{T}(T) := \langle c_1, \ldots, c_r, d_1, e_1, \ldots, d_{g'}, e_{g'} \mid c_1^{m_1}, \ldots, c_r^{m_r}, c_1 \cdot \ldots \cdot c_r \cdot \prod_{i=1}^{g'} [d_i, e_i] \rangle.$$

Definition

Let $g' \ge 0$ and $m_1, \ldots, m_r \ge 2$ be integers. The orbifold surface group of type $T = [g'; m_1, \ldots, m_r]$ is defined as:

$$\mathbb{T}(T) := \langle c_1, \ldots, c_r, d_1, e_1, \ldots, d_{g'}, e_{g'} \mid c_1^{m_1}, \ldots, c_r^{m_r}, c_1 \cdot \ldots \cdot c_r \cdot \prod_{i=1}^{g'} [d_i, e_i] \rangle.$$

 the generating vectors V_i in an algebraic datum (G, V₁, V₂, V₃) of X determine surjective group homomorphisms p_i : T(T_i) → G,

Definition

Let $g' \ge 0$ and $m_1, \ldots, m_r \ge 2$ be integers. The orbifold surface group of type $T = [g'; m_1, \ldots, m_r]$ is defined as:

$$\mathbb{T}(T) := \langle c_1, \ldots, c_r, d_1, e_1, \ldots, d_{g'}, e_{g'} \mid c_1^{m_1}, \ldots, c_r^{m_r}, c_1 \cdot \ldots \cdot c_r \cdot \prod_{i=1}^{g'} [d_i, e_i] \rangle.$$

 the generating vectors V_i in an algebraic datum (G, V₁, V₂, V₃) of X determine surjective group homomorphisms p_i : T(T_i) → G,

・ロト ・ 雪 ト ・ ヨ ト ・

• $\left| \pi_1(X) \simeq \left\{ (x, y, z) \in \mathbb{T}(T_1) \times \mathbb{T}(T_2) \times \mathbb{T}(T_3) \mid p_1(x) = p_2(y) = p_3(z) \right\} \right|$

Aim:

give an algorithm to classify threefolds X isogenous to a product with a fixed value of $\chi(\mathcal{O}_X)$

▶★国≯

э

Aim:

give an algorithm to classify threefolds X isogenous to a product with a fixed value of $\chi(\mathcal{O}_X)$

Input: a negative integer χ

-

< ⊡ >

5900

э

Aim:

give an algorithm to classify threefolds X isogenous to a product with a fixed value of $\chi(\mathcal{O}_X)$

Input: a negative integer χ

Output: a "finite list" of all threefolds *X* isogenous to a product with $\chi(\mathcal{O}_X) = \chi$.

・ロッ ・雪 ・ ・ ヨ ・ ・

nac

An algebraic datum (G, V_1, V_2, V_3) of a threefold X isogenous to a product induces a numerical datum

 $(n, T_1, T_2, T_3).$

・ロト ・ 同ト ・ ヨト ・ ヨト

An algebraic datum (G, V_1, V_2, V_3) of a threefold X isogenous to a product induces a numerical datum

 $(n, T_1, T_2, T_3).$

Here n = |G| and $T_i = [g'_i; m_{i,1}, \dots, m_{i,r_i}]$ are the types of the generating vectors V_i .

An algebraic datum (G, V_1, V_2, V_3) of a threefold X isogenous to a product induces a numerical datum

 $(n, T_1, T_2, T_3).$

Here n = |G| and $T_i = [g'_i; m_{i,1}, \dots, m_{i,r_i}]$ are the types of the generating vectors V_i .

 derive combinatorial constraints on the numerical data: inequalities, divisibility conditions etc. in terms of χ(O_X).

An algebraic datum (G, V_1, V_2, V_3) of a threefold X isogenous to a product induces a numerical datum

 $(n, T_1, T_2, T_3).$

Here n = |G| and $T_i = [g'_i; m_{i,1}, \dots, m_{i,r_i}]$ are the types of the generating vectors V_i .

- derive combinatorial constraints on the numerical data: inequalities, divisibility conditions etc. in terms of χ(O_X).
- the constraints should imply that the numerical data of all threefolds X isogenous to a product with $\chi(\mathcal{O}_X) = \chi$ form a finite list.

An algebraic datum (G, V_1, V_2, V_3) of a threefold X isogenous to a product induces a numerical datum

 $(n, T_1, T_2, T_3).$

Here n = |G| and $T_i = [g'_i; m_{i,1}, \dots, m_{i,r_i}]$ are the types of the generating vectors V_i .

- derive combinatorial constraints on the numerical data: inequalities, divisibility conditions etc. in terms of χ(O_X).
- the constraints should imply that the numerical data of all threefolds X isogenous to a product with $\chi(\mathcal{O}_X) = \chi$ form a finite list.

1st Step in the classification: compute the finite list of *abstract numerical data* i.e. the set of abstract 4-tuples of the form (n, T_1, T_2, T_3) , which fulfill the constraints.

An algebraic datum (G, V_1, V_2, V_3) of a threefold X isogenous to a product induces a numerical datum

 $(n, T_1, T_2, T_3).$

Here n = |G| and $T_i = [g'_i; m_{i,1}, \dots, m_{i,r_i}]$ are the types of the generating vectors V_i .

- derive combinatorial constraints on the numerical data: inequalities, divisibility conditions etc. in terms of χ(O_X).
- the constraints should imply that the numerical data of all threefolds X isogenous to a product with $\chi(\mathcal{O}_X) = \chi$ form a finite list.

1st Step in the classification: compute the finite list of *abstract numerical data* i.e. the set of abstract 4-tuples of the form (n, T_1, T_2, T_3) , which fulfill the constraints.

 \Rightarrow list of candidates for the numerical data

Let $X = (C_1 \times C_2 \times C_3)/G$ be a threefold isogenous to a product, then

$$n = |G| \leq 168\sqrt{-21\chi(\mathcal{O}_X)}$$

On the Classification of Threefolds Isogenous to a Product Trento, Nov 30. 2016 Christian Gleißner

< 同 ▶ < 三 ▶

Let $X = (C_1 \times C_2 \times C_3)/G$ be a threefold isogenous to a product, then

$$n = |G| \leq 168\sqrt{-21\chi(\mathcal{O}_X)}$$

proof:

< 🗇 🕨

∃ ► < ∃ ►</p>

э

Let $X = (C_1 \times C_2 \times C_3)/G$ be a threefold isogenous to a product, then

$$n=|G|\leq 168\sqrt{-21\chi(\mathcal{O}_X)}.$$

proof:

• according to Hurwitz it holds $|G| \leq |\operatorname{Aut}(C_i)| \leq 84(g(C_i) - 1)$

< A ▶

A B M A B M

Let $X = (C_1 \times C_2 \times C_3)/G$ be a threefold isogenous to a product, then

$$n = |G| \leq 168\sqrt{-21\chi(\mathcal{O}_X)}$$

proof:

- according to Hurwitz it holds $|G| \leq |\operatorname{Aut}(C_i)| \leq 84(g(C_i) 1)$
- we conclude

$$-\chi(\mathcal{O}_X) = rac{1}{|G|} \prod_{i=1}^3 \left(g(\mathcal{C}_i) - 1
ight) \geq rac{|G|^2}{84^3}.$$

< 同 > < 回 > < 回 > -

Additional constraints:

the entries of the types $T_i = [g'_i; m_{i,1}, \ldots, m_{i,r_i}]$ fulfill:

On the Classification of Threefolds Isogenous to a Product Trento, Nov 30. 2016 Christian Gleißner

< ロ > < 部 > < き > < き > -

Additional constraints:

the entries of the types $T_i = [g'_i; m_{i,1}, \ldots, m_{i,r_i}]$ fulfill:

•
$$g'_i \leq 1 - \chi(\mathcal{O}_X),$$

On the Classification of Threefolds Isogenous to a Product Trento, Nov 30. 2016 Christian Gleißner

・ロト ・ 四 ト ・ 回 ト ・ 回 ト

Additional constraints:

the entries of the types $T_i = [g'_i; m_{i,1}, \ldots, m_{i,r_i}]$ fulfill:

- $g'_i \leq 1 \chi(\mathcal{O}_X)$,
- *m_{i,j}* divides the group order *n*,

< □ > < □ > < 三 > < 三 > < 三 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □
Combinatorics, Bounds and the Algorithm

Additional constraints:

the entries of the types $T_i = [g'_i; m_{i,1}, \ldots, m_{i,r_i}]$ fulfill:

- $g'_i \leq 1 \chi(\mathcal{O}_X)$,
- *m_{i,j}* divides the group order *n*,
- Hurwitz' formula holds:

$$g_i - 1 = \frac{|G|}{2} \left(2g'_i - 2 + \sum_{i=1}^{r_i - i} \left(1 - \frac{1}{m_{i,j}} \right) \right), \quad g'_i = g(C_i/G).$$

< □ > < □ > < 豆 > < 豆 > < 豆 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Combinatorics, Bounds and the Algorithm

Additional constraints:

the entries of the types $T_i = [g'_i; m_{i,1}, \ldots, m_{i,r_i}]$ fulfill:

- $g'_i \leq 1 \chi(\mathcal{O}_X)$,
- *m_{i,j}* divides the group order *n*,
- Hurwitz' formula holds:

$$g_i - 1 = \frac{|G|}{2} \left(2g'_i - 2 + \sum_{j=1}^{r_i - i} \left(1 - \frac{1}{m_{i,j}}\right) \right), \quad g'_i = g(C_i/G).$$

< □ > < □ > < 三 > < 三 > < 三 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

•
$$(g_i - 1) \mid n \cdot \chi(\mathcal{O}_X).$$

Combinatorics, Bounds and the Algorithm

Additional constraints:

the entries of the types $T_i = [g'_i; m_{i,1}, \ldots, m_{i,r_i}]$ fulfill:

- $g'_i \leq 1 \chi(\mathcal{O}_X)$,
- *m_{i,j}* divides the group order *n*,
- Hurwitz' formula holds:

$$g_i - 1 = \frac{|G|}{2} \left(2g'_i - 2 + \sum_{j=1}^{r_i - i} \left(1 - \frac{1}{m_{i,j}}\right) \right), \quad g'_i = g(C_i/G).$$

• $(g_i - 1) \mid n \cdot \chi(\mathcal{O}_X).$

\Rightarrow only finitely many numerical data (n, T_1, T_2, T_3)

Input: a negative integer χ (the holomorphic Euler characteristic)

On the Classification of Threefolds Isogenous to a Product Trento, Nov 30. 2016 Christian Gleißner

ヘロア 人間 アメヨア 人口 ア

E

Input: a negative integer χ (the holomorphic Euler characteristic)

1st Step: here we determine the set of (abstract) numerical data i.e. the <u>finite set</u> of tuples of the form

```
(n, T_1, T_2, T_3), where T_i = [g'_i; m_{i,1}, \dots, m_{i,r_i}]
```

that satisfy the constraints from above.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - シスペ

Input: a negative integer χ (the holomorphic Euler characteristic)

1st Step: here we determine the set of (abstract) numerical data i.e. the <u>finite set</u> of tuples of the form

 (n, T_1, T_2, T_3) , where $T_i = [g'_i; m_{i,1}, \dots, m_{i,r_i}]$

that satisfy the constraints from above.

2nd Step: here we search for algebraic data. More precisely:

Input: a negative integer χ (the holomorphic Euler characteristic)

1st Step: here we determine the set of (abstract) numerical data i.e. the <u>finite set</u> of tuples of the form

 (n, T_1, T_2, T_3) , where $T_i = [g'_i; m_{i,1}, \dots, m_{i,r_i}]$

that satisfy the constraints from above.

2nd Step: here we search for algebraic data. More precisely:

• for each abstract numerical datum (n, T_1, T_2, T_3) found in the 1st step we run through the groups *G* of order *n* and determine all 4-tuples of the form

$$(G, V_1, V_2, V_3),$$

where V_i is a generating vector of type T_i .

Input: a negative integer χ (the holomorphic Euler characteristic)

1st Step: here we determine the set of (abstract) numerical data i.e. the <u>finite set</u> of tuples of the form

 (n, T_1, T_2, T_3) , where $T_i = [g'_i; m_{i,1}, \dots, m_{i,r_i}]$

that satisfy the constraints from above.

2nd Step: here we search for algebraic data. More precisely:

• for each abstract numerical datum (n, T_1, T_2, T_3) found in the 1st step we run through the groups *G* of order *n* and determine all 4-tuples of the form

$$(G, V_1, V_2, V_3),$$

where V_i is a generating vector of type T_i .

• for each 4-tuple (G, V1, V2, V3) we check the freeness condition

$$\Sigma_{V_1} \ \cap \ \Sigma_{V_2} \ \cap \ \Sigma_{V_3} = \{\mathbf{1}_G\}.$$

Input: a negative integer χ (the holomorphic Euler characteristic)

1st Step: here we determine the set of (abstract) numerical data i.e. the <u>finite set</u> of tuples of the form

 (n, T_1, T_2, T_3) , where $T_i = [g'_i; m_{i,1}, \dots, m_{i,r_i}]$

that satisfy the constraints from above.

2nd Step: here we search for algebraic data. More precisely:

• for each abstract numerical datum (n, T_1, T_2, T_3) found in the 1st step we run through the groups *G* of order *n* and determine all 4-tuples of the form

$$(G, V_1, V_2, V_3),$$

where V_i is a generating vector of type T_i .

• for each 4-tuple (G, V1, V2, V3) we check the freeness condition

$$\Sigma_{V_1} \ \cap \ \Sigma_{V_2} \ \cap \ \Sigma_{V_3} = \{\mathbf{1}_G\}.$$

if it holds there exists a threefold X isogenous to a product with $\chi(\mathcal{O}_X) = \chi$ and algebraic datum (G, V_1 , V_2 , V_3).

Input: a negative integer χ (the holomorphic Euler characteristic)

1st Step: here we determine the set of (abstract) numerical data i.e. the <u>finite set</u> of tuples of the form

 (n, T_1, T_2, T_3) , where $T_i = [g'_i; m_{i,1}, \dots, m_{i,r_i}]$

that satisfy the constraints from above.

2nd Step: here we search for algebraic data. More precisely:

• for each abstract numerical datum (n, T_1, T_2, T_3) found in the 1st step we run through the groups *G* of order *n* and determine all 4-tuples of the form

$$(G, V_1, V_2, V_3),$$

where V_i is a generating vector of type T_i .

• for each 4-tuple (G, V1, V2, V3) we check the freeness condition

$$\Sigma_{V_1} \ \cap \ \Sigma_{V_2} \ \cap \ \Sigma_{V_3} = \{\mathbf{1}_G\}.$$

if it holds there exists a threefold X isogenous to a product with $\chi(\mathcal{O}_X) = \chi$ and algebraic datum (G, V₁, V₂, V₃).

• for each threefold X that we found we determine the Hodge numbers and print the occurrence

$$[G, T_1, T_2, T_3, h^{p,q}].$$

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ● ● ● ● ● ●

<ロ > < 回 > < 回 > < 回 > .

э

The Main Computation

We run a MAGMA implementation of the algorithm for the input value $\chi = -1$

•
$$n = |G| \le \lfloor 168\sqrt{-21\chi} \rfloor = 769$$

<ロ > < 回 > < 回 > < 回 > .

э

The Main Computation

We run a MAGMA implementation of the algorithm for the input value $\chi = -1$

•
$$n = |G| \le \lfloor 168\sqrt{-21\chi} \rfloor = 769$$

• there are 11.715.855 isomorphism classes of groups G with $|G| \le 769$

э

•
$$n = |G| \le \lfloor 168\sqrt{-21\chi} \rfloor = 769$$

- there are 11.715.855 isomorphism classes of groups G with $|G| \le 769$
- all of them are contained in MAGMA's database of small groups

- $n = |G| \le \lfloor 168\sqrt{-21\chi} \rfloor = 769$
- there are 11.715.855 isomorphism classes of groups G with $|G| \le 769$
- all of them are contained in MAGMA's database of small groups
- however, for only 38 group orders *n* there exists types T_i fulfilling the constraints

- $n = |G| \le \lfloor 168\sqrt{-21\chi} \rfloor = 769$
- there are 11.715.855 isomorphism classes of groups G with $|G| \le 769$
- all of them are contained in MAGMA's database of small groups
- however, for only 38 group orders *n* there exists types T_i fulfilling the constraints
- ullet \Rightarrow the number of groups we need to consider (in Step 2) drops to 4393

•
$$n = |G| \le \lfloor 168\sqrt{-21\chi} \rfloor = 769$$

- there are 11.715.855 isomorphism classes of groups G with $|G| \le 769$
- all of them are contained in MAGMA's database of small groups
- however, for only 38 group orders *n* there exists types T_i fulfilling the constraints
- \Rightarrow the number of groups we need to consider (in Step 2) drops to 4393

Theorem (Frapporti,-)

Let X be a threefold isogenous to a product of unmixed type with $\chi(\mathcal{O}_X) = -1$. Then X is minimal of general type and there are 54 possibilities for

$$[G, T_1, T_2, T_3, h^{p,q}].$$

・ロト ・ 同ト ・ ヨト・

nar

G	<i>T</i> ₁	T2	<i>T</i> 3	h ^{3,0}	h ^{2,0}	h ^{1,0}	h ^{1,1}	h ^{2,1}
215	[0; 2 ³ , 3]	[0; 2, 5 ²]	[0; 3 ² , 5]	2	0	0	3	6
GL(2, ⊮3)	[0; 2, 3, 8]	[0; 2, 3, 8]	[2; -]	5	5	2	11	17
$GL(2, \mathbb{F}_3)$	[0; 2, 3, 8]	[0; 2, 3, 8]	[2; -]	4	4	2	13	18
$\mathfrak{S}_4\times\mathbb{Z}_2$	[0; 2 ⁵]	[0; 2, 4, 6]	[0; 2, 4, 6]	3	1	0	5	9
$SL(2, \mathbb{F}_3)$	[0; 3 ² , 4]	[0; 3 ² , 4]	[2; -]	5	5	2	13	19
$\mathbb{Z}_3\rtimes_{\varphi}\mathcal{D}_4$	[0; 2, 4, 6]	[0; 2, 4, 6]	[2; -]	5	5	2	11	17
$\mathbb{Z}_3 \rtimes_{\varphi} \mathcal{D}_4$	[0; 2, 4, 6]	[0; 2, 4, 6]	[2; -]	4	4	2	13	18
S ₄	[0; 2 ³ , 4]	$[0; 2^2, 3^2]$	[0; 3, 4 ²]	3	1	0	5	9
<i>SD</i> 16	[0; 2, 4, 8]	[0; 2, 4, 8]	[2; -]	5	5	2	11	17
<i>SD</i> 16	[0; 2, 4, 8]	[0; 2, 4, 8]	[2; -]	4	4	2	13	18
$\mathcal{D}_4\times\mathbb{Z}_2$	[0; 2 ⁵]	[0; 2 ³ , 4]	[0; 2 ³ , 4]	3	1	0	5	9
$\mathcal{D}_4\times\mathbb{Z}_2$	[0; 2 ⁵]	[0; 2 ³ , 4]	[0; 2 ³ , 4]	4	2	0	7	12
Dic12	[0; 3, 4 ²]	[0; 3, 4 ²]	[2; -]	5	5	2	13	19
$\mathbb{Z}_3 \times \mathbb{Z}_2^2$	[0; 2, 6 ²]	[0; 2, 6 ²]	[2; -]	6	6	2	11	18
$\mathbb{Z}_3 \times \mathbb{Z}_2^2$	[0; 2, 6 ²]	[0; 2, 6 ²]	[2; -]	5	5	2	11	17
$\mathbb{Z}_3 \times \mathbb{Z}_2^2$	[0; 2, 6 ²]	[0; 2, 6 ²]	[2; -]	4	4	2	13	18
$\mathbb{Z}_3 \times \mathbb{Z}_2^2$	[0; 2, 6 ²]	[0; 2, 6 ²]	[2; -]	4	4	2	15	20
\mathcal{D}_{6}	[0; 2 ³ , 3]	[0; 2 ³ , 6]	[1; 2 ²]	4	3	1	9	14
\mathcal{D}_{6}	[0; 2 ³ , 3]	[0; 2 ³ , 3]	[2; -]	5	5	2	13	19
\mathcal{D}_6	[0; 2 ⁵]	[0; 2 ³ , 3]	[1; 3]	4	3	1	9	14
Z ₁₀	[0; 2, 5, 10]	[0; 2, 5, 10]	[2; -]	5	5	2	13	19
^ℤ 10	[0; 2, 5, 10]	[0; 2, 5, 10]	[2; -]	6	6	2	11	18
^ℤ 10	[0; 2, 5, 10]	[0; 2, 5, 10]	[2; -]	4	4	2	15	20

On the Classification of Threefolds Isogenous to a Product

Christian Gleißner

<ロト <回 > < 回 > < 回 > < 回 > <

G	<i>τ</i> ₁	Т2	Тз	_h 3,0	h ^{2,0}	h ^{1,0}	h ^{1,1}	h ^{2,1}
Q	[0; 4 ³]	[0; 4 ³]	[2; -]	5	5	2	13	19
Z8	$[0; 2, 8^2]$	[0; 2, 8 ²]	[2; -]	6	6	2	11	18
Z8	[0; 2, 8 ²]	[0; 2, 8 ²]	[2; -]	4	4	2	15	20
\mathcal{D}_4	$[0; 2^3, 4]$	[1; 2]	[1; 2 ²]	4	4	2	11	16
D_4	$[0; 2^3, 4]$	$[0; 2^2, 4^2]$	[1; 2 ²]	4	3	1	9	14
\mathcal{D}_4	$[0; 2^3, 4]$	[0; 2 ³ , 4]	[2; -]	5	5	2	13	19
D_4	[0; 2 ⁶]	[0; 2 ³ , 4]	[1; 2]	4	3	1	9	14
ℤ23	[0; 2 ⁵]	[0; 2 ⁵]	[0; 2 ⁵]	5	3	0	9	15
Z23	[0; 2 ⁵]	[0; 2 ⁵]	[0; 2 ⁵]	4	2	0	7	12
\mathbb{Z}_6	$[0; 3, 6^2]$	[0; 3, 6 ²]	[2; -]	6	6	2	11	18
Z6	$[0; 3, 6^2]$	[0; 3, 6 ²]	[2; -]	4	4	2	15	20
63	$[0; 2^2, 3^2]$	[1; 2 ²]	[1; 3]	4	4	2	11	16
Z6	$[0; 2^2, 3^2]$	[0; 3, 6 ²]	[2; -]	5	5	2	13	19
\mathbb{Z}_6	$[0; 2^2, 3^2]$	$[0; 2^2, 3^2]$	[2; -]	6	6	2	15	22
63	$[0; 2^2, 3^2]$	$[0; 2^2, 3^2]$	[2; -]	5	5	2	13	19
63	[0; 2 ⁶]	$[0; 2^2, 3^2]$	[1; 3]	4	3	1	9	14
\mathbb{Z}_5	[0; 5 ³]	[0; 5 ³]	[2; -]	6	6	2	11	18
\mathbb{Z}_5	[0; 5 ³]	[0; 5 ³]	[2; -]	5	5	2	13	19
\mathbb{Z}_5	[0; 5 ³]	[0; 5 ³]	[2; -]	4	4	2	15	20

On the Classification of Threefolds Isogenous to a Product Trento, Nov 30. 2016

<ロト <回 > < 回 > < 回 > < 回 > <

G	<i>т</i> ₁	T2	т3	_h 3,0	h ^{2,0}	h ^{1,0}	h ^{1,1}	h ^{2,1}
\mathbb{Z}_4	$[0; 2^2, 4^2]$	$[0; 2^2, 4^2]$	[2; -]	6	6	2	15	22
\mathbb{Z}_2^2	[0; 2 ⁵]	[1; 2 ²]	[1; 2 ²]	5	5	2	13	19
\mathbb{Z}_2^2	[0; 2 ⁵]	[1; 2 ²]	[1; 2 ²]	4	4	2	11	16
\mathbb{Z}_2^2	[0; 2 ⁵]	[0; 2 ⁶]	[1; 2 ²]	6	5	1	13	20
Z22	[0; 2 ⁵]	[0; 2 ⁶]	[1; 2 ²]	5	4	1	11	17
ℤ22	[0; 2 ⁵]	[0; 2 ⁵]	[2; -]	5	5	2	13	19
Z22	[0; 2 ⁵]	[0; 2 ⁵]	[2; -]	6	6	2	15	22
ℤ3	[0; 3 ⁴]	[0; 3 ⁴]	[2; -]	6	6	2	15	22
ℤ2	[1; 2 ²]	[1; 2 ²]	[2; -]	6	8	4	19	26
\mathbb{Z}_2	[0; 2 ⁶]	[1; 2 ²]	[2; -]	6	7	3	17	24
\mathbb{Z}_2	[0; 2 ⁶]	[0; 2 ⁶]	[2; -]	8	8	2	19	28
{1}	[2; -]	[2; -]	[2; -]	8	12	6	27	36

<ロト <回 > < 回 > < 回 > < 回 > <

G	<i>т</i> ₁	T2	T ₃	h ^{3,0}	h ^{2,0}	h ^{1,0}	h ^{1,1}	h ^{2,1}
\mathbb{Z}_4	$[0; 2^2, 4^2]$	$[0; 2^2, 4^2]$	[2; -]	6	6	2	15	22
\mathbb{Z}_2^2	[0; 2 ⁵]	[1; 2 ²]	[1; 2 ²]	5	5	2	13	19
\mathbb{Z}_2^2	[0; 2 ⁵]	[1; 2 ²]	[1; 2 ²]	4	4	2	11	16
\mathbb{Z}_2^2	[0; 2 ⁵]	[0; 2 ⁶]	[1; 2 ²]	6	5	1	13	20
\mathbb{Z}_2^2	[0; 2 ⁵]	[0; 2 ⁶]	[1; 2 ²]	5	4	1	11	17
Z22	[0; 2 ⁵]	[0; 2 ⁵]	[2; -]	5	5	2	13	19
Z22	[0; 2 ⁵]	[0; 2 ⁵]	[2; -]	6	6	2	15	22
\mathbb{Z}_3	[0; 3 ⁴]	[0; 3 ⁴]	[2; -]	6	6	2	15	22
\mathbb{Z}_2	[1; 2 ²]	[1; 2 ²]	[2; -]	6	8	4	19	26
\mathbb{Z}_2	[0; 2 ⁶]	[1; 2 ²]	[2; -]	6	7	3	17	24
\mathbb{Z}_2	[0; 2 ⁶]	[0; 2 ⁶]	[2; -]	8	8	2	19	28
{1}	[2; -]	[2; -]	[2; -]	8	12	6	27	36

On the Classification of Threefolds Isogenous to a Product Trento, Nov 30. 2016 Christian Gleißner

G	<i>т</i> ₁	T2	т3	_h 3,0	h ^{2,0}	_h 1,0	h ^{1,1}	h ^{2,1}
\mathbb{Z}_4	$[0; 2^2, 4^2]$	$[0; 2^2, 4^2]$	[2; -]	6	6	2	15	22
ℤ22	[0; 2 ⁵]	[1; 2 ²]	[1; 2 ²]	5	5	2	13	19
Z22	[0; 2 ⁵]	[1; 2 ²]	[1; 2 ²]	4	4	2	11	16
\mathbb{Z}_2^2	[0; 2 ⁵]	[0; 2 ⁶]	[1; 2 ²]	6	5	1	13	20
Z22	[0; 2 ⁵]	[0; 2 ⁶]	[1; 2 ²]	5	4	1	11	17
ℤ22	[0; 2 ⁵]	[0; 2 ⁵]	[2; -]	5	5	2	13	19
Z22	[0; 2 ⁵]	[0; 2 ⁵]	[2; -]	6	6	2	15	22
ℤ3	[0; 3 ⁴]	[0; 3 ⁴]	[2; -]	6	6	2	15	22
ℤ2	[1; 2 ²]	[1; 2 ²]	[2; -]	6	8	4	19	26
ℤ2	[0; 2 ⁶]	[1; 2 ²]	[2; -]	6	7	3	17	24
ℤ2	[0; 2 ⁶]	[0; 2 ⁶]	[2; -]	8	8	2	19	28
{1}	[2; -]	[2; -]	[2; -]	8	12	6	27	36

• in the table we abbreviate the types: for example [0; 2, 2, 4, 4] is written as $[0; 2^2, 4^2]$,

G	<i>т</i> ₁	T2	т3	_h 3,0	h ^{2,0}	_h 1,0	h ^{1,1}	h ^{2,1}
\mathbb{Z}_4	$[0; 2^2, 4^2]$	$[0; 2^2, 4^2]$	[2; -]	6	6	2	15	22
ℤ22	[0; 2 ⁵]	[1; 2 ²]	[1; 2 ²]	5	5	2	13	19
Z22	[0; 2 ⁵]	[1; 2 ²]	[1; 2 ²]	4	4	2	11	16
\mathbb{Z}_2^2	[0; 2 ⁵]	[0; 2 ⁶]	[1; 2 ²]	6	5	1	13	20
Z22	[0; 2 ⁵]	[0; 2 ⁶]	[1; 2 ²]	5	4	1	11	17
ℤ22	[0; 2 ⁵]	[0; 2 ⁵]	[2; -]	5	5	2	13	19
Z22	[0; 2 ⁵]	[0; 2 ⁵]	[2; -]	6	6	2	15	22
ℤ3	[0; 3 ⁴]	[0; 3 ⁴]	[2; -]	6	6	2	15	22
ℤ2	[1; 2 ²]	[1; 2 ²]	[2; -]	6	8	4	19	26
ℤ2	[0; 2 ⁶]	[1; 2 ²]	[2; -]	6	7	3	17	24
ℤ2	[0; 2 ⁶]	[0; 2 ⁶]	[2; -]	8	8	2	19	28
{1}	[2; -]	[2; -]	[2; -]	8	12	6	27	36

- in the table we abbreviate the types: for example [0; 2, 2, 4, 4] is written as [0; 2², 4²],
- the cyclic group $\mathbb{Z}/n\mathbb{Z}$ is denoted by \mathbb{Z}_n ,

G	<i>T</i> ₁	T2	T ₃	h ^{3,0}	h ^{2,0}	h ^{1,0}	h ^{1,1}	h ^{2,1}
\mathbb{Z}_4	$[0; 2^2, 4^2]$	$[0; 2^2, 4^2]$	[2; -]	6	6	2	15	22
\mathbb{Z}_2^2	[0; 2 ⁵]	[1; 2 ²]	[1; 2 ²]	5	5	2	13	19
ℤ2 ²	[0; 2 ⁵]	[1; 2 ²]	[1; 2 ²]	4	4	2	11	16
\mathbb{Z}_2^2	[0; 2 ⁵]	[0; 2 ⁶]	[1; 2 ²]	6	5	1	13	20
ℤ2 ²	[0; 2 ⁵]	[0; 2 ⁶]	[1; 2 ²]	5	4	1	11	17
ℤ2 ²	[0; 2 ⁵]	[0; 2 ⁵]	[2; -]	5	5	2	13	19
ℤ2 ²	[0; 2 ⁵]	[0; 2 ⁵]	[2; -]	6	6	2	15	22
\mathbb{Z}_3	[0; 3 ⁴]	[0; 3 ⁴]	[2; -]	6	6	2	15	22
ℤ2	[1; 2 ²]	[1; 2 ²]	[2; -]	6	8	4	19	26
\mathbb{Z}_2	[0; 2 ⁶]	[1; 2 ²]	[2; -]	6	7	3	17	24
\mathbb{Z}_2	[0; 2 ⁶]	[0; 2 ⁶]	[2; -]	8	8	2	19	28
{1}	[2; -]	[2; -]	[2; -]	8	12	6	27	36

- in the table we abbreviate the types: for example [0; 2, 2, 4, 4] is written as [0; 2², 4²],
- the cyclic group $\mathbb{Z}/n\mathbb{Z}$ is denoted by \mathbb{Z}_n ,
- $SD2^n := \langle a, b \mid a^{2^{(n-1)}} = b^2 = 1$, $bab = a^{2^{(n-1)}-1} \rangle$ is the semidihedral group of order 2^n ,

G	<i>т</i> ₁	T2	Т3	_h 3,0	h ^{2,0}	_h 1,0	h ^{1,1}	h ^{2,1}
\mathbb{Z}_4	$[0; 2^2, 4^2]$	$[0; 2^2, 4^2]$	[2; -]	6	6	2	15	22
\mathbb{Z}_2^2	[0; 2 ⁵]	[1; 2 ²]	[1; 2 ²]	5	5	2	13	19
ℤ2 ²	[0; 2 ⁵]	[1; 2 ²]	[1; 2 ²]	4	4	2	11	16
\mathbb{Z}_2^2	[0; 2 ⁵]	[0; 2 ⁶]	[1; 2 ²]	6	5	1	13	20
ℤ2 ²	[0; 2 ⁵]	[0; 2 ⁶]	[1; 2 ²]	5	4	1	11	17
\mathbb{Z}_2^2	[0; 2 ⁵]	[0; 2 ⁵]	[2; -]	5	5	2	13	19
ℤ2 ²	[0; 2 ⁵]	[0; 2 ⁵]	[2; -]	6	6	2	15	22
\mathbb{Z}_3	[0; 3 ⁴]	[0; 3 ⁴]	[2; -]	6	6	2	15	22
ℤ2	[1; 2 ²]	[1; 2 ²]	[2; -]	6	8	4	19	26
\mathbb{Z}_2	[0; 2 ⁶]	[1; 2 ²]	[2; -]	6	7	3	17	24
\mathbb{Z}_2	[0; 2 ⁶]	[0; 2 ⁶]	[2; -]	8	8	2	19	28
{1}	[2; -]	[2; -]	[2; -]	8	12	6	27	36

- in the table we abbreviate the types: for example [0; 2, 2, 4, 4] is written as [0; 2², 4²],
- the cyclic group Z/nZ is denoted by Z_n,
- SD2ⁿ := ⟨a, b | a^{2⁽ⁿ⁻¹⁾} = b² = 1, bab = a^{2⁽ⁿ⁻¹⁾-1}⟩ is the semidihedral group of order 2ⁿ,

00

• $Dic4n := \langle a, b, c \mid a^n = b^2 = c^2 = abc \rangle$ is the divclic group of order 4n,

G	<i>т</i> ₁	T2	Т3	_h 3,0	h ^{2,0}	_h 1,0	h ^{1,1}	h ^{2,1}
\mathbb{Z}_4	$[0; 2^2, 4^2]$	$[0; 2^2, 4^2]$	[2; -]	6	6	2	15	22
\mathbb{Z}_2^2	[0; 2 ⁵]	[1; 2 ²]	[1; 2 ²]	5	5	2	13	19
ℤ2 ²	[0; 2 ⁵]	[1; 2 ²]	[1; 2 ²]	4	4	2	11	16
\mathbb{Z}_2^2	[0; 2 ⁵]	[0; 2 ⁶]	[1; 2 ²]	6	5	1	13	20
ℤ2 ²	[0; 2 ⁵]	[0; 2 ⁶]	[1; 2 ²]	5	4	1	11	17
\mathbb{Z}_2^2	[0; 2 ⁵]	[0; 2 ⁵]	[2; -]	5	5	2	13	19
ℤ2 ²	[0; 2 ⁵]	[0; 2 ⁵]	[2; -]	6	6	2	15	22
\mathbb{Z}_3	[0; 3 ⁴]	[0; 3 ⁴]	[2; -]	6	6	2	15	22
ℤ2	[1; 2 ²]	[1; 2 ²]	[2; -]	6	8	4	19	26
\mathbb{Z}_2	[0; 2 ⁶]	[1; 2 ²]	[2; -]	6	7	3	17	24
\mathbb{Z}_2	[0; 2 ⁶]	[0; 2 ⁶]	[2; -]	8	8	2	19	28
{1}	[2; -]	[2; -]	[2; -]	8	12	6	27	36

- in the table we abbreviate the types: for example [0; 2, 2, 4, 4] is written as [0; 2², 4²],
- the cyclic group Z/nZ is denoted by Zn,
- SD2ⁿ := ⟨a, b | a^{2⁽ⁿ⁻¹⁾} = b² = 1, bab = a^{2⁽ⁿ⁻¹⁾-1}⟩ is the semidihedral group of order 2ⁿ,
- $Dic4n := \langle a, b, c \mid a^n = b^2 = c^2 = abc \rangle$ is the divclic group of order 4n,
- $\mathbb{Z}_3 \rtimes_{\varphi} \mathcal{D}_4$ is the (unique) semidirect product where $Ker(\varphi)$ is the Klein four-group.

Problems:

• the computation is very time (and memory) consuming

On the Classification of Threefolds Isogenous to a Product Trento, Nov 30. 2016 Christian Gleißner

Image: A matrix

프 에 제 프 어

3

Problems: ● the computation is very time (and memory) consuming ⇒ we need 11*h* 6*min* on a 3GHz Intel Xenon X5450 workstation

On the Classification of Threefolds Isogenous to a Product Trento, Nov 30. 2016 Christian Gleißner

< < >> < <</>

3

SQC

Problems:

- the computation is very time (and memory) consuming
 - \Rightarrow we need 11*h* 6*min* on a 3GHz Intel Xenon X5450 workstation
- for input values $\chi < -1$ we can not finish the computation in a "reasonable time"

Problems:

- the computation is very time (and memory) consuming
 - \Rightarrow we need 11*h* 6*min* on a 3GHz Intel Xenon X5450 workstation
- for input values $\chi < -1$ we can not finish the computation in a "reasonable time"

What happens in the mixed case $G^0 \neq G$?

Problems: ● the computation is very time (and memory) consuming ⇒ we need 11*h* 6*min* on a 3GHz Intel Xenon X5450 workstation

• for input values $\chi < -1$ we can not finish the computation in a "reasonable time"

What happens in the mixed case $G^0 \neq G$?

 $G/G^0 \leq \mathfrak{S}_3$

Problems: the computation is very time (and memory) consuming ⇒ we need 11*h* 6*min* on a 3GHz Intel Xenon X5450 workstation for input values χ < −1 we can not finish the computation in a "reasonable time"

What happens in the mixed case $G^0 \neq G$?

 $G/G^0 \leq \mathfrak{S}_3 \quad \Rightarrow \quad \text{three subcases:}$

Problems: the computation is very time (and memory) consuming ⇒ we need 11*h* 6*min* on a 3GHz Intel Xenon X5450 workstation for input values χ < −1 we can not finish the computation in a "reasonable time"

What happens in the mixed case $G^0 \neq G$?

 $G/G^0 \leq \mathfrak{S}_3 \quad \Rightarrow \quad \text{three subcases:} \quad G/G^0 = \mathbb{Z}/2\mathbb{Z}, \quad \mathbb{Z}/3\mathbb{Z} \quad \text{or} \quad \mathfrak{S}_3.$

Problems: • the computation is very time (and memory) consuming ⇒ we need 11*h* 6*min* on a 3GHz Intel Xenon X5450 workstation • for input values χ < −1 we can not finish the computation in a "reasonable time"

What happens in the mixed case $G^0 \neq G$?

 $G/G^0 \leq \mathfrak{S}_3 \quad \Rightarrow \quad \text{three subcases:} \quad G/G^0 = \mathbb{Z}/2\mathbb{Z}, \quad \mathbb{Z}/3\mathbb{Z} \quad \text{or} \quad \mathfrak{S}_3.$

• we can give a similar algorithm to classify these varieties for a fixed value of $\chi(\mathcal{O}_X)$ in the sense above

Problems:

- the computation is very time (and memory) consuming
 - \Rightarrow we need 11*h* 6*min* on a 3GHz Intel Xenon X5450 workstation
- for input values $\chi < -1$ we can not finish the computation in a "reasonable time"

What happens in the mixed case $G^0 \neq G$?

 $G/G^0 \leq \mathfrak{S}_3 \quad \Rightarrow \quad \text{three subcases:} \quad G/G^0 = \mathbb{Z}/2\mathbb{Z}, \quad \mathbb{Z}/3\mathbb{Z} \quad \text{or} \quad \mathfrak{S}_3.$

• we can give a similar algorithm to classify these varieties for a fixed value of $\chi(\mathcal{O}_X)$ in the sense above

• there are 108 examples in the mixed case

Product quotient threefolds

• The notion of a product quotient variety *X* generalizes the definition of a variety isogenous to a product by allowing non-free group actions.

э
- The notion of a product quotient variety *X* generalizes the definition of a variety isogenous to a product by allowing non-free group actions.
- We study these varieties in dimension three under the following assumptions:

- The notion of a product quotient variety *X* generalizes the definition of a variety isogenous to a product by allowing non-free group actions.
- We study these varieties in dimension three under the following assumptions:

* E > * E >

- The notion of a product quotient variety *X* generalizes the definition of a variety isogenous to a product by allowing non-free group actions.
- We study these varieties in dimension three under the following assumptions:

Our assumptions:

• X has canonical singularities,

프 + + 프 + -

- The notion of a product quotient variety *X* generalizes the definition of a variety isogenous to a product by allowing non-free group actions.
- We study these varieties in dimension three under the following assumptions:

Our assumptions:

- X has canonical singularities,
- G acts diagonally on the product and faithfully on each factor.

ヨトィヨト

- The notion of a product quotient variety *X* generalizes the definition of a variety isogenous to a product by allowing non-free group actions.
- We study these varieties in dimension three under the following assumptions:

Our assumptions:

- X has canonical singularities,
- G acts diagonally on the product and faithfully on each factor.

X canonical

프 > - (프 > - -

- The notion of a product quotient variety X generalizes the definition of a variety isogenous to a product by allowing non-free group actions.
- We study these varieties in dimension three under the following assumptions:

X canonical \Rightarrow there is a proper birational morphism $\rho: \widehat{X} \to X$, such that \widehat{X} is terminal and $\rho^*(K_X) \sim_{\mathbb{Q}-\text{lin.}} K_{\widehat{X}}$

・ロッ ・雪 ・ ・ ヨ ・ ・

- The notion of a product quotient variety *X* generalizes the definition of a variety isogenous to a product by allowing non-free group actions.
- We study these varieties in dimension three under the following assumptions:

X canonical \Rightarrow there is a proper birational morphism $\rho: \widehat{X} \to X$, such that \widehat{X} is terminal and $\rho^*(K_X) \sim_{\mathbb{Q}-\text{lin.}} K_{\widehat{X}}$

<u>Aim</u>: study the geography of \hat{X} i.e. the relations between the Chern invariants

 $\chi(\mathcal{O}_{\widehat{X}}), \quad e(\widehat{X}) \quad \text{and} \quad K^3_{\widehat{X}}.$

On the Classification of Threefolds Isogenous to a Product

• there are finitely many points (x, y, z) on $C_1 \times C_2 \times C_3$ with non-trivial stabilizer.

<ロ > < 回 > < 回 > < 回 > .

990

- there are finitely many points (x, y, z) on $C_1 \times C_2 \times C_3$ with non-trivial stabilizer.
- the stabilizer

$$Stab(x, y, z) = Stab(x) \cap Stab(y) \cap Stab(z)$$

is cyclic

<ロ > < 回 > < 回 > < 回 > .

3

- there are finitely many points (x, y, z) on $C_1 \times C_2 \times C_3$ with non-trivial stabilizer.
- the stabilizer

$$Stab(x, y, z) = Stab(x) \cap Stab(y) \cap Stab(z)$$

is cyclic

 \Rightarrow finitely many isolated cyclic quotient singularities:

・ロト ・ 同ト ・ ヨト ・ ヨト

5900

- there are finitely many points (x, y, z) on $C_1 \times C_2 \times C_3$ with non-trivial stabilizer.
- the stabilizer

$$Stab(x, y, z) = Stab(x) \cap Stab(y) \cap Stab(z)$$

is cyclic

 \Rightarrow finitely many isolated cyclic quotient singularities:

locally X is a quotient of \mathbb{C}^3 by a diagonal linear automorphism

$$\begin{pmatrix} \exp\left(\frac{2\pi i}{n}\right) & 0 & 0\\ 0 & \exp\left(\frac{2\pi i a}{n}\right) & 0\\ 0 & 0 & \exp\left(\frac{2\pi i b}{n}\right) \end{pmatrix}$$

프 () (프)

- there are finitely many points (x, y, z) on $C_1 \times C_2 \times C_3$ with non-trivial stabilizer.
- the stabilizer

$$Stab(x, y, z) = Stab(x) \cap Stab(y) \cap Stab(z)$$

is cyclic

 \Rightarrow finitely many isolated cyclic quotient singularities:

locally X is a quotient of \mathbb{C}^3 by a diagonal linear automorphism

$$\begin{pmatrix} \exp\left(\frac{2\pi i}{n}\right) & 0 & 0\\ 0 & \exp\left(\frac{2\pi i a}{n}\right) & 0\\ 0 & 0 & \exp\left(\frac{2\pi i b}{n}\right) \end{pmatrix}$$

 Isolated canonical cyclic quotient singularities in dimension three are classified by Morrison [Mor85].

・ロッ ・雪 ・ ・ ヨ ・ ・

- there are finitely many points (x, y, z) on $C_1 \times C_2 \times C_3$ with non-trivial stabilizer.
- the stabilizer

$$Stab(x, y, z) = Stab(x) \cap Stab(y) \cap Stab(z)$$

is cyclic

 \Rightarrow finitely many isolated cyclic quotient singularities:

locally X is a quotient of \mathbb{C}^3 by a diagonal linear automorphism

$$\begin{pmatrix} \exp\left(\frac{2\pi i}{n}\right) & 0 & 0\\ 0 & \exp\left(\frac{2\pi i a}{n}\right) & 0\\ 0 & 0 & \exp\left(\frac{2\pi i b}{n}\right) \end{pmatrix}$$

• Isolated canonical cyclic quotient singularities in dimension three are classified by Morrison [Mor85].

・ロト ・ 同 ト ・ ヨ ト ・ ヨ ト

⇒ we can explicitly compute \widehat{X} and derive relations between the Chern invariants $\chi(\mathcal{O}_{\widehat{X}})$, $e(\widehat{X})$ and $K^3_{\widehat{X}}$.

On the Classification of Threefolds Isogenous to a Product Trento, Nov 30. 2016 Christian Gleißner

◆□ → ◆□ → ◆豆 → ◆豆 → ○

Ð.

The following inequalities hold:

I)
$$48\chi(\mathcal{O}_{\widehat{X}}) + K_{\widehat{X}}^3 \ge 0$$

▲圖 ▶ ▲ 臣 ▶ ▲ 臣 ▶

э

The following inequalities hold:

I)
$$48\chi(\mathcal{O}_{\widehat{X}}) + K_{\widehat{Y}}^3 \ge 0$$
 and II) $6e(\widehat{X}) + K_{\widehat{Y}}^3 \ge 0$.

→ E + < E +</p>

< 17 ▶

5900

The following inequalities hold:

I)
$$48\chi(\mathcal{O}_{\widehat{X}}) + K_{\widehat{X}}^3 \ge 0$$
 and II) $6e(\widehat{X}) + K_{\widehat{X}}^3 \ge 0$.

I) is an equality if and only if \hat{X} is smooth,

The following inequalities hold:

I)
$$48\chi(\mathcal{O}_{\widehat{X}}) + K_{\widehat{X}}^3 \ge 0$$
 and II) $6e(\widehat{X}) + K_{\widehat{X}}^3 \ge 0$.

I) is an equality if and only if \widehat{X} is smooth,

II) is an equality if and only if X is smooth i.e. a threefold isogenous to a product.

The following inequalities hold:

I)
$$48\chi(\mathcal{O}_{\widehat{X}}) + K_{\widehat{X}}^3 \ge 0$$
 and II) $6e(\widehat{X}) + K_{\widehat{X}}^3 \ge 0$.

I) is an equality if and only if \widehat{X} is smooth,

II) is an equality if and only if X is smooth i.e. a threefold isogenous to a product.

• moreover
$$K_{\widehat{X}}^3 \geq 4$$

The following inequalities hold:

I)
$$48\chi(\mathcal{O}_{\widehat{X}}) + K_{\widehat{X}}^3 \ge 0$$
 and II) $6e(\widehat{X}) + K_{\widehat{X}}^3 \ge 0$.

I) is an equality if and only if \widehat{X} is smooth,

II) is an equality if and only if X is smooth i.e. a threefold isogenous to a product.

- moreover $K_{\widehat{\chi}}^3 \geq 4$
- in the case where X̂ is smooth, we have a way to determine the Hodge numbers of X̂ and an algorithm to classify these varieties for a fixed value of χ(O_{χ̂}) in the sense above.

- I. Bauer, F. Catanese, F. Grunewald, *The classification of surfaces with* $p_g = q = 0$ *isogenus to a product*. Pure Appl. Math. Q., **4**, no.2, part1, (2008), 547–586.
- A. Beauville. L' inégalité $p_g \ge 2q 4$ pour les surfaces de type général. Bull. Soc. Math. France, **110**, (1982), 343–346.
- F. Catanese, *Fibred surfaces, varieties isogenus to a product and related moduli spaces.* Amer. J. Math., **122**, (2000), 1–44.
- F. Catanese, C. Ciliberto, and M. Mendes Lopes. *On the classification of irregular surfaces of general type with nonbirational bicanonical map.* Trans. Amer. Math. Soc., **350**, (1998),275–308.
- G. Carnovale, F. Polizzi, *The classification of surfaces with* $p_g = q = 1$ *isogenus to a product of curves*. Adv. Geom., **9**, no.2, (2009), 233–256.
- T. Dedieu and F. Perroni, *The fundamental group of a quotient of a product of curves*. J. Group Theory, **15**, (2012), 439–453.
- D. Frapporti, C. Gleißner, *On threefolds isogenous to a product of curves.* arXiv: 1412.6365v2, (2014).
- C. D. Hacon and R. Pardini, *Surfaces with* p_g = q = 3. Trans. Amer. Math. Soc., 354, (2002), 2631–2638.
- D. R. Morrison, *Canonical quotient singularities in dimension three*. Proceedings of the American Mathematical Society, Vol. **93**, No. 3, (1985), 393–396.

M. Penegini, *The Classification of Isotrivially Fibred Surfaces with* $p_g = q = 2$, *and topics on Beauville Surfaces.* PhD thesis, Universität Bayreuth, (2010)

G. P. Pirola, *Surfaces with* $p_g = q = 3$. Manuscripta Math., **108**, (2002), 163–170.

On the Classification of Threefolds Isogenous to a Product Trento, Nov 30. 2016 Christian Gleißner

ヘロト 人間 とくほとくほと

5900

Ξ.