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Definition of the Objects

Definition

A complex projective variety X is said to be isogenous to a product if X is a quotient

X = (C1 × ...× Cn)/G,

where the Ci ’s are smooth curves of genus at least two, and G is a finite group acting
freely on C1 × . . .× Cn.

the quotient map π : C1 × ...× Cn → (C1 × . . .× Cn)/G = X is unramified,

⇒ X is smooth, minimal, of general type i.e. κ(X) = n and KX is ample
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Properties and Motivation

simple formulas for the invariants in terms of the genera g(Ci ) = h0(Ci ,Ω
1
Ci

) and
the group order:

Formulas for the invariants:

χ(OX ) =
(−1)n

|G|

n∏
i=1

(
g(Ci )− 1

)
, K n

X = (−1)nn! 2nχ(OX )

e(X) = 2nχ(OX ).

Motivation:

Why shall we consider varieties isogenous to a product?

find new examples of varieties of general type,

interesting relations with group theory and computer algebra.
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Beauvilles Example

take the Fermat curve C := {x5 + y5 + z5 = 0} ⊂ P2
C of degree five

we define two group actions ψi : Z/5× Z/5→ Aut(C) via

ψ1(a, b)([x : y : z]) := [ξax : ξby : z],

ψ2(a, b)([x : y : z]) := [ξa+3bx : ξ2a+4by : z], where ξ := exp
( 2π
√
−1

5

)
.

We define an action of Z/5× Z/5 on the product C × C by ψ1 × ψ2.

The action on the product is free ⇒ S :=
(
C × C

)
/G is a surface isogenous to a

product.

g(C) =
1
2

(5− 1)(5− 2) = 6 ⇒ χ(OS) =
(g(C)− 1)2

25
= 1.
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The Surface Case
For a surface S of general type it holds χ(OS) ≥ 1.

Boundary case:

χ(OS) = 1 ⇔ pg = q, where pg := h0(S,Ω2
S) and q := h0(S,Ω1

S).

⇒ we have a complete classification of all surfaces isogenous to a product with
χ(OS) = 1.

By the classical inequalities from surface geography

2pg ≤ K 2
S if q ≥ 1 (Debarre) and K 2

S ≤ 9χ(OS) = 9 (BMY).

⇒ we conclude: 0 ≤ pg = q ≤ 4.

The classifications are due to

Bauer, Catanese, Grunewald [BCG08] for pg = q = 0,
Carnovale, Polizzi [CP09] for pg = q = 1 and
Penegini [Pe10] for pg = q = 2.
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Carnovale, Polizzi [CP09] for pg = q = 1 and
Penegini [Pe10] for pg = q = 2.
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The Surface Case

All minimal surfaces of general type with pg = q = 3 and 4 are classified!

In the case pg = q = 4 the surface S is a product of two genus two curves (see
[Bea82]).

In the case pg = q = 3 it is either the symmetric square of a curve of genus three
or

S = (C × D)/〈τ〉, where ord(τ) = 2, g(C) = 3, g(D) = 2.

(see [CCML98, Pir02, HP02]).
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Our Aim

We want to achieve analogous classification results in higher dimension.

(As a first step in dimension three.)
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Structure of the Automorphism Group

Theorem (Catanese)

Let D1, . . . ,Dk be pairwise non-isomorphic curves with g(Di ) ≥ 2, then

Aut
(
Dn1

1 × . . .× Dnk
k

)
=
(
Aut(D1)n1 oSn1

)
× . . .×

(
Aut(Dk )nk oSnk

)
for all positive integers ni .

Let X = (C1 × ...× Cn)/G be a variety isogenous to a product.

Then G/G0 ≤ Sn, where G0 := G ∩
[
Aut(C1)× . . .× Aut(Cn)

]
.

Definition

A variety X isogenous to a product is of unmixed type iff G0 = G, otherwise we say
that X is of mixed type.
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Structure of the Automorphism Group

in Beauvilles example we had an explicit description in terms of equations

in general it is hard to work with equations ⇒ abstract description

idea: attach to a variety isogenous to a product

X '
(
C1 × . . .× Cn

)
/G,

certain kind of combinatorial data: the group G, the genera g(Ci ) etc.
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The threefold case

From now on we focus on the simplest case in dimension three:

Our assumptions:

the action on C1 × C2 × C3 is unmixed i.e

g(x , y , z) = (g · x , g · y , g · z) ∀ g ∈ G

G embeds in Aut(Ci ) for all 1 ≤ i ≤ 3

⇒ to go on, we need to understand faithful group actions on curves in greater detail
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Riemann’s Existence Theorem
A faithful group action ψ : G→ Aut(C) is given and completely determined by:

a compact Riemann surface C′,

a finite set B ⊂ C′ (the branch points) and

a surjective homomorphism η : π1
(
C′ \ B, q0

)
→ G (the monodromy map).

The fundamental group of C′ \ B has a presentation of the form

π1
(
C′ \ B, q0

)
=
〈
γ1, . . . , γr , α1, β1, . . . , αg′ , βg′

∣∣ γ1 · · · γr ·
g′∏

i=1

[αi , βi ]
〉
.

q0

γ1

γ2

α1
β1
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Riemann’s Existence Theorem

The images of the generators of π1
(
C′ \ B, q0

)
under the monodromy map

hi := η(γi ), ai := η(αi ) and bi := η(βi )

generate G and fulfill the relation

h1 · · · hr ·
g′∏

i=1

[ai , bi ] = 1G.

Definition

Let m1, . . . ,mr ≥ 2 and g′ ≥ 0 be integers and G be a finite group. A generating
vector of type [g′; m1, . . . ,mr ] is a tuple of elements

(h1, . . . , hr , a1, b1, . . . , ag′ , bg′ ),

such that

G = 〈h1, . . . , hr , a1, b1, . . . , ag′ , bg′ 〉,

h1 · · · hr ·
g′∏

i=1

[ai , bi ] = 1G,

ord(hi ) = mi for all 1 ≤ i ≤ r .
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Group theoretical description

given a threefold isogenous to a product

X = (C1 × C2 × C3)/G,

we choose three generating vectors V1, V2 and V3 corresponding to the induced
group actions

ψi : G→ Aut(Ci )

(Riemann’s Existence Theorem)

the 4-tuple (G,V1,V2,V3) is called an algebraic datum of X

we define the stabilizer set of a generating vector
V = (h1, . . . , hr , a1, b1, . . . , ag′ , bg′ ) as

ΣV :=
⋃

g∈G

⋃
i∈Z

r⋃
j=1

{
ghi

j g
−1
}

the freeness of the G-action on the product C1 × C2 × C3 is reflected by the
condition

ΣV1 ∩ ΣV2 ∩ ΣV3 = {1G}.
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Group theoretical description

Riemann’s Existence Theorem also provides a way back:

Let (G,V1,V2,V3) be a 4-tuple, where Vi are generating vectors for the group G
such that

ΣV1 ∩ ΣV2 ∩ ΣV3 = {1G},

then (G,V1,V2,V3) is an algebraic datum of a threefold X isogenous to a product.

certain geometric properties of X are encoded in (G,V1,V2,V3)

In the following, we show that:

the Hodge numbers hp,q(X) := dim Hp,q(X) = dim Hq(X ,Ωp
X ) and

the fundamental group π1(X) can be determined from an algebraic datum
(G,V1,V2,V3) of X .
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Hodge Theory and Representations

We start with the Hodge numbers of X

the G action on C1 × C2 × C3 induces representations

φp,q : G→ GL
(
Hp,q(C1 × C2 × C3)

)
, g 7→ [ω 7→ (g−1)∗ω].

with characters χp,q

let χtriv be the trivial character of G, then

⇒ hp,q(X) = dim Hp,q(C1 × C2 × C3)G = 〈χp,q , χtriv 〉

the G action on Ci also induces representations:

ϕi : G→ GL
(
H1,0(Ci )

)
Idea: determine the characters χp,q in terms of the characters χϕi
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Hodge Theory and Representations

The relation between the characters χp,q and χϕi is provided by Künneth’s formula:

Hp,q(C1 × C2 × C3) =
⊕

s1+s2+s3=p
t1+t2+t3=q

Hs1,t1 (C1)⊗ Hs2,t2 (C2)⊗ Hs3,t3 (C3)

Proposition

χ1,0 = χϕ1 + χϕ2 + χϕ3 ,

χ1,1 = 2Re(χϕ1χϕ2 + χϕ1χϕ3 + χϕ2χϕ3 ) + 3χtriv ,

χ2,0 = χϕ1χϕ2 + χϕ1χϕ3 + χϕ2χϕ3 ,

χ2,1 = χϕ1χϕ2χϕ3 + χϕ1χϕ2χϕ3 + χϕ1χϕ2χϕ3 + 2(χϕ1 + χϕ2 + χϕ3 ),

χ3,0 = χϕ1χϕ2χϕ3 ,

χq,p = χp,q .

⇒ it remains determine the character of a representation ϕ : G→ GL
(
H1,0(C)

)
induced by an action ψ : G→ Aut(C) in terms of a generating vector

V = (h1, . . . , hr , a1, b1, . . . , ag′ , bg′ ).
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Formula of Chevalley-Weil

There is a decomposition of the character χϕ in irreducible characters

χϕ =
∑

χ∈Irr(G)

〈χ, χϕ〉 · χ

⇒ we need to determine the multiplicities 〈χ, χϕ〉

pick hi from V and an irreducible representation % with character χ.

ord(hi ) = mi =⇒ every eigenvalue of %(hi ) is of the form

ξαmi
= exp

(
2π
√
−1α

mi

)
for some 1 ≤ α ≤ mi

define Ni,α := # eigenvalues of %(hi ) equal to ξαmi
.

Formula of Chevalley-Weil:

〈χ, χϕ〉 = χ(1G)(g′ − 1) +
r∑

i=1

mi−1∑
α=1

α · Ni,α

mi
+ 〈χ, χtriv 〉.
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Formula of Chevalley-Weil

Computational problem:

it is very hard to determine the irreducible representations of a given finite group G

to calculate the eigenvalues of %(hi ), enough information is encoded in the
character χ.

⇒ the character table of any finite group G can be determined using the computer
algebra system MAGMA.

The strategy is the following:

χ(hk
i ) is the k -th powersum of the eigenvalues of %(hi )

we use Newton’s identities to determine the characteristic polynomial of %(hi ) from
these powersums

the characteristic polynomial is easy to factorize, because its roots are powers of
ξmi
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The fundamental Group

To compute the fundamental group of a threefold X isogenous to a product we follow
[DP10].

Definition

Let g′ ≥ 0 and m1, . . . ,mr ≥ 2 be integers. The orbifold surface group of type
T = [g′; m1, . . . ,mr ] is defined as:

T(T ) :=
〈
c1, . . . , cr , d1, e1, . . . , dg′ , eg′

∣∣ cm1
1 , . . . , cmr

r , c1 · . . . · cr ·
g′∏

i=1

[di , ei ]
〉
.

the generating vectors Vi in an algebraic datum (G,V1,V2,V3) of X determine
surjective group homomorphisms pi : T(Ti )→ G,

π1(X) '
{

(x , y , z) ∈ T(T1)× T(T2)× T(T3) | p1(x) = p2(y) = p3(z)
}
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On the Classification

Aim:

give an algorithm to classify threefolds X isogenous to a product with a fixed value of
χ(OX )

Input: a negative integer χ

Output: a "finite list" of all threefolds X isogenous to a product with χ(OX ) = χ.
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Combinatorics, Bounds and the Algorithm

An algebraic datum (G,V1,V2,V3) of a threefold X isogenous to a product induces a
numerical datum

(n,T1,T2,T3).

Here n = |G| and Ti = [g′i ; mi,1, . . . ,mi,ri ] are the types of the generating vectors Vi .

derive combinatorial constraints on the numerical data: inequalities, divisibility
conditions etc. in terms of χ(OX ).

the constraints should imply that the numerical data of all threefolds X isogenous
to a product with χ(OX ) = χ form a finite list.

1st Step in the classification: compute the finite list of abstract numerical data i.e.
the set of abstract 4-tuples of the form (n,T1,T2,T3), which fulfill the constraints.

⇒ list of candidates for the numerical data
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Combinatorics, Bounds and the Algorithm

Proposition

Let X =
(
C1 × C2 × C3

)
/G be a threefold isogenous to a product, then

n = |G| ≤ 168
√
−21χ(OX ).

proof:

according to Hurwitz it holds |G| ≤ |Aut(Ci )| ≤ 84
(
g(Ci )− 1

)
we conclude

−χ(OX ) =
1
|G|

3∏
i=1

(
g(Ci )− 1

)
≥
|G|2

843
.
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Combinatorics, Bounds and the Algorithm

Additional constraints:

the entries of the types Ti = [g′i ; mi,1, . . . ,mi,ri ] fulfill:

g′i ≤ 1− χ(OX ),

mi,j divides the group order n,

Hurwitz’ formula holds:

gi − 1 =
|G|
2

(
2g′i − 2 +

ri−i∑
j=1

(
1−

1
mi,j

))
, g′i = g(Ci/G).

(gi − 1)
∣∣ n · χ(OX ).

⇒ only finitely many numerical data (n,T1,T2,T3)
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The Algorithm

Input: a negative integer χ (the holomorphic Euler characteristic)

1st Step: here we determine the set of (abstract) numerical data i.e. the finite set of
tuples of the form

(n,T1,T2,T3), where Ti = [g′i ; mi,1, . . . ,mi,ri ]

that satisfy the constraints from above.
2nd Step: here we search for algebraic data. More precisely:

for each abstract numerical datum (n,T1,T2,T3) found in the 1st step we run
through the groups G of order n and determine all 4-tuples of the form

(G,V1,V2,V3),

where Vi is a generating vector of type Ti .

for each 4-tuple (G,V1,V2,V3) we check the freeness condition

ΣV1 ∩ ΣV2 ∩ ΣV3 = {1G}.

if it holds there exists a threefold X isogenous to a product with χ(OX ) = χ and
algebraic datum (G,V1,V2,V3).

for each threefold X that we found we determine the Hodge numbers and print the
occurrence

[G,T1,T2,T3, hp,q ].
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The Main Computation

We run a MAGMA implementation of the algorithm for the input value χ = −1

n = |G| ≤ b168
√
−21χc = 769

there are 11.715.855 isomorphism classes of groups G with |G| ≤ 769

all of them are contained in MAGMA’s database of small groups

however, for only 38 group orders n there exists types Ti fulfilling the constraints

⇒ the number of groups we need to consider (in Step 2) drops to 4393

Theorem (Frapporti,-)

Let X be a threefold isogenous to a product of unmixed type with χ(OX ) = −1. Then
X is minimal of general type and there are 54 possibilities for

[G,T1,T2,T3, hp,q ].
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G T1 T2 T3 h3,0 h2,0 h1,0 h1,1 h2,1

A5 [0; 23, 3] [0; 2, 52 ] [0; 32, 5] 2 0 0 3 6

GL(2, F3) [0; 2, 3, 8] [0; 2, 3, 8] [2;−] 5 5 2 11 17

GL(2, F3) [0; 2, 3, 8] [0; 2, 3, 8] [2;−] 4 4 2 13 18

S4 × Z2 [0; 25 ] [0; 2, 4, 6] [0; 2, 4, 6] 3 1 0 5 9

SL(2, F3) [0; 32, 4] [0; 32, 4] [2;−] 5 5 2 13 19

Z3 oϕ D4 [0; 2, 4, 6] [0; 2, 4, 6] [2;−] 5 5 2 11 17

Z3 oϕ D4 [0; 2, 4, 6] [0; 2, 4, 6] [2;−] 4 4 2 13 18

S4 [0; 23, 4] [0; 22, 32 ] [0; 3, 42 ] 3 1 0 5 9

SD16 [0; 2, 4, 8] [0; 2, 4, 8] [2;−] 5 5 2 11 17

SD16 [0; 2, 4, 8] [0; 2, 4, 8] [2;−] 4 4 2 13 18

D4 × Z2 [0; 25 ] [0; 23, 4] [0; 23, 4] 3 1 0 5 9

D4 × Z2 [0; 25 ] [0; 23, 4] [0; 23, 4] 4 2 0 7 12

Dic12 [0; 3, 42 ] [0; 3, 42 ] [2;−] 5 5 2 13 19

Z3 × Z2
2 [0; 2, 62 ] [0; 2, 62 ] [2;−] 6 6 2 11 18

Z3 × Z2
2 [0; 2, 62 ] [0; 2, 62 ] [2;−] 5 5 2 11 17

Z3 × Z2
2 [0; 2, 62 ] [0; 2, 62 ] [2;−] 4 4 2 13 18

Z3 × Z2
2 [0; 2, 62 ] [0; 2, 62 ] [2;−] 4 4 2 15 20

D6 [0; 23, 3] [0; 23, 6] [1; 22 ] 4 3 1 9 14

D6 [0; 23, 3] [0; 23, 3] [2;−] 5 5 2 13 19

D6 [0; 25 ] [0; 23, 3] [1; 3] 4 3 1 9 14

Z10 [0; 2, 5, 10] [0; 2, 5, 10] [2;−] 5 5 2 13 19

Z10 [0; 2, 5, 10] [0; 2, 5, 10] [2;−] 6 6 2 11 18

Z10 [0; 2, 5, 10] [0; 2, 5, 10] [2;−] 4 4 2 15 20

On the Classification of Threefolds Isogenous to a Product Trento, Nov 30. 2016 Christian Gleißner



G T1 T2 T3 h3,0 h2,0 h1,0 h1,1 h2,1

Q [0; 43 ] [0; 43 ] [2;−] 5 5 2 13 19

Z8 [0; 2, 82 ] [0; 2, 82 ] [2;−] 6 6 2 11 18

Z8 [0; 2, 82 ] [0; 2, 82 ] [2;−] 4 4 2 15 20

D4 [0; 23, 4] [1; 2] [1; 22 ] 4 4 2 11 16

D4 [0; 23, 4] [0; 22, 42 ] [1; 22 ] 4 3 1 9 14

D4 [0; 23, 4] [0; 23, 4] [2;−] 5 5 2 13 19

D4 [0; 26 ] [0; 23, 4] [1; 2] 4 3 1 9 14

Z3
2 [0; 25 ] [0; 25 ] [0; 25 ] 5 3 0 9 15

Z3
2 [0; 25 ] [0; 25 ] [0; 25 ] 4 2 0 7 12

Z6 [0; 3, 62 ] [0; 3, 62 ] [2;−] 6 6 2 11 18

Z6 [0; 3, 62 ] [0; 3, 62 ] [2;−] 4 4 2 15 20

S3 [0; 22, 32 ] [1; 22 ] [1; 3] 4 4 2 11 16

Z6 [0; 22, 32 ] [0; 3, 62 ] [2;−] 5 5 2 13 19

Z6 [0; 22, 32 ] [0; 22, 32 ] [2;−] 6 6 2 15 22

S3 [0; 22, 32 ] [0; 22, 32 ] [2;−] 5 5 2 13 19

S3 [0; 26 ] [0; 22, 32 ] [1; 3] 4 3 1 9 14

Z5 [0; 53 ] [0; 53 ] [2;−] 6 6 2 11 18

Z5 [0; 53 ] [0; 53 ] [2;−] 5 5 2 13 19

Z5 [0; 53 ] [0; 53 ] [2;−] 4 4 2 15 20
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G T1 T2 T3 h3,0 h2,0 h1,0 h1,1 h2,1

Z4 [0; 22, 42 ] [0; 22, 42 ] [2;−] 6 6 2 15 22

Z2
2 [0; 25 ] [1; 22 ] [1; 22 ] 5 5 2 13 19

Z2
2 [0; 25 ] [1; 22 ] [1; 22 ] 4 4 2 11 16

Z2
2 [0; 25 ] [0; 26 ] [1; 22 ] 6 5 1 13 20

Z2
2 [0; 25 ] [0; 26 ] [1; 22 ] 5 4 1 11 17

Z2
2 [0; 25 ] [0; 25 ] [2;−] 5 5 2 13 19

Z2
2 [0; 25 ] [0; 25 ] [2;−] 6 6 2 15 22

Z3 [0; 34 ] [0; 34 ] [2;−] 6 6 2 15 22

Z2 [1; 22 ] [1; 22 ] [2;−] 6 8 4 19 26

Z2 [0; 26 ] [1; 22 ] [2;−] 6 7 3 17 24

Z2 [0; 26 ] [0; 26 ] [2;−] 8 8 2 19 28

{1} [2;−] [2;−] [2;−] 8 12 6 27 36

Notation:

in the table we abbreviate the types: for example [0; 2, 2, 4, 4] is written as
[0; 22, 42],

the cyclic group Z/nZ is denoted by Zn,

SD2n := 〈a, b | a2(n−1)
= b2 = 1, bab = a2(n−1)−1〉 is the semidihedral group of

order 2n,

Dic4n := 〈a, b, c | an = b2 = c2 = abc〉 is the diyclic group of order 4n,

Z3 oϕ D4 is the (unique) semidirect product where Ker(ϕ) is the Klein four-group.
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Dic4n := 〈a, b, c | an = b2 = c2 = abc〉 is the diyclic group of order 4n,

Z3 oϕ D4 is the (unique) semidirect product where Ker(ϕ) is the Klein four-group.
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Problems:

the computation is very time (and memory) consuming

⇒ we need 11h 6min on a 3GHz Intel Xenon X5450 workstation

for input values χ < −1 we can not finish the computation in a "reasonable time"

What happens in the mixed case G0 6= G?

G/G0 ≤ S3 ⇒ three subcases: G/G0 = Z/2Z, Z/3Z or S3.

we can give a similar algorithm to classify these varieties for a fixed value of
χ(OX ) in the sense above

there are 108 examples in the mixed case

On the Classification of Threefolds Isogenous to a Product Trento, Nov 30. 2016 Christian Gleißner



Problems:

the computation is very time (and memory) consuming

⇒ we need 11h 6min on a 3GHz Intel Xenon X5450 workstation

for input values χ < −1 we can not finish the computation in a "reasonable time"

What happens in the mixed case G0 6= G?

G/G0 ≤ S3 ⇒ three subcases: G/G0 = Z/2Z, Z/3Z or S3.

we can give a similar algorithm to classify these varieties for a fixed value of
χ(OX ) in the sense above

there are 108 examples in the mixed case

On the Classification of Threefolds Isogenous to a Product Trento, Nov 30. 2016 Christian Gleißner



Problems:

the computation is very time (and memory) consuming

⇒ we need 11h 6min on a 3GHz Intel Xenon X5450 workstation

for input values χ < −1 we can not finish the computation in a "reasonable time"

What happens in the mixed case G0 6= G?

G/G0 ≤ S3 ⇒ three subcases: G/G0 = Z/2Z, Z/3Z or S3.

we can give a similar algorithm to classify these varieties for a fixed value of
χ(OX ) in the sense above

there are 108 examples in the mixed case

On the Classification of Threefolds Isogenous to a Product Trento, Nov 30. 2016 Christian Gleißner



Problems:

the computation is very time (and memory) consuming

⇒ we need 11h 6min on a 3GHz Intel Xenon X5450 workstation

for input values χ < −1 we can not finish the computation in a "reasonable time"

What happens in the mixed case G0 6= G?

G/G0 ≤ S3 ⇒ three subcases: G/G0 = Z/2Z, Z/3Z or S3.

we can give a similar algorithm to classify these varieties for a fixed value of
χ(OX ) in the sense above

there are 108 examples in the mixed case

On the Classification of Threefolds Isogenous to a Product Trento, Nov 30. 2016 Christian Gleißner



Problems:

the computation is very time (and memory) consuming

⇒ we need 11h 6min on a 3GHz Intel Xenon X5450 workstation

for input values χ < −1 we can not finish the computation in a "reasonable time"

What happens in the mixed case G0 6= G?

G/G0 ≤ S3

⇒ three subcases: G/G0 = Z/2Z, Z/3Z or S3.

we can give a similar algorithm to classify these varieties for a fixed value of
χ(OX ) in the sense above

there are 108 examples in the mixed case

On the Classification of Threefolds Isogenous to a Product Trento, Nov 30. 2016 Christian Gleißner



Problems:

the computation is very time (and memory) consuming

⇒ we need 11h 6min on a 3GHz Intel Xenon X5450 workstation

for input values χ < −1 we can not finish the computation in a "reasonable time"

What happens in the mixed case G0 6= G?

G/G0 ≤ S3 ⇒ three subcases:

G/G0 = Z/2Z, Z/3Z or S3.

we can give a similar algorithm to classify these varieties for a fixed value of
χ(OX ) in the sense above

there are 108 examples in the mixed case

On the Classification of Threefolds Isogenous to a Product Trento, Nov 30. 2016 Christian Gleißner



Problems:

the computation is very time (and memory) consuming

⇒ we need 11h 6min on a 3GHz Intel Xenon X5450 workstation

for input values χ < −1 we can not finish the computation in a "reasonable time"

What happens in the mixed case G0 6= G?

G/G0 ≤ S3 ⇒ three subcases: G/G0 = Z/2Z, Z/3Z or S3.

we can give a similar algorithm to classify these varieties for a fixed value of
χ(OX ) in the sense above

there are 108 examples in the mixed case

On the Classification of Threefolds Isogenous to a Product Trento, Nov 30. 2016 Christian Gleißner



Problems:

the computation is very time (and memory) consuming

⇒ we need 11h 6min on a 3GHz Intel Xenon X5450 workstation

for input values χ < −1 we can not finish the computation in a "reasonable time"

What happens in the mixed case G0 6= G?

G/G0 ≤ S3 ⇒ three subcases: G/G0 = Z/2Z, Z/3Z or S3.

we can give a similar algorithm to classify these varieties for a fixed value of
χ(OX ) in the sense above

there are 108 examples in the mixed case

On the Classification of Threefolds Isogenous to a Product Trento, Nov 30. 2016 Christian Gleißner



Problems:

the computation is very time (and memory) consuming

⇒ we need 11h 6min on a 3GHz Intel Xenon X5450 workstation

for input values χ < −1 we can not finish the computation in a "reasonable time"

What happens in the mixed case G0 6= G?

G/G0 ≤ S3 ⇒ three subcases: G/G0 = Z/2Z, Z/3Z or S3.

we can give a similar algorithm to classify these varieties for a fixed value of
χ(OX ) in the sense above

there are 108 examples in the mixed case

On the Classification of Threefolds Isogenous to a Product Trento, Nov 30. 2016 Christian Gleißner



Product quotient threefolds

The notion of a product quotient variety X generalizes the definition of a variety
isogenous to a product by allowing non-free group actions.

We study these varieties in dimension three under the following assumptions:

Our assumptions:

X has canonical singularities,

G acts diagonally on the product and faithfully on each factor.

X canonical ⇒ there is a proper birational morphism ρ : X̂ → X , such that X̂ is
terminal and ρ∗(KX ) ∼Q-lin. KX̂

Aim: study the geography of X̂ i.e. the relations between the Chern invariants

χ(OX̂ ), e(X̂) and K 3
X̂
.
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The singularities

there are finitely many points (x , y , z) on C1 × C2 × C3 with non-trivial stabilizer.

the stabilizer
Stab(x , y , z) = Stab(x) ∩ Stab(y) ∩ Stab(z)

is cyclic

⇒ finitely many isolated cyclic quotient singularities:

locally X is a quotient of C3 by a diagonal linear automorphism

exp
( 2πi

n

)
0 0

0 exp
( 2πia

n

)
0

0 0 exp
( 2πib

n

)


Isolated canonical cyclic quotient singularities in dimension three are classified by
Morrison [Mor85].

⇒ we can explicitly compute X̂ and derive relations between the Chern
invariants χ(OX̂ ), e(X̂) and K 3

X̂
.
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Product quotient threefolds

Proposition

The following inequalities hold:

I) 48χ(OX̂ ) + K 3
X̂
≥ 0 and II) 6e(X̂) + K 3

X̂
≥ 0.

I) is an equality if and only if X̂ is smooth,

II) is an equality if and only if X is smooth i.e. a threefold isogenous to a product.

moreover K 3
X̂
≥ 4

in the case where X̂ is smooth, we have a way to determine the Hodge numbers
of X̂ and an algorithm to classify these varieties for a fixed value of χ(OX̂ ) in the
sense above.
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