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Model design

A preliminary set of tests of the dynamics of a mantle heterogeneity initially
located on top of the 660 km discontinuity hit and possibly dragged along by a
plume from the lower mantle is presented. The motivation of this setting is the
proposal that such a layer has been located beneath today’s Iceland and has been
carried along with the plume, resulting in a distinct zoned pattern of chemical
anomalies in the Iceland area (e.g. Thirlwall, 1995; Kempton et al., 2000; Murton
et al., 2002).

The models consist of a 3000 km×1200 km×1000 km (216× 86× 150 points)
box. The equations of convection, energy conservation and diffusion-free chemical
advection are solved to model the ascent of a plume through the uppermost lower

and the upper mantle and its spreading beneath a MOR. Seafloor spreading is
introduced as a kinematic boundary condition at the top of the model box, and
the phase transitions of olivine are included in a simplified way as functions of p
and T . A plume with a maximum temperature anomaly of 220 K and a radius of
300 km at the model bottom flows into the box through a circular area. Its viscos-
ity is reduced due to an elevated water content of 500 ppm, whereas the reference
mantle contains 142 ppm; the rheology is generally described as a function of
depth, temperature, and water content of the solid rock. The layer-type anoma-
lies (“S-layers”) in the different models are prescribed using a compositional field
to which certain properties are attached, and, optionally, by a thermal variation.

←− Scheme of initial condition of models (not to scale)
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The original sheath model

The pattern of chemical anomalies in the larger Iceland area has led to the idea
that the plume picks up MORB-like material residing at the bottom of the transi-
tion zone when it ascends into the upper mantle (Thirlwall, 1995; Kempton et al.,
2000). This material would wrap around the plume as a “sheath”, and the result-
ing pattern of chemical anomalies observed at the surface would consist of sheath
components mostly in the remote, down-ridge realms and genuine lower-mantle
plume components in the central parts corresponding to Iceland.

Vertical cross section through the sheath model (from Murton
et al., 2002) −→

The feasibility of this model depends, among other factors, on the ability of the
plume to cross the endothermic phase boundary and lift a body with physical
properties different from the background mantle and likely to resist ascent: if the
sheath is MORB-like, it is expected to consist at least partially of eclogite, which
has a greater density than peridotite, and it might also be cooler and more viscous
than the background mantle. This adds to the difficulty for a plume to penetrate
the perovskite–ringwoodite transition.

Under which conditions can a plume rise into the upper mantle and take such a
body with it? In the preliminary models shown here, three variables of the S-layer
affecting its mobility – density, viscosity, and temperature – are varied:

structure coherent non-coherent
∆% (kg/m3) 0 0 0 15 0 0 15
η/ηref 1 3 1 1 1 3 1
∆TS (K) 0 0 −150 0 −150 −150 −150

Results

The figure below shows slices of the temperature and composition fields of two models, each of them typical for one
endmember case of dynamical behaviour: in the left block, the S-layer is distinguished from normal mantle only by

a contiguous thermal anomaly, which affects density and viscosity indirectly, but slightly; in the right block, the
S-layer is not contiguous, but an ensemble of small cold parcels, which have a compositionally caused higher density
than the respective background. In the latter case, the plume first stalls and spreads below the 660, and the S-layer
is more strongly deformed when the plume rises through the upper mantle.

Coherent S-layer, ∆% = 0 kg/m3, η/ηref = 1, ∆TS = −150 K
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Preliminary conclusions

1. A dense S-layer can retard the rise of a plume through the 660 km boundary.

2. Material from the S-layer does not seem to rise easily together with the plume, and might lag behind.

3. The viscosity of the S-layer was not found to have a profound effect thus far.
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