Dynamics & Consequences of Core Formation in Terrestrial Planets

Henri Samuel

Paul Tackley (ETH-Z) Dave Rubie (BGI) Jay Melosh (LPL)

The early stages of planetary evolution

Early stages = Initial condition I long term evolution

Who is concerned?

Ascona conference on planet formation 29 june- 4 july 2008

Early planetary evolution is everybody's business

Early thermo-chemical state of terrestrial planets

- Accretion
- Impact heating
- Isostatic readjustment
- Differentiation
- Convection
- Solution → Viscous heating
- ➡ Diffusion
- Radioactive heating ...

Major Difficulties

Many events & processes acting on various scales

- Solution Soluti Solution Solution Solution Solution Solution Solution S
- Shows a state of the state

Core Formation

✓ Metallic core present on several terrestrial planets & satellites
 ✓ Core formation: First major differentiation event in terrestrial planets

NASA

What are the constraints?

Hf/W chronometry

Core formation depleted Earth's mantle in siderophile elements, resulting in elevated ratios of lithophile (e.g., Hf) to siderophile (e.g., W) elements in Earth's mantle

Sore formation is a Fast process: t <100 Myrs (e.g., [Kleine et al., 2004])</p>

Observations: Abundance of Siderophile Elements in Earth's Mantle

Core formation depletes Earth's mantle in siderophile elements (Fe, W, Ni, Co...)

However, a few moderately & highly siderophile elements (Co, Ni, Ir...) remain overabundant in the Earth's mantle.

After [Oneill & Palme, 1998]

⇔ (high P & T) Metal-Silicate equilibration / chemical exchanges during core formation

Metal-Silicates separation

Heat sources during core formation

Constraints on core formation

Silicate

mantle

Iron

Core

Summary

✓Hf/W chronometry⇒ Fast process: t <100 Myrs

✓ Overabundance of siderophile elements in mantle
 ⇒ Requires Fe-Si equilibration

✓ High T process ("Si-Fe" separation)
 ⇒ Melting in magma ocean/ponds or elsewhere...

Several possible core formation scenarios

Core formation scenarios dynamically tested

Destabilization of a global iron layer

Metal rainfall

[Hoink et al., 2006]

Negative diapirism (+ additional complexities)

[Ricard et al.,2009]

[Samuel & Tackley, 2008]

[Golabek et al., 2008, 2009]

What, Why, How?

What?

Focus on negative diapirism in:
✓ solid or partially molten proto-mantle
✓ magma ocean

Why?

- ✓ Understand the dynamics
- ✓ Quantify core formation timing
- ✓ Fe-Si Chemical exchanges
- ✓ Core-mantle Energy Partitioning

How?

Numerical modeling with a systematic approach
 Derive simple(r) semi-analytic / fully analytic scaling laws

Spherical axisymmetric model setup

Results: typical evolution

Results: typical evolution

Results:influence of temperature dependent η

Diapir's tail: HighT Low η ➡ Upper/lower hemisphere asymmetry ➡ Diapir's shape goes from spherical to ~ hemispherical cup

η variation localized⇒ weak influence on Vs

Results: Newtonian vs. Power law rheologies

Results: Newtonian vs. Power law rheologies

Results: Newtonian vs. Power law rheologies

Scaling law for Diapir sinking velocity

Terminal velocity Vs quickly reached in all experiments ⇔ Viscous drag ~ Buoyancy

Describes well the results of our experiments

Melting & Equilibration

Melting and Fe-Si Equilibration

Melt leads to higher κ_c size Faster chemical exchanges

Semi-analytical model: simplified equations

Assumptions Spherical diapir Δρc >> Δρ_T T effect on η is localized

Characteristic scales Velocity:Vs & Length:Rd

Momentum

 $abla p - \nabla .(\eta \dot{\varepsilon}) + C \vec{e_r} = 0$ \Rightarrow Flow approximated analytically [hadamard,1911] \Rightarrow Momentum Eq. parameter free

Energy (2 parameters)

$$\frac{DT}{Dt} = \frac{1}{Pe_T} \nabla^2 T + \Pi_v \ \sigma : \dot{\varepsilon}$$

Only one equation to solve (instead of 4) with 2 parameters

Numerical expts. vs. semi-analytical model

4 conservation equations

Pe_T=865 TTv=0.7 Sinking distance: 4 R_d

Silicate melt surrounding the Fe diapir is produced

Good agreement Approximations made for the Semi-Analytical model are reasonable

Lower bound condition for silicate melt?

DT/Dt >0 ⇔ F=∏_v Pe_T > 1 Viscous dissipation > Diffusion

Melt geometry: Which value for F? Lower bound for silicate melt generation: $F = \Pi_v Pe_T > 1$ Upper bound for F? 1. Continuous melt layer 2. Thin ~ δ_{CBL} - 0.1 Rd

Conditions (R_d?) for metal silicate equilibration

Conclusions I

Study the dynamics of sinking iron diapir surrounded by viscous silicate material

- Derived general scaling laws for Vs
- Derived general scaling laws for T/melting

Viscous dissipation important at the interface

- ➡ Produces higher temperatures in the vicinity of the diapir
- ⇔ Silicate melt surrounding the diapir (if π_v Pe_T > 1)
- Several Favors Fe-Si equilibration during the descent of the diapirs

Negative diapirism is a plausible scenario for core formation With R_d ~1-100 m, (for $\eta_0 \sim 10^{10\pm 3}$ Pa s) it satisfies: \Rightarrow Hf/W constraints (timing of core formation < 100 Myrs) \Rightarrow Fe-Si equilibration

Heat Distribution

Core formation by negative diapirism and heat generation

 $\Delta E_p = \Delta \rho_c V_d \ g \Delta H$

 $\Delta E_{th} = \rho C p V \delta T$

 $\Delta E_p \sim \Delta E_{th}$

Gravitational heating For Mars: $\Delta E_p \sim 10^{29}$ Joules For Earth: $\Delta E_p \sim 10^{31}$ Joules

 $\Rightarrow \Delta T \sim 100$ K for the whole planet $\Rightarrow \Delta T \sim 1000$ K for iron core only

How is it distributed inside a planet?

How does heat partitions between the diapirs and their surrounding as they sink?

Easy & fast to solve for 1 diapir

Dimensionless sinking distance

Very challenging for 10⁶ diapirs

Additional simplification is required \Rightarrow Scaling laws for T_d (t)

Seeking for T_d(t) : Analytical modeling $\frac{DT}{Dt} = \frac{1}{Pe_T} \nabla^2 T + \Pi_v \ \sigma : \dot{\varepsilon}$

Το

"Sphere-Shell" model

 $\frac{d\bar{T}_d}{dt} = -C_d(\bar{T}_d - \bar{T}_i)$

 $\frac{dT_i}{dt} \cong -C_i(2\bar{T}_i - \bar{T}_d) + \delta \bar{T}_i^v$

 $\overline{T}_d = \Pi_v^* + (\overline{T}_d^0 - \Pi_v^*) \exp\left(-\frac{1}{Pe_T^*} t\right)$

"Sphere-Shell" analytical-empirical model

$$\bar{T}_{d} = \Pi_{v}^{*} + (\bar{T}_{d}^{0} - \Pi_{v}^{*}) \exp\left(-\frac{1}{Pe_{T}^{*}}t\right) \text{ with } \frac{Pe_{T}^{*} \sim Pe_{T}^{1/2}}{\Pi_{v}^{*} = \lim_{t \to \infty} T_{d}}$$

$$\stackrel{\gamma \tau = 10^{8}}{\stackrel{1}{}_{0}} \stackrel{\Pi_{v}^{*} = 2}{\stackrel{1}{}_{0}} \stackrel{\Pi_{v}^{*} = 1}{\stackrel{1}{}_{0}} \stackrel{\Pi_{v}^{*} = 1}{\stackrel{\Pi_{v}^{*} =$$

⇒We have everything we need!

Analytical vs. Numerical results

Heat partitioning during core formation?

Parameterized models

- Secretion
- Impact heating
- Isostatic readjustment
- Differentiation
- Sconvection
- Solution State State
- I ⇒ Diffusion
- Radioactive heating ...

Heat partitioning too simplified ? Thermal equilibrium assumed [senshu et al., 2002]

Early heat distribution

Early heat distribution

[Labrosse et al., 2007]

Favors a hotter lowermost mantle with melting (BMO?)

Heat partitioning and diapir size distribution

Can explain the presence (or absence) and sustainability of geodynamo on Earth or Mars

Conclusions II

✓ We derived scaling laws to determine heat partitioning between sinking iron diapir and their surroundings

✓ Our scaling laws can be used to model the thermochemical evolution of a growing planet

✓ Simple parameterizations for heat partitioning during core formation are unrealistic

- ✓ Negative diapirism favor higher LM temperatures
- ✓ Small diapirs lead to higher core superheat

Now what?

Negative Diapirism in Magma Oceans

Negative diapirism in a magma oceans

Figure 3 | **The deep magma ocean model.** Impacting planetesimals disaggregate and their metallic cores break up into small droplets in the liquid silicate owing to Rayleigh–Taylor instabilities. These droplets descend slowly, re-equilibrating with the silicate until they reach a region of high viscosity (solid), where they pond in a layer. The growing dense metal layer eventually becomes unstable and breaks into large blobs (diapirs), which descend rapidly to the core without further interaction with the silicate. Note that the liquidus temperature of the silicate mantle should correspond to pressure and temperature conditions at a depth above the lower solid layer and plausibly within the metal layer as indicated.

[Wood et al., 2006]

Motivations

✓ Terrestrial planets probably experienced magma ocean stages during their formation

✓ Differentiated impactors may have hit growing planets
 ⇒ what happened to the iron cores?

iron cores fragmentation/breakup into cm-sized droplets often assumed

Negative diapirism in a magma oceans

Differences with previous experiments

- ✓ Very low viscosities~ 10⁻² Pa s
- Inertia effect cannot be neglected
- ✓ Shearing instabilities
- ➡ diapirs fragmentation
- ✓ Smaller scales involved
- Surface tension might be important

Questions

Do diapirs fragmentate as they sink? What is the timing for fragmentation? What is the timing for complete Fe-Si segregation? Conditions for Fe-Si equilibration?

Modeling Diapir Fragmentation

Important ingredients

✓ Inertia

✓ Surface tension

- ✓ Sharp and strong variations in material properties
- ✓ Variable scales to resolve accurately

Mass:
$$\nabla .\mathbf{U} = 0$$

Momentum: $P_r^{-1}D_t\mathbf{U} = -\nabla p + \nabla .\tau_{ij} + R_a(T - BC)\mathbf{e}_z$ $\Pi_{\sigma}\xi\nabla C$
Composition (Fe-Si): $D_tC = 0$
Composition (Minor components: Ni, Co...): $D_tC_i = \kappa_i \nabla^2 C_i$
Energy: $D_tT = \nabla^2 T + H_v\phi_v - Di (T - T_0) U_z$

Solved with PIC, FV formulation + Adaptive Mesh Refinement: STREAMV

Preliminary results

Fragmentation occurs The diapir separates several smaller bodies Cascade mechanism (self-similar?)

(Preliminary) 'Conclusions'

✓ Need to perform systematic runs : Pr, Rb, π_{σ} ...

✓ Determine the conditions for fragmentation

✓ Characterize the dynamics of fragmentation (Self-similar? Size distribution of the new generations?)

✓ Derive scalings!

Thank you

Melting and Fe-Si Equilibration

Melt leads to higher κ_c size Faster chemical exchanges

