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Viscosity in the Earth’s mantle varies by several orders of magnitude, dependent on temper-
ature, pressure, grain size and phase transformations. Modeling these variations realistically in
three-dimensional mantle convection simulations has been a long-standing problem. We present
various approaches to increase the robustness and efficiency of the solution process in a 2-D rect-
angular domain as well as in a spherical shell.

A stabilization of the finite-element discretization with piecewise linear resp. bilinear trial and
test functions for both, velocity and pressure, is presented and evaluated in terms of matrix prop-
erties of the Schur complement. The stabilization method uses polynomial pressure projections
and is described and analyzed in [1]. The resulting discrete Stokes system fulfills a generalized
inf-sup condition with a grid-independent inf-sup constant.

Viscosity dependence of the matrix entries in the momentum operator and in the Schur com-
plement is removed by diagonal scaling as is done in [2]. Here, a viscosity scaled pressure mass
matrix as in [3] is used. A preconditioner is then necessary only for the momentum operator A

having a condition number proportional to the number of grid points. This indicates the use of
a multigrid method which utilizes the low condition numbers on coarse grids efficiently. Such a
method is used in the 3-D spherical code TERRA. For the scaled Schur complement no further
preconditioning is necessary so that a CG method can be used to solve for pressure. With ap-
plying velocity corrections from the A

−1-evaluation of the application of the Schur complement,
this CG method is named after Uzawa, who gave the idea in [4]. Another idea, taken from [5]
is to restart the whole Uzawa algorithm when the A

−1-evaluation cannot be done with sufficient
accuracy. Therewith, and with suitable stopping criteria, which are derived from eigenvalue es-
timates, the Uzawa method shows impressive robustness w.r.t. viscosity variations and in most
cases outperforms a preconditioned MINRES method which has been implemented for compar-
ison. However, as the pressure error is now reduced in a viscosity-dependent norm, induced by
the above-mentioned mass matrix, the residual has to be reduced below a lower threshold than in
the case of using a standard mass matrix. This drawback is far outweighted by the much better
convergence when the viscosity-dependent mass matrix is used.
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