

A parallel modeling tool for lithospheric deformation

Anton Popov, Boris Kaus, Tobias Baumann, Adina Püsök, Georg Reuber

JGU-Mainz

Schloss Schney, Lichtenfels 2016

LaMEM Lithosphere and Mantle Evolution Model FDSTAG Code

Johannes Gutenberg Universität Mainz

European Research Council

P Portable,
E Extensible
T Toolkit for
S Scientific
c Computation

JUQUEEN - Jülich Blue Gene/Q

Outline

Introduction

FDSTAG discretization

Nonlinear rheology

Analytical Jacobian

Multigrid and scaling

Stress rates

Plasticity convergence

Conservative velocity interpolation

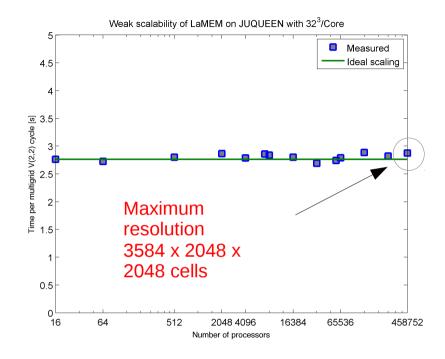
Adjoint gradients and inversion

Adjoint scaling laws

Other inversion techniques and examples

LaMEM (Lithosphere and Mantle Evolution Model)

- 3D thermo-mechanical code, written in C uses PETSc.
- Nonlinear visco-elasto-plastic rheologies
- Runs on 1-458'752 processors
 routinely on 1024-4096
- Current version of code only supports staggered difference method (faster than FE)
- Can use a large variety of (multigrid) solvers (Galerkin GMG, AMG, Coupled/decoupled)
- Marker-and-cell method, free surface, (coupled to erosion model)
- Polygonal meshes to create (complex) input geometries.

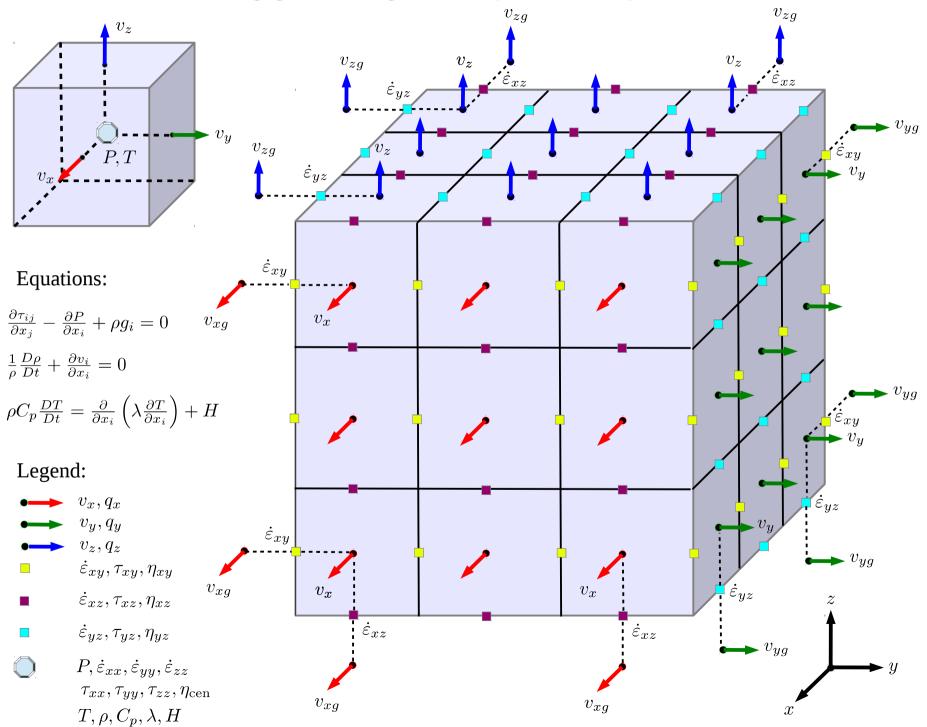




https://bitbucket.org/bkaus/lamem

Stassian Features Pricing			Find a rep	oository… ♀ ⑦ English ▼ Sign up Log in				
	Boris Kaus / LaMEM Overview			HTTPS - https://bitbucket.org/bkaus/lamem.				
ACTIONS								
	Last updated 2016-09-06 Language C	12 Branches	0 Tags	Unlimited private and X				
-C Fork	Access level Read			repositories. Free for small teams!				
NAVIGATION		0 Forks	11 Watchers	Sign up for free				
Uverview								
Source				Recent activity 🔊				
¢ Commits	LaMEM - Lithosphere and Mantle Evolution Model			1 commit Pushed to bkaus/lamem				
✤ Branches	A parallel 3D numerical code that can be used to mo	del various thermome	chanical	c53180e tentative solution for correct pres				
Pull requests	geodynamical processes such as mantle-lithosphere i that have visco-elasto-plastic rheologies. The code							
	PETSc and the current version of the code uses a ma	Pushed to bkaus/lamem						
Downloads	approach with a staggered finite difference discretization. A range of (Galerkin) multigrid and iterative solvers are available, for both linear and non-linear rheologies, using Picard and							
	quasi-Newton solvers (provided through the PETSc in	Beatriz Martinez Montesinos · 2016-09-06						
	LaMEM has been tested on over 458'000 cores.							
				2 commits Pushed to bkaus/lamem				
	The current version is developed by Anton Popov (Johannes Gutenberg University Boris Kaus (JGU Mainz, kaus@uni-mainz.de),	158e40c Merge branch 'explicit' of https:// ef9532d First changes for density scaling						
	Tobias Baumann (JGU Mainz), 2011- Adina Püsök (JGU Mainz), 2012-		Beatriz Martinez Montesinos · 2016-09-06					
	Adina Fusik (JGU Mainz), 2012- Naiara Fernandez (JGU Mainz), 2011-2014 Arthur Bauville (JGU Mainz), 2015 Older versions of LaMEM included a finite element solver as well, and were developed by:			1 commit Pushed to bkaus/lamem 379d3ee Merge remote-tracking branch 'o Boris Kaus · 2016-09-04				

Parallel staggered grid layout implementation



Parallel staggered grid layout implementation

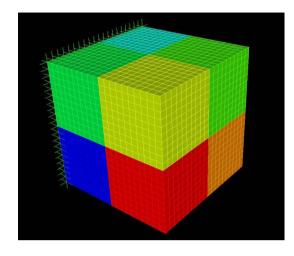
PETSc Distributed Array (DMDA)

- Parallel (MPI) each processor owns its local part of the grid
- Natural I-J-K indexing (global indices)!
- Local vectors with ghost points
- Boundary ghost points
- Global distributed vectors w/o ghost points
- Local to Global scatter/assembly operations

Altogether 8 DMDA objects are used

Corner DMDA is used for ParaView output

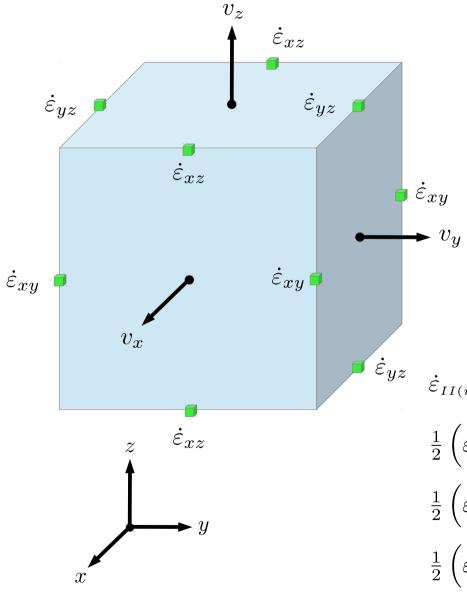
Coordinates are stored in local 1D arrays since grid is rectilinear



NAME	x-si ze	y-si ze	z-si ze	Ghost points
DA_CORNER	Nx	Ny	Nz	None
DA_CENTER	Nx-1	Ny-1	Nz-1	All
DA_XY	Nx	Ny	Nz-1	None
DA_XZ	Nx	Ny-1	Nz	None
DA_YZ	Nx-1	Ny	Nz	None
DA_X	Nx	Ny-1	Nz-1	Y & Z
DA_Y	Nx-1	Ny	Nz-1	X & Z
DA_Z	Nx-1	Ny-1	Nz	X & Y

Nonlinear terms discretization

Example: interpolation scheme for the central points



There are three set of edge points: XY, XZ and YZ, defining corresponding shear strain rates:

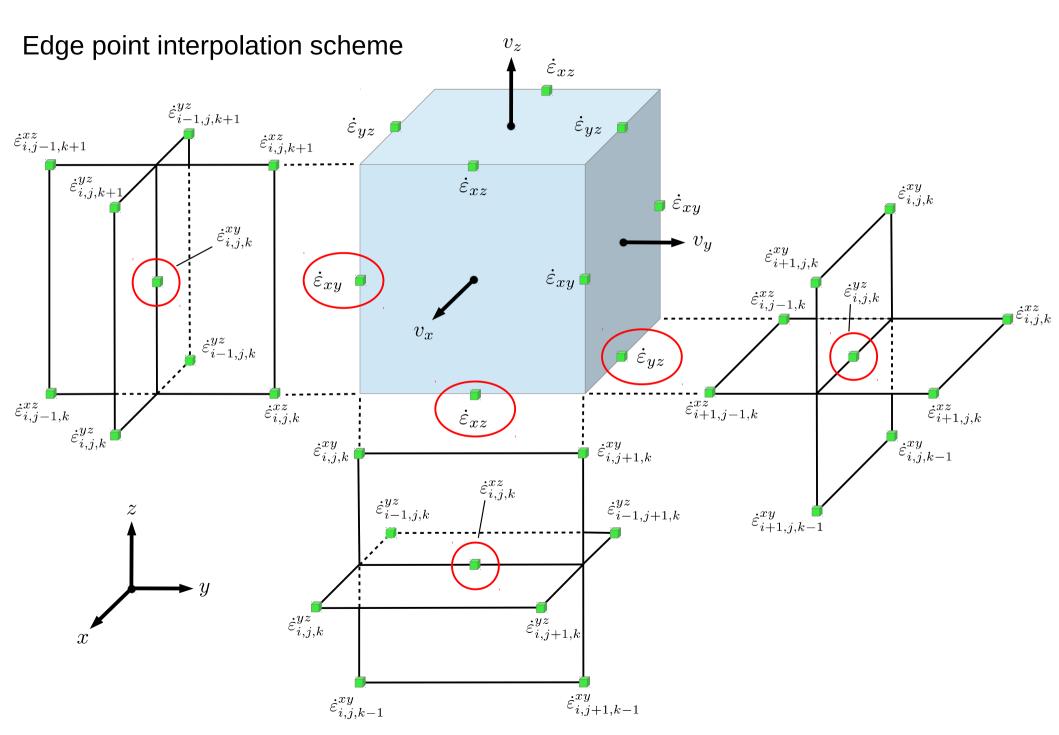
 $\dot{\varepsilon}_{xy}, \, \dot{\varepsilon}_{xz}, \, \dot{\varepsilon}_{yz}$

Central point defines normal strain rates: $\dot{\varepsilon}_{xx}, \, \dot{\varepsilon}_{yy}, \, \dot{\varepsilon}_{zz}$

Second invariant discretization:

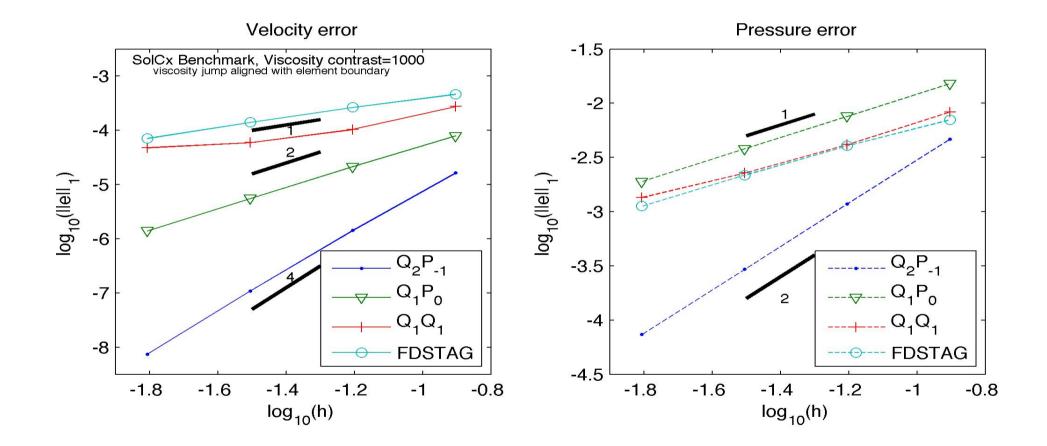
$$\begin{split} \dot{\varepsilon}_{II(i,j,k)} &= \dot{\varepsilon}_{xx(i,j,k)}^2 + \dot{\varepsilon}_{yy(i,j,k)}^2 + \dot{\varepsilon}_{zz(i,j,k)}^2 + \\ \frac{1}{2} \left(\dot{\varepsilon}_{xy(i,j,k)}^2 + \dot{\varepsilon}_{xy(i,j+1,k)}^2 + \dot{\varepsilon}_{xy(i+1,j,k)}^2 + \dot{\varepsilon}_{xy(i+1,j+1,k)}^2 \right) + \\ \frac{1}{2} \left(\dot{\varepsilon}_{xz(i,j,k)}^2 + \dot{\varepsilon}_{xz(i,j,k+1)}^2 + \dot{\varepsilon}_{xz(i+1,j,k)}^2 + \dot{\varepsilon}_{xz(i+1,j,k)}^2 + \dot{\varepsilon}_{xz(i+1,j,k+1)}^2 \right) + \\ \frac{1}{2} \left(\dot{\varepsilon}_{yz(i,j,k)}^2 + \dot{\varepsilon}_{yz(i,j,k+1)}^2 + \dot{\varepsilon}_{yz(i,j+1,k)}^2 + \dot{\varepsilon}_{yz(i,j+1,k)}^2 + \dot{\varepsilon}_{yz(i,j+1,k)}^2 \right) \end{split}$$

Nonlinear terms discretization



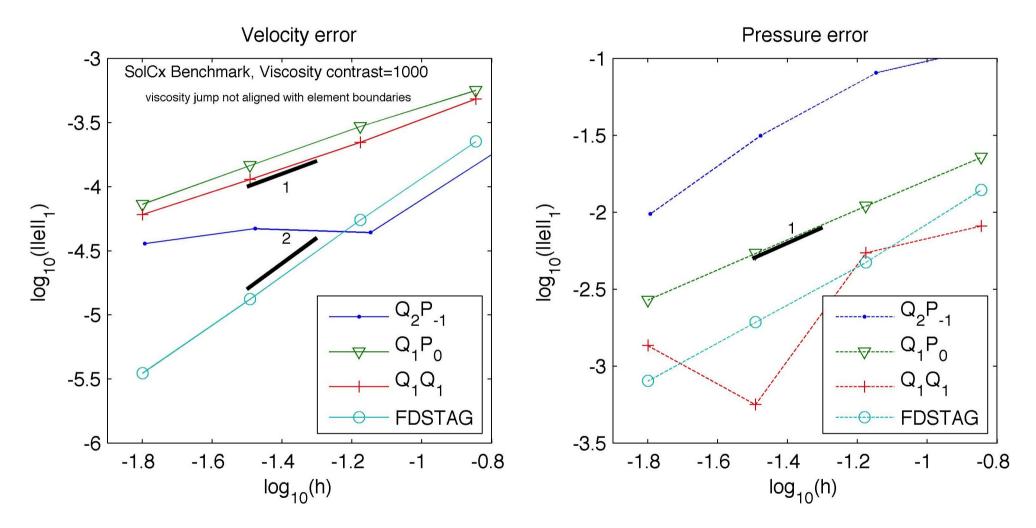
FDSTAG vs. FE convergence (SolCx benchmark)

Viscosity contrast 1000, element boundary aligned with jump



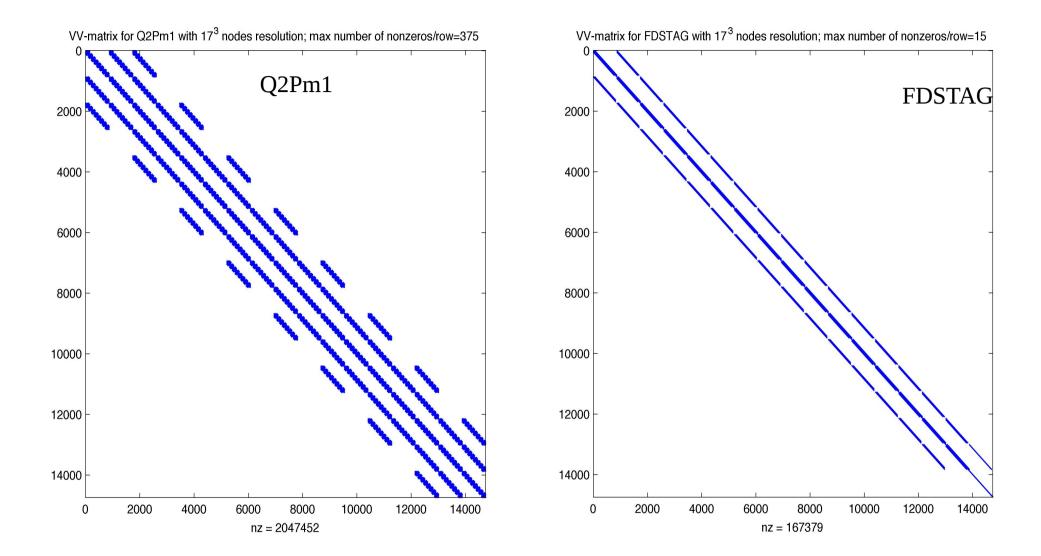
FDSTAG vs. FE convergence (SolCx benchmark)

Viscosity contrast 1000, element boundary NOT aligned with jump



FDSTAG is not so bad High-order element fails

FDSTAG vs. FE memory footprint



FDSTAG requires *significantly* less memory! Matrix-vector multiplications are much faster!

Nonlinear viso-elasto-plastic rheology

Stress updateEffective strain rate and invariant $\tau_{ij} = 2\eta^* \dot{\varepsilon}^*_{ij}$ $\dot{\varepsilon}^*_{ij} = \dot{\varepsilon}_{ij} + \frac{\tau^*_{ij}}{2G\Lambda t}$ $\dot{\varepsilon}^*_{II} = \left(\frac{1}{2}\dot{\varepsilon}^*_{ij}\dot{\varepsilon}^*_{ij}\right)^{1/2}$

Stress rotation terms (incremental stress rotation as described later) $\tau_{ij}^* = \tau_{ij}^n + \Delta t \left(w_{ik} \tau_{kj}^n - \tau_{ik}^n w_{kj} \right)$

Spin tensor

$$\dot{\varepsilon}_{ij} = \frac{1}{2} \left(\frac{\partial v_i}{\partial x_j} + \frac{\partial v_j}{\partial x_i} \right) - \frac{1}{3} \frac{\partial v_k}{\partial x_k} \delta_{ij} \qquad \qquad \omega_{ij} = \frac{1}{2} \left(\frac{\partial v_i}{\partial x_j} - \frac{\partial v_j}{\partial x_i} \right)$$

Effective viscosity

$$\eta^* = \min\left[\left(\frac{1}{G\Delta t} + \frac{1}{\eta_l} + \frac{1}{\eta_n} + \frac{1}{\eta_p}\right)^{-1}, \frac{\tau_Y}{2\dot{\varepsilon}_{II}^*}\right]$$

Nonlinear viso-elasto-plastic rheology

Drucker-Prager yield stress

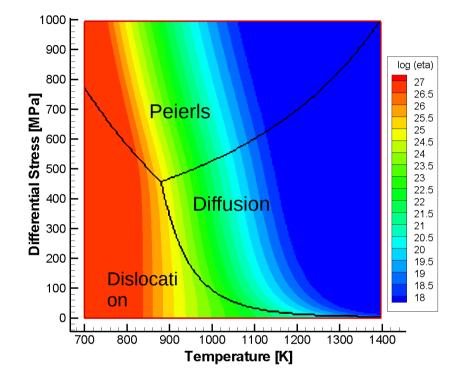
$$\tau_Y = \mu P + c$$

Diffusion Dislocation and Peierls constants

$$A_{l} = B_{l} \exp\left[-\frac{E_{l} + pV_{l}}{RT}\right],$$

$$A_{n} = B_{n} \exp\left[-\frac{E_{n} + pV_{n}}{RT}\right],$$

$$A_{p} = \frac{B_{p}}{(\gamma\tau_{p})^{s}} \exp\left[-\frac{E_{p} + pV_{p}}{RT}\left(1 - \gamma\right)^{q}\right],$$



Effective creep viscosities

$$\eta_{l} = \frac{1}{2} (A_{l})^{-1}$$

$$\eta_{n} = \frac{1}{2} (A_{n})^{-\frac{1}{n}} (\dot{\varepsilon}_{II}^{*})^{\frac{1}{n}-1}$$

$$\eta_{p} = \frac{1}{2} (A_{p})^{-\frac{1}{s}} (\dot{\varepsilon}_{II}^{*})^{\frac{1}{s}-1}$$

$$s = \frac{E_p + PV_p}{RT} \left(1 - \gamma\right)^{q-1} q \gamma$$

Global nonlinear iterations

Preconditioned Newton iteration with line search

 $P^{-1}J(x_k)\,\delta x_k = -P^{-1}r(x_k) \qquad x_{k+1} = x_k + \alpha\,\delta x_k$

Jacobian and residual

$$J = \begin{pmatrix} \frac{\partial r_M}{\partial v} & \frac{\partial r_M}{\partial P} & \frac{\partial r_M}{\partial T} \\ \frac{\partial r_C}{\partial v} & \frac{\partial r_C}{\partial P} & \frac{\partial r_C}{\partial T} \\ \frac{\partial r_E}{\partial v} & \frac{\partial r_E}{\partial P} & \frac{\partial r_E}{\partial T} \end{pmatrix} \qquad r = \begin{pmatrix} r_M \\ r_C \\ r_E \end{pmatrix} \qquad \begin{array}{c} \text{Momentum} \\ \text{Continuity} \\ \text{Energy} \\ \end{array} \qquad x = \begin{pmatrix} v \\ P \\ T \end{pmatrix} \qquad \begin{array}{c} \text{Velocity} \\ \text{Pressure} \\ \text{Temperature} \\ \end{array}$$

Jacobian-Free-Newton-Krylov (JFNK) or analytical matrix-free Jacobian

$$Jy \approx \frac{r(x+hy) - r(x)}{h}$$
 -snes_mf_operator (PETSc SNES solver)

Preconditioner matrix

$$P = \begin{pmatrix} K & G & 0 \\ D & C & 0 \\ 0 & 0 & E \end{pmatrix}$$

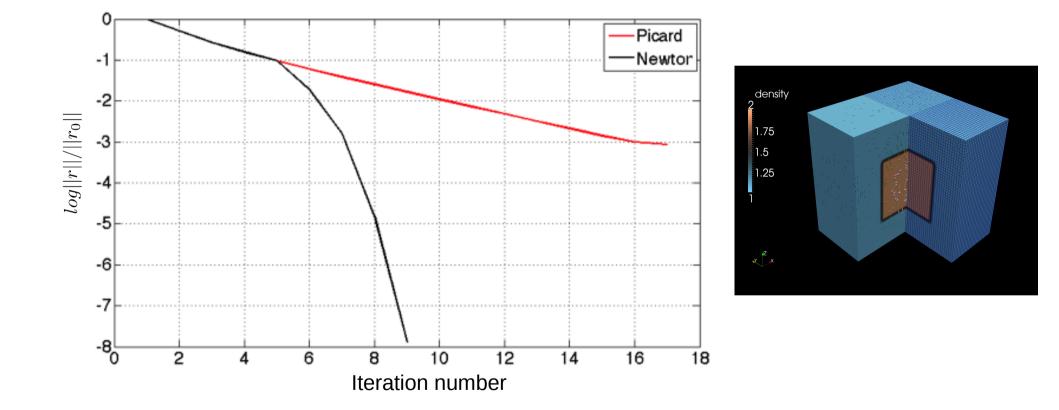
Picard vs. Newton

Quasi-linear residual form:

$$r(x) = A(x)x - b = 0$$

Picard fixed-point iteration:

$$J\left(x\right) \approx A\left(x\right)$$



Picard approximation facilitates convergence at the initial stages

Switching to Picard can improve Newton convergence

Analytical Jacobian Finite Elements

Nonlinear residuals

$$r^{U} = \int_{\Omega} B^{T}(\tau - mP) - N_{U}^{T}\rho g \, d\Omega$$

$$r^P = -\int_{\Omega} N_P^T m^T \dot{\varepsilon} \, d\Omega$$

Jacobian iteration

$$\begin{bmatrix} \Delta U_k \\ \Delta P_k \end{bmatrix} = -\begin{bmatrix} J^{UU} & J^{UP} \\ J^{PU} & 0 \end{bmatrix}^{-1} \begin{bmatrix} r_k^U \\ r_k^P \end{bmatrix}$$

$$\begin{bmatrix} U_{k+1} \\ P_{k+1} \end{bmatrix} = \begin{bmatrix} U_k \\ P_k \end{bmatrix} + \alpha \begin{bmatrix} \Delta U_k \\ \Delta P_k \end{bmatrix}$$

Stress and strain rate vectors

$$\dot{\varepsilon} = \begin{bmatrix} \dot{\varepsilon}_{xx} \dot{\varepsilon}_{yy} \dot{\varepsilon}_{zz} \dot{\gamma}_{xy} \dot{\gamma}_{xz} \dot{\gamma}_{yz} \end{bmatrix}^{T} \\ \underline{\dot{\varepsilon}} = \begin{bmatrix} \dot{\varepsilon}_{xx} \dot{\varepsilon}_{yy} \dot{\varepsilon}_{zz} \dot{\varepsilon}_{xy} \dot{\varepsilon}_{yx} \dot{\varepsilon}_{xz} \dot{\varepsilon}_{zx} \dot{\varepsilon}_{yz} \dot{\varepsilon}_{zy} \end{bmatrix}^{T} \\ \tau = \begin{bmatrix} \tau_{xx} \tau_{yy} \tau_{zz} \tau_{xy} \tau_{xz} \tau_{yz} \end{bmatrix}^{T} \\ \underline{\tau} = \begin{bmatrix} \tau_{xx} \tau_{yy} \tau_{zz} \tau_{xy} \tau_{yx} \tau_{xz} \tau_{zx} \tau_{yz} \tau_{zy} \end{bmatrix}^{T}$$

Projection matrix and projection

$$Q = \frac{1}{2} \begin{bmatrix} 2 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 2 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 2 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 1 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 1 \end{bmatrix}$$

$$\tau = Q\underline{\tau}, \quad \underline{\dot{\varepsilon}} = Q^T \dot{\varepsilon}$$

Pressure projection vector $\mathbf{m} = \begin{bmatrix} 1 & 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 \end{bmatrix}^{T}$

Analytical Jacobian Finite Elements

Jacobian blocks

$$J^{UU} = \int_{\Omega} B^T Q \, T \, Q^T B \, d\Omega$$

$$J^{UP} = -\int_{\Omega} B^T \left(m - \mu Q \underline{q} \right) N_P \, d\Omega$$

$$J^{PU} = -\int_{\Omega} N_P^T m^T B \, d\Omega$$

Tangent matrix

$$T = 2\eta^* \left(I + \beta \, \underline{q} \, \underline{q}^T \right)$$

Visco-elastic nonlinear parameter

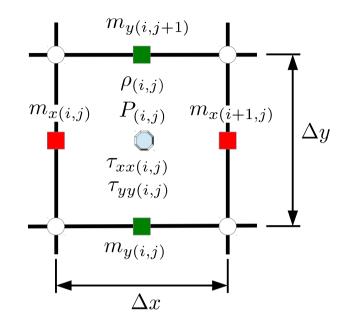
$$\beta = \frac{1}{2} \left(\frac{1}{n} - 1 \right) \frac{\eta^*}{\eta_n} + \frac{1}{2} \left(\frac{1}{s} - 1 \right) \frac{\eta^*}{\eta_p}$$

Plastic nonlinear parameter $\beta = -\frac{1}{2}$

Normalized flow vector

$$\underline{q} = \frac{\underline{\dot{\varepsilon}}}{\dot{\varepsilon}_{II}^*}$$

Analytical Jacobian Finite Difference (example)



Momentum residual contributions

$$\Delta m_{x(i,j)} = + \frac{\tau_{xx(i,j)} - P_{(i,j)}}{\Delta x} + \frac{1}{2}\rho_{(i,j)}g_x$$

$$\Delta m_{x(i+1,j)} = -\frac{\tau_{xx(i,j)} - P_{(i,j)}}{\Delta x} + \frac{1}{2}\rho_{(i,j)}g_x$$

Residual derivatives (velocity)

$$\frac{\partial \Delta m_{x(i,j)}}{\partial \boldsymbol{v}} = + \frac{1}{\Delta x} \frac{\partial \tau_{xx(i,j)}}{\partial \boldsymbol{v}}$$
$$\frac{\partial \Delta m_{x(i+1,j)}}{\partial \boldsymbol{v}} = - \frac{1}{\Delta x} \frac{\partial \tau_{xx(i,j)}}{\partial \boldsymbol{v}}$$

Residual derivatives (pressure)

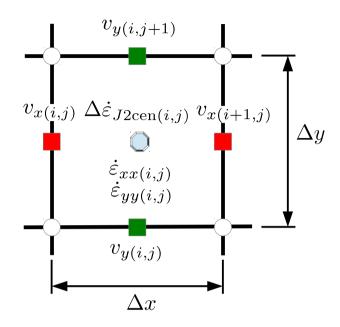
$$\frac{\partial \Delta m_{x(i,j)}}{\partial P} = + \frac{1}{\Delta x} \frac{\partial \tau_{xx(i,j)}}{\partial P} - \frac{1}{\Delta x}$$
$$\frac{\partial \Delta m_{x(i+1,j)}}{\partial P} = - \frac{1}{\Delta x} \frac{\partial \tau_{xx(i,j)}}{\partial P} + \frac{1}{\Delta x}$$

Stress derivatives

$$\frac{\partial \tau_{xx(i,j)}}{\partial \boldsymbol{v}} = 2 \frac{\partial \eta^*_{\operatorname{cen}(i,j)}}{\partial \boldsymbol{v}} \dot{\varepsilon}^*_{xx(i,j)} + 2\eta^*_{\operatorname{cen}(i,j)} \frac{\dot{\varepsilon}^*_{xx(i,j)}}{\partial \boldsymbol{v}}$$

$$\frac{\partial \tau_{xx(i,j)}}{\partial P} = \mu \frac{\dot{\varepsilon}_{xx(i,j)}^*}{\dot{\varepsilon}_{II}^*}$$

Analytical Jacobian Finite Difference (example)



Strain rate derivatives

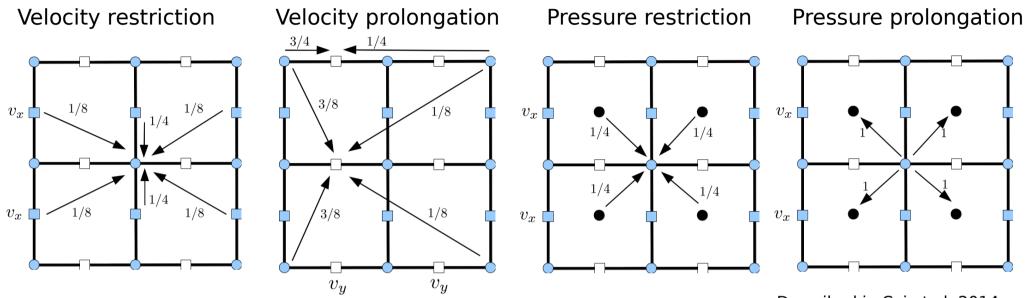
$$\dot{\varepsilon}_{xx(i,j)} = \frac{v_{x(i+1,j)} - v_{x(i,j)}}{\Delta x} \qquad \frac{\partial \dot{\varepsilon}_{yy(i,j)}}{\partial v_{y(i,j)}} = -\frac{1}{\Delta y} \qquad \frac{\partial \dot{\varepsilon}_{yy(i,j)}}{\partial v_{y(i,j+1)}} = \frac{1}{\Delta y}$$

Second invariant contribution derivatives

$$\Delta \dot{\varepsilon}_{J2\text{cen}(i,j)} = \frac{1}{2} \left(\dot{\varepsilon}_{xx(i,j)}^2 + \dot{\varepsilon}_{yy(i,j)}^2 \right)$$

$$\frac{\partial \Delta \dot{\varepsilon}_{J2 \operatorname{cen}(i,j)}}{\partial v_{x(i,j)}} = -\frac{1}{\Delta x} \dot{\varepsilon}_{xx(i,j)} \qquad \frac{\partial \Delta \dot{\varepsilon}_{J2 \operatorname{cen}(i,j)}}{\partial v_{x(i+1,j)}} = \frac{1}{\Delta x} \dot{\varepsilon}_{xx(i,j)}$$
$$\frac{\partial \Delta \dot{\varepsilon}_{J2 \operatorname{cen}(i,j)}}{\partial v_{y(i,j)}} = -\frac{1}{\Delta y} \dot{\varepsilon}_{yy(i,j)} \qquad \frac{\partial \Delta \dot{\varepsilon}_{J2 \operatorname{cen}(i,j)}}{\partial v_{y(i,j+1)}} = \frac{1}{\Delta y} \dot{\varepsilon}_{yy(i,j)}$$

Galerkin Multigrid



Described in Cai et al. 2014

Galerkin coarsening

Preconditioners

 $r_{coarse} = R r_{fine}$ - Restriction

 $m{x}_{fine} = m{P} \; m{x}_{coarse}$ - Prolongation

 $A_{coarse} = R A_{fine} P$ - Coarsening

 $P_c = \begin{pmatrix} K & G \\ D & -\frac{1}{\eta}I \end{pmatrix}$

$$P_u = \begin{pmatrix} K & G \\ & -\frac{1}{\eta}I \end{pmatrix}$$

(COUPLED) Galerkin MG applied to full matrix

(BLOCK MG - uncoupled) Galerkin MG applied to **K** block only

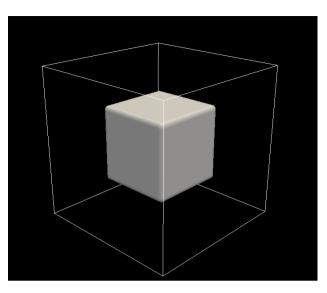
Coupled vs. Uncoupled MG (1 vs. 10 falling blocks)

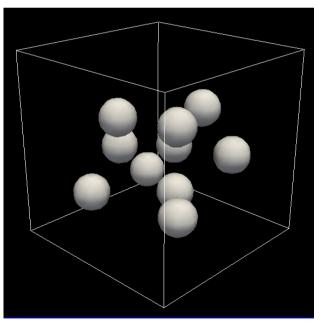
64 ³ nodes 3 GMG levels	Coupled mul		block set	tup
	# outer KSP	light	# outer KSP	
contrast	it	Time [s]	it	Time [s]
1	7	6.1	9	6.4
10	10	8.2	13	8.4
100	12	9.6	20	11.9
1000	17	13.2	30	17.1
10000	40	29	71	38
1.00E+05	155	107	267	137

64³ nodes 3 GMG levels	Coupled mul		e spheres	setup
Viscosity	# outer KSP	#	outer KSP Tota	l solve
contrast	it T	Time [s] it	[s]	
1	7	6.1	6	3.9
10	10	8	11	6
100	15	11.7	18	10.2
1000	36	27.6	45	23
10000	114	82	154	80.5
1.00E+05	378	266	585	297

Viscosity sinker=1, viscosity matrix= 1/VC

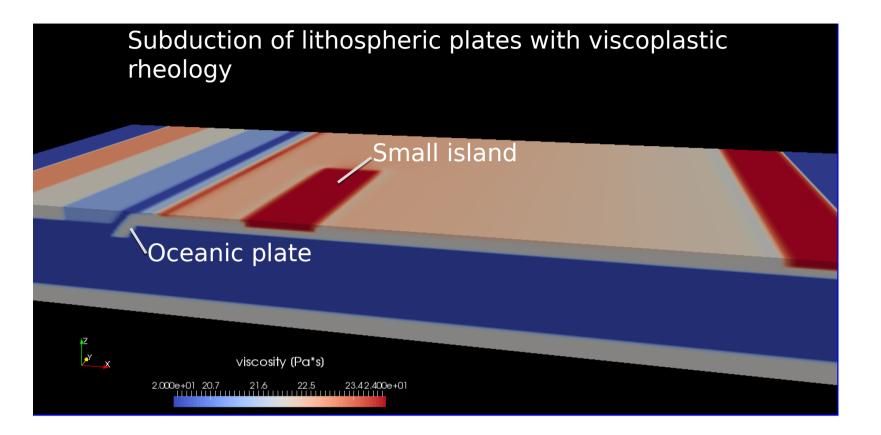
Multiple spheres is a more tricky problem Coupled/uncoupled have similar speeds





Coupled: 3 GMG levels with FGMRES (rtol 1e-6), Jacobi(20,20) as smoothener; direct coarse grid, 4 cores **Block**: FGMRES (rtol 1e-6) for full system with 1 V-cycle for the K-block, 3 GMG levels with Jacobi(20,20) as smoother and direct coarse grid

Coupled vs. Uncoupled MG (typical production run)

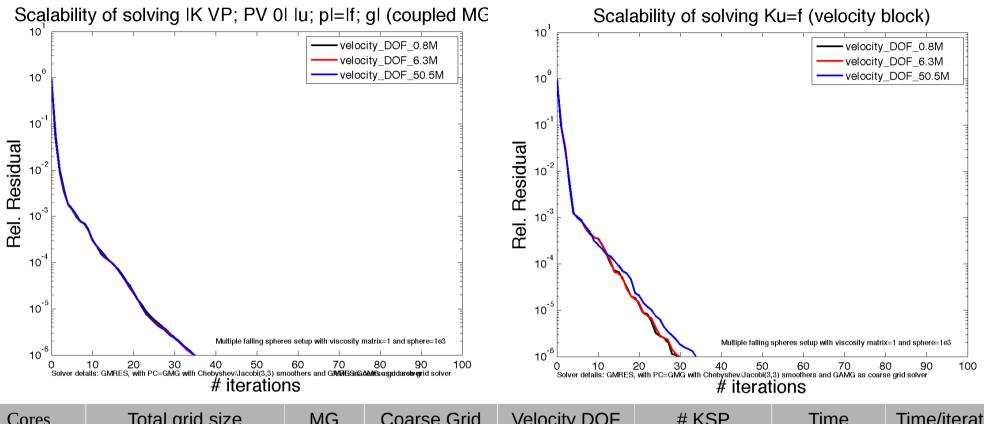


3 GMG levels	128x32x32				
Resolution	# SNES (nonlinear)	# KSP it	Time per timestep [s]		
Coupled MG	2	40	12		
Block MG	2	100	24		

4 GMG levels	256x64x64					
Resolution	# SNES (nonlinear)	# KSP it	Time [s]			
Coupled MG	2	30	145			
Block MG	5	250	759			

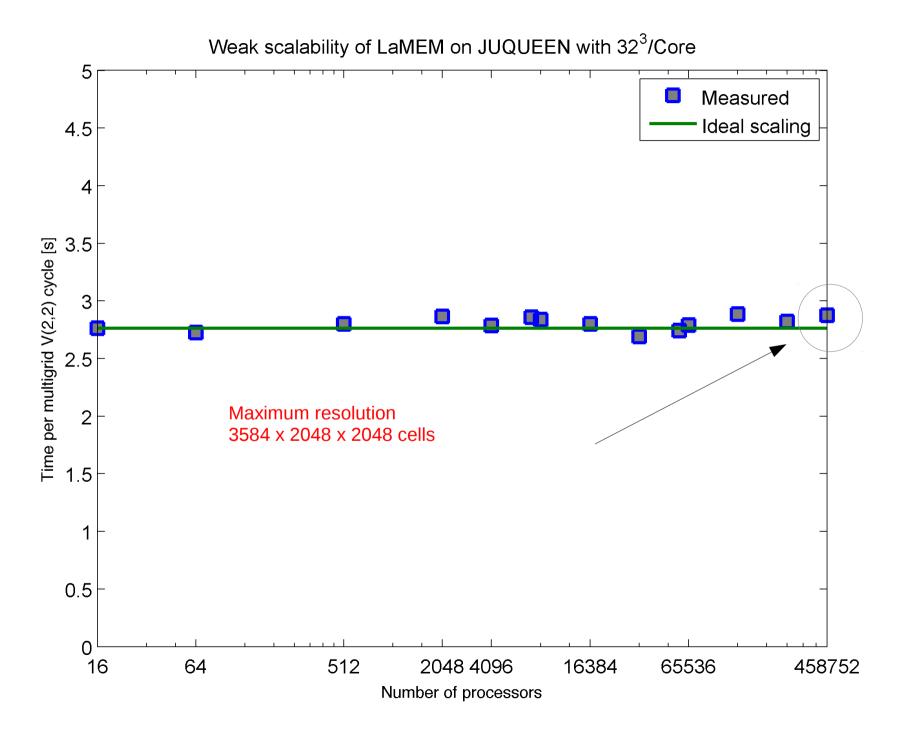
Coupled MG is significantly faster for this setup

Weak scaling



Cores	Total grid size	MG Levels	Coarse Grid size	Velocity DOF	# KSP iterations	Time step [s]	Time/iterations [s]
64	128x128x128	2	64x64x64	6.3 Mio	65	155	2.38
512	256x256x256	3	64x64x64	50.5 Mio	67	159	2.37
4096	512x512x512	4	64x64x64	403 Mio	71	168	2.37
32768	1024x1024x1024	5	64x64x64	3.2 Bio	71	209	2.94
65536	2048x1024x1024	5	128x64x64	6.4 Bio	121	353	2.92
131072	2048x2048x1024	5	128x128x64	12.9 Bio	112	436	3.89
262144	2048x2048x2048	5	128x128x128	25.8 Bio	81	482	5.95

Weak scaling



Continuum stress rates

Truesdell, Green-Naghdi and Jaumann rates:

$$egin{aligned} & \stackrel{\circ}{\sigma}^{TR} & = \dot{\sigma} - oldsymbol{l} \sigma - \sigma oldsymbol{l}^T + ext{tr} \left[oldsymbol{l}
ight] \sigma \ & \stackrel{\circ}{\sigma}^{GN} & = \dot{\sigma} + \sigma \Omega - \Omega \sigma \ & \stackrel{\circ}{\sigma}^J & = \dot{\sigma} + \sigma w - w \sigma \end{aligned}$$

Spatial velocity gradient, spin and angular velocity tensors:

$$oldsymbol{l} = \dot{oldsymbol{F}}oldsymbol{F}^{-1}, \quad oldsymbol{w} = rac{1}{2}\left(oldsymbol{l} - oldsymbol{l}^T
ight), \quad oldsymbol{\Omega} = \dot{oldsymbol{R}}oldsymbol{R}^T$$

Deformation gradient:

$$oldsymbol{F} = rac{\partial oldsymbol{x}}{\partial oldsymbol{X}}$$

Rotation and stretch tensors (polar decomposition)

F = R U

Time integrated Jaumann stress rate (2D)

Jaumann rate expresses the rotated stress from previous time step as:

$$\tau_{ij}^* = \tau_{ij}^n + \Delta t \left(w_{ik} \tau_{kj}^n - \tau_{ik}^n w_{kj} \right)$$

which can be viewed (e.g. Beuchert and Podladchikov, 2010) as a truncated Taylor series expansion of a simple stress rotation formula:

 $\tau_{ij}^* = R_{ik} \tau_{kl}^n R_{jl}$

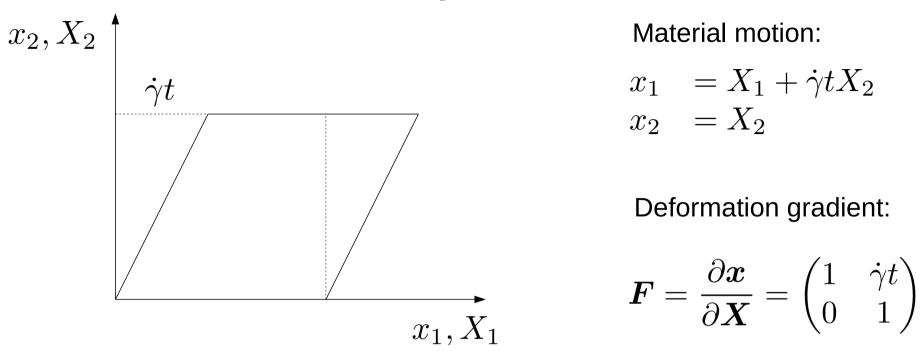
Jaumann rate expression imposes severe time step restrictions. It is common (e.g. Geria, 2010) to use the original stress rotation formula and estimate rotation angle from the time integration of the vorticity field:

$$\theta = \frac{1}{2} \left(\frac{\partial v_y}{\partial x} - \frac{\partial v_x}{\partial y} \right) \Delta t$$

$$R = \begin{pmatrix} \cos\theta & -\sin\theta\\ \sin\theta & \cos\theta \end{pmatrix}$$

Beuchert and Podladchikov (2010). Viscoelastic mantle convection and lithospheric stresses. Geophys. J. Int., 183, 35–63. Gerya (2010) Introduction to numerical Geodynamic Modelling.

Simple shear test



Spatial velocity gradient, rate of deformation, and spin tensors:

$$\boldsymbol{l} = \dot{\boldsymbol{F}}\boldsymbol{F}^{-1} = \begin{pmatrix} 0 & \dot{\gamma} \\ 0 & 0 \end{pmatrix}, \quad \boldsymbol{d} = \begin{pmatrix} 0 & \frac{\dot{\gamma}}{2} \\ \frac{\dot{\gamma}}{2} & 0 \end{pmatrix}, \quad \boldsymbol{w} = \begin{pmatrix} 0 & \frac{\dot{\gamma}}{2} \\ -\frac{\dot{\gamma}}{2} & 0 \end{pmatrix}$$

Rotation tensor (polar decomposition) and angular velocity tensor:

$$\boldsymbol{R} = \begin{pmatrix} \cos\beta & \sin\beta \\ -\sin\beta & \cos\beta \end{pmatrix}, \quad \tan\beta = \frac{\dot{\gamma}t}{2}, \quad \boldsymbol{\Omega} = \dot{\boldsymbol{R}}\boldsymbol{R}^{T} = \left[1 + \left(\frac{\dot{\gamma}t}{2}\right)^{2}\right]^{-1}\boldsymbol{u}$$

Elastic case

Neo-Hookean (elastic stored energy function):

$$W = \frac{G}{2} \left(\overline{I}_1 - 3 \right) + \frac{K}{2} \left(J - 1 \right)^2$$

Determinant of deformation gradient (volume change):

 $J = \det\left[\boldsymbol{F}\right]$

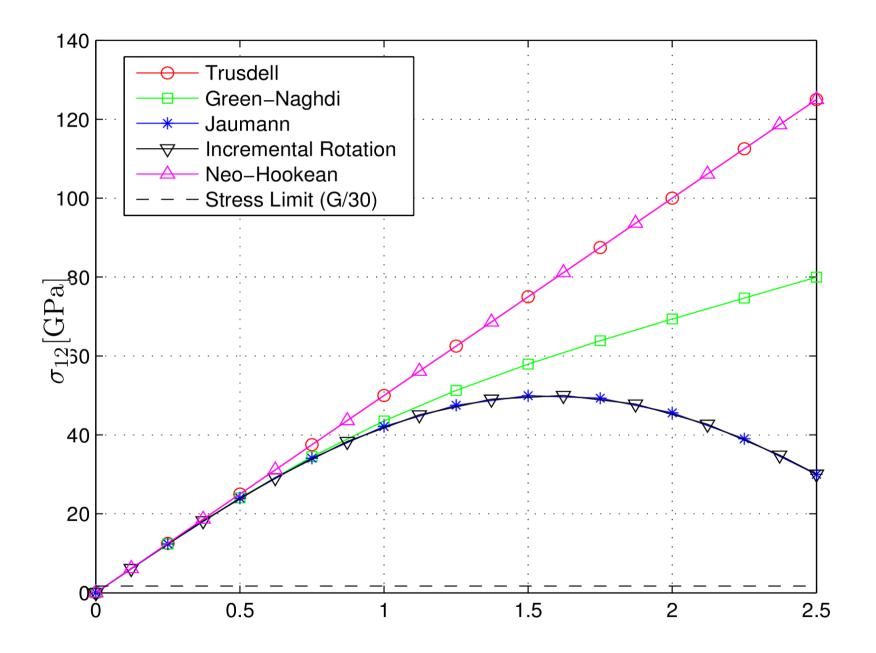
Volume-preserving left Cauchy-Green deformation tensor & first invariant:

$$\overline{\boldsymbol{b}} = J^{-2/3} \boldsymbol{F} \boldsymbol{F}^T, \quad \overline{I}_1 = \operatorname{tr} \left[\overline{\boldsymbol{b}} \right]$$

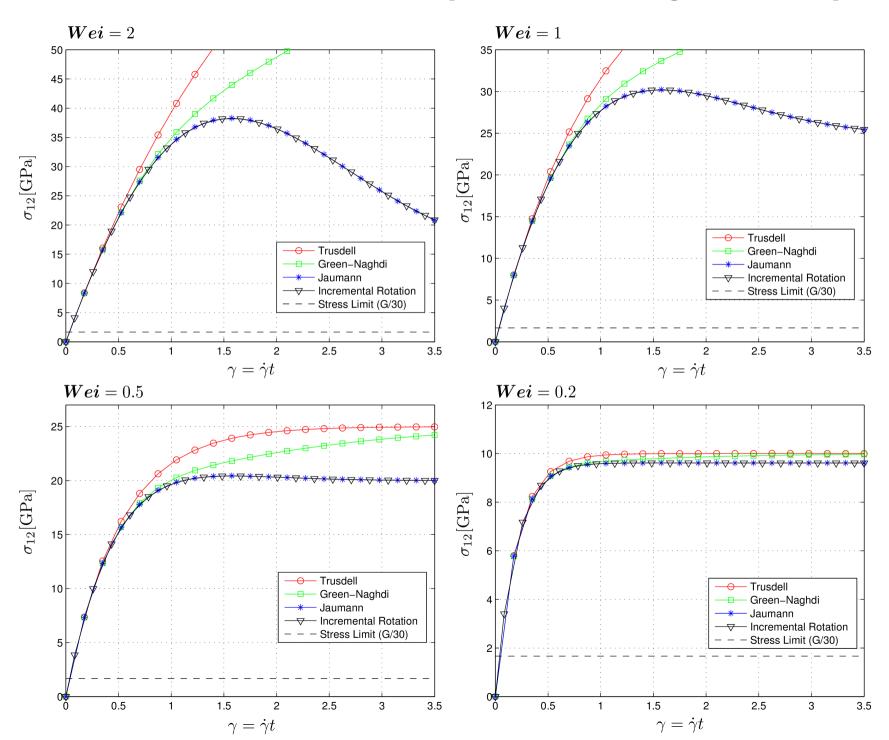
Cauchy stress:

$$\boldsymbol{\sigma} = J^{-1} \boldsymbol{F} \frac{\partial W}{\boldsymbol{F}} = J^{-1} \boldsymbol{G} \operatorname{dev} \begin{bmatrix} \overline{\boldsymbol{b}} \end{bmatrix} + K(J-1) \mathbf{1}$$
$$\boldsymbol{\sigma} = \boldsymbol{G} \operatorname{dev} [\boldsymbol{b}] = \boldsymbol{G} \begin{pmatrix} \frac{2}{3} (\dot{\gamma}t)^2 & \dot{\gamma}t & 0\\ \dot{\gamma}t & -\frac{1}{3} (\dot{\gamma}t)^2 & 0\\ 0 & 0 & -\frac{1}{3} (\dot{\gamma}t)^2 \end{pmatrix}$$

Elastic case



Visco-Elastic case (Weissenberg number)

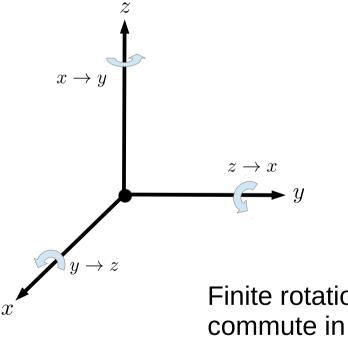


3D generalization of **2D** incremental rotation rate

Can we use a similar method in 3D?

In 2D vorticity pseudo-vector has a single component and instantaneous rotation axis is always perpendicular to the plane.

In 3D vorticity pseudo-vector has three components and instantaneous rotation axis can change in time:



$$\begin{pmatrix} w_x \\ w_y \\ w_z \end{pmatrix} = \begin{pmatrix} \frac{\partial v_z}{\partial y} - \frac{\partial v_y}{\partial z} \\ \frac{\partial v_x}{\partial z} - \frac{\partial v_z}{\partial x} \\ \frac{\partial v_y}{\partial x} - \frac{\partial v_x}{\partial y} \end{pmatrix}$$

Positive rotation directions: Counter-clockwise Coordinate system: Right-handed

Finite rotations around coordinate axis unfortunately do not commute in 3D. Nevertheless the 3D generalization of a 2D algorithm yields reasonable results (Rubinstein and Atluri, 1983).

Rubinstein and Atluri (1983). Objectivity of incremental constitutive relations over finite time steps in computational finite deformation analyses. Comput. Methods Appl. Mech. Engrg., 36, 277-290

3D generalization of **2D** incremental rotation rate

The 3D algorithm can be summarized as follows:

[1] Compute vorticity vector magnitude:

$$w = \sqrt{w_x^2 + w_y^2 + w_z^2}$$

$$\begin{pmatrix} n_x \\ n_y \\ n_z \end{pmatrix} = w^{-1} \begin{pmatrix} w_x \\ w_y \\ w_z \end{pmatrix}$$

[2] Compute unit rotation axis:

[3] Integrate incremental rotation angle: (average angular velocity is two times smaller than the vorticity vector magnitude)

$$\theta = \Delta t \ \left(\frac{w}{2}\right)$$

[4] Evaluate rotation matrix using Euler-Rodrigues formula:

$$R = \cos\theta \begin{pmatrix} 1 & & \\ & 1 & \\ & & 1 \end{pmatrix} + \sin\theta \begin{pmatrix} 0 & -n_z & n_y \\ n_z & 0 & -n_x \\ -n_y & n_x & 0 \end{pmatrix} + (1 - \cos\theta) \begin{pmatrix} n_x^2 & n_x n_y & n_x n_z \\ n_y n_x & n_y^2 & n_y n_z \\ n_z n_x & n_z n_y & n_z^2 \end{pmatrix}$$

[5] Rotate stress: $\tau^* = R \, \tau^n R^T$

Comparison with Jaumann stress rate

Consider a rather extreme case of 3D accelerated periodic rotational motion:

 $v_x = r\cos\theta\dot{\theta}\cos\phi - r\sin\theta\sin\phi\dot{\phi}$

 $v_y = r\cos\theta\dot{\theta}\sin\phi + r\sin\theta\sin\phi\dot{\phi}$

 $v_z = -r\sin\theta\dot{\theta}$

$$\phi(t) = 2\pi t^5$$

 $\theta(t) = \frac{\pi}{2} + \frac{\pi}{8}\sin(4\pi t^5)$

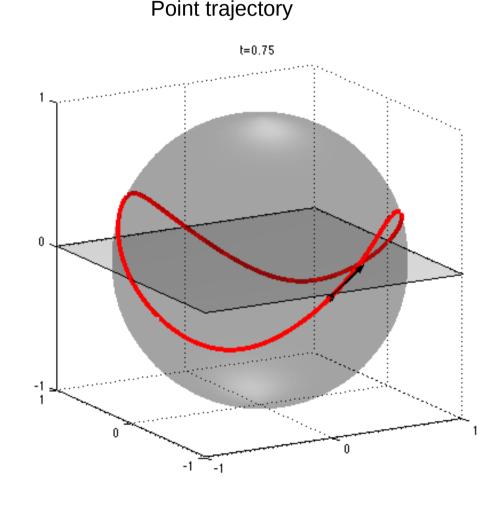
Assign randomly the stress tensor components at the initial time and integrate by thee different methods:

[A] Jaumann forward Euler

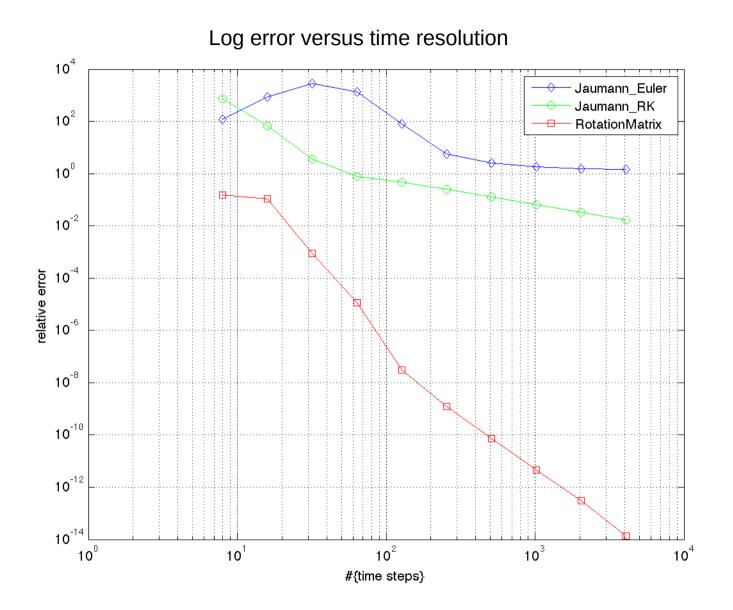
[B] Jaumann 4-th order Runge-Kutta

[C] Generalized 3D rotation matrix

After a full turn the stress components should the same as in the beginning.

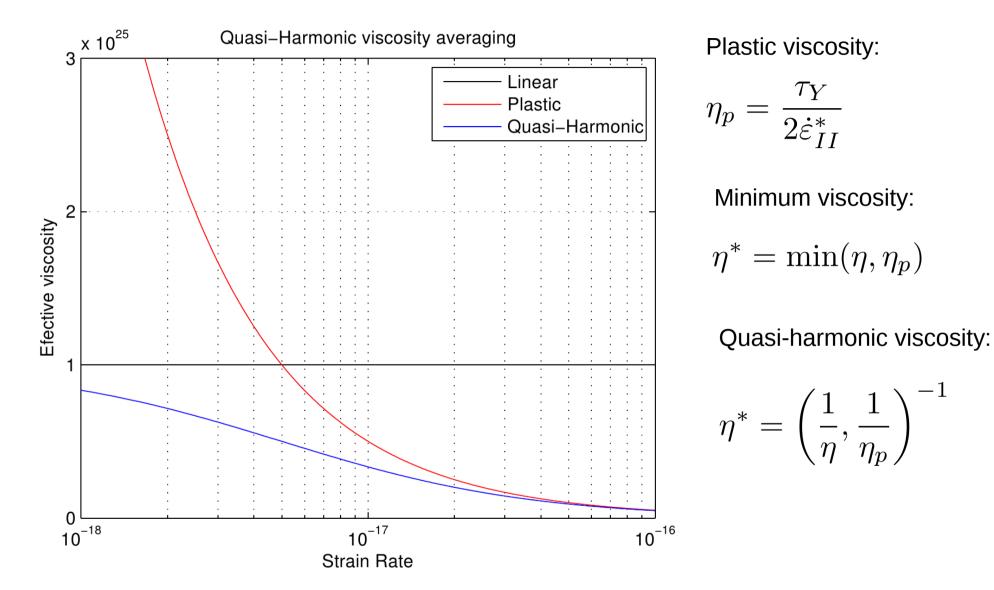


Comparison with Jaumann stress rate



Conclusion: 3D rotation matrix yields much better results than Jaumann rate

Minimum vs. quasi-harmonic plastic viscosity

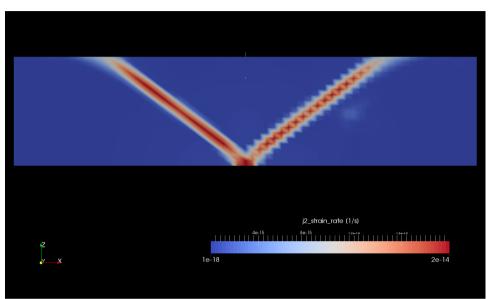


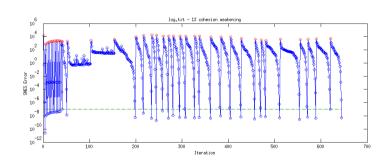
Both are coincident only at high strain rates

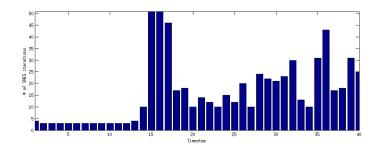
Quasi-harmonic has spurious plastic deformation below yield!

Minimum vs. quasi-harmonic plastic viscosity

Minimum viscosity model Hard to converge, sharp localization

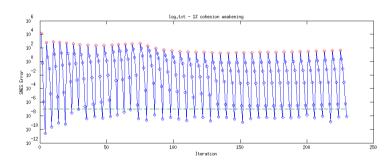


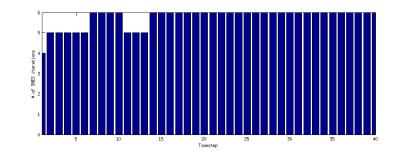




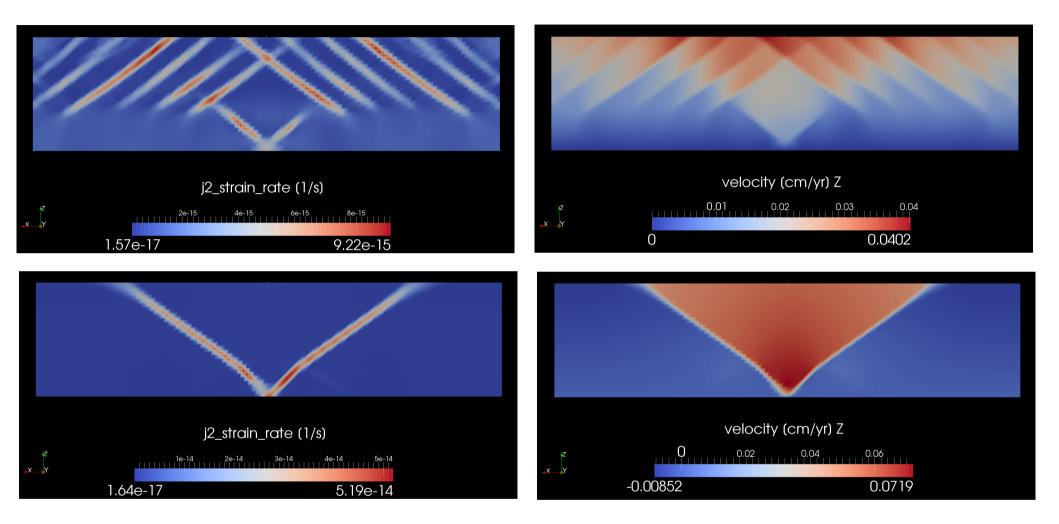
Quasi-harmonic viscosity model Easy to converge, very pure localization







Plasticity convergence issues

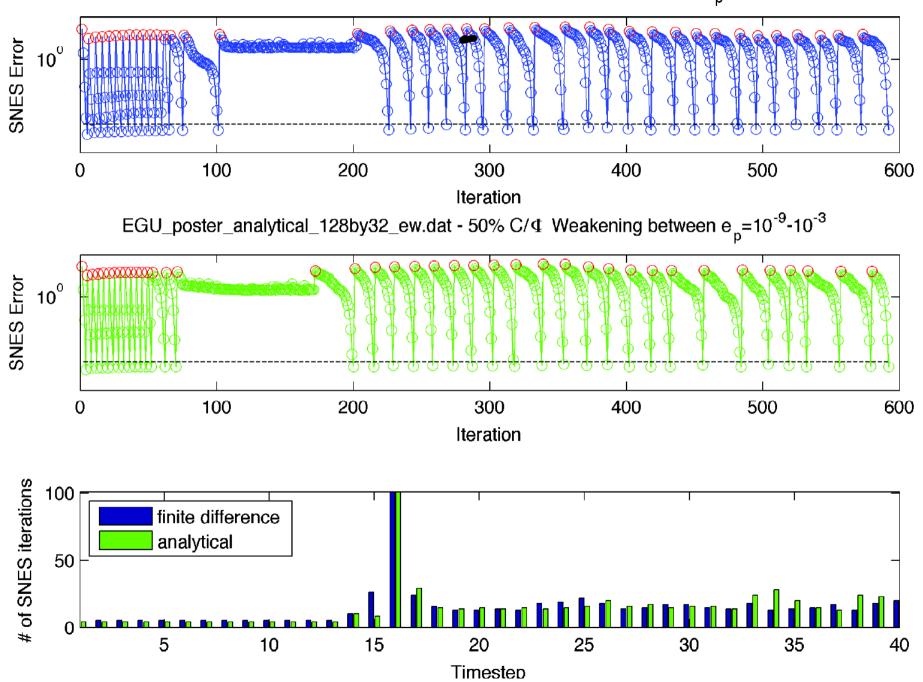


Plastic localization setup

Drucker-Prager elasto-plastic rheology

Plasticity convergence issues

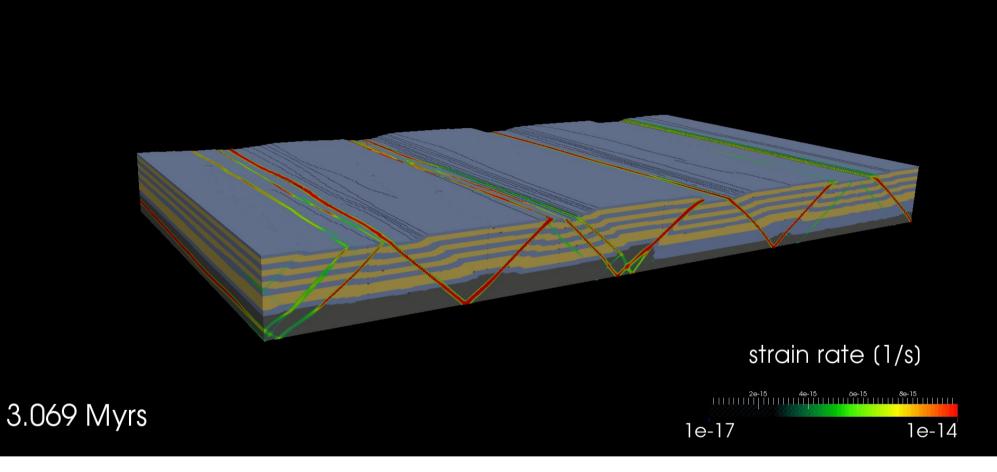
EGU_poster_mffd_128by32_ew.dat - 50% C/ Φ Weakening between $e_n = 10^{-9} - 10^{-3}$



Plasticity convergence issues (summary)

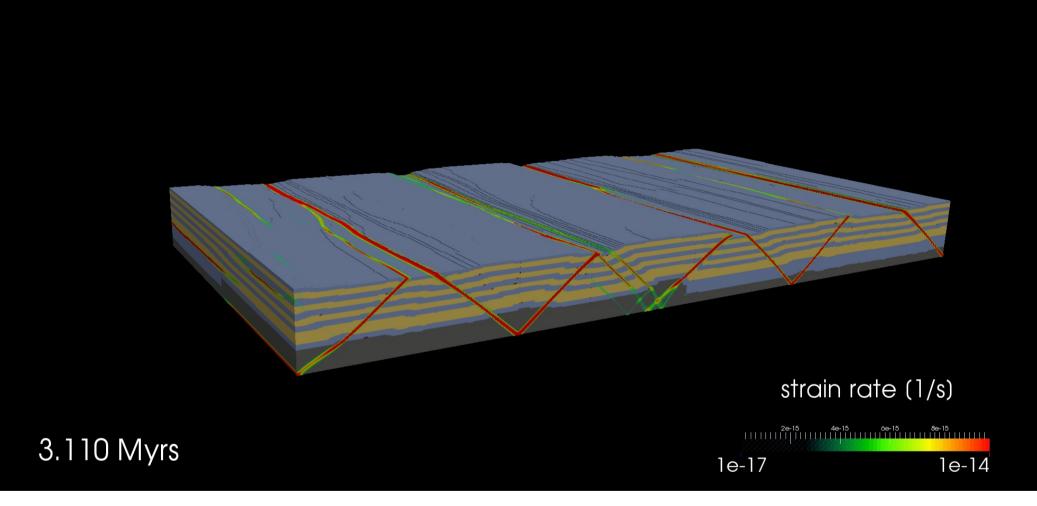
- Elasto-plastic setups converge better than visco-plastic
- Strain softening facilitates convergence
- Sometimes non-convergent solutions are reasonable (continuation is possible)
- A combination of Newton and Picard is necessary
- Line search and Eisenstat-Walker algorithms are helpful
- Visco-plastic pressure-dependent rheology may be not universally solvable (Spiegelman et al., 2016) despite quasi-harminic averaging.
- Quasi-harmonic averaging produces pure localization, but fast to converge
- Analytical Jacobian doesn't help to accelerate convergence

3D Multilayer detachment folding (2D heterogeneity)



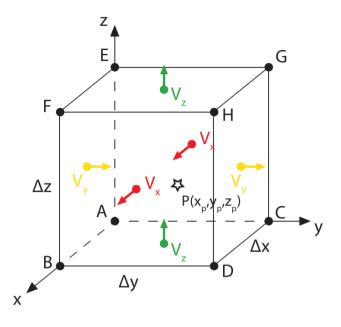
Grid resolution: 512 x 256 x 128 cells

3D Multilayer detachment folding (3D heterogeneity)



Grid resolution: 512 x 256 x 128 cells

Conservative velocity interpolation (CVI)



Wang et al. [2015]

Enough for FE

Not enough for FDSTAG

Velocities are not in the corners

Prevent unphysical marker dispersion:

$$V_i^P = V_i^L + \Delta V_i$$

Liner interpolation:

$$V_i^L(x_p, y_p, z_p) = (1 - x_p) \times (1 - y_p) \times [(1 - z_p) \times V_i^A + z_p \times V_i^E] + x_p \times (1 - y_p) \times [(1 - z_p) \times V_i^B + z_p \times V_i^F] + (1 - x_p) \times y_p \times [(1 - z_p) \times V_i^C + z_p \times V_i^G] + x_p \times y_p \times [(1 - z_p) \times V_i^D + z_p \times V_i^H],$$

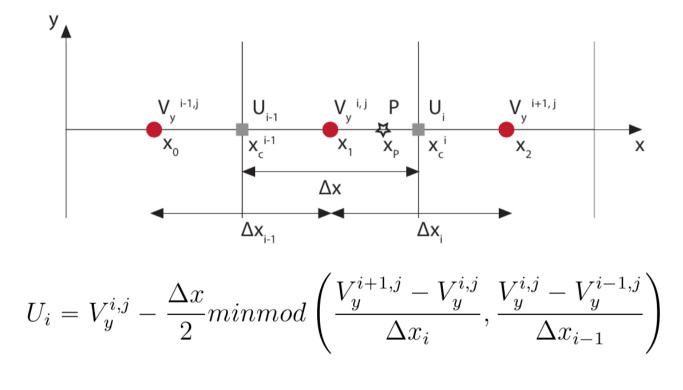
Correction:

$$\begin{split} &\Delta V_x = x_p (1 - x_p) (C_{10} + z_p C_{12}) \\ &\Delta V_y = y_p (1 - y_p) (C_{30} + x_p C_{31}) \\ &\Delta V_z = z_p (1 - z_p) (C_{20} + y_p C_{23}) \\ &C_{12} = \frac{\Delta x}{2\Delta y} [-V_y^A + V_y^B + V_y^C - V_y^D + V_y^E - V_y^F - V_y^G + V_y^H] \\ &C_{23} = \frac{\Delta z}{2\Delta x} [-V_x^A + V_x^B + V_x^C - V_x^D + V_x^E - V_x^F - V_x^G + V_x^H] \\ &C_{31} = \frac{\Delta y}{2\Delta z} [-V_z^A + V_z^B + V_z^C - V_z^D + V_z^E - V_z^F - V_z^G + V_z^H] \\ &C_{10} = \frac{\Delta x}{2\Delta z} [V_z^A - V_z^B - V_z^E + V_z^F] + \frac{\Delta x}{2\Delta y} [V_y^A - V_y^B - V_y^C + V_y^D + C_{31}] \\ &C_{20} = \frac{\Delta z}{2\Delta x} [V_x^A - V_x^B - V_x^E + V_x^F + C_{12}] + \frac{\Delta z}{2\Delta y} [V_y^A - V_y^C - V_y^E + V_y^G] \\ &C_{30} = \frac{\Delta y}{2\Delta x} [V_x^A - V_x^B - V_x^C + V_x^D] + \frac{\Delta y}{2\Delta z} [V_z^A - V_z^C - V_z^E + C_{23}] \end{split}$$

Minmod Interpolant

Interpolate velocities from faces to corners:

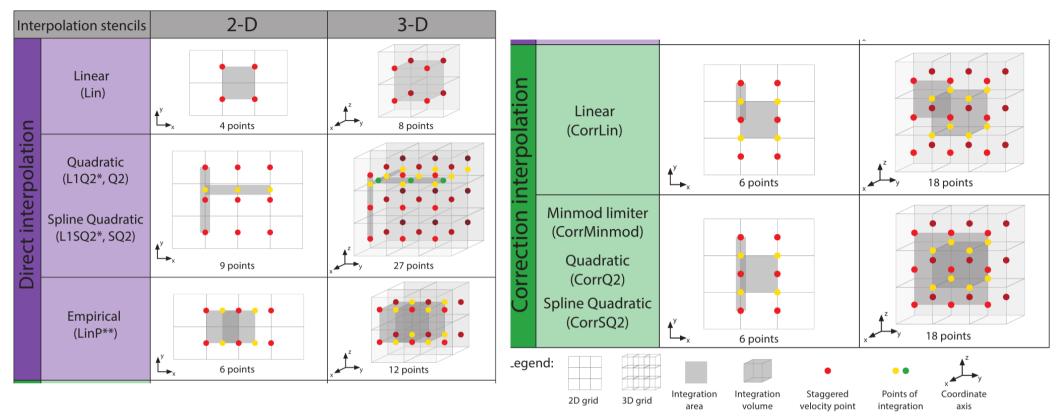
- linear Lin
- quadratic Q2
- spline quadratic SQ2
- Minmod



$$minmod(A, B) = \begin{cases} A, & \text{if } A \cdot B > 0 \text{ and } |A| \leq |B| \\ B, & \text{if } A \cdot B > 0 \text{ and } |A| > |B| \\ 0, & \text{if } A \cdot B \leq 0 \end{cases}$$

Jenny et al. [2001] and Meyer and Jenny [2004]

Conservative velocity interpolation (CVI)



Püsök et al. [2016] (Submitted)

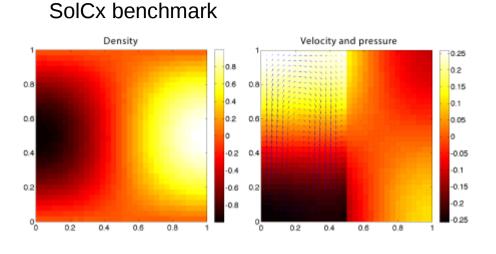
Direct interpolation methods dont' apply correction

LinP interpolates from corners and pressure nodes cell centers (T. Gerya, private communication)

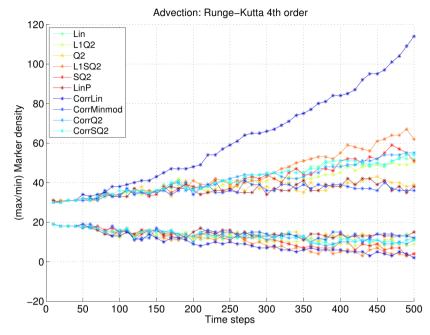
$$V_i^P = AV_i^{Lin} + (1 - A)V_i^{pressure}$$

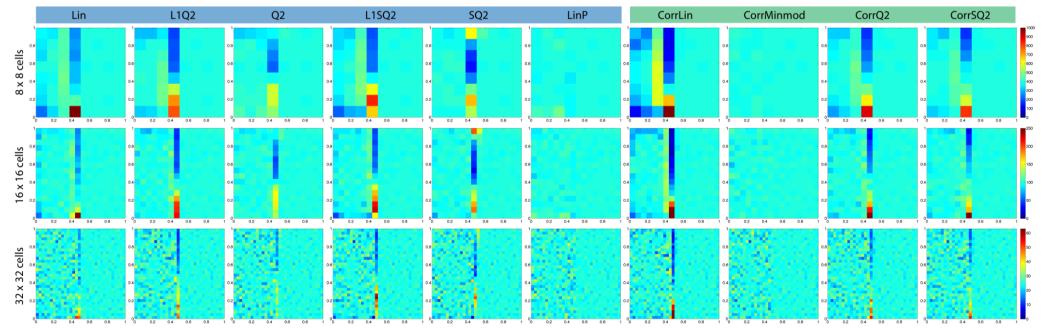
Corrected interpolation methods apply correction after different interpolation to the corners

Velocity interpolation comparison



Marker density distribution





LinP (Gerya) and CorrMinmod produce best results. More details are coming soon Püsök et al. [2016]

Gradient-based inversion methods

Minimize misfit function (F), formulated in terms of model parameters (p) $\min_{p}(F(p))$

Gradient descent:
$$p_{n+1} = p_n - \gamma G(p_n)$$
 $G = \frac{dF}{dp}$ - gradient vectorNewton method: $p_{n+1} = p_n - \alpha H(p_n)^{-1}G(p_n)$ $H = \frac{dG}{dp}$ - Hessian matrix

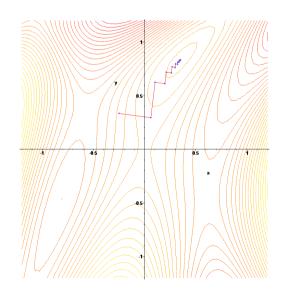
Hessian matrix can be efficiently approximated by BFGS algorithm

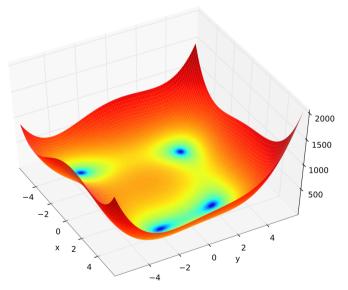
DISADVANTAGES:

- Requires derivatives
- Doesn't sample misfit function
- Sensitive to local minima
- Unstable slow convergence

ADVANTAGES:

Relatively simple
Works for many parameters





1 T

Efficient adjoint gradient evaluation

Misfit function (F) is normally defined using the forward problem solution (x):

F(x, x(p))

Introducing residual and Jacobian of the forward problem:

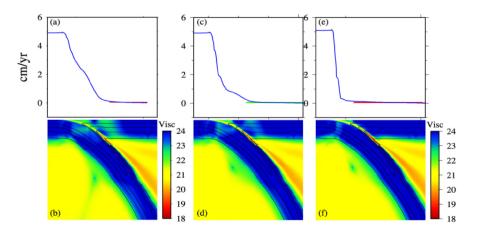
$$R(x) = 0$$
 $J = \frac{\partial R}{\partial x}$

we can efficiently evaluate the gradient using the adjoint method:

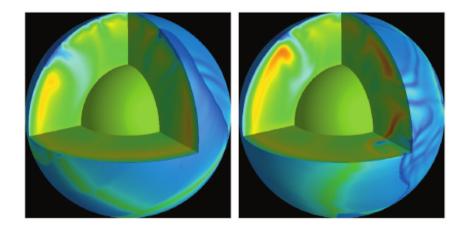
$$G = -\psi^T \frac{\partial R}{\partial p} \qquad \psi = J^{-T} \left(\frac{\partial F}{\partial x}\right)^T$$
which only additionally required evaluating the derivatives $\frac{\partial R}{\partial r}$ and $\frac{\partial F}{\partial r}$

which only additionally requires evaluating the derivatives $\frac{\partial p}{\partial p}$ and $\frac{\partial r}{\partial x}$

Widely used technique in geodynamic model community (but not only), e.g.:



Ratnaswamy et al., 2015



Bunge et al., 2003

Adjoint gradients explained

Objective function, formulated in terms of forward problem solution (x) F(x, x(p))

Minimization (optimization, inversion)

Find input parameters (p) such that F assumes minimum (preferably global) value

```
\min_{p}(F(x, x(p)))
```

Gradient-based methods (steepest descend, BFGS) require calculating the gradient of the objective function w.r.t input parameters

$$G = \frac{dF}{dp}$$

LIMITATION! Gradient methods are not suitable for finding global minima.

Gradient of objective function

How do we get gradient? Just use chain rule!

$$G = \frac{dF}{dp} = \frac{\partial F}{\partial p} + \frac{\partial F}{\partial x}\frac{dx}{dp}$$

 $\frac{\partial F}{\partial p}$

- Easy term (assumed to be zero in what follows)

 $\frac{\partial F}{\partial x}$ - Easy term (objective function is usually directly expressed in terms of forward problem solution)

 $\frac{dx}{dp} - \text{difficult term (so-called (flow) sensitivity parameters)} \\ \text{ONE OF THE MAJOR LIMITATIONS OF ADJOINT METHOD}$

x should be smooth and differentiable function of p. For certain rheology types (DP plasticity) it is not the case.

Sensitivity parameters

How to get dx/dp? Use chain rule once again plus an observation!

R(x) = 0 - residual of the forward problem

$$\frac{dR}{dp} = \frac{\partial R}{\partial p} + \frac{\partial R}{\partial x} \frac{dx}{dp}$$
 - derivative of the residual (chain rule)

$$\frac{dR}{dp} = 0$$
 - why is that? Simple: forward problem residual must be zero for any set of input parameters. MAJOR TRICK!

$$\frac{\partial R}{\partial x} = J$$
 - Jacobian matrix

$$\frac{dx}{dp} = -J^{-1}\frac{\partial R}{\partial p}$$

- solve for sensitivity parameters. VERY EXPENSIVE! (requires one linear solve with Jacobian per input parameter)

Adjoint system

How to make it less expensive?

$$G = \frac{\partial F}{\partial x} \frac{dx}{dp} = -\frac{\partial F}{\partial x} J^{-1} \frac{\partial R}{\partial p}$$

$$\psi = J^{-T} \left(\frac{\partial F}{\partial x}\right)^T$$

 $G = -\psi^T \frac{\partial R}{\partial p}$

- solve adjoint system. CHEAP! Requires only one solve, but with Jacobian transpose (adjoint)

- evaluate gradient (check by plugging psi)

$$(AB)^{T} = B^{T}A^{T}$$

 $(A)^{-T} = (A^{T})^{-1} = (A^{-1})^{T}$

The major advantage of adjoint method is that it requires only one linear solve per gradient evaluation. The disadvantage is that this solve involves Jacobian transpose. Symmetric cases are insensitive, but certain rheology types (DP plasticity) and discretizations (FDSTAG) are sensitive.

Residual derivatives

The only remaining term is the derivative of forward problem residual:

 $\frac{\partial R}{\partial p}$

For each new type of the input parameter (e.g. density, power-law exponent) it can be obtained by directly differentiating the residual expressions.

Alternatively one can use finite differences (for each input parameter):

$$\frac{\partial R}{\partial p_i} = \frac{R(p + e_i h) - R(p)}{h}$$

The derivatives are normally very sparse vectors, since only limited number of residual components are affected by each input parameter.

Irrespective of the evaluation method, one should utilize the sparsity.

Adjoint scaling law

Scaling law relates change in the observable with the change in the solution parameter.

Consider general multi(two)-parametric scaling law:

 $q = a x^b y^c$

Exponents can be determined separately by taking derivatives:

$$\frac{\partial q}{\partial x} = a \ b \ x^{b-1} y^c = \frac{b \ q}{x}$$

Which can be rearranged as (provided that gradients are known):

$$b = \frac{\partial q}{\partial x} \frac{x}{q}$$

We can view the observable (q) as an objective function and compute adjoint gradients!

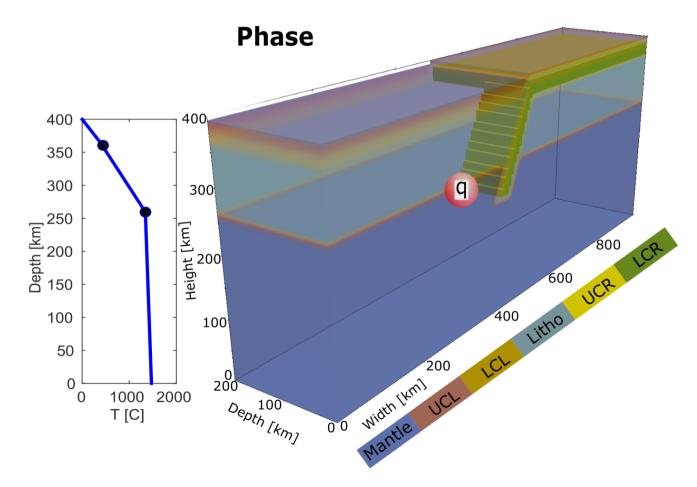
The remaining step is finding the prefactor:

$$a = \frac{q}{x^b y^c}$$

3D subduction synthetic test

Adjoint gradient evaluation is implemented in LaMEM (Reuber et al., in preparation) LaMEM is integrated with TAO package (Toolkit for Advanced Optimization)

More info is on poster of Georg Reuber

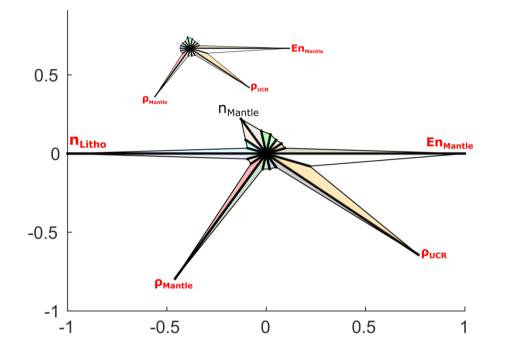


Growth rate at point q is an observable.

Activation energy and power law exponent are the scaling law parameters.

Adjoint scaling law result

Normalized polar plot of scaling law exponents

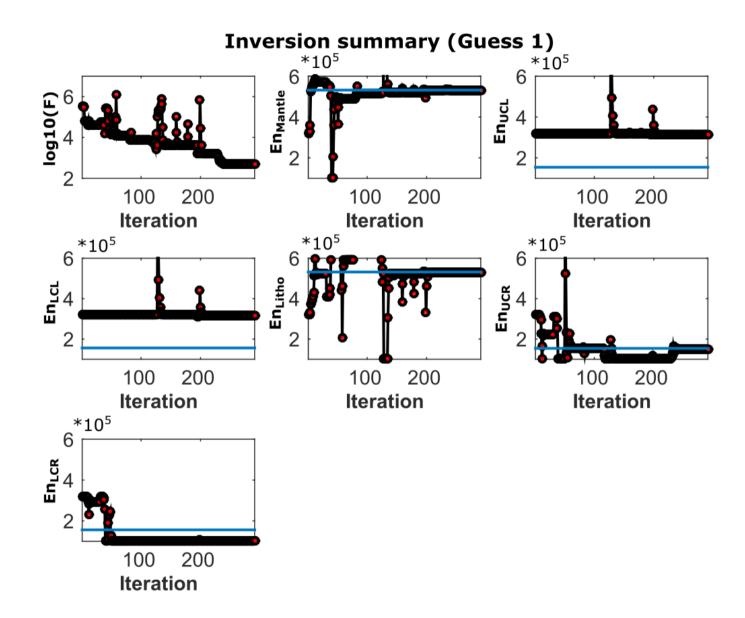


Scaling law

 $9.5 = 6.3e123 * 532000^{-18.2} * 154000^{0} * 156000^{0} * 532000^{-1} * 154000^{-2.2} * 256000^{-2.7} * 2.3^{0} * 2.4^{0} * 3.5^{0} * 2.3^{0} * 2.4^{0} * 3300^{13} * 2700^{-5e-4} * 3400^{-0.004} * 3300^{1.1} * 2700^{-14} * 3400^{3.3}$

 $q = x * En^{a}_{Mantle} * En^{b}_{UCL} * En^{c}_{LCL} * En^{d}_{Litho} * En^{e}_{UCR} * En^{f}_{LCR} * n^{g}_{UCL} * n^{h}_{LCL} * n^{i}_{Litho} * n^{j}_{UCR} * n^{k}_{LCR} * \rho^{l}_{Mantle} * \rho^{m}_{UCL} * \rho^{n}_{LCL} * \rho^{o}_{Litho} * \rho^{p}_{UCR} * \rho^{q}_{LCR}$

Adjoint inversion result



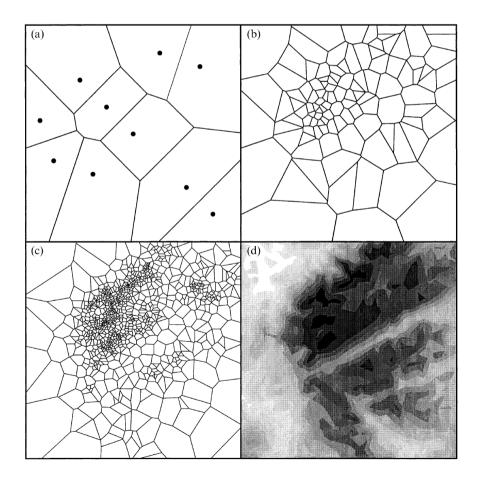
Inversion results for 3D subduction test. Not all the solution parameters are correctly inverted. Gradient-based methods are non-unique!

Neighborhood algorithm (NA) (Sambridge, 1999)

Similar to simulated annealing, genetic and Monte-Carlo algorithms

Builds piecewise-constant Voronoi interpolant of the misfit function

Refines by performing a uniform random walk within lowest misfit cells



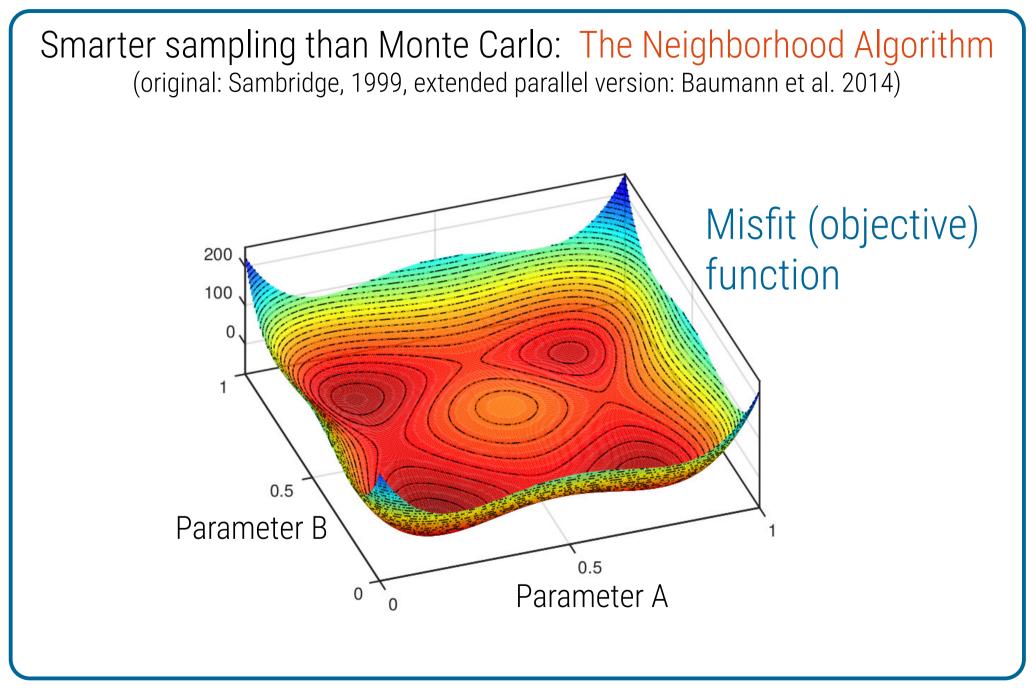
ADVANTAGES:

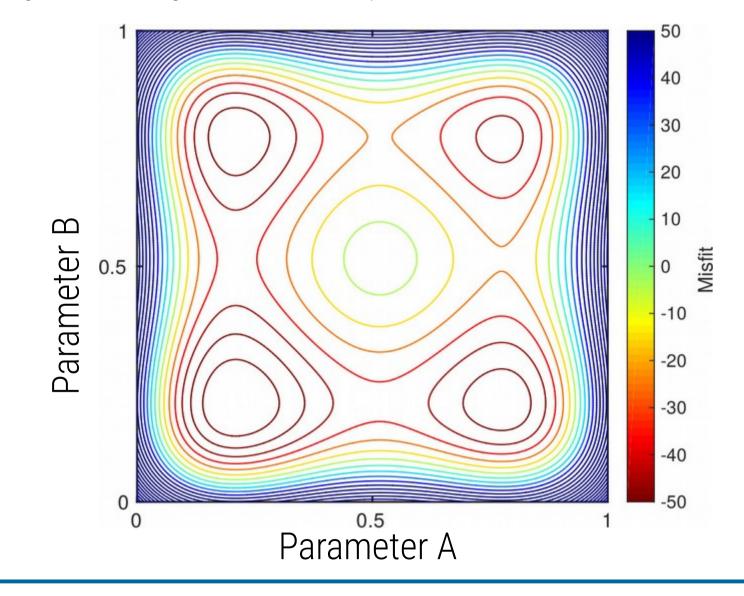
- Derivative-free
- Samples misfit function
- Attempts to identify multiple minima

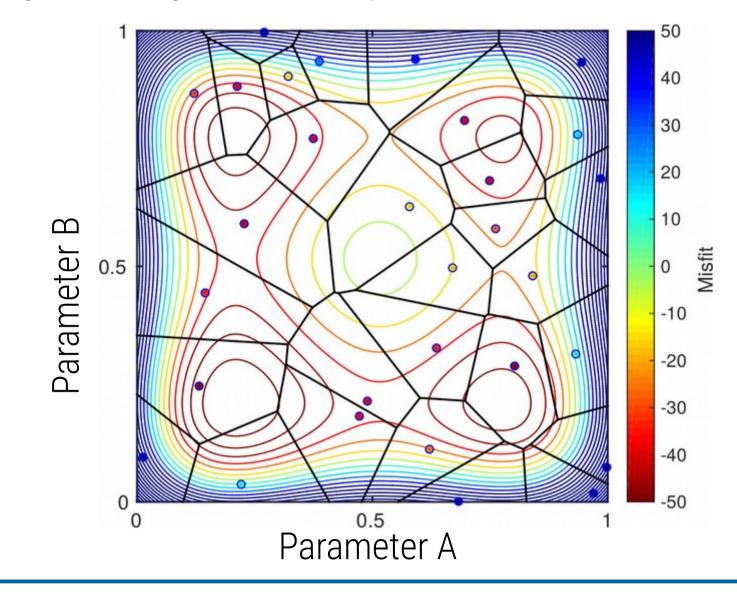
DISADVANTAGES:

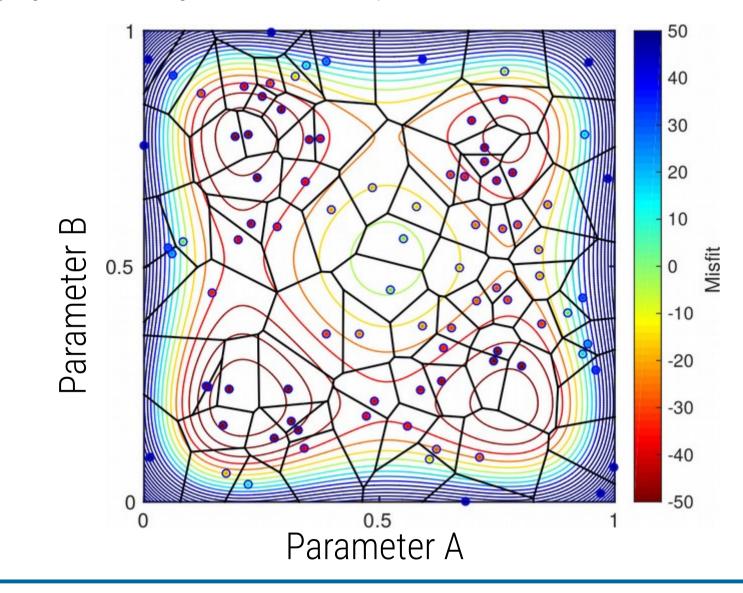
- Requires many forward models
- Limited number of parameters

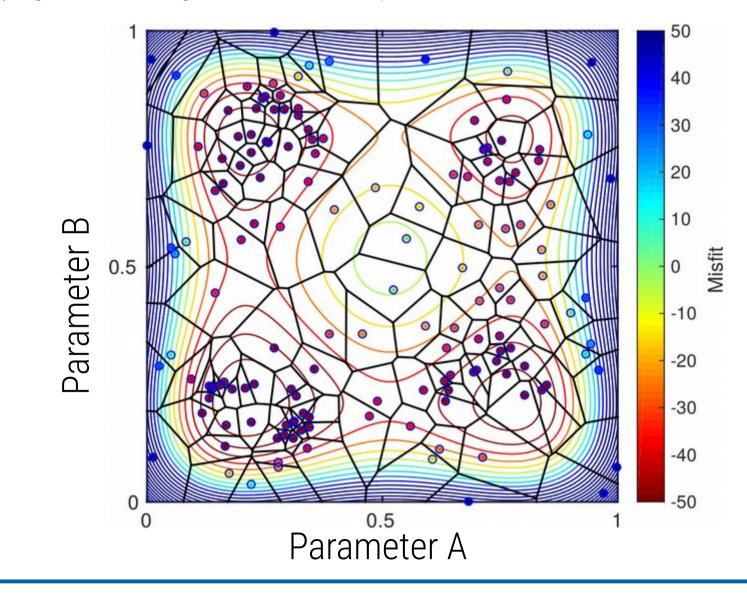
Sambridge, 1999

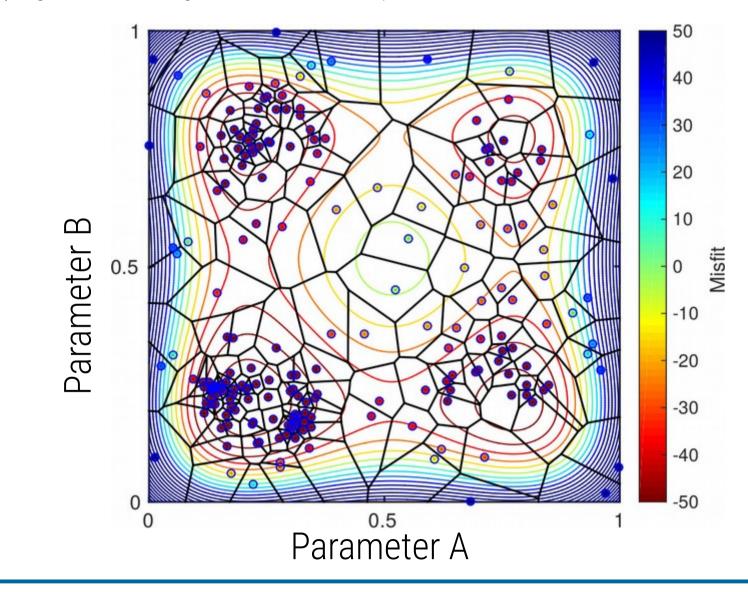


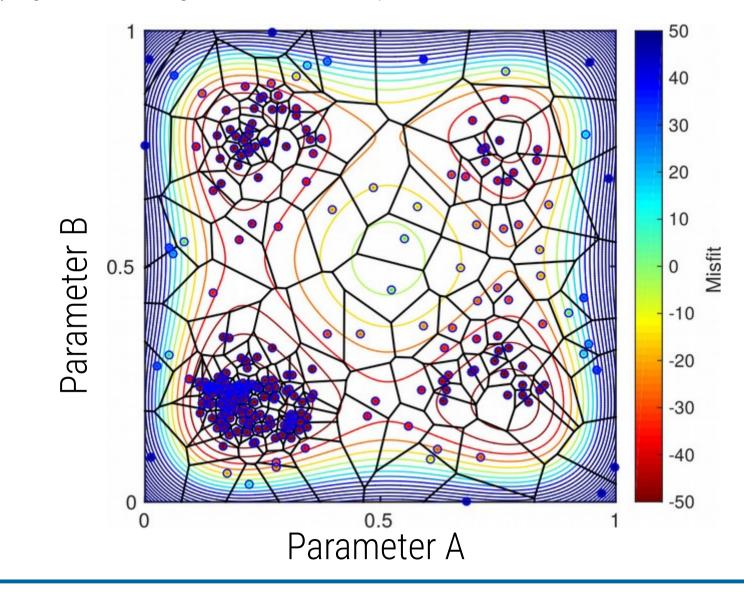












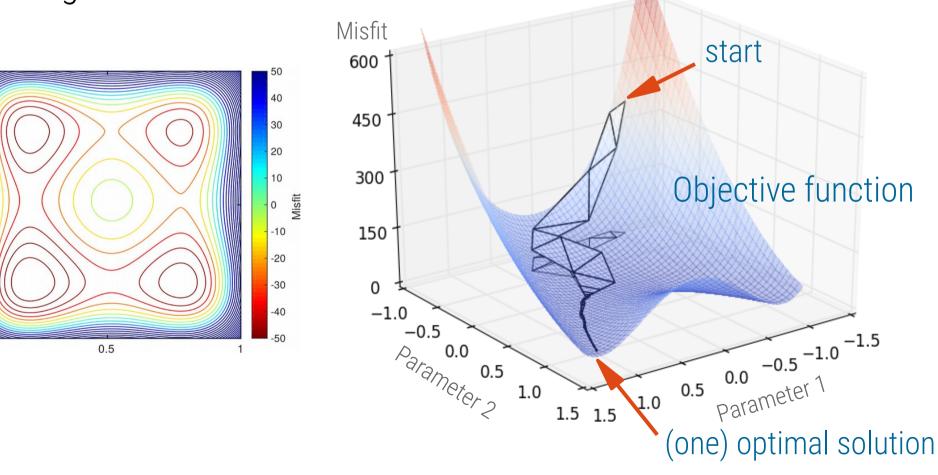
Downhill Simplex Method (Nelder & Mead 1965)

- Integrated with LaMEM using TAO package
- Always replace worst vertex of simplex
 - High dimensions

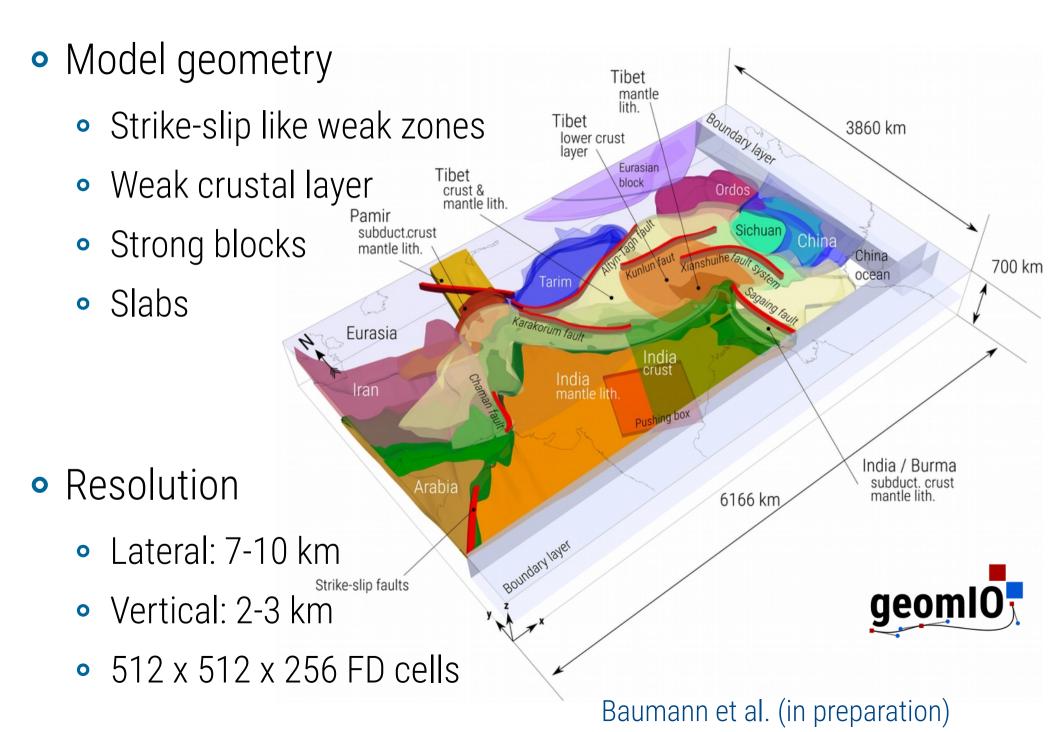
0.5

0

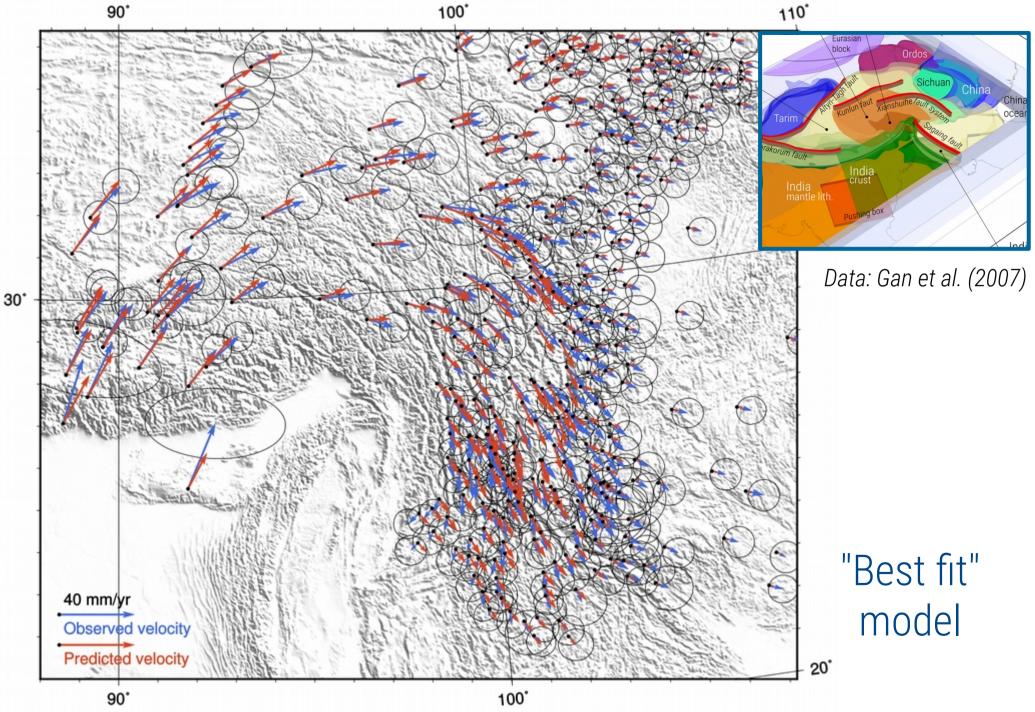
0



3D India-Asia collision



3D India-Asia collision



3D India-Asia collision

