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LaMEM (Lithosphere and Mantle Evolution Model)

• 3D thermo-mechanical code, written in C
 uses PETSc.

• Nonlinear visco-elasto-plastic rheologies

• Runs on 1-458’752 processors 
routinely on 1024-4096 

• Current version of code only supports staggered 
difference method (faster than FE)

• Can use a large variety of (multigrid) solvers 
(Galerkin GMG, AMG, Coupled/decoupled)

• Marker-and-cell method, free surface, (coupled to 
erosion model)

• Polygonal meshes to create (complex) input 
geometries.

Maximum 
resolution
3584 x 2048 x 
2048 cells



  

https://bitbucket.org/bkaus/lamem



  

Parallel staggered grid layout implementation

Equations:

Legend:



  

Parallel staggered grid layout implementation

NAME x-si
ze

y-si
ze

z-si
ze

Ghost 
points

DA_CORNER Nx Ny Nz None

DA_CENTER Nx-1 Ny-1 Nz-1 All

DA_XY Nx Ny Nz-1 None

DA_XZ Nx Ny-1 Nz None

DA_YZ Nx-1 Ny Nz None

DA_X Nx Ny-1 Nz-1 Y & Z

DA_Y Nx-1 Ny Nz-1 X & Z

DA_Z Nx-1 Ny-1 Nz X & Y

PETSc Distributed Array (DMDA)

Altogether 8 DMDA objects are used

Corner DMDA is used for ParaView output

Coordinates are stored in local 1D arrays 
since grid is rectilinear

● Parallel (MPI) each processor owns its 
local  part of the grid

● Natural I-J-K indexing (global indices)!

● Local vectors with ghost points

● Boundary ghost points

● Global distributed vectors w/o ghost 
points

● Local to Global scatter/assembly 
operations



  

Example: interpolation scheme for the central points

There are three set of edge points: 
XY, XZ and YZ, defining corresponding 
shear strain rates:

Central point defines normal strain rates:

Second invariant discretization:

Nonlinear terms discretization



  

Edge point interpolation scheme

Nonlinear terms discretization



  

FDSTAG vs. FE convergence (SolCx benchmark)

Viscosity contrast 1000, element boundary aligned with jump

High-order element wins



  

FDSTAG is not so bad
High-order element fails

FDSTAG vs. FE convergence (SolCx benchmark)

Viscosity contrast 1000, element boundary NOT aligned with jump



  

FDSTAG vs. FE memory footprint

Q2Pm1 FDSTAG

FDSTAG requires significantly less memory!
Matrix-vector multiplications are much faster!



  

Stress rotation terms (incremental stress rotation as described later)

Nonlinear viso-elasto-plastic rheology

Effective strain rate and invariant

Spin tensor

Stress update

Deviatoric strain rate

Effective viscosity



  

Drucker-Prager yield stress

Nonlinear viso-elasto-plastic rheology

Peierls 

Diffusion 

Dislocati
on 

Diffusion Dislocation and Peierls constants

Effective creep viscosities Peierls effective exponent



  

Global nonlinear iterations

Preconditioned Newton iteration with line search

Jacobian-Free-Newton-Krylov (JFNK)  or analytical matrix-free Jacobian

-snes_mf_operator (PETSc SNES solver)

Jacobian and residual

Momentum 
Continuity 
Energy

Velocity
Pressure
Temperature

Preconditioner matrix



  

Picard vs. Newton

Iteration number

Quasi-linear residual form: 

Picard fixed-point iteration:  

Picard approximation facilitates convergence at the initial stages

Switching to Picard can improve Newton convergence



  

Analytical Jacobian Finite Elements

Stress and strain rate vectors

Projection matrix and projection

Jacobian iteration

Nonlinear residuals

Pressure projection vector



  

Analytical Jacobian Finite Elements

Jacobian blocks Tangent matrix

Visco-elastic nonlinear parameter

Plastic  nonlinear parameter

Normalized flow vector



  

Analytical Jacobian Finite Difference (example)

  

Momentum residual contributions

Residual derivatives (velocity)

Residual derivatives (pressure)

Stress derivatives



  

Analytical Jacobian Finite Difference (example)

  

Viscosity derivatives

(Plastic case)

Strain rate derivatives

Second invariant contribution derivatives



  

Velocity restriction         Velocity prolongation       Pressure restriction      Pressure prolongation

Described in Cai et al. 2014

Galerkin coarsening

(COUPLED)
Galerkin MG applied to full matrix

(BLOCK MG - uncoupled)
Galerkin MG applied to K block only

Galerkin Multigrid

Preconditioners



  

Multiple spheres is a more tricky problem

Coupled/uncoupled have similar speeds

Coupled: 3 GMG levels with FGMRES (rtol 1e-6), Jacobi(20,20) as smoothener; direct coarse grid, 4 cores
Block: FGMRES (rtol 1e-6) for full system with 1 V-cycle for the K-block, 3 GMG levels with Jacobi(20,20) as smoother and direct 
coarse grid

643 nodes   Multiple spheres setup
3 GMG levels Coupled multigrid Block MG  
Viscosity 
contrast

# outer KSP 
it Time [s]

# outer KSP 
it

Total solve 
[s]

1 7 6.1 6 3.9
10 10 8 11 6

100 15 11.7 18 10.2
1000 36 27.6 45 23
10000 114 82 154 80.5

1.00E+05 378 266 585 297

643 nodes   Falling block setup
3 GMG levels Coupled multigrid Block MG  
Viscosity 
contrast

# outer KSP 
it Time [s]

# outer KSP 
it Time [s]

1 7 6.1 9 6.4
10 10 8.2 13 8.4

100 12 9.6 20 11.9
1000 17 13.2 30 17.1

10000 40 29 71 38
1.00E+05 155 107 267 137

Viscosity sinker=1, viscosity matrix= 1/VC

Coupled vs. Uncoupled MG (1 vs. 10 falling blocks)



  Coupled MG is significantly faster for this setup

Subduction of lithospheric plates with viscoplastic 
rheology

3 GMG levels   128x32x32  

Resolution   
                

# SNES 
(nonlinear)

# KSP it 
(total)

Time per 
timestep 
[s]

Coupled MG 2 40 12
Block MG 2 100 24

4 GMG levels   256x64x64  

Resolution    
               

# SNES 
(nonlinear) # KSP it Time [s]

Coupled MG 2 30 145

Block MG 5 250 759

Oceanic plate

Small island

Coupled vs. Uncoupled MG (typical production run)



  

Cores Total grid size MG 
Levels 

Coarse Grid 
size

Velocity DOF # KSP 
iterations

Time
step [s]

Time/iterations 
[s]

64 128x128x128 2 64x64x64 6.3 Mio 65 155 2.38

512 256x256x256 3 64x64x64 50.5 Mio 67 159 2.37

4096 512x512x512 4 64x64x64 403 Mio 71 168 2.37

32768 1024x1024x1024 5 64x64x64 3.2 Bio 71 209 2.94

65536 2048x1024x1024 5 128x64x64 6.4 Bio 121 353 2.92

131072 2048x2048x1024 5 128x128x64 12.9 Bio 112 436 3.89

262144 2048x2048x2048 5 128x128x128 25.8 Bio 81 482 5.95

Weak scaling



  

Weak scaling

Maximum resolution
3584 x 2048 x 2048 cells



  

Continuum stress rates

Truesdell, Green-Naghdi and Jaumann rates:

Spatial velocity gradient, spin and angular velocity tensors:

Deformation gradient:

Rotation and stretch tensors (polar decomposition)



  

Time integrated Jaumann stress rate (2D)

Jaumann rate expresses the rotated stress from previous time step as:

Beuchert and Podladchikov (2010). Viscoelastic mantle convection and lithospheric stresses. Geophys. J. Int., 183, 35–63.

Gerya (2010) Introduction to numerical Geodynamic Modelling.

which can be viewed (e.g. Beuchert and Podladchikov, 2010) as a truncated 
Taylor series expansion of a simple stress rotation formula:

Jaumann rate expression imposes severe time step restrictions.
It is common (e.g. Geria, 2010) to use the original stress rotation formula and
estimate rotation angle from the time integration of the vorticity field:



  

Simple shear test
Material motion:

Deformation gradient:

Spatial  velocity gradient, rate of deformation, and spin tensors:

Rotation tensor (polar decomposition) and angular velocity tensor:



  

Elastic case

Neo-Hookean (elastic stored energy function):

Determinant of deformation gradient (volume change):

Volume-preserving left Cauchy-Green deformation tensor & first invariant:

Cauchy stress:



  

Elastic case



  

Visco-Elastic case (Weissenberg number)



  

Positive rotation directions: Counter-clockwise
Coordinate system: Right-handed

Can we use a similar method in 3D? 

In 2D vorticity pseudo-vector has a single component and instantaneous rotation 
axis is always perpendicular to the plane.

In 3D vorticity pseudo-vector has three components and instantaneous rotation 
axis can change in time:

3D generalization of 2D incremental rotation rate

Rubinstein and Atluri (1983). Objectivity of incremental constitutive relations over finite time steps in computational finite deformation analyses.
Comput. Methods Appl. Mech. Engrg., 36, 277-290

Finite rotations around coordinate axis unfortunately do not 
commute in 3D. Nevertheless the 3D generalization of a 2D 
algorithm yields reasonable results (Rubinstein and Atluri, 1983).



  

[1] Compute vorticity vector magnitude:

3D generalization of 2D incremental rotation rate

The 3D algorithm can be summarized as follows:

[2] Compute unit rotation axis:

[4] Evaluate rotation matrix using Euler-Rodrigues formula:

[3] Integrate incremental rotation angle:
      (average angular velocity is two times smaller 
       than the vorticity vector magnitude)

[5] Rotate stress:



  

Comparison with Jaumann stress rate

Consider a rather extreme case of 3D accelerated periodic rotational motion:

Point trajectory

Assign randomly the stress tensor 
components at the initial time and 
integrate by thee different methods:

[A] Jaumann forward Euler

[B] Jaumann 4-th order Runge-Kutta

[C] Generalized 3D rotation matrix

After a full turn the stress components should the same as in the beginning.



  

Comparison with Jaumann stress rate

Conclusion: 3D rotation matrix yields much better results than Jaumann rate

Log error versus time resolution 



  

Minimum vs. quasi-harmonic plastic viscosity

Plastic viscosity:

Minimum viscosity:

Quasi-harmonic viscosity:

Both are coincident only at high strain rates

Quasi-harmonic has spurious plastic deformation below yield!



  

Minimum vs. quasi-harmonic plastic viscosity
Minimum viscosity model 
Hard to converge, sharp localization

Quasi-harmonic viscosity model 
Easy to converge, very pure localization



  

Plasticity convergence issues

Plastic localization setup 

Drucker-Prager elasto-plastic rheology



  

Plasticity convergence issues



  

Plasticity convergence issues (summary)

● Elasto-plastic setups converge better than visco-plastic

● Strain softening facilitates convergence

● Sometimes non-convergent solutions are reasonable (continuation is possible)

● A combination of Newton and Picard is necessary

● Line search and Eisenstat-Walker algorithms are helpful

● Visco-plastic pressure-dependent rheology may be not universally solvable 
(Spiegelman et al., 2016) despite quasi-harminic averaging.

● Quasi-harmonic averaging produces pure localization, but fast to converge

● Analytical Jacobian doesn't help to accelerate convergence



  

3D Multilayer detachment folding (2D heterogeneity)

Grid resolution: 512 x 256 x 128 cells



  

3D Multilayer detachment folding (3D heterogeneity)

Grid resolution: 512 x 256 x 128 cells



 Conservative velocity interpolation (CVI)  

Wang et al. [2015]

Enough for FE

Not enough for FDSTAG 

Velocities are not in the corners

Prevent unphysical marker dispersion:  

Liner interpolation:

Correction:



Minmod Interpolant

Jenny et al. [2001] and Meyer and Jenny [2004]

Interpolate velocities from faces to corners: 
● linear - Lin
● quadratic - Q2
● spline quadratic SQ2
● Minmod



 Conservative velocity interpolation (CVI) 

Püsök et al. [2016] (Submitted)

Direct interpolation methods dont' apply correction

LinP interpolates from corners and pressure nodes cell centers (T. Gerya, private communication)

Corrected interpolation methods apply correction after different interpolation to the corners



Velocity interpolation comparison

LinP (Gerya)  and CorrMinmod produce best results. 
More details are coming soon Püsök et al. [2016]

SolCx benchmark

Marker density distribution



Gradient-based inversion methods

Minimize misfit function (F), formulated in terms of model parameters (p)

DISADVANTAGES:

• Requires derivatives
• Doesn't sample misfit function
• Sensitive to local minima
• Unstable slow convergence

ADVANTAGES:

• Relatively simple
• Works for many parameters

Gradient descent:

Newton method:

- gradient vector

- Hessian matrix

Hessian matrix can be efficiently approximated by BFGS algorithm



Efficient adjoint gradient evaluation

Misfit function (F) is normally defined using the forward problem solution (x):

Introducing residual and Jacobian of the forward problem:

Ratnaswamy et al., 2015 Bunge et al., 2003

Widely used technique in geodynamic model community (but not only), e.g.:

we can efficiently evaluate the gradient using the adjoint method: 

which only additionally requires evaluating the derivatives         and  



  

Adjoint gradients explained

Objective function, formulated in terms of forward problem solution (x)

Minimization (optimization, inversion)

Find input parameters (p) such that F assumes minimum (preferably 
global) value

Gradient-based methods (steepest descend, BFGS) require calculating the 
gradient of the objective function w.r.t input parameters 

LIMITATION! Gradient methods are not suitable for finding global minima.



  

Gradient of objective function

How do we get gradient? Just use chain rule!

- difficult term (so-called (flow) sensitivity parameters)
ONE OF THE MAJOR LIMITATIONS OF ADJOINT METHOD

x should be smooth and differentiable function of p. For 
certain rheology types (DP plasticity) it is not the case. 

- Easy term (assumed to be zero in what follows)

- Easy term (objective function is usually directly 
expressed in terms of forward problem solution)



  

Sensitivity parameters

How to get dx/dp? Use chain rule once again plus an observation!

- residual of the forward problem

- why is that?  Simple: forward problem residual must be 
zero for any set of input parameters. MAJOR TRICK!

- Jacobian matrix

- solve for sensitivity parameters. VERY EXPENSIVE!
(requires one linear solve with Jacobian per input parameter)

- derivative of the residual (chain rule)



  

Adjoint system

- plug dx/dp into gradient expression

- evaluate gradient (check by plugging psi) 

How to make it less expensive? 

- solve adjoint system. CHEAP! Requires only 
one solve, but with Jacobian transpose (adjoint) 

The major advantage of adjoint method is that it requires only one linear 
solve per gradient evaluation. The disadvantage is that this solve involves 
Jacobian transpose. Symmetric cases are insensitive, but certain rheology 
types (DP plasticity) and discretizations (FDSTAG) are sensitive. 



  

Residual derivatives

The only remaining term is the derivative of forward problem residual:

For each new type of the input parameter (e.g. density, power-law exponent) it 
can be obtained by directly differentiating the residual expressions.

Alternatively one can use finite differences (for each input parameter):

The derivatives are normally very sparse vectors, since only limited number of 
residual components are affected by each input parameter.
 
Irrespective of the evaluation method, one should utilize the sparsity.



Adjoint scaling law

Scaling law relates change in the observable with the change in the solution parameter.

Consider general multi(two)-parametric scaling law:

Exponents can be determined separately by taking derivatives:

Which can be rearranged as (provided that gradients are known):

We can view the observable (q) as an objective function and compute adjoint gradients!

The remaining step is finding the prefactor: 



3D subduction synthetic test

Growth rate at point q is an observable.
Activation energy and power law exponent are the scaling law parameters.

Adjoint gradient evaluation is implemented in LaMEM (Reuber et al., in preparation)
LaMEM is integrated with TAO package (Toolkit for Advanced Optimization)

More info is on poster of Georg Reuber



Adjoint scaling law result

Normalized polar plot of scaling law exponents



Adjoint inversion result

Inversion results for 3D subduction test.
Not all the solution parameters are correctly inverted.
Gradient-based methods are non-unique!



Similar to simulated annealing, genetic and Monte-Carlo algorithms

Builds piecewise-constant Voronoi interpolant of the misfit function

Refines by performing a uniform random walk within lowest misfit cells

ADVANTAGES:
 
• Derivative-free

• Samples misfit function

• Attempts to identify multiple minima

DISADVANTAGES:
 
• Requires many forward models

• Limited number of parameters 
Sambridge, 1999

Neighborhood algorithm (NA) (Sambridge, 1999)



  

Smarter sampling than Monte Carlo:  The Neighborhood Algorithm
(original: Sambridge, 1999, extended parallel version: Baumann et al. 2014)

Misfit (objective)
function

Parameter A

Parameter B

Neighborhood algorithm



  

Smarter sampling than Monte Carlo:  The Neighborhood Algorithm
(original: Sambridge, 1999, extended parallel version: Baumann et al. 2014)
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Neighborhood algorithm



  

Smarter sampling than Monte Carlo:  The Neighborhood Algorithm
(original: Sambridge, 1999, extended parallel version: Baumann et al. 2014)
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Smarter sampling than Monte Carlo:  The Neighborhood Algorithm
(original: Sambridge, 1999, extended parallel version: Baumann et al. 2014)
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Smarter sampling than Monte Carlo:  The Neighborhood Algorithm
(original: Sambridge, 1999, extended parallel version: Baumann et al. 2014)
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Smarter sampling than Monte Carlo:  The Neighborhood Algorithm
(original: Sambridge, 1999, extended parallel version: Baumann et al. 2014)
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Smarter sampling than Monte Carlo:  The Neighborhood Algorithm
(original: Sambridge, 1999, extended parallel version: Baumann et al. 2014)
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Neighborhood algorithm



  

Downhill Simplex Method (Nelder & Mead 1965)

Integrated with LaMEM using TAO package 

Always replace worst vertex of simplex

High dimensions

start

Objective function

(one) optimal solution

Parameter 2 Parameter 1

Misfit



  

3D India-Asia collision

Model geometry

Strike-slip like weak zones

Weak crustal layer

Strong blocks

Slabs

Resolution

Lateral: 7-10 km

Vertical: 2-3 km

512 x 512 x 256 FD cells
Baumann et al. (in preparation)



  

3D India-Asia collision

Data: Gan et al. (2007)

"Best fit"
model



  

3D India-Asia collision

"Best fit"
model


