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Patrick Sanan (USI Lugano / ETH Zürich) Robust Multigrid Solvers for Geodynamics Sept 16, 2016 2 / 38



The GeoPC Project 1

I Use and improve the latest
algorithms and hardware to
advance and accelerate
preconditioners for extreme
scale Stokes flow with highly
heterogenous viscosity
structure.

I Attack the “full stack”
I Algorithmic innovation,

scalable software, evaluation
on leadership hardware,
scientific application

I Challenging, but exposes
interesting synergies.

Image courtesy Paul J. Tackley (ETHZ)

Image courtesy Laetitia Le Pourhiet (UPMC)
1http://www.pasc-ch.org/projects/projects/geopc/
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Solver Robustness

I Abstractly, consider a family of problems P(m, d) = 0, to be solved.

I We have distinguished two inputs to P, model parameters and data.

I Solving the forward problem (our focus) means to determine d given
m, and solving an inverse problem means the reverse.

I In m we include physical parameters as well as discretization
parameters (problem size,etc.)

I Given a method to solve a problem, we can use various metrics
(time-to-solution, etc.) to assess its performance

I We are almost always interested in solving P for multiple values
of m and d
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Solver Robustness

I Informally, robustness relates to the volume of a neighborhood in
parameter-space (or data-space for the inverse problem) which
surrounds a point with “good” performance with other points of
“good” performance.

I That is, if the solver “works well,” to what extent will it “work well”
as we vary the parameters?

I The size of this window can vary greatly!
I Sometimes one only cares that a solver is guaranteed to give a solution

at all (uniform non-zero performance).
I Sometimes problems are so large that any significant degradation in

performance can leave problems intractable.
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Why Would You Care?

I Especially in geodynamics, we can often never solve the ”real”
problem

I Can only model a subset of processes
I Can only efficiently solve a sub-region of the parameter space

I Thus, we always want to be able to push existing solvers hard!

I Considering our reliance on software, it is important that our tools be
as flexible as possible - we can’t write specialized code for everything

I Especially when practitioners often just want to ”do science,”
robustness is fantastically valuable as it allows for more
encapsulation.
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The Fundamental Tradeoff

Structure ⇐⇒ Efficient Algorithms
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A Multigrid Smoother for Saddle-point Systems,
Based on Local Incomplete Factorization

Patrick Sanan (USI Lugano / ETH Zürich) Robust Multigrid Solvers for Geodynamics Sept 16, 2016 8 / 38



Motivation

I The stationary incompressible Stokes equations

−∇ · τ +∇p = ρ(x)ĝ , −∇ · u = 0,

τ = 2η ε̇[u], ε̇[u] = 1
2

(
∇u + (∇u)T

)
,

I Newton’s Method and Picard iteration solve these with repeated
solution of linear systems.

I Discretized with inf-sup stable mixed finite elements (here Q2 −Q1)[
K B

BT 0

] [
u
p

]
=

[
F
0

]
, or Av = F ,

I There is perpetual interest in being able to robustly solve this
system with respect to distributions of η which exhibit large
variation across arbitrary (non grid-aligned) interfaces.
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Why Is This So Difficult?

I Assumptions of smoothness (or equivalently, rapidly decaying spectra)
are built into the motivating assumptions of many numerical methods

I Finite dimensional subspaces
I Quadrature rules
I Finite difference methods based on strong forms of PDE

I Traditional engineering methods for (Navier-)Stokes flow are often
designed under the assumption of simpler viscosity structures.

I Nevertheless, many useful problems in PDE have this characteristic
difficulty. Robustness to coefficient distribution is valued, even at the
cost of deviation from optimal performance

I Stokes Flow

I Subsurface
flow

I Tomography

Crameri and Tackley 2013 pflotran.org Shepp-Logan phantom (Wikipedia)
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Scalable Linear Solvers

I We focus on the solution of the linear system Av = F , where most
time is spent in many applications

I A is not a single operator to be solved, but a 2-parameter family. We
look for linear increase of DOF/s solved as the

I problem size and degree of parallelism increase together (weak
scalability)

I degree of parallelism increases for a fixed problem size (strong
scalability).

I In fact, one should consider an infinite dimensional space of relevant
problem parameters (here, viscosity structures) and favor methods
which behave uniformly well (here, this is what we mean by “robust”).
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Existing Methods and Limitations

I Segregated Methods, Schur Complement Reduction (Can be less
efficient than monolithic methods, oversolving)[Uzawa,...]

p = (BTK−1B)−1(BTK−1F), u = F− Bp

I Approximate Block Factorization, Fully Coupled approach (Can be
finicky to implement and tune) [Sylvester, Wathen, Elman, Benzi, May, Moresi...]

A−1 ≈
[

K̂ B

0 Ŝ

]−1

,

I Full Saddle MG (Less theory, guarantees, tools) [Tackley, Gerya, Kaus...]

I Direct methods (Don’t scale)

I Domain Decomposition (Difficult to implement properly, don’t usually
beat MG/ABF) [Klawonn, Pavarino, ...]

I Nestings, hybridizations, and nonlinear versions of all of the above
(complexity, lack of guiding principles)
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Smoothing and Preconditioning via Local Incomplete
Factorization

I Incomplete factorizations like ILU can be robust as smoothers.
I These are not typically applied to indefinite operators, but with

careful reordering and scaling2, using Ilupack 3, one can effectively
use Incomplete LDLT (ILDL) smoothers (and they also make excellent

single-core preconditioners!)

ΠT P̂TDAD P̂ Π = A′, A′ = LDLT + E,

I Often a first-attempt parallel preconditioner or smoother is to
additively combine local approximate inverses:

A−1 ≈
∑
i

RT
i

(
RiART

i

)−1
Ri ≈

∑
i

RT
i L−Ti D−1

i L−1
i Ri

I Smoothing is by definition a local procedure so this is somewhat
reasonable, but behavior at domain boundaries is problematic.

2Michael Hagemann and Olaf Schenk. “Weighted Matchings for Preconditioning Symmetrix Indefinite Linear Systems”. In:
SIAM J. Sci. Comput. 28.2 (2006), pp. 403–420

3http://www.icm.tu-bs.de/ bolle/ilupack/
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A Hybrid Approach

(Fine)
(LDLT )�1

(Coarse)

I As a first attempt at attempting to leverage the robustness of these
factorizations, we construct a 2-level method which uses a scalable
coarse grid solver.

I Fine level smoother: local ILDL smoothers, overlapped by 2 elements.
I Coarse grid solver: Elman-Slyvester-Wathen upper triangular

preconditioner for FGMRES. Geometric multigrid with Galerkin
coarsening on the viscous block. Approximates the inverse pressure
Schur complement with block Jacobi/ILU(0) constructed from a
pressure-weighted mass matrix.
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A Hybrid Approach, continued

(Fine)
(LDLT )�1

(Coarse)

I If iteration counts can be controlled, the resulting method will also be
scalable.

I This is indeed what we see, if we use a tight tolerance on the coarse
grid solve.

I The method is not uniformly faster (for all model configurations) than
existing approaches, but does exhibit additional robustness to
coefficient variation in some cases.
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2D Robustness
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2D Scalability
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3D Scalability
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Assessment of The Hybrid Method

I The method we have shown is robust to some
coefficient variation, but seems to suffer from
problems common with overlapping domain
decomposition.

I Convergence can be degraded when
heterogeneities intersect domain boundaries.

I We focus on scalable methods, but one can use
an ILDL decomposition as a preconditioner or
smoother for a moderately-sized full saddle point
problem, without much tuning.

Viscosity distribution (104 contrast)

p after one iteration
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Opportunities for Acceleration

I Trend in High Performance
Computing: adding
coprocessors (GPUs/MICs)
to compute nodes.

(From the NVIDIA Kepler GK110 white paper)

I Current coprocessors offer high
performance ceilings but:

I Require highly parallel algorithms
I Use a PCI-express bus with

bandwidth and latency
restrictions, problematic for
physics/algorithms involving
global information transfer.

I Have lower performance ceilings
for memory bandwidth-bound
operations (SpMV).

I However, coprocessors can apply
strong local solves. This indicates
potential to accelerate expensive
local smoothers and solves and add
robustness to existing methods.
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Software Integration

I The space of solver parameters and available hardware is exploding
exponentially. Composable solver software offers a way forward.

I The experiments above were carried out by registering a new
preconditioner for use with PETSc4, wrapping Ilupack.

I With the newly-introduced PCTELESCOPE functionality5, one can
redestribute matrices to a smaller communicator with one GPU per
rank, allowing for usage of GPU-enabled data types, provided by the
PETSc interface to ViennaCL6.

4mcs.anl.gov/petsc

5Dave A. May, Patrick Sanan, Karl Rupp, Matthew G. Knepley, and Barry F. Smith. “Extreme-Scale Multigrid Components
Within PETSc”. In: Proceedings of the Platform for Advanced Scientific Computing Conference. PASC ’16. Lausanne,
Switzerland: ACM, 2016, 5:1–5:12. doi: 10.1145/2929908.2929913

6viennacl.sourceforge.net
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GPU-accelerated kernels

I Using a 3D Q2 viscous block operator K, we can assess the benefit of
moving (assembled) sparse matrix multiplication to the GPU using
composable software tools:

CPU (8 cpu cores) GPU
els. Time (s) GF/s Time (s) GF/s

43 6.3162e-03 15.5 3.6376e-02 1.76
83 6.4135e-02 9.50 9.4598e-02 5.16

163 5.2314e-01 8.18 2.8244e-01 13.5
243 1.7321e+00 7.99 9.7740e-01 13.1
283 2.7253e+00 7.96 1.5306e+00 13.3
323 4.0371e+00 7.93 2.3154e+00 13.0
363 5.7317e+00 7.89 3.2920e+00 13.0
403 7.7977e+00 7.90 4.6545e+00 12.6

I Modest performance improvement, limited by available memory
bandwidth on the GPU, not peak floating point performance.
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GPU-accelerated kernels, continued

I We see slightly better
results for a similar
experiment with a 3D linear
elasticity operator,
discretized with Q2

elements:

CPU (8 cores) GPU
els. Time (s) GF/s Time (s) GF/s

43 8.89E−03 11.99 2.43E−02 4.40
83 1.27E−01 6.96 5.90E−02 14.99

123 4.15E−01 7.3 1.91E−01 15.91
243 3.15E+00 7.79 1.44E+00 17.09

I These translate to improved solve
time for a complete multigrid solve
using local Chebyshev smoothing:

els. MG levels Tsetup (s) Its. Tsolve (s)

CPU:
83 2 1.12E−02 12 4.27E−02

123 3 4.41E−02 16 2.06E−01
243 3 1.88E−01 13 1.55E+00
483 4 1.29E+00 11 9.92E+00

GPU:
83 2 5.49E−01 12 2.2813e-01

123 2 2.52E+00 16 2.3985e-01
243 3 4.94E+00 13 1.28E+00
483 4 3.58E+01 11 6.66E+00
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Future Directions

I Develop matrix-free and otherwise optimized GPU operator kernels
I Offload the work of computing and applying ILDL factorizations to

the GPU
I In progress, headed for ViennaCL (ILU(0) variant already available in

ViennaCL 1.7)

I Leverage modern domain decomposition methods to mitigate the
effects of subdomain boundaries intersecting heterogeneities.

I Use communication-hiding techniques to allow other useful work to
overlap the PCI-express bottleneck

I Pipelined Flexible Krylov Methods 7

I Expanded Krylov bases (“Multi-Krylov methods”) 8 9, extended to
asynchronous variants.

7P. Sanan, S.M. Schnepp, and D.A. May. “Pipelined, Flexible Krylov Subspace Methods”. In: SIAM Journal on Scientific
Computing 38.5 (2016), pp. C441–C470. doi: 10.1137/15M1049130

8Tyrone Reis, Chen Greif, and Daniel Szyld. “GMRES with multiple preconditioners”. url:
https://math.temple.edu/~szyld/reports/multipre_report.rev3.pdf

9Nicole Spillane. “An Adaptive Multi Preconditioned Conjugate Gradient Algorithm”. url:
https://hal.archives-ouvertes.fr/hal-01170059/document
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Adding Robustness to Existing Solvers
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Adding Robustness to Existing Solvers

I Composition of solvers can be an effective way to “clean up” when
solvers ”almost work”

I Krylov methods are often thought of as linear solvers, and
preconditioners as an afterthought

I However, choosing and implementing a good preconditioner is usually
the hardest part! (particularly if scalability is a concern)

I A better approach is to find a good solver, and use it as a
preconditioner for a Krylov method

I Why do this? Because Krylov solvers work by finding minimal
solutions (usually with respect to some norm) in low dimensional
spaces. If your solver can reduce the error to a (usually)
low-dimensional space, the Krylov method can do the rest for you

min
xi−x0∈κi (A,b)

||b − Ax ||, κk
.

= {b,A, . . . ,Ak−1b}
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A small Stokes operator preconditioned with MG/ILDL
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A Small Stokes operator preconditioned with MG/ILDL
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Adding Robustness to Existing Solvers

I Why go to the trouble?
I You have a good solver and want to make it more robust
I You have a good solver, but you want to make it sloppier and cheaper

(for example, your exact coarse grid solver is expensive)
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Example : Wrapping the StagYY multigrid solver

I StagYY10 includes a nicely-tuned Geometric multigrid solver

I Multigrid is famously “brittle”, however. If any component fails to do
its job, convergence stalls

I However, if the solver fails to reduce error in a low-dimensional
subspace, a Krylov solver can clean up

I We do exactly this by leveraging PETSc

10Paul J. Tackley. “Modelling compressible mantle convection with large viscosity contrasts in a three-dimensional spherical
shell using the yin-yang grid”. In: Physics of the Earth and Planetary Interiors 171.14 (2008). Recent Advances in
Computational Geodynamics: Theory, Numerics and Applications, pp. 7 –18. issn: 0031-9201. doi:
http://dx.doi.org/10.1016/j.pepi.2008.08.005.
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./stagyy par_mgk_test_1 -mgk_ksp_monitor_true_residual -mgk_ksp_type fgmres -mgk_ksp_rtol 1e-13 -mgk_ksp_view -mgk_ksp_converged_reason

**********************Time step : 1************************

********dt = 1.580E-05 ; total t = 1.580E-05

Timestep fraction, diff & adv = 1.00000 0.02098

Courant number, diff & adv = 0.80000 0.01679

for RHS - Inter-cell visc jump in x,y,z: 1.00E+00 1.23E+00 1.55E+03

Multigrid coarse levels and #cpus:

global: 1x 64y 64z 1b; per node: 1x 64y 64z 1b on 1 cpus: 1x 1y 1z 1b

global: 1x 32y 32z 1b; per node: 1x 32y 32z 1b on 1 cpus: 1x 1y 1z 1b

global: 1x 16y 16z 1b; per node: 1x 16y 16z 1b on 1 cpus: 1x 1y 1z 1b

global: 1x 8y 8z 1b; per node: 1x 8y 8z 1b on 1 cpus: 1x 1y 1z 1b

Residual norms for mgk_ solve.

0 KSP Residual norm 8.505577832968e+09

rms (rhs/eta) : 7.89E-07

Initial rrms : 0 1.00000 0.0000E+00 0.0000E+00 6.1774E+03 0.0000E+00

Cycle & rrms : 1 1.00000 0.0000E+00 9.6278E+00 1.1191E+02 5.0422E-01

1 KSP Residual norm 8.505567599480e+09

rms (rhs/eta) : 1.73E-08

Initial rrms : 0 1.00000 0.0000E+00 6.7876E-01 7.8428E+00 3.5548E-02

Cycle & rrms : 1 1.00000 0.0000E+00 7.6865E-03 4.3090E-02 3.5523E-04

2 KSP Residual norm 8.006586370457e+09

rms (rhs/eta) : 8.55E-08

Initial rrms : 0 1.00000 0.0000E+00 7.6119E-01 8.3983E+00 4.0178E-02

Cycle & rrms : 1 1.00000 0.0000E+00 6.8283E-03 5.0793E-02 3.9055E-04

3 KSP Residual norm 1.151158780350e+08

rms (rhs/eta) : 3.40E-07

Initial rrms : 0 1.00000 0.0000E+00 6.1194E-01 6.1778E+00 2.8329E-02

Cycle & rrms : 1 1.00000 0.0000E+00 1.3975E-02 3.7920E-02 4.0218E-04

4 KSP Residual norm 2.196740387858e+06

...
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Linear mgk_ solve converged due to CONVERGED_RTOL iterations 7

KSP Object :(mgk_) 1 MPI processes

type: fgmres

GMRES: restart =30, using Classical (unmodified) Gram -Schmidt Orthogonalization with no iterative refinement

GMRES: happy breakdown tolerance 1e-30

maximum iterations =10000 , initial guess is zero

tolerances: relative =1e-08, absolute =1e-50, divergence =10000.

right preconditioning

using UNPRECONDITIONED norm type for convergence test

PC Object :(mgk_) 1 MPI processes

type: shell

Shell: StagYY Veecycles PC

linear system matrix = precond matrix:

Mat Object: StagYY Stokes Operator 1 MPI processes

type: shell

rows =16384 , cols =16384

has attached null space

Top flux and Nu = 32.439 32.439 ; Bot flux and Nu = 1.017 1.017

Temp : min = 0.142, mean = 0.945 , max = 0.998

vel : min = 1.027E-10, rms = 6.119E+00, max = 1.832E+01

Visc : min = 1.060E+00, mean = 4.569E+08, max = 5.075E+10

...

Next: Try to solve some more challenging systems!
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More on coarse-grid solvers

I For large problems, proper treatment of a coarse grid solve is key -
communication will eventually dominate computation

I One common way to utilize the robustness of an outer Krylov method
is to use an inexact coarse grid solve, with reduced communication
requirements

I StagYY can use an iterative solve on the coarse grid
I Similarly, the coarse grid solver can be Krylov methods11, which in

these instances can be accelerated by pipelining12,13,,14

I The methods from the papers below are available (from
command-line options!) in PETSc 3.7.

11D.a. May, J. Brown, and L. Le Pourhiet. “A scalable, matrix-free multigrid preconditioner for finite element discretizations
of heterogeneous Stokes flow”. In: Computer Methods in Applied Mechanics and Engineering 290 (2015), pp. 496–523. issn:
00457825. doi: 10.1016/j.cma.2015.03.014.

12P Ghysels, T J Ashby, K Meerbergen, and W Vanroose. “Hiding Global Communication Latency in the GMRES Algorithm
on Massively Parallel Machines”. In: SIAM J. Sci. Comput. 35.1 (2013), pp. 48–71.

13P. Ghysels and W. Vanroose. “Hiding global synchronization latency in the preconditioned Conjugate Gradient algorithm”.
In: Parallel Computing 40.7 (2014), pp. 224–238. issn: 01678191. doi: 10.1016/j.parco.2013.06.001.

14P. Sanan, S.M. Schnepp, and D.A. May. “Pipelined, Flexible Krylov Subspace Methods”. In: SIAM Journal on Scientific
Computing 38.5 (2016), pp. C441–C470. doi: 10.1137/15M1049130.
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More on coarse-grid solvers

I The communication bottleneck can also be eased by processor
agglomeration, an attempt to maintain a favorable balance of
communication and computation by using only a subset of available
distributed-memory nodes.

I StagYY and many specialized solvers support this pattern
I We recently introduced it as PCTELESCOPE, a reusable and composable

component in PETSc15

15Dave A. May, Patrick Sanan, Karl Rupp, Matthew G. Knepley, and Barry F. Smith. “Extreme-Scale Multigrid Components
Within PETSc”. In: Proceedings of the Platform for Advanced Scientific Computing Conference. PASC ’16. Lausanne,
Switzerland: ACM, 2016, 5:1–5:12. doi: 10.1145/2929908.2929913.
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Software and Other Thoughts
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Black Box → Toolbox

I One can relax the idea of robustness to include some human
intervention

I If one has the software environment to do so, methods can be
selected from a set of possibilities based on intuition, partial
knowledge, and direct testing

I This allows one to potentially circumvent some of the fundamental
tradeoff: each individual method may be more specific but less robust.

I Caveat: setting up the software environment this way can be
time-consuming (though PETSc is very helpful for solvers)

I Caveat: some of the burden for doing the right thing has been pushed
to the user. It is unfortunate to not always have a black box, but in
some situations (optimal scalability) there simply is no black-box
solver.
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Conclusions

I We have shown some strategies that could be useful for making
Stokes solvers more robust, particularly in the case of large coefficient
variation

I There are inherent tradeoffs
I (Automatic) robustness vs. tuning to a particular case
I “Black Box” vs. “Toolbox”

I Reusable, reliable, composable, well-tested software is required
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Thank you for your attention!

patrick.sanan@usi.ch
patrick.sanan@erdw.ethz.ch

Ge  PC
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