
Under consideration for publication in J. Fluid Mech. 1

Strong non-Boussinesq effects near the onset
of convection

in a fluid near its critical point

Guenter Ahlers1, Bernd Dressel2, Jaechul Oh3, and Werner Pesch2

1Department of Physics, University of California, Santa Barbara, CA 93106, USA
2Physikalisches Institut, Universität Bayreuth, D-95440 Bayreuth, Germany

3Plasma Physics Division, U.S. Naval Research Laboratory, Washington, DC 20375, USA

(Received 14 August 2009)

Measurements of fluctuations and convection patterns in horizontal layers of fluid
heated from below and near the onset of Rayleigh-Bénard convection (RBC) are reported
under conditions where the fluid properties vary strongly over the temperature range
∆T = Tb − Tt (Tb and Tt are the temperatures at the bottom and top of the sample
respectively). To facilitate a comparison with the data, the theory of Busse (1967) of these
so called non-Oberbeck-Boussinesq (NOB) effects, which applies to the case of relatively
weak (and linear) temperature dependences, was extended to arbitrary variations with
temperature.

It is conceptually useful to divide the variations with temperature of the fluid properties
into two disjunct parts. One part is chosen so that it preserves the reflection symmetry
of the system about the horizontal midplane, while the remainder breaks that symme-
try. The latter, exclusively considered by Busse, leads (in contrast to the formation of
the typical convection rolls in RBC) to hexagons immediately above the transition to
convection at the critical temperature difference ∆Tc. The symmetric part, on the other
hand, does not prevent the bifurcation to rolls, but may become very important for the
determination of ∆Tc.

In the experiment the fluid was sulfur hexa-fluoride at temperatures above but close
to the gas-liquid critical point, where all fluid properties vary strongly with temperature.
All measurements were done along isobars by varying ∆T . Patterns were observed above
onset (∆T & ∆Tc), while for the conduction state at ∆T < ∆Tc there were only fluctu-
ations induced by Brownian motion. When the mean temperature Tm = (Tb +Tt)/2 was
such that the density ρ at Tm was equal to the critical density ρ∗, the mirror symmetry
about the horizontal mid-plane of the sample was essentially preserved. In that case, as
expected, we found a direct transition to rolls and the critical temperature difference ∆Tc

was considerably shifted compared to the critical value ∆Tc,OB in the absence of NOB
effects. When, on the other hand, Tm was not located on the critical isochore, the NOB
effects broke the reflection symmetry and led to a hysteretic transition from fluctuations
to hexagonal patterns. In this latter case the hexagonal pattern, the observed hysteresis
at onset, and the transition from hexagons to rolls at larger ∆T , were consistent with
the “classical” predictions by Busse.

1. Introduction

Convection of a fluid confined between two parallel horizontal plates and heated from
below (Rayleigh-Bénard convection or RBC) is a standard paradigm of pattern-forming
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instabilities in spatially extended nonlinear systems (see for instance Bodenschatz, Pesch
& Ahlers 2000). The main control parameter is the temperature difference ∆T across
the fluid layer between the bottom plate (at temperature T = Tb) and the top plate (at
T = Tt < Tb). The critical temperature difference ∆Tc is defined as the smallest ∆T
at which the spatially uniform basic state becomes linearly unstable. In RBC the first
destabilizing modes to acquire a positive growth rate as ∆T increases beyond ∆Tc are
characterized by the critical wavenumber qc. Since qc is non-zero, these modes give rise
to spatially varying convection patterns.

RBC usually is studied in the Oberbeck-Boussinesq (OB) approximation (Oberbeck
1879; Boussinesq 1903). There the temperature dependences of the thermal diffusivity
κ and the kinematic viscosity ν are neglected. In addition, the density (which provides
the buoyancy force crucial for RBC) is assumed to vary linearly as a function of T
between Tb and Tt, implying that the thermal expansion coefficient α is constant. In
this approximation the bifurcation to convection rolls at ∆T = ∆Tc,OB is stationary
and continuous, i.e. supercritical (Schlüter, Lortz & Busse 1965). Thus the onset of
convection ∆Tc,exp observed in experiments is expected to agree with ∆Tc,OB within the
experimental resolution.

There is a sizable literature devoted to the theoretical study of so called non-Oberbeck-
Boussinesq (NOB) effects that occur when the assumptions of the OB approximation
break down. An important study of weak NOB corrections near the onset of convection,
i.e. for ∆T ≈ ∆Tc, was carried out by Busse (1967). He considered the temperature vari-
ations of κ, ν and α to be small and kept them in the leading-order linear approximation.
As a result the standard supercritical bifurcation to rolls in the OB system is replaced
by a hysteretic, trans-critical bifurcation to a stationary hexagonal pattern, while ∆Tc

and qc remain unchanged. As a consequence, in experiments the onset of convection
in the form of hexagons at ∆Tc,exp slightly below ∆Tc may occur in the presence of
finite-amplitude perturbations, inhomogeneities near boundaries, or thermally induced
fluctuations.

The various implications of NOB conditions were confirmed to a large extent by several
experiments (Hoard et al. 1970; Ahlers 1980; Walden & Ahlers 1981; Ciliberto et al. 1988;
Perez-Garcia et al. 1990; Ciliberto et al. 1990; Bodenschatz et al. 1991, 1992; Pampaloni
et al. 1992). In the present paper we address, both experimentally and theoretically,
several new aspects of how NOB effects manifest themselves when the assumption of
weak temperature variations of the fluid properties in the sense of Busse ceases to be
valid. This situation prevails for instance in a gas near its gas-liquid critical point, even
for ∆T ≈ ∆Tc, and this is the system studied experimentally in the present project (for
earlier experiments, see e.g. Assenheimer & Steinberg (1993); Roy & Steinberg (2002)).

Our theoretical analysis is based exclusively on a deterministic hydrodynamic descrip-
tion of the system. Although thermally induced fluctuations (Swift & Hohenberg 1977;
Hohenberg & Swift 1992) (which are neglected in the deterministic equations) become
stronger near the critical point and are readily observed below the onset of convection
(Oh & Ahlers 2003), we found no indications that the influence of thermal noise had to be
included in the comparison with the experimental results for the bifurcation points and
patterns reported in this paper. In any case, an analysis of NOB effects using fluctuating
hydrodynamics (Landau & Lifshitz 1987) would be a highly demanding task.

For completeness we mention that a significant effort was devoted recently also to the
study of NOB effects well above the onset of convection in a regime where the fluid flow
is highly turbulent (Wu & Libchaber 1991; Zhang et al. 1997, 1999; Ahlers et al. 2006,
2007; Sugiyama et al. 2007; Ahlers et al. 2008).

In order to illustrate the issues that arise in near-critical fluids, we describe their
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properties briefly in § 2 and show qualitatively that the NOB effects can lead to a
considerable increase of ∆Tc beyond the value for the OB case. There we show also that
the ’classical’ signature of NOB convection, the bifurcation to hexagons, may remain
unobservable for those systems. It should be stressed that we used very thin fluid layers,
of thickness d ≈ 50µm, in the present work. In that case the stabilizing compression of
the fluid under its own weight near the bottom of the sample is completely negligible.
However, this mechanism can be important near the critical point for fluid layers with
thicknesses of the order of a cm or more; in those cases it can also lead to a considerable
increase of ∆Tc compared to the OB value (see, e.g. Ashkenazi & Steinberg 1999; Kogan
& Meyer 2001).

In § 3 we describe briefly the experimental setup. Section 4 is devoted to a detailed
discussion of the experimental results. In § 5 we provide the background for theoretical
analysis of NOB effects in the present system and discuss the resulting shifts of ∆Tc.
Section 6 is devoted to the weakly nonlinear regime. In this context also the theoretical
results of Busse were re-examined. This led to adjustments of some of the numerical
values of coefficients given by Busse (1967). Section 7 contains some concluding remarks,
and finally some technical details can be found in two Appendices.

2. Qualitative features of RBC in “near-critical” fluids

The working fluid used in the experiment was sulfur hexa-fluoride (SF6) with temper-
atures Tt, Tb slightly above the critical temperature T ∗ = 318.72 K and at pressures just
above the critical pressure P ∗ = 37.55 bars. Under those conditions the fluid density ρ
was close to the critical density ρ∗ = 742 kg/m3. The equation of state of SF6 was taken
from the work of Wyczalkowska & Sengers (1999). In figure 1 we show the phase dia-
gram in the temperature-density plane. The dashed line denotes the co-existence curve
of liquid and vapor and the dotted lines the critical isochore (ρ∗) and isotherm (T ∗).

In the present paper we report measurements on the three isobars Pis = 38.09, 38.33,
and 39.58 bars illustrated by the solid lines in Figures/Fig. 1. Some of the results have
been reported briefly in previous publications (Ahlers & Oh 2003; Oh & Ahlers 2003;
Oh et al. 2004; Ahlers 2006). The pairs of symbols (open circles, solid circles, stars) on
each isobar indicate the bottom temperatures Tb (left) and top temperatures Tt (right)
at the experimentally observed onset of convection, i.e. for ∆T = Tb − Tt = ∆Tc,exp.
Note that the small temperature differences involved correspond nevertheless to large
temperature gradients because of the small thickness d ≈ 50µm of the fluid layer used
in the experiments. In three experimental runs (indicated as E-I, E-II, E-III in the fol-
lowing) the average temperature Tm = (Tb + Tt)/2 was chosen so that the condition
ρ(Tm) = ρ∗ was fulfilled to high accuracy. Two additional runs (indicated as E-IV, E-
V in the following), on the isobar Pis = 39.59 bars, were made with ρ(Tm) < ρ∗. For
these the temperature extrema of the fluid at onset are shown as solid circles and stars.
The experimental parameters for the five runs are listed in table 1. Only the total criti-
cal temperature ∆Tc,tot across the whole convection cell including the confining plates is
measured. The critical temperature difference ∆Tc,exp across the fluid layer is then calcu-
lated as ∆Tc,exp = r∆Tc,tot, where r is an estimate of the ratio of the thermal resistance
of the fluid layer to the total thermal resistance (for details, see § 3).

As usual, we introduce the Rayleigh number R as a non-dimensional measure of the
applied temperature difference ∆T :

R ≡ ∆T/Ts =
αmCp,mρ

2
mgd

3

λmηm
∆T . (2.1)
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Figure 1. Temperature-density plane near the critical point (CP) of SF6. Dashed line: coex-
istence curve of liquid and vapor. Dotted lines: critical isochore (ρ∗) and isotherm (T ∗). Solid
lines from bottom to top: the isobars Pis = 38.09, 38.33 and 39.59 bars used in the experi-
ment. Each symbol pair on the solid lines represents the highest and lowest temperature at the
onset of convection for a given mean sample temperature Tm. The open circles are for runs
with ρ(Tm, Pis) = ρ∗. The solid circles and stars on the isobar Pis = 39.59 bars correspond to
Tm = 48.10 and 48.30◦C, respectively.

Experiment E-I E-II E-III E-IV E-V

Pis ( bars) 38.091 38.326 39.587 39.587 39.587
Tm (◦C) 46.219 46.500 48.002 48.097 48.296

(Tm − T ∗)/T ∗ 0.0020 0.0029 0.0076 0.0079 0.0086
(ρm − ρ∗)/ρ∗ -0.0005 -0.0003 0.0000 -0.0478 -0.1212

d (µm) 34.3 34.3 59 59 59
∆Tc,tot(K) 0.304 0.930 0.616 0.670 1.023

pattern R R R H + R H

Table 1. Parameters for and results from the five experimental runs E-I,· · · E-V. The pressure
Pis, mean temperature Tm, relative distances of Tm and ρm from the critical values T ∗ and ρ∗,
cell thickness d, experimental critical temperature difference ∆Tc,tot across the whole convection
cell including the top and bottom plates, and the observed type of pattern (R: rolls, H : hexagons)
are given.

It involves the temperature scale Ts defined as

Ts ≡ κmνm

αmgd3
=

λmηm

αmCp,mρ2
mgd

3
(2.2)

where g is the gravitational acceleration. The subscript ’m’ denotes that the material
constants are evaluated at the temperature T = Tm. In the second term on the r.h.s. of
(2.2) we introduced the shear viscosity η = νρ and the thermal conductivity λ = Cpρκ,
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Experiment E-I E-II E-III E-IV E-V

αm (1/K) 2.459 1.590 0.498 0.472 0.339
CP,m (kJ/kg K) 89.52 58.35 19.07 18.12 13.28

ρm (kg/m3) 741.6 741.3 742.0 708.4 652.5
105kT,m (m2/N) 2.936 1.900 0.593 0.586 0.454
102λm (W/m K) 7.53 6.897 5.774 5.70 5.521
105ηm (kg/m s) 4.023 4.024 4.040 3.820 3.486

σ 47.81 34.04 13.34 12.14 8.33
r 0.451 0.473 0.647 0.652 0.658

Table 2. Material parameters at T = Tm for the experiments E-I . . . E-V together with the
Prandtl number σ and r = ∆Tc,exp/∆Tc,tot (see § 3).

where Cp denotes the heat capacity at constant pressure. Note that in the present work
Tb and Tt always were varied at constant Tm. In the framework of the OB theory the
critical temperature difference ∆Tc,OB is given by

∆Tc,OB = Rc,OBTs with Rc,OB = 1707.8. (2.3)

According to (2.3) small values of Ts lead to small values of ∆Tc,OB. As realized for
instance by Assenheimer & Steinberg (1993), this situation prevails near a liquid-gas
critical point, since both α and Cp diverge strongly as T ∗ is approached from above. The
thermal conductivity λ diverges less strongly than α and Cp, and η remains finite. Thus,
at constant d the temperature scale Ts (2.2), and thus also ∆Tc,OB (2.3), will vanish at
T ∗. For completeness we mention that upon approaching the critical point the isothermal
compressibility

kT = ρ−1
∂ρ

∂p

∣∣∣
T

= α
∂T

∂p

∣∣∣
ρ

(2.4)

(p denotes the pressure) diverges as well. However, we will demonstrate in § 5.1 that the
ensuing strong pressure dependence of the density is not important for the present case.

For the evaluation of ∆Tc,OB according to (2.2, 2.3) we need, besides α(T ), ρ(T ),
and Cp(T ) (Wyczalkowska & Sengers 1999), the shear viscosity η(T ) and the thermal
conductivity λ(T ). For η(T ) we used a fit of a piecewise smooth function to data from
Hoogland et al. (1985) and from Strehlow & Vogel (1989). This approach neglects a small
anomaly of the viscosity at the critical point. For λ(T ) we used a smooth-function fit to
a variety of conductivity data in the literature (Lis & Kellard 1965; Swinney & Henry
1973; Lim et al. 1971; Kestin & Imaishi 1985). These data define λ quite well along the
critical isochore, but are less definitive away from ρ = ρ∗ (i.e. for the runs E-IV and
E-V). In table 2 we present the material parameters at T = Tm for our five experimental
runs together with the Prandtl number σ = νm/κm = Cp,mηm/λm. Note that σ diverges
as well as T → T ∗. Furthermore we included the data for r = ∆Tc,exp/∆Tc,tot which
depend on d/λm (see § 3).

In the first row of table 3 we give the experimental values ∆Tc,exp of the critical temper-
ature differences across the fluid. With the use of the material parameters in table 2 and
Eqs. (2.3) one obtains the OB critical temperature differences ∆Tc,OB for the five exper-
imental runs. They are listed in the second row of table 3. In the third row of that table
we show the corresponding experimental critical temperature differences normalized by
∆Tc,OB, i.e. δTc,exp = ∆Tc,exp/∆Tc,OB. The following two rows present our theoretical
NOB results, which will be discussed in detail below in § 5. The fourth row contains
δTc,theor = ∆Tc/∆Tc,OB, where ∆Tc was determined from the exact linear stability anal-
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Experiment E-I E-II E-III E-IV E-V

∆Tc,exp(K) 0.131 0.440 0.398 0.437 0.673
∆Tc,OB (K) 0.1082 0.2352 0.3787 0.4313 0.8529

δTc,exp 1.206 1.87 1.053 1.013 0.789
δTc 1.304 1.82 1.06 1.032 0.879

δTc,app 1.35 1.92 1.05 1.04 0.92

Table 3. Experimental and theoretical values of the critical temperature differences. Row 1
gives the experimental estimate of the critical temperature difference ∆Tc,exp = r∆Tc,tot across
the fluid. Here r is from table 2 and ∆Tc,tot is from table 1. Row 2 contains the OB-values
∆Tc,OB given by Eqs. 2.2 and 2.3. Rows 3 to 5 give critical temperature differences normalized
by the OB-value ∆Tc,OB: δTc,exp = ∆Tc,exp/∆Tc,OB, δTc = ∆Tc/∆Tc,OB from Eqs. (5.23), and
δTc,app = ∆Tc,app/∆Tc,OB from Eq. (5.28)

ysis of the basic state (5.23). Finally, the fifth row shows an ’analytical’ approximation
to the NOB critical temperature difference in the form δTc,app = ∆Tc,app/∆Tc,OB, where
∆Tc,app is given by (5.28).

Although the values of ∆Tc,OB shown in table 3 are of the same order of magnitude
as the experimental ∆Tc,exp, the latter turn out to be systematically larger than ∆Tc,OB

for the runs E-I, E-II, E-III, while ∆Tc,exp < ∆Tc,OB for E-V. To understand this feature
we realize that the vicinity of the critical point is characterized not only by large values
of Cp,m and αm, but also by their strong temperature dependences along an isobar. This
is demonstrated in figure 2. There we show Cp for the experiment E-I as function of the
reduced temperature

δ̃(T ) = (T − Tm)/∆Tc,OB (2.5)

as a representative example. One sees that Cp decreases by almost a factor of 2.5 from its

maximum at δ̃ = 0 (i.e. at T = Tm) as T approaches Tb or Tt. The temperature variation
of α is comparable while the temperature dependences of the other material parameters
are much weaker (see figure 11 below).

To capture approximately the general behavior of the NOB critical temperature dif-
ference, it seems reasonable to replace Ts in (2.3) by a suitable average T s over the
temperature interval Tb ≤ T ≤ Tt. A reasonable choice for T s would be (2.2), but with
Cp,m and αm replaced by their corresponding averages Cp and α. Inspection of figure 2,
as well as of figure 11, illustrates that α < αm and Cp < Cp,m for the experiments E-I to
E-III. Thus T s > Ts and ∆Tc/∆Tc,OB = T s/Ts > 1. This estimate is confirmed by the
experimental and the exact theoretical critical temperature differences presented in table
3. In contrast we expect ∆Tc/∆Tc,OB < 1 for E-V since α,Cp,m < αm, Cp,m. This is
confirmed as well in table 3. The approach described above will be put on a more sound
theoretical foundation in § 5. Considering the resulting values for ∆Tc,app/∆Tc,OB (see
(5.28)) in table 3, the approximation scheme works quite well. Thus it is apparent that
the values of Cp/Cp,m and α/αm, which become one in the OB case, play a crucial role
in determining the shifts of ∆Tc in the NOB case.

It is important to realize that the averages Cp and α reflect only the contributions to

Cp(δ̃) and α(δ̃) which are even in δ̃. If only these even-in-δ̃ terms are kept for the other
material parameters as well, the hydrodynamic equations obey the Boussinesq symmetry,
i.e. they are invariant under the reflection z → −z at the horizontal midplane of the cell.

The odd-in-δ̃ contributions to the material parameters, on the other hand, which break
the Boussinesq symmetry, will not modify ∆Tc significantly, but are responsible the
’classical’ NOB effects: In their presence the nature of the bifurcation and the convection
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Figure 2. The heat capacity at constant pressure CP as a function of δ̃ = (T − Tm)/∆Tc,OB

for Pis = 38.09 bars, and for Tm = 46.22◦C chosen so that ρ(Tm) = ρ∗. The two open circles
correspond to the values Tm ± ∆Tc,exp/2 for the experimental run E-I.

planform near onset change qualitatively. Instead of a bifurcation to rolls, a transcritical
bifurcation to a hexagonal pattern generally takes place. Associated with that bifurcation
is a saddle node located at ǫ = ǫa < 0 below which the hexagons cease to exist and only
the conduction state is stable.

Here and in the following we use

ǫ = ∆T/∆Tc − 1 (2.6)

as the conventional reduced distance from onset. With increasing ǫ a point of marginal
stability of rolls is reached at ǫr > 0. Beyond ǫr both rolls and hexagons can exist until
ǫb > ǫr where hexagons become unstable (for more details, see § 6). Inspection of figure
2, as well as of figure 11 below, shows that the odd-in-δ̃ terms in the material parameters
are very small when Tm is chosen so that ρ(Tm, Pis) = ρ∗. Thus within our experimental
resolution only rolls should be seen near onset for the three runs E-I, E-II, E-III. This
is indeed confirmed by the experiments (see § 4) and has been documented already in
the last row of table 1. The situation is different for the two runs E-IV and E-V with
ρ(Tm, Pis) < ρ∗. Here the corresponding odd-in-δ̃ terms become considerably larger, and
indeed we observe hexagons in the experiments.

The classical NOB scenario was quantified by Busse (1967) in a pioneering paper.
For simplicity he first neglected the even-in-δ̃ corrections to α,Cp, etc. completely and
performed a perturbative analysis with respect to the odd corrections to linear order in
δ̃. He thus used the following representation of the material parameters:

ρ̂(T ) ≡ ρ(T )

ρm
= 1 − γ0

(
δ̃ + γ1δ̃

2

)
, (2.7a)

ν̂(T ) ≡ ν(T )

νm
= 1 + γ2δ̃, (2.7b)

λ̂(T ) ≡ λ(T )

λm
= 1 + γ3δ̃, (2.7c)

Ĉp(T ) ≡ Cp(T )

Cp,m
= 1 + γ4δ̃. (2.7d)

From (2.7a) the thermal expansion coefficient α in this approximation is given by

α(T ) = − 1

ρ(T )

∂ρ(T )

∂T
=

γ0

∆Tc,OB
(1 + (γ0 + 2γ1)δ̃) (2.8)
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Experiment E-I E-II E-III E-IV E-V

γ0 0.2660 0.3736 0.1887 0.2031 0.2881
γ1 -0.0633 -0.1131 -0.0751 -0.3520 -0.9118
γ2 -0.0639 -0.0892 -0.0444 -0.0349 -0.0192
γ3 -0.0510 -0.0692 -0.0271 -0.1106 -0.0791
γ4 0.2012 0.2111 0.0396 -0.4705 -1.4458
Q -0.78 -0.47 0.38 4.66 15.01

103ǫa −0.100 -0.036 -0.025 -3.67 -38.1
103ǫr 8.77 3.14 1.95 298. (3030.)
103ǫT ′ 12.09 4.33 2.69 411.8 (4180.)
103ǫb 29.99 10.76 6.68 (1024.) (10400.)

Table 4. The coefficients γi (2.7), the Busse parameter Q (2.9), and the stability limits ǫa, ǫr, ǫ
′

T ,
and ǫb based on the classical NOB expressions shown in § 6.1 and Appendix A. The data in
parentheses have relatively large uncertainties, as discussed in § 4.1.

and consequently αm = γ0/∆Tc,OB. Since we have access to the temperature dependences
of the material parameters, the γi are available as well.

The strength of the classical NOB effects usually is characterized by the Busse param-
eter

Q =

4∑

i=1

γiPi . (2.9)

The coefficients Pi are linear functions of σ−1 and were calculated by Busse in the
limit σ → ∞. Except for a calculational error in P3, they were confirmed by our own
calculations (for more details see § 6.1). We obtained the following expressions (first
given by Tschammer (1996)):

P0 = 2.676− 0.361/σ ,P1 = −6.631− 0.772/σ ,

P2 = 2.765 ,P3 = 9.54 ,

P4 = −6.225 + 0.3857/σ . (2.10)

Busse obtained expressions for ǫa, ǫr, and ǫb; all of them are proportional to Q2 (see
§ 6.1 and Appendix A). To a good approximation the hexagonal patterns can be described
by three coupled Ginzburg-Landau equations (see e.g. § 6) which have a potential. One
can then define (see Bodenschatz et al. (1991) and references therein) a point ǫT with
ǫa < ǫT < 0 where the potentials of the pure conduction state and the hexagons are
equal. In a sample with a gradient of ǫ, for instance because of a small spatial variation
of the spacing d over the cell, the conduction state and the hexagonal pattern may be
able to co-exist in different spatial regions. In that case one would expect a front between
them at a location where ǫ = ǫT . Similarly, at a point ǫr < ǫT ′ < ǫb the potentials of rolls
and of hexagons are equal, and in principle a co-existence of rolls and hexagons could
occur in a non-uniform sample. In the presence of localized inhomogeneities, such as the
side walls or even very small local imperfections, a transition between patterns can be
induced at ǫT or ǫT ′ instead of at the points of marginal stability.

To give a first impression of the magnitude of the classical NOB effects, we listed in
table 4 the coefficients γi (2.7), the values of Q (2.9), and the values of the stability
limits based on the explicit expressions in Appendix A, for each of the five experimental
runs. † Qualitatively the patterns observed near onset (see table 1) are well described by

† We obtained the values of the γi by using the derivative of the material parameters (2.7)
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these parameters: The small values of Q for the runs E-I, E-II, and E-III, which led to
small values of ǫr, ǫb ∼ Q2, are consistent with the fact that only rolls are observed in
the experiments. For E-IV we obtained a much larger Q value, and indeed we were able
to observe the hysteretic transition to hexagons and the subsequent transition to rolls
with increasing ǫ. Consistent with the very large Q value for E-V, which implies ǫr > 1,
a transition from hexagons to rolls was not reached in the experiment. The experimental
details and a comparison with the theory are presented in § 4.

3. Apparatus and procedures

The measurements were made with sulfur hexa-fluoride (SF6) near but slightly above
its gas-liquid critical point. The apparatus and experimental procedures were described
in detail by de Bruyn et al. (1996), and the particular modifications required for working
near the critical point were discussed by Oh et al. (2004). We mention briefly that the
entire sample was surrounded along the sides and bottom by a can that was maintained
at the temperature of the top-plate cooling water. The can contained a volume of fluid
much larger than that of the sample. There was optical access to the sample from the top.
The pressure was held constant to approximately ±1 mbar by adjusting the temperature
of an external gas volume that was connected to the can by a capillary. This adjustment
was done in response to the readout of a pressure gage through a computer-controlled
feedback loop.

The bottom plate of the convection cell was an optically flat sapphire of thickness
0.318 cm on top of an aluminum plate. A metal-film heater glued to the bottom of the
aluminum plate provided the heat current. A thin silver film was evaporated on the top
surface of the sapphire to provide a mirror for the shadowgraphy. The top plate was also
an optically flat sapphire of 0.318 cm thickness. A temperature-controlled water bath
cooled the top sapphire; it was maintained at or very near the sample pressure so as
to minimize sample distortion due to a pressure difference across the top sapphire. At
the top of the water bath optical access was available through a non-crystalline quartz
window.

The cell spacing was fixed by a porous paper side wall with an inner (outer) diameter
of 2.5 (3.5) cm. Since the top sapphire was supported along its perimeter which had a
diameter of 10 cm (i.e., considerably larger than the cell wall), the force exerted on the cell
top by the bottom plate and the wall caused a slight bowing of the initially flat top. Over
the entire sample diameter this yielded a radial cell-spacing variation corresponding to
about one circular fringe when illuminated with an expanded parallel He-Ne laser beam.
This variation of the thickness by about 0.3 µm assured that convection would start in
the cell center, rather than being nucleated inhomogeneously near the cell wall. Assuming
a parabolic radial profile for the cell spacing, we estimate that the spacing was uniform
to much better than 0.1% over the 1.9×1.9 mm2 area near the cell center. The actual
sample thickness was measured interferometrically (de Bruyn et al. 1996) and found to
be 34.3 µm for some of the measurements and 59 µm for the others.

Patterns were visualized by the shadowgraph method (de Bruyn et al. 1996) by record-
ing the pictures in the uniform central region mentioned above. At each pressure Pis and

with respect to δ̃ at δ̃ = 0. In much of the literature it has been customary to calculated γi via a

finite difference such as γ4 = Ĉp(Tt)− Ĉp(Tb), using the material parameters at the top and the
bottom of the layer. This procedure is reliable if the temperature dependences of the material
parameters are well described by the approximations given in (2.7) over the whole temperature
range, but is not really justified in our case of strong temperature variations.
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mean temperature Tm a sequence of images with ∆T = 0 was averaged and used as a ref-
erence image. All other images were then divided by this reference. Fourier transforms of
the ratios were obtained, and the integrals of the squares of their moduli yielded the total
power in Fourier space, equivalent to the variance in real space. The reference-divided
image was re-scaled in proportion to its own variance to yield a rendering of the patterns
over a suitable grey-scale range.

In experiments on RBC with very thin samples it is difficult to determine the tem-
perature drop ∆T across the fluid layer and the mean temperature Tm of the fluid with
high accuracy. Because of the small sample thickness the thermal resistance of the sam-
ple was comparable to those of the top and bottom confining plates even though these
plates had much higher thermal conductivities. Thus an imposed ∆Ttot = (TBP − Tbath)
(TBP and Tbath are the imposed bottom-plate and bath temperatures respectively) is
the sum of the temperature differences across the bottom aluminum plate ∆TAl, across
the boundary between the aluminum plate and the bottom sapphire ∆Tb1, across the
bottom sapphire ∆Tsb, across the sample ∆T , across the top sapphire ∆Tst, and across
a boundary layer above the top sapphire in the water bath ∆Tb2. From estimates of the
thermal resistances of these sections we determined the ratio r ≡ ∆T/∆Ttot. Although
the top- and bottom-plate resistances were essentially constant over the narrow temper-
ature range of the experiments, the sample resistance changed from one run to another
because the sample conductivity varied and because the sample spacing was not always
the same. The values of r for ∆Ttot = ∆Tc,tot are given in table 2 for each experimental
run. By definition they yield the critical temperature difference ∆Tc,exp across the fluid
layer from the measured ∆Tc,tot. Near onset they also give the temperature differences
∆T across the sample from the total differences ∆Ttot with sufficient accuracy. The sys-
tematic errors in ∆T due to uncertainties of r are difficult to estimate, but are probably
a few percent on the critical isochore and larger away from it.

The small thermal resistance of the sample also required a special procedure to assure
that the sample was indeed at or near the temperature corresponding to ρ∗ or a known
temperature increment away from it. Before a run on a given isobar was started, a fixed
∆Ttot sufficiently small for ∆T to be below the onset value of convection was imposed.
Measurements of the power of shadowgraph images of the fluctuations as a function of
the mean temperature Tm,tot = (TBP + Tbath)/2 then were made. Thereafter Tbath and
TBP were adjusted so as to hold the mean sample temperature Tm constant at the value
of maximum fluctuation power throughout a run in which the temperature difference ∆T
was changed in steps. In practice it turned out that the thermal resistances of the top
plate and the composite bottom plate were dominated by the sapphires and thus were
nearly equal. As a consequence a constant Tm,tot was nearly equivalent to a constant Tm.
We note that the maximum of the fluctuation power does not necessarily occur precisely
on the critical isochore; but the deviation is small.

4. Experimental results

This section is devoted to a detailed discussion of the five experimental runs listed in
table 1. We give the results for ∆Tc,exp (see table 3), show the patterns that are observed
near onset, provide data for the intensity of these patterns, and examine how these data
compare with the theoretical results.

4.1. General remarks about the comparison with theory

As already discussed in § 2, we find considerable shifts of ∆Tc,exp relative to ∆Tc,OB (see
table 3). These shifts are described satisfactorily by the complete linear stability analysis
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presented in § 5. This analysis can be performed only numerically. However, the relevant
physical mechanism could be elucidated in terms of a quasi-analytical approach.

We demonstrated already in § 2 that only the Busse parameter Q is needed to explain
qualitatively the general trend of the observed patterns in the nonlinear regime near onset.
This trend could be understood in the framework of the classical NOB analysis (Busse
(1967); see the predictions given in table 4). However, a quantitative understanding
of the experimentally observed stability limits is not possible within the framework of
this analysis for several reasons. First, this theory utilizes a linear material-property
approximation (2.7). This is in conflict with the strong non-linear temperature variations
(see e.g. figure 2) in the present case. These variations are responsible for the ∆Tc shifts.
In addition, the classical NOB effects are assumed to be small, which implies small
γi, i = 1, .., 4 in (2.7). This stands in contrast to the large γi values for E-IV and E-
V. However, keeping the full temperature dependences of the material parameters only
leads to a partial improvement of the stability limits (compare the entries in tables 4 and
8) because even our complete analysis is based on a weakly nonlinear theory, which in
general is justified only at small |ǫ|. Thus, the large values of ǫr and ǫb of order one in
tables 4 and 8 are not trustworthy.

Last but not least, for the present near-critical fluids all theoretical estimates, in partic-
ular the stability limits, depend sensitively on the average temperature Tm, the pressure
Pis, and the precise knowledge of the temperature dependence of the material parame-
ters. As mentioned already in § 2, especially the uncertainties of λ for the experimental
runs E-IV and E-V lead to relatively large uncertainties of the derived quantities. Even
for runs E-I to E-III, where the properties are relatively well established, we find that
very small changes within the small experimental uncertainties of Pis and/or Tm can have
a significant effect on the material parameters. As a consequence of the combined effect
of all the uncertainties discussed before, the agreement between theory and experiment,
in particular with respect to the stability limits, is expected to be only semi-quantitative
in the best cases.

4.2. Near-OB convection on the critical isochore

The NOB effects are expected to be smallest at the highest pressure with the maxi-
mal value of Tm − T ∗. Thus, the isobar Pis = 39.587 bars was used to study a case
that conforms fairly well to the Boussinesq approximation. The mean temperature was
adjusted to be 48.000◦C (on our temperature scale) which yielded a maximum of the
shadowgraph intensity below onset and thus was presumed to correspond approximately
to ρ(Tm) = ρ∗. The experimentally found onset for this case (E-III) is illustrated by the
open circles on the top solid line in figure 1.

Figure 3 shows three shadowgraph images of the patterns near the center of the sample,
and the moduli of their Fourier transforms. In this experiment ∆T was decreased in
small steps from larger values where there was a well developed roll pattern,† with an
equilibration time at each step of about 160 minutes. Below onset, at ∆T = 0.3972◦C (left
image), one sees random fluctuations driven by the Brownian motion of the molecules.
This leads to a nearly uniform ring in Fourier space, reflecting the rotational invariance of
the RBC system. The middle image, at ∆T = 0.3985, already reveals some organization
in a preferred direction, although the fluctuations still dominate. Finally, in the right
image at ∆T = 0.3998◦C, a clear roll structure is evident and gives two well defined
spots in Fourier space. As discussed by Oh & Ahlers (2003), even in this last case above

† We note that the rolls above onset also are influenced by thermal noise. The response to the
noise yields the superimposed small-scale structure that leads to a remnant faint ring in Fourier
space, and results in the long-wavelength undulations of the rolls.
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Figure 3. Shadowgraph images (top row) and the moduli of their Fourier transforms (bottom
row) for (from left to right) ∆T = 0.3972, 0.3985, and 0.3998 K at Pis = 39.58 bars and
Tm = 48.00 K (E-III). Each image covers an area of 0.96× 0.96 mm2. The center of the Fourier
transform was removed to eliminate an instrumental noise peak near the origin.
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Figure 4. The total shadowgraph power as a function of ∆T for Pis = 39.58 bars and
Tm = 48.0◦C (E-III). The open circles correspond to the images shown in figure 3.

onset fluctuations still exist and lead to a background ring in the Fourier-transform
modulus. As expected from the relevant entries in table 8 (which are of the same order of
magnitude as the approximate analytical ones in table 2), none of these images show any
evidence of a hexagonal structure that would be expected if classical NOB effects had a
noticeable influence. This is particularly clear by inspection of the Fourier transforms in
figure 3 which reveal the formation of a single pair of peaks, characteristic for rolls, as
∆T is increased. In figure 4 we show the total power obtained from integrating the square
of the Fourier-transform modulus after removal of small experimental contributions near
the center. The open circles correspond to the images shown in figure 3. One sees a well
defined onset of convection, and a continuous increase from zero of the power beyond
onset.

On the basis of the experimental data in figures 3 and 4, we chose ∆Tc,exp = 0.398
K (listed in table 3). Within ±0.001 K, the same value of ∆Tc,exp was found in another
experimental run where ∆T was increased. This value is about 5% higher than the
corresponding Boussinesq value ∆Tc,OB = 0.379 (see table 3) obtained from (2.2,2.3)
and the material properties at Tm (see table 2). We consider this difference to be larger
than the uncertainties due to the fluid properties. In fact there is very good agreement
with the increase of the theoretical ∆Tc by about 6% compared to ∆Tc,OB.

4.3. Classical NOB convection away from the critical isochore

Moving away from the critical isochore at the same pressure Pis = 39.59 bars, the onset
of convection changes qualitatively. For the run E-IV (Tm = 48.100) the approximate
classical NOB theory (see table 4 ) yields the estimate Q = 4.65, considerably larger
than at Tm = 48.0◦C in § 4.2. The very good agreement of the approximate stability
limits (table 4) and the fully numerical ones (table 8) is reassuring. A sequence of images
for E-IV is shown in figure 5. This experiment was done by changing ∆T in steps of 0.6
mK, and equilibrating at each step for 40 minutes before taking the image. From bottom
to top one sees first only fluctuations, then the formation of an island of hexagons, then a
spreading of the area occupied by the hexagons. The hexagons are of course the hallmark
of the transition to convection in a NOB system. The initial formation of the small island
is attributable to the small inhomogeneity of the sample thickness, see § 3. No hysteresis
was detectable at onset. Given the small value of the theoretical ǫa ≃ −3.2 · 10−3, this
hysteresis should have a width of only about one mK in a perfectly homogeneous system
in the absence of fluctuations and would not have been detected in the experiment.
Figure 6 shows the Fourier-transform power corresponding to this case; one sees that the
power still increases continuously and gradually from the fluctuation values as ∆Tc,exp
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Figure 5. Shadowgraph images (left column) and the moduli of their Fourier transforms (right
column) for (from bottom to top) ∆T = 0.4362, 0.4368, 0.4375, and 0.4388 K at Pis = 39.58
bars and Tm = 48.10 K (E-IV). Each image covers an area of 1.92×1.92 mm2. The center of the
Fourier transform was removed to eliminate an instrumental noise peak near the origin. From
these images we estimate ∆Tc,exp = 0.437 ± 0.001 K.
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Figure 6. The total shadowgraph power as a function of ∆T for Pis = 39.58 bars and
Tm = 48.10◦C (E-IV). The open circles correspond to the images shown in figure 5.

is exceeded. The images and the power yield ∆Tc,exp = 0.437 ± 0.001 K (see table 3),
which deviates from the theoretical one in table 3 by 2%.

As can be seen in figure 7, the hexagons persisted up to ∆Th,r = 0.564 ± 0.003 K,
where a transition to rolls occurred. This yields ǫh,r ≡ ∆Th,r/∆Tc,exp − 1 = 0.29 ± 0.01
for the hexagon to roll transition. Measurements were also made, by the same method,
of the transition from rolls to hexagons that occurs as ∆T is reduced from high values.
They yielded ǫr,h = 0.26±0.01, somewhat lower than the experimental value of ǫh,r. The
quantitative agreement with the theory (see tables 4 or 8) is not really satisfactory.
The transition point ǫh,r is comparable with ǫr ≃ 0.3 where according to the amplitude-
equation description stable rolls exist. However, ǫh.r is considerably below the theoretical
estimate ǫT ′ = 0.42 for the point where the potentials of the hexagons and rolls become
equal. Apart from uncertainties with respect to the material parameters, the discrepancies
might be attributed to a problematic use of the weakly-nonlinear analysis at larger ǫ, as
has been discussed in § 4.1.

A more extreme case of classical NOB convection was found by increasing Tm further
on the same isobar to Tm = 48.300◦C (E-V). In that case the classical estimate yields,
according to table 4, a very large Q = 15 and ǫa = −0.038. Thus one expects a well
resolved hysteresis loop. Its existence is indeed clearly confirmed by the experimental
images in figure 8 (each of these images was taken after equilibration at a given ∆T for
40 minutes; only every second step of ∆T is shown) and the corresponding Fourier power
shown in figure 9.

From these data we estimate ∆Tc,exp = 0.6728 ± 0.0006 K which implies a reduction
compared to ∆Tc,OB by a factor of 0.79. Inspection of table 3 shows that the reduction
of ∆Tc,OB is also predicted by the theory, but by a smaller amount corresponding to a
factor of 0.89. The experimental width of the hysteresis loop ∆Ts is about −3.3 ± 0.6
mK, yielding ǫs = ∆Ts/∆Tc = −0.005 ± 0.001. This value is considerably smaller than
the theoretical value based on the full numerical calculation ǫa = −0.011 (see table 8),
while the classical NOB approach would predict an even larger ǫa = −0.038 (see table
4). Part of this discrepancy may be due to a fluctuation-induced transition to hexagons
at a slightly negative ǫ, and to a transition from hexagons to fluctuations at ǫT rather
than at ǫa. However, we attribute the majority of the discrepancy to an inadequately
accurate knowledge of the material parameters. In contrast to E-IV, a transition from
hexagons to rolls is not observed for the run E-V within the range of our experiment.
This is consistent with the large theoretical values of ǫr and ǫb in tables 4 and 8, which
are, however, not reliable from a quantitative point of view (see the discussion in § 4.1).
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Figure 7. Shadowgraph images (left column) and the moduli of their Fourier transforms (right
column) for (from bottom to top) ∆T = 0.5607 and 0.5672 K at Pis = 39.58 bars and Tm = 48.10
K (E-IV). Each image covers an area of 1.92 × 1.92 mm2. The center of the Fourier transform
was removed to eliminate an instrumental noise peak near the origin. From these images we
estimate ∆Thr = 0.564 ± 0.003 K, corresponding to ǫhr = 0.29 ± 0.01.

4.4. Non-Boussinesq effects on the critical isochore

Finally we consider the cases on the lower two solid curves in figure 1. For these ρ(Tm)
is equal or very close to ρ∗ and the odd-in-δ̃ terms of the fluid properties should be very
small as already discussed in § 2. One finds that Q is quite small as well (see table 4),
consistent with the numerical values of the stability limits in table 8. Thus we do not
expect classical NOB effects for these cases. Images for the case of Pis = 38.09 bars at
Tm = 46.22◦C are shown in figure 10. They reveal a transition from fluctuations to rolls,
with no evidence of hexagonal structures. We obtained ∆Tc,exp = 0.131 K , which is
larger by a factor 1.21 than the OB value 0.108 K, in modest agreement with the theory
(see table 3).

From table 4 one sees that the case Pis = 38.33 bars (E-II) has a Q-value that is even
smaller than that of the Pis = 38.09 bars case. Thus, at the level of classical theory and
also in line with the stability limits shown in table 8, the classical NOB effects should
be even smaller, although they would be expected to be unnoticeable in either case. A
transition from fluctuations to rolls indeed is found without any hint of hexagons, but
∆Tc,exp = 0.440◦C is larger than the OB value ∆Tc,OB = 0.235 by a factor of 1.86
compared to the corresponding ratio 1.2 for E-I discussed before. The agreement with
the theoretical ratio 1.82 in table 3 is very good.

4.5. Summary of experimental results

We demonstrated that the experiments on the critical isochore (E-I, E-II, E-III) agree
quite well with the theoretical calculations. They are characterized by a fairly small Busse
parameter Q; thus only rolls should be observable at onset as is indeed the case. The
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Figure 8. Shadowgraph images of size 0.96 × 0.96 mm2 (each image has its own grey scale,
chosen on the basis of the variance of the image). From bottom to top, the images are for ∆T =
0.6685, 0.6698, 0.6712, 0.6725, and 0.6738 ◦C at Pis = 39.58 bars and Tm = 48.30 K (E-V). The
left (right) column was taken with increasing (decreasing) ∆T . The hysteresis associated with
the transcritical bifurcation is apparent.
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Figure 9. The shadowgraph intensity (in arbitrary units) on a logarithmic scale as a function
of the temperature difference ∆T on a linear scale at Pis = 39.58 bars and Tm = 48.30 K (E-V).
Open (solid) circles: increasing (decreasing) ∆T . The vertical dashed lines correspond to the
best experimental estimates of the transitions.

Figure 10. Shadowgraph images of size 1.28 × 1.28 mm2 and the moduli of their Fourier
transforms for Pis = 38.09 bars and Tm = 46.22◦C (E-I). From left to right, the images are for
∆T = 0.125, 0.131, and 0.132 ◦C.

measurements show a significant shift of ∆Tc.exp relative to the Boussinesq value, in good
overall agreement with the theory presented in § 5.2.

In the experiment E-IV with a moderate Q = 4.66, slightly away from the critical
isochore, one observes the classical NOB scenario: a bifurcation to hexagons at onset
followed by a transition to rolls at higher ǫ. Consistent with theoretical expectations,
the hysteresis at onset was too small to be observable in this case. The transition to
rolls occurred at a value of ǫh,r ≃ 0.29, close to the point ǫr = 0.30 where rolls are
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predicted to first become stable, but well below the point ǫT ′ = 0.41 (see table 4 and §
4.3) where rolls acquire a lower potential than hexagons. For completeness we mention
another system with Q ≃ 4, namely CO2 away from the critical point (Bodenschatz et al.

1991); see also § 6.1). In that case the small hysteresis at onset could be resolved because
the temperature differences involved were two orders of magnitude larger than those of
the present work. Here theory and experiment agree very well, but in contrast to the
present case the linear approximation to the material properties (2.7) is quite accurate.
The largest quantitative discrepancies between theory and experiment are found in the
case of E-V, where only hexagons are observed near onset (for details, see § 4.3). In this
case the hysteresis at onset was resolved very well, but found to be smaller by about a
factor of two than the theoretical value. Since the distance to the critical isochore is larger
than for E-IV, the material parameters are less well known in this case. In addition, as
discussed in § 4.1, the weakly nonlinear analysis becomes questionable due to the very
large Busse parameter Q = 15.

5. Theory of non-Boussinesq effects and the linear regime

In this section we first lay the general foundations of our theoretical treatment of NOB
effects in terms of an appropriate hydrodynamic description. The analysis is simplified
considerably by using an analytic description of the material parameters as functions
of temperature in terms of Padé approximants. Within a linear stability analysis of the
heat-conducting basic state of the fluid layer we then determine the critical temperature
difference ∆Tc. It can differ substantially from the OB-value ∆Tc,OB, as anticipated
already in table 3. A weakly-nonlinear treatment of NOB effects is deferred to the next
section.

5.1. On the temperature- and pressure-dependence of the material properties

In figure 2 we already showed a representative example of the heat capacity Cp as a

function of the dimensionless temperature δ̃ = (T − Tm)/∆Tc,OB on the isobar of the
experimental run E-I; further relevant material parameters are shown in figure 11. It
turns out that their temperature dependences can be described very well in closed form
by rational functions of δ̃ in the form of Padé approximants. To achieve an accuracy
of better than 0.05% it is sufficient to restrict the degrees of the polynomials in the
numerator and the denominator of the Padé approximant to be less than five.

For instance ρ̂(δ̃) ≡ ρ(δ̃)/ρm can be represented by

ρ̂(δ̃) =
1 + ρ1δ̃ + ρ2δ̃

2 + ρ3δ̃
3 + ρ4δ̃

4

1 + ρ5δ̃2 + ρ6δ̃4
(5.1)

where ρm denotes the density at T = Tm, i.e. at δ̃ = 0. Thus the reduced thermal
expansion coefficient α(T )/α(Tm) = −ρ(T )−1∂Tρ(T )/α(Tm) as function of δ̃ is given by

α̂(δ̃) ≡ α(δ̃)

αm
= −∂δ̃ρ̂(δ̃)

ρ1

ρ̂(δ̃)−1

with αm ≡ α(0) = −ρ1/∆Tc,OB . (5.2)

In analogy to ρ̂(δ̃) in (5.1), we fit all fluid properties, i.e. the set X = (ρ̂, α̂, Ĉp, η̂, λ̂),

normalized by their values at δ̃ = 0 (i.e at T = Tm), by a Padé approximant

X =
1 + x1δ̃ + x2δ̃

2 + x3δ̃
3 + x4δ̃

4

1 + x5δ̃2 + x6δ̃4
. (5.3)
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Figure 11. The fluid properties along the isobar Pis = 38.09 bars (E-1) as a function of

δ̃ = (T − Tm)/∆Tc,OB. Dotted lines: Data taken from the literature as detailed in § 2. Heavy
solid lines: Padé approximants, (5.3), to the material properties with the coefficients listed in
table 5 over the temperature range covered at the experimental onset of convection.

ρ̂ α̂ Ĉp η̂ λ̂

x1 −0.266 0.170 0.230 −0.336 -0.035
x2 4.961 3.133 3.130 5.710 26.080
x3 −0.837 0.292 0.260 -1.260 -2.110
x4 1.503 0 0 1.950 79.350
x5 4.93 8.53 8.44 5.63 26.71
x6 1.49 5.73 5.30 1.95 91.93

Table 5. Padé coefficients xi (5.3) for the members of the material-parameter set X for the
experimental run E-I

Note that in general we kept only even powers of δ̃ in the denominators in order to be
able to separate more easily the parts that are even and odd in δ̃. In table 5 we listed the
Padé coefficients for the representative experimental run E-I. The corresponding Padé
approximants for the material properties have been included in figure 11; they fit the
data extremely well.
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While the temperature dependences of the material properties play an important role,
we shall now demonstrate by some rough estimates that the variations of these properties
with pressure are unimportant for the present experiments. Because of the divergence of
the isothermal compressibility kT (2.4) at T ∗, the density is very sensitive to pressure
variations. To get a feeling for the relevance of kT in our case we consider the experi-
ment E-I where Tm is closest to T ∗. In the conduction state the hydrostatic pressure is
determined by

dp

dz
+ gρ = 0. (5.4)

Thus the hydrostatic pressure difference ∆p between the lower and the upper plate is of
the order of gdρm ≃ 2.5 ·10−6 bars which is very small compared to the average pressure
Pis ≃ 40 bars. The pressure drop ∆p is associated with a difference ∆ρ > 0 of the density
between the lower and the upper plate. Using the data for kT,m and ρm from table 2 one
finds ∆ρ ≃ kT,mρm∆p ≃ 1.5 · 10−4ρm. This pressure-induced variation of ρ is negligible
compared to that introduced by the critical temperature difference ∆Tc which is of the
order of ρmαm∆Tc ∼ 0.25ρm.

While ρ determines the buoyancy force in the momentum balance, the energy balance
(see e.g. Landau & Lifshitz (1987)) requires the analysis of the temperature and pressure
dependences of the entropy S(T, p). With the use of

TdS = CpdT + Tρ−1αdp (5.5)

the estimate Cp,m∆Tc ≈ 104J/kg of the first term on the rhs. of (5.5) is much larger
than the estimate Tρ−1α∆p ≈ 2J/kg of the second one. Moving away with Tm from T ∗

(E-II → E-V), the relative importance of the pressure dependence is further reduced.
Thus in the case of a small cell thickness d and not in the immediate vicinity of T ∗ as in
the present experiments the pressure dependence of ρ and a fortiori of the other material
parameters can be safely neglected.

5.2. Basic equations and linear properties

We deal with a viscous fluid layer of thickness d and large lateral dimension L, i.e.
of large aspect ratio Γ = L/d ≫ 1. We use a Cartesian coordinate system with the
horizontal directions x, y perpendicular to gravity g which in turn is antiparallel to
the z-direction, i.e. g = g(0, 0,−1). The position vector r will appear in the following
notations: r ≡ (x, y, z) ≡ (x, z) ≡ (x1, x2, x3).

The fluid velocity u = (u1, u2, u3) is determined by the Navier Stokes equation, sup-
plemented by the bulk force from gravity:

∂t(ρui) + ∂j(ρujui) = −∂ip− ρgδi3 + ∂jτi,j (5.6)

with the pressure p and the stress tensor

τi,j = η(∂iuj + ∂jui) + ηvδi,j∂kuk (5.7)

where δij denotes the Kronecker delta and ηv the bulk viscosity. We assume the Einstein
summation convention throughout the paper.

Mass conservation leads to the continuity equation

∂tρ+ ∂j(ρuj) = 0. (5.8)

Starting from the entropy balance and neglecting the pressure dependence as discussed
before we obtain finally the governing equation for the temperature T (see e.g. Landau
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& Lifshitz (1987)):

∂tT + uj∂jT =
1

ρCp
∂j(λ∂jT ). (5.9)

As usual we have omitted viscous heating. The coupled system of PDE’s (5.6, 5.8, 5.9)
has to be solved after implementing the explicit Padé approximants (5.3) for the material
properties as functions of the temperature T . We are mainly interested in the stationary
solutions of the PDE’s, where the momentum density v = ρu is a solenoidal field (see
(5.8)). Thus v can be represented in the standard poloidal-toroidal decomposition by two
velocity potentials f, ψ:

v = δf + ζψ, with

δ = (∂x∂z, ∂y∂z,−∂2

x − ∂2

y), ζ = (∂y,−∂x, 0). (5.10)

One big advantage of this representation is that one gets rid of the pressure p and the
contribution of the volume viscosity ηv by operating on the velocity equation (5.6) with
δ and ζ (5.10), respectively.

It is very common in the literature (anelastic approximation, see e.g. Gough 1969) to
neglect the time derivative ∂tρ in the continuity equation (5.8) not only for the steady
state but also in the case of slow dynamics. This assumes for instance that velocities
are much smaller than the sound velocity, i.e. that the Mach number is small. For our
problem this is always the case. Thus, in line with Busse (1967), the introduction of
velocity potentials remains possible and permits the elimination of the pressure.

In our analysis we adopt periodic boundary conditions in the plane, which are appro-
priate for large-aspect-ratio systems. Consequently we can switch in explicit calculations
from position space (x, y) to the 2d-Fourier space with wavevector q = (q, p). At the top
and bottom plates we choose realistic no-slip boundary conditions for the velocity field
u and keep the temperatures fixed:

u = 0 at z = ±d
2
, (5.11)

T = Tm +
∆T

2
at z = −d

2
,

T = Tm − ∆T

2
at z = +

d

2
. (5.12)

Here, as before, Tm denotes the mean temperature and ∆T > 0 the temperature differ-
ence across the layer.

Let us first calculate the basic state solution T = Tcond(z) where u = 0. According to
(5.9) one has to solve the equation

λ̂(δ0)
dδ0(z)

dz
= C1, with

δ0(z) =
Tcond(z) − Tm

∆Tc,OB
. (5.13)

The constant C1 has to be adjusted to guarantee the boundary condition

δ0(z = ±d/2) = ±1

2

∆T

∆Tc,OB
= ±1

2

R

Rc,OB
, (5.14)

where we have used again the definition R = ∆T/Ts (2.1) and consequently Rc,OB =
∆Tc,OB/Ts.
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With the use of the Padé approximant for λ̂(δ̃) in (5.13) one obtains z(ǫ0) analytically
by direct integration. The inversion of z(ǫ0) leading to ǫ0(z) is done numerically. For the

present experiments the temperature dependence of λ̂ is rather weak and Tcond(z) may
be represented to an accuracy of better 0.01% by

Tcond(z)/Ts = Tm/Ts +RZ(z),

Z(z) = −z/d+ w(z), (5.15)

w(z) = (z/d)2 − 1/4)
[
t0 + t1(z/d) + t2(z/d)

2
]
.

After insertion of Tcond into (5.13) we arrive at

δ0(z) =
RZ(z)

Rc,OB
, (5.16)

where obviously the boundary conditions (5.14) are fulfilled. The coefficients ti are small:
for the experiment E-I we obtain for instance: t0 = −0.026, t1 = 0.108, t2 = 4.7 10−3.
Thus the temperature Tm corresponds to the midplane of the cell (z = 0) up to an error
of less than 1%.

In the presence of convection Tcond (5.16) is modified by a convective temperature
contribution Θ(x, z) = Tsθ(x, z). Thus in general we have to replace the temperature
variable δ̃ in the Padé approximants (5.3) for the material parameters by

δ̃(x, z) =
T − Tm

∆Tc,OB
= δ0(z) + θ(x, z)/Rc,OB. (5.17)

We are interested in the onset of convection and in the weakly nonlinear regime, where
we keep as usual the field amplitudes up to cubic order. Since in this approximation the
poloidal velocity potential ψ does not contribute, only θ and f have to be considered.
Thus we have to expand the material parameters collected in X (see (5.3)) up to second
order in θ except for the density ρ where we need the cubic contribution as well in the
buoyancy term. For instance the result for the reduced density ρ̂(δ̃) = ρ(δ̃)/ρm, keeping
the leading terms, becomes

ρ̂[δ̃(x, z)] = ρ0(z) + θ(x, z)ρ1(z) + θ2ρ2(z) + θ3ρ3(z) (5.18)

with

ρ0(z) = ρ̂[δ0(z)], ρn(z) =
1

n!

∂nρ̂ [δ0(z)]

∂δn
0

1

[Rc,OB]n
for n > 0. (5.19)

Analogous expansions with respect to θ are used for the other members of X (5.3) which
yield the expansion coefficients αi(z), ηi(z) · · · , i = 0, 1, 2. With the use of (5.2, 2.2) the
coefficients α0(z) and ρ1(z) are related by

ρ1(z) = −αmTsρ
0(z)α0(z). (5.20)

To render the hydrodynamic equations dimensionless we use the usual scales for the
length (d), time (d2/κm), velocity (κm/d), pressure (νmκmρm/d

2), and temperature (Ts).
Then the nondimensionalized members of the material parameter set X (5.3) come into
play, which are expanded in terms of θ as indicated before.

It is convenient to introduce a symbolic notation of the hydrodynamic equations (5.6,
5.9), the ”non-Boussinesq equations” (NBE), as used in this paper:

∂tB̂(∂x, ∂z, z)V̂ (x, z, t) = L̂(∂x, ∂z, z;R)V̂ (x, z, t) + N , (5.21)

with the symbolic vector V̂ (x, z, t) = (f, θ). The nonlinearity N contains the components
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of V̂ and their spatial derivatives up to cubic order. The following boundary conditions
for θ, f have to be satisfied:

θ(x,±1/2) = f(x,±1/2) = ∂zf(x,±1/2) = 0 . (5.22)

They follow from (5.11, 5.12).
For our purpose it is not illuminating to show the bulky expressions for the nonlinearity

N (5.21), which are handled by using Mathematica. For definiteness, however, we show

explicitly the linear operators B̂, L̂ which determine the linear part of (5.21):

1

σ
∂t∇2∆2f = −α0(z)ρ0(z)∆2θ + δi∂jτi,j ,

ρ0(z)C0

p(z)∂tθ = RC0

p (z)vz∂zZ(z) + ∂j(λ
0(z)∂jθ) +R∂z

[
λ1(z)θ∂zZ(z)

]
(5.23)

with the Prandtl number σ = ν0/κ0 and the 2d Laplacian ∆2 = ∂2
x + ∂2

y . The linearized
stress tensor is τi,j given as

τi,j = η0(z)
[
∂i(vj/ρ

0(z)) + ∂j(vi/ρ
0(z))

]
. (5.24)

The contribution ∝ ρ0(z) of the buoyancy term has been combined with the pressure,
which is then eliminated by exploiting δi∂i = 0. Note that the main control parameter R
appears not only explicitly in (5.23) but also implicitly via ǫ0(z) [see (5.16)] in the material
parameters. It is obvious that one will return to the OB equations by neglecting the z-
dependence of the material parameters by choosing ρ0, α0, η0, C0

p , λ
0 = 1 and λ1 = 0. In

the NOB analysis of Busse only the corrections linear in z of the material parameters
are kept.

Switching to Fourier space in (5.23) by the ansatz V̂ = eΛteiq·xU(q, z) leads to the
eigenvalue problem

ΛB(q, ∂z, z)U(q, z) = L(q, ∂z , z;R)U(q, z) (5.25)

where the operators B,L derive from B̂, L̂, respectively by substituting ∂x → iq.
The discrete set of the eigenvalues of Λi(q, R), i = 0, 1, 2 · · · of the eigenvalue prob-

lem (5.25) are assumed to be ordered in decreasing order with respect to their real
parts: ℜΛ0 ≥ ℜΛ1 ≥ ℜΛ2 ... . When for increasing R the growth rate ℜΛ0(q, R) crosses
zero at R0(q) (neutral surface) and becomes positive, the homogeneous basic state be-
comes unstable to convection. The minimum of R0(q) defines the critical wavevector qc

and the threshold Rc = R0(qc). In the present case the bifurcation is stationary, since
ℑΛ0(qc, Rc) = 0. Furthermore, because of the isotropy of the present RBC system the
eigenvalues Λi and the corresponding eigenvectors Ui depend only on |q|.

To solve the eigenvalue problem (5.25) we use the standard Galerkin approach to
guarantee the boundary conditions (5.22). Thus we expand θ, f with respect to the
z-dependence in terms of Sn(z) =

√
2 sin[nπ(z + 1/2)] and the Chandrasekar functions

Cn(z), n = 1, 2 · · ·ncut, respectively, which are both normalized to one. In this way (5.25)
is mapped to a finite-dimensional algebraic eigenvalue problem, from which we obtain
numerically via Λ0(q, R) the critical Rayleigh number Rc and the critical wavenumber qc.
By monitoring the effect of increasing the cutoff ncut we found that the choice ncut = 8
is sufficient to obtain an accuracy of 0.1% for Rc, qc. All calculations in this paper were
performed with the use of Mathematica.

In table 3 we already presented the resulting theoretical critical temperature differences
∆Tc = RcTs normalized by ∆Tc,OB. For comparison we included ∆Tc,exp as well in that
table. As already discussed in § 4, the theoretical ∆Tc match the ∆Tc,exp surprisingly
well considering some uncertainties in the experimental data and in the precise knowledge
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of the material parameters. These uncertainties are presumably more pronounced for the
runs E-I and E-V, where we find, in contrast to the very good agreement for E-II, E-III,
E-IV, a difference of about 8% for E-I and 10% for E-V.

Now we are in the position to put our conjecture in § 2 to capture the NOB effects
responsible for the differences between ∆Tc,OB and ∆Tc on a sound basis. There we
proposed to replace αm and Cp,m by their averages Cp and α. If we solve the linear
eigenvalue problem (5.25) which determines Rc in the so called one-mode approximation
by truncating the Galerkin expansion at the leading term n = 1, we obtain in the OB
limit qc = 3.098, Rc = 1728.4 which deviates from the actual value Rc = 1707.8 by only
1%. Inspection of (5.23) shows that in the one-mode approximation we return to the OB
problem except that α0(z), C0(z), λ0(z) are replaced, more precisely than speculated in
§ 2, by the weighted averages

<α> =

∫ 1/2

−1/2

dzS1(z)α
0(z)C1(z),

<Cp> =

∫ 1/2

−1/2

dzS1(z)C
0

p (z)C1(z),

<λ> =

∫ 1/2

−1/2

dzC1(z)λ
0(z)C1(z). (5.26)

The other functions ρ0(z) and η0(z), which are odd in z, are replaced by their OB-values
(ρ0(z) = η0(z) = 1). Thus, except that the control parameter R in (5.25) is replaced by

R̃ =
<α><Cp>

<λ>
∆T/Ts , (5.27)

we have returned to the standard OB problem. Then R̃c = Rc,OB holds and we obtain
the approximation

∆Tc,app =
<λ>

<α><Cp>
∆Tc,OB, (5.28)

for the critical temperature difference, consistent with the discussion in § 2. The ratios
∆Tc,app/∆Tc,OB for the five experimental runs already have been included in table 3,
where they compare quite well with the exact ∆Tc/∆Tc,OB.

6. Weakly nonlinear analysis of non-Boussinesq effects

The exploration of the fully nonlinear regime requires a demanding numerical treat-
ment of the basic hydrodynamic equations discussed in § 5.2, which is outside the scope
of this paper. In the vicinity of the onset (ǫ ≈ 0), however, the problem can be treated in
the framework of the standard weakly nonlinear analysis to describe rolls and hexagons
and their competition. The starting point is the following ansatz (see e.g. Ciliberto et al.

(1988) and references therein) for the solutions V̂ of the NBE (5.21) in the cubic approx-
imation :

V̂ (x, z, t) =
1√
2

3∑

i=1

Ai(t)e
iqi·xU0(|qi|, z) + c.c (6.1)

where U0(q, z) is the eigenvector associated with the growthrate Λ0(q) of the eigenvalue
problem (5.25). The wavevectors qi present a resonant triad:

q1 + q2 + q3 = 0; |qi| = qc. (6.2)
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Following the standard convention, U0(qi, z), which is nonzero for −1/2 ≤ z ≤ 1/2 , is
chosen to be real and positive.

Expanding (5.21 ) up to cubic order in the amplitudes Ai (for some details, see Ap-
pendix B) one arrives at the following well known ODE for the amplitude A1:

τ0∂tA1 = ǫA1 − aA∗
2A

∗
3 − bA1(|A2|2 + |A3|2) − cA1|A1|2 (6.3)

with the correlation time τ0. The equations for A2, A3 are obtained by cyclic permutations
of the indices 1, 2, 3. The coefficients a, b, c are real with b, c > 0 and b > c in our case. It is
well known that the stationary solutions of (6.3) can be chosen to be real as well. Besides
the trivial (ǫ-independent) solution Ai = 0, which corresponds to the heat conduction
state, we have first roll solutions A1 = Ar, A2 = A3 = 0 with Ar =

√
ǫ/c if ǫ > 0, which

are stable for ǫ ≥ ǫr. Furthermore stable hexagons (A1 = A2 = A3 ≡ Ah) with

Ah = − a

2(2b+ c)
− sgn(a)

(
a2

4(2b+ c)2
+

ǫ

2b+ c

)1/2

(6.4)

exist in an interval ǫa ≤ ǫ ≤ ǫb. The explicit expressions for ǫa, ǫh, ǫr as well as the
coexistence points ǫT , ǫT ′ defined in § 2 are given in Appendix A. Note, that inspection
of (6.1, 6.4) shows that the case a > 0 is associated with θ < 0 , i.e cold downflow in the
center of the hexagon.

For clarity it should be mentioned, that the normalization of the eigenvector U0 is not
standardized in the literature. A transformation U0 → Ũ0 = cuU0 leads according to
(6.1) to redefined amplitudes Ãi = (cu)−1Ai. They fulfill again the amplitude equation
(6.3) but with the redefined coefficients ã = cua, b̃ = c2ub, c̃ = c2uc. Note that quantities
ǫa, ǫh etc. given in Appendix A are invariant under this transformation, as they must be.
We follow the normalization convention of Ciliberto et al. (1988), according to which the
nondimensional convective heat flow N is given as

N ≡ (Nu− 1)R

Rc
=

3∑

i=1

|Ai|2 (6.5)

where Nu denotes the Nusselt number, the ratio between the total heat flow and the
conduction heat-flow.

The amplitudes Ai are directly accessible in convection experiments since near ǫ = 0
the shadowgraph intensity I(x) is proportional to the vertical average of θ(x, z) (see
Trainoff & Cannell 2002). Thus the Fourier coefficients of I(x) must be proportional to
the amplitudes Ai. In fact the understanding of NOB patterns and their instabilities near
onset have been greatly enhanced by using the concepts of amplitude equations (see for
instance, Ciliberto et al. 1988; Bodenschatz et al. 1991).

6.1. Busse revisited

To obtain quantitative insight into the weakly nonlinear regime the coefficients a, b, c in
(6.3) have to be calculated. In the approach of Busse (1967) the scaling γi, Ai ∼ O(ǫ1/2)
was implicitly assumed. Consequently it is sufficient to expand NBE (5.21) up to second
order in θ, f and to linear order in the γi. Thus (5.21) simplifies as follows:

B̂∂tV̂̂V̂V = (L̂0 +

4∑

k=0

γkL̂γ
k)V̂̂V̂V −

−N0(V̂̂V̂V , V̂̂V̂V ) −
4∑

k=0

γkN
γ
k (V̂̂V̂V , V̂̂V̂V ). (6.6)
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Here we have split the various terms of (5.21) into their OB part (superscript ’0’) and the
contributions linear in the γi (superscript ’γ’). The explicit expressions are for instance
given in Busse (1967) or in Madruga et al. (2007). All terms in (6.6) can be classified
with respect to their symmetry properties under reflections at the midplane (z → −z).
A vector V̂̂V̂V has the parity p = 1(−1) if it is even (odd) in z. The application of L̂0

to a vector V̂̂V̂V with parity p conserves the parity, while the application of the operators
L̂γ

k reverses the parity. Similarly the nonlinearities are also characterized by a definite

symmetry against reflections at the midplane: The term N0(V̂1, V̂2) evaluated for the

vectors V̂1, V̂2 with parities p1, p2, respectively, has the parity p = −p1p2, while the
corresponding parity of the N

γ
k operators is given as p = p1p2.

The coefficients a, b, c have been calculated following the general procedure presented
in Appendix B, where the extensive use of Mathematica has been very helpful. Our
calculational scheme is equivalent to the original approach of Busse (1967), who used,
however, a more tedious double expansion in the amplitudes Ai and the coefficients γi.
Exploiting the symmetry properties of L̂0, L̂γ

k and N0,Nγ
k , it is easy to see that the

cubic coefficients b, c are given by their well known OB values up to corrections O(γ2
i ).

They read as follows (see e.g. Busse 1967; Pampaloni et al. 1992):

c = 0.69946− 0.00472/σ+ 0.008325/σ2,

b = 0.99069 + 0.07675/σ+ 0.097645/σ2. (6.7)

In contrast the quadratic coefficient a, which vanishes in the OB case, is of order γi. It
is determined by the Busse parameter Q as follows:

a =
3

Rc,OB
Q (6.8)

where Q according to (2.9) is determined by the material properties via the γi and the
coefficients Pi. In Busse (1967) the coefficients Pi have been calculated in the limit σ → ∞
for rigid boundary conditions. They agree very well with our results in (2.10) except that
P3 = 2.9197 as given in Busse (1967) is much smaller than our value P3 = 9.54. The
discrepancy can be traced back to a book-keeping error in Busse (1967). The corrections
∝ 1/σ were only given for free boundary conditions by Busse (1967) and they have been
assumed in the literature to be approximately equal to those for the rigid case. This
is in fact not correct, since they differ by up to 100%. Furthermore it can be proven
rigorously both for rigid and free boundary conditions† that the correction term ∝ 1/σ
in P3 vanishes identically. This is confirmed in (2.10), while in Busse (1967) the 1/σ
correction to P3 is not vanishing.

The analysis presented so far is strictly valid only in the limit γi → 0, but the resulting
expressions are commonly used for finite γi as realized in the experiments. Thus we will
briefly discuss the corrections at larger γi. Let us start with the γi-dependence of the
critical Rayleigh number Rc on the basis of (6.6). Since the L̂γ

k have the opposite parity

of L̂0, the leading corrections to the OB values Rc,OB = 1707.8 and qc,OB = 3.117 are of
order O(γ2

i ) and have the following general representations:

† F. Busse, private communication
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δǫ(i, j) · 10
2 0 1 2 3 4

0 1.876
1 -0.732 -0.760
2 10.543 4.994 -5.159
3 2.470 -13.396 1.494 6.697
4 0.366 -3.037 2.250 6.699 -0.190

Table 6. Coefficients δǫ(i, j) determining the NOB corrections of Rc from (6.9); 0 ≤ j ≤ 4
(column index) and 0 ≤ i ≤ j (row index).

δq(i, j) · 10
3 0 1 2 3 4

0 -4.711
1 -0.945 3.337
2 8.395 -5.472 -4.508
3 3.351 -11.110 2.960 5.553
4 0.473 7.374 -2.736 -5.545 0.834

Table 7. Coefficients δq(i, j) (arranged as in table 6) determining the NOB corrections of qc

from (6.9).

Rc −Rc,OB

Rc,OB
=

4∑

i=0

i∑

j=0

δǫ(i, j)γiγj ,

qc − qc,OB

qc,OB
=

4∑

i=0

i∑

j=0

δq(i, j)γiγj .

(6.9)

The expansion coefficients δǫ(i, j), δq(i, j) are available from (6.6) by solving the corre-
sponding linear eigenvalue problem in the framework of a standard second-order approx-
imation with respect to the γi. But to be consistent one has in addition to expand the
linear operator L̂ (5.21, 5.23) to second order in the γi. The resulting expression L̂γγ ,
which is a bilinear form in the γi, is quite lengthy and will not be shown here. Since
Lγγ is of even parity, the corresponding corrections to Rc,OB and qc,OB, which can be
represented as in (6.9), can be captured already by a first-order perturbation-analysis

with respect to L̂γγ . In fact the resulting corrections compensate to a large extent the
quadratic ones from Lγ . The whole analysis can be performed quasi-analytically and
requires only the evaluation of certain matrix elements with the help of Mathematica.
The final coefficients are listed in the tables 6,7.

To give an impression of the order of magnitude of the NOB-corrections we consider
as a representative example the experiment described by Bodenschatz et al. (1991) (see
also Bodenschatz et al. 2000, p. 744). Here CO2 is used as fluid for a cell of thickness
d = 52.5µm, with a pressure of 23.2 bars and Tm = 27.35◦C. We obtain σ = 0.874,
γ0 = 0.1512, γ1 = −0.2137, γ2 = 0.2366, γ3 = 0.0769, γ4 = −0.0810. Since Q = 3.8
the NOB corrections were large enough to resolve the stability limits ǫa, ǫr etc. in the
experiment.

The corrections to Rc,OB and qc,OB are in fact very small. With ncut = 8 we obtain the
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values Rc,OB = 1707.8, qc,OB = 3.117 for γi = 0, compared to Rc = 1708.89, qc = 3.1195
from (5.23) for the finite γi. The differences ∆R = Rc −Rc,OB and ∆q = qc − qc,OB are
described by (6.9) and the coefficients in tables 6,7 to an accuracy of better than 0.01%.
Even if we would multiply, as an example, all γi by a factor of 5, the analytical correction
formula describes the modifications of Rc,OB, qc,OB to an accuracy of about 2%. Note
that disregarding the contribution of Lγγ to the coefficients in tables 6, 7 would instead
produce a discrepancy of more than 20% in this case.

Let us now address the coefficients a, b, c in (6.3) at finite γi, which determine the
various stability limits ǫa, ǫb, ǫr etc. as given in Appendix A . The coefficients can be
obtained only numerically by performing a weakly nonlinear analysis on the full NBE
(5.21) as described in § 6. As a test the γi for CO2 given above have been reduced at
first by a factor of 10. Then they should be small enough that the analytical expressions
a, b, c (6.8, 6.7) apply, where Q is given by (2.9). According to Appendix A we arrive
thus at ǫa = −2.038 · 10−5, ǫb = 2.6434 · 10−3, ǫr = 7.12 · 10−4, ǫT = 1.002 · 10−3. In
fact the corresponding numerical stability limits fit these values to an accuracy of better
than 0.05%. This excellent agreement serves also as a convincing test for the correctness
of the coefficients Pi (2.10), which determine via (2.9, 6.8) the coefficient a.

If we return to the unmodified γi of CO2, we obtain instead on the basis of (5.21) the
stability limits ǫa = −2.14 · 10−3, ǫb = 2.907 · 10−1, ǫr = 7.87 · 10−2, ǫT = 1.11 · 10−3.
These values agree with the corresponding analytical ones, where again the coefficients
(6.8, 6.7) are used in Appendix A, up to an accuracy of about 10%.

In conclusion, we have shown that for situations, where the material properties are
well described by keeping only the linear corrections (2.7), the critical values qc, Rc are
practically identical with the OB values. Moreover, the nonlinear properties are also well
described by the closed expressions for the stability boundaries in Appendix A with the
use of explicit coefficients given in (6.7, 6.8).

6.2. Strong NOB corrections

In the case of strong NOB effects as in a fluid near its critical point we have already
demonstrated in § 5.2 that considerable modifications of Rc take place. These cannot be
obtained by restricting the analysis to the linear corrections of the material properties
in terms of the γi as in § 6.1. In this section we study the weakly nonlinear aspects of
SF6 in the framework of amplitude equations (6.3), where the NOB effects are strong
compared to the classical Busse approach in § 6.1. For that purpose we have determined
the coefficients a, b, c fully numerically from (5.21) by using the procedure described in
Appendix B. For the material properties we use the Padé approximants discussed in
§ 5.1.

It is obvious, that the strong NOB effects do not only modify the coefficient a (6.8)
given in the previous section, but lead also to changes of the other coefficients b, c (6.7),
which all determine the stability limits according to Appendix A. We have not disentan-
gled the various contributions to the stability limits listed in table 8, which depend also
indirectly on the shifts of Rc. A detailed comparison between theory and the experiments
was presented already in § 4. It shows that the Busse parameter Q continues to be a
valuable measure for describing a strong-NOB system in the weakly nonlinear regime,
though the quantitative deviations are not small in some of the experimental runs. In
any case the nonlinear properties have been captured only within an amplitude-equation
approximation. Fully nonlinear analyses for the present system would be important to
estimate the range of validity of weakly nonlinear analysis, by which only the amplitude
instability of rolls and hexagons can be tested. In fact the importance of additional side-
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Experiment E-I E-II E-III E-IV E-V

103ǫa −0.18 -0.08 -0.01 -3.17 -11.12
103ǫr 12.40 2.80 0.60 308.4 (2997.)
103ǫT ′ 17.1 3.94 0.82 424.3 (43594.)
103ǫb 43.2 10.44 2.06 (1047.) (7360.)

Table 8. Fully numerical stability limits ǫa, ǫr, ǫT ′ , ǫb for the experiments E-I, E-II etc. The
data in parentheses are of low accuracy, see § 4.1.

band instabilities has been emphasized in a recent fully nonlinear analysis in the case of
weak NOB effects (Madruga et al. 2007; Madruga & Riecke 2007).

7. Conclusion

In this paper we discussed strong non-Oberbeck-Boussinesq (NOB) effects that oc-
cur in Rayleigh-Bénard convection for instance of a fluid slightly above the critical point
where the properties depend strongly and nonlinearly on the temperature. There the con-
ventional OB approximation fails and the usual weakly-nonlinear treatment of the NOB
effects as given by Busse (1967) had to be replaced by a more sophisticated treatment.

The material properties of the fluid can be divided into two disjoint parts that dif-
fer with respect to the reflection symmetry about the midplane of the fluid layer. The
odd part, if present, yields near-negligible shifts of the critical Rayleigh number Rc and
wave number qc and is responsible for the classical NOB scenario characterized by a
transcritical bifurcation to hexagons near onset, with the hexagons replaced by rolls at
larger R. The impact of the even part, on the other hand, to our knowledge had not been
analyzed in the literature. Although it preserves the supercritical bifurcation to rolls of
the Boussinesq system, it leads to a significant shift of Rc.

For SF6 the properties near the critical point are relatively well known. Thus this fluid
was used for measurements, and in parallel its properties were used for specific calcula-
tions of the corresponding NOB effects. Very small changes of the average temperature
Tm and the pressure Pis are sufficient to tune the system with respect to the even and
odd NOB terms. The latter become very small if the average density ρm of the fluid is
kept equal to the critical density ρ∗, leading to a bifurcations to rolls (as opposed to
hexagons) near onset and to a sizable shift of ∆Tc.

In general the experimentally observed patterns and bifurcation points that we report
in the present paper were convincingly confirmed by the theoretical analysis. We note
that we did not observe the bifurcation sequence hexagons-rolls-hexagons (”reentrant
hexagons”) with increasing ǫ that was described by Roy & Steinberg (2002) for experi-
ments using SF6. We find it doubtful that compressibility effects, which should not be
relevant according to § 5.1, can be advocated (as they were by Roy & Steinberg 2002) to
explain this scenario. In contrast to the present work, where pressure and temperatures
(and via the equation of state thus also the density) were externally controlled, it seems
likely to us that one or more of these parameters were not strictly kept fixed by the
experimental procedure used by Roy & Steinberg (2002). In that case for instance the
parameter a in (6.3), which measures the odd NOB effects, could effectively depend on
ǫ and non-generic bifurcation sequences might become possible since the stability lim-
its ǫa, ǫb, ǫr would depend, via a, on ǫ as well (see (A 1)). Note that alternatively the
phenomenon of reentrant hexagons was predicted theoretically on the basis of a fully
nonlinear analysis of Busse’s classical NOB model (Madruga et al. 2007; Madruga &
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Riecke 2007). However, this theoretical work predicts wave numbers smaller than the
experimental ones (Roy & Steinberg 2002) for the reentrant hexagons at larger ǫ.

As a byproduct we also re-examined the classical weak NOB effects which had been
studied most systematically by Busse (1967). Apart from a difference for one of the
Busse coefficients we confirmed his results for infinite Prandtl number σ and in addition
calculated the correction terms for finite σ.

The experimental work was supported by the US National Science Foundation through
Grant DMR07-02111. One of the authors (W.P.) is very grateful to Prof. Busse for many
fruitful discussions about NOB convection. G.A. acknowledges also the support of the
Alexander von Humboldt Foundation, as well as the kind hospitality of the physical
institute of the University of Bayreuth and the Max Planck Institute for Dynamics and
Self-organization, Göttingen, where part of this work was performed.

Appendix A. Stability limits

The stability boundaries of hexagons and rolls are determined by the coefficients a, b, c
of the amplitude equations (6.3) (see e.g. Busse 1967; Malomed et al. 1990; Ciliberto
et al. 1988; Bodenschatz et al. 1991)

ǫa = − a2

4(2b+ c)
; ǫb =

a2(b+ 2c)

(b − c)2
; ǫr =

a2c

(b − c)2
. (A 1)

The equations for the amplitudes Ai are associated with a Lyapunov functional F . Coex-
istence of the various states (rolls, hexagons, conduction state) imply equal values of the
corresponding Lyapunov functionals. For ǫ = ǫT ′ hexagons and the basic state coexist
(F(0) = F(Ah)), while for ǫ = ǫT hexagons and rolls coexist (F(Ar) = F(Ah)). The
explicit expressions for ǫT ′ , ǫT read as follows (see e.g. Malomed et al. 1990)):

ǫT ′ =
8

9
ǫa ; (A 2)

ǫT =
a2[

√
c(2(b+ c))3/2 + 2c(3b+ c)]

4(2b+ c)(b − c)2
. (A 3)

Note that ǫT given by (A3) can be transformed into the expression given by Bodenschatz
et al. (1991).

Appendix B. General formalism

In this Appendix we present our method to calculate the amplitude equations. Up to
minor technical modifications, we follow in great detail the calculational scheme used by
Cross (1980).

Since the linear operators B̂, L̂ in the general NOB problem (5.21) are not selfadjoint
we have to consider the adjoint eigenvalue problem as well. We use a standard hermitian
scalar product, << ·|· >> in position space, which simplifies for vectors X̂̂X̂X(x, z), Ŷ̂ŶY (x, z)
of the form eiq1·xX(z), eiq2·xY (z) as follows:

<< X|Y >>≡ δq1,q2
< X|Y > (B 1)

where δq1,q2
denotes the Kronecker symbol.
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The scalar product < X|Y > in Fourier space is defined as

< X|Y >=
2

π

∫ 1/2

−1/2

dzX†(z)Y (z). (B 2)

Thus the adjoint operator O† of an operator O is defined as follows:

< X|OY >=< O†X|Y > (B 3)

where X,Y correspond to the same wavevector q.
Inspection of the linear problem (5.25) shows that the eigenvectors U

†
i (q, z) of the

adjoint problem, which are determined by

Λ∗
i (q, R)B†U

†
i (q, z) = L†(q, R)U†

i (q, z) , (B 4)

obey the boundary conditions (5.22) as well. Since in our case all eigenvalues Λi turn out

to be real, the U
†
i can be chosen to be real as well.

The following orthogonality conditions hold:

< U
†
i |BUj >=< U

†
i |LUj >= 0 if i 6= j. (B 5)

The normalization of the U
†
i is fixed by < U

†
i |BUi >= 1. The correlation time τ0 is

defined as

Λ0(qc, R) =< U0(qi, R)|LU0(qi, R)) = τ−1

0

(R−Rc)

Rc
(B 6)

for ǫ = (R−Rc)/Rc ≈ 0. Thus the expansion coefficients Ai(t) of the solution V̂̂V̂V of (5.21)
are obtained as

Ai(t) =< U0(qi)|Be−iqixV̂̂V̂V > . (B 7)

Up to the redefinition of the scalar product the further steps to expand (5.21) in terms
of the Ai(t) up to cubic order can be taken over from Cross (1980). One has for instance
to calculate nonlinear solutions quadratic in the amplitudes Ai and Aj(A

∗
j ) with the

wavevectors qi ± qj , i, j = 1, 2, 3 by inserting (6.1) into (5.21). Note, that these solutions
have to be restricted to the subspace spanned by the eigenvectors Ui with i 6= 0 (see also
Haken (1996); Plaut & Pesch (1999)).
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