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We present experimental and theoretical results near the onset of Rayleigh-Bénard convection with
rotation about a vertical axis in a fluid with a Prandtl number σ close to 0.18. In the experiment
we used a H2-Xe gas mixture with a separation ratio Ψ = 0.22 and a Lewis number L = 1.22 at
various pressures and dimensionless rotation rates Ω up to 400.

On the basis of a standard weakly-nonlinear stability analysis, we found a supercritical, stationary
bifurcation for Ω <

∼ 13, which became subcritical over the range 13 <
∼ Ω <

∼ 160. For Ω >
∼ 160 a

supercritical Hopf bifurcation precedes the stationary instability of the uniform state. Following
the unstable straight-roll fix point in the subcritical regime by Galerkin methods we determined
the location of the saddlenode and the stability of the nonlinear two-dimensional straight-roll state.
The rolls were found to be unstable to three-dimensional Kueppers-Lortz perturbations for 3.8 <

∼
Ω <
∼ 160. Theoretical results for a pure fluid with the same σ were qualitatively similar.
Measurements using shadowgraph flow visualization yielded a bifurcation line and an Ω-range

of subcriticality which agreed with the stability analysis. In the subcritical range the experiment
revealed a discontinuity of the pattern amplitude at onset, but was unable to find any hysteresis.
Patterns at onset fluctuated irregularly between the ground state and the finite-amplitude state. In
this parameter range the convection pattern further above onset was chaotically time dependent.
Investigation of the Hopf bifurcation-line was difficult because of a wall mode which, for large Ω,
preceded the bulk instability. For Ω ' 400 patterns were found in the sample interior only when
the expected Hopf bifurcation was exceeded by about 10 %. This is consistent with the convective
nature of the bifurcation. However, the observed structure, although time periodic, was spatially
disordered and had a frequency which was considerably larger than the expected Hopf frequency.
In a separate sample cell with a radial ramp in the spacing no structure was observed at all in the
cell interior until the expected stationary instability was reached.

PACS numbers: 47.54.+r,47.20.Lz,47.27.Te

I. INTRODUCTION

Convection in a thin horizontal layer of fluid heated
from below, known as Rayleigh-Bénard convection
(RBC), is perhaps the most thoroughly studied pattern-
forming system [1,2]. The spatially uniform conduction
state becomes unstable to convection when the Rayleigh
number

R = αgd3∆T/κν (1)

reaches a critical value Rc [3]. Here α is the isobaric ther-
mal expansion coefficient, g the acceleration of gravity,
d the fluid layer thickness, κ the thermal diffusivity, ν
the kinematic viscosity, and ∆T the temperature differ-
ence across the fluid. RBC offers unique opportunities to
examine a number of bifurcation and pattern-formation
phenomena. We focus on the effect of rotation with an
angular frequency 2πf about a vertical axis [4] where f
is the rotation frequency in Hz. In that case interesting
differences between theory and experiment exist which

remain unresolved at this time, and a number of theoret-
ically predicted phenomena have not yet been observed
in the laboratory.

One of the interesting aspects of this system is
that, over a wide parameter range, spatio-temporal
chaos (STC) is entered immediately above onset via a
supercritical bifurcation. In this weakly-nonlinear state
of STC, first predicted by Küppers and Lortz (KL) for
dimensionless rotation rates Ω ≡ 2πfd2/ν above a criti-
cal value ΩKL = O(10), rolls are unstable to another set
of rolls with an angular orientation relative to the first
which is advanced in the direction of rotation by an angle
θKL. [5] This instability has been the subject of several
recent experimental investigations for small Ω <

∼ 20, us-
ing compressed gases with Prandtl numbers σ ≡ ν/κ
near one as the working fluid [2]. The predicted [5,6]
supercritical nature of the stationary bifurcation to the
KL state has been confirmed quantitatively by the de-
tailed experiments of Hu et al. [7,8] However, these stud-
ies disagree with relevant weakly-nonlinear theories in
the form of Ginzburg-Landau (GL) equations. The time
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and length scales of the KL state in the experiments do
not have the expected powerlaw dependence on the re-
duced control parameter ε = ∆T/∆Tc−1. Moreover, the
chaotic KL dynamics is expected to persist near the onset
for all Ω > ΩKL. Again, contrary to theoretical expec-
tations, patterns with four-fold coordination were found
near onset in recent experiments [9] and in direct nu-
merical integrations of the Boussinesq equations [2] when
Ω >
∼ 70. Over some parameter ranges the system formed

a near-perfect square lattice which rotated slowly relative
to the experimental cell. These discrepancies between ex-
periments and theory remain unresolved.
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FIG. 1. The bifurcation diagram for an infinitely-extended
pure fluid as a function of σ and Ω. All lines in the dia-
gram were obtained theoretically, except for the near-vertical
dotted one which gives the approximate experimentally de-
termined location of the transition from the KL state to the
four-fold-coordinated state at onset and the horizontal dot-
ted one which indicates the parameter range explored in the
present study. The dash-dotted line labeled ΩKL shows the
transition from straight rolls to Küppers-Lortz or domain
chaos at onset. The solid line labeled Ωt1 and Ωt2 is the
tricritical line which separates the supercritical from the sub-
critical bifurcation range. The dashed line labeled ΩCD2 is
the line of codimension two points where the Hopf bifurca-
tion meets the stationary bifurcation.

The range σ <
∼ 0.7 remains largely unexplored by

experiment because representative fluids are difficult to
find. Pure gases generally have σ >

∼ 2/3 (the hard-sphere
gas value), and classical liquids have σ > 1. Although σ
vanishes at the superfluid transition of liquid 4He, exper-
iments with this fluid, especially with rotation about a
vertical axis, are complex and flow visualization is diffi-
cult. Values of σ of order 10−2 are accessible with liquid
metals; but the range 10−2 < σ <

∼ 0.7 is not represented
by pure classical fluids. However, recently it was rec-
ognized that values of σ as low as 0.17 can be reached
in gas mixtures, [10] thus opening up a parameter range
with interesting new phenomena. For σ < 0.33 the pre-
dicted bifurcation diagram for RBC with rotation is very

rich [3,6,11–14]. For pure fluids it is shown in Fig. 1 [15].
In Sect. III we show that qualitatively it does not change
for our gas mixture. At small Ω < Ωt1, the stationary
bifurcation is expected to be supercritical. In this range
the KL state is predicted above ΩKL ' 5 < Ωt1. Over
the intermediate range Ωt1 ≤ Ω ≤ Ωt2 the bifurcation
is predicted to be subcritical. [11,6,12] Here the finite-
amplitude nonlinear state above the bifurcation is also
expected to be KL unstable. As is seen in Fig. 1, the
subcritical range depends on σ.

For sufficiently large Ω the stationary bifurcation is
predicted to be preceded by a supercritical Hopf bifur-
cation. [3] The locus ΩCD2(σ) where the stationary and
Hopf bifurcations meet is a codimension-two (CD2) line
in the σ − Ω plane. So far the Hopf bifurcation has
not been accessible in experiments because ΩCD2(σ) di-
verges with increasing σ at σ = 0.677 [3,12] and because
smaller σ-values are difficult to achieve, particularly in
large-aspect-ratio cells and with flow visualization.

In this paper we focus on rotating convection for σ
near 0.18. This value is close to the lowest accessible
with compressed gases, and was obtained by using a mix-
ture of H2 and Xe with a mole fraction X close to 0.5.
[10] Visualization of the flow patterns was achieved with
the shadowgraph method. A weakly-nonlinear stability
analysis of the Boussinesq equations for the mixture was
carried out for comparison with the experiment. For this
σ, we found theoretically that the stationary-bifurcation
branch near Ωt2 is preceded by the Hopf bifurcation, with
the CD2 bifurcation at ΩCD2 ' 200. In the experiment
Ω-values up to 400 could be obtained; thus the entire
subcritical range and a significant part of the predicted
Hopf range were accessible.

In agreement with our calculations, we found that the
bifurcation is supercritical for Ω < Ωt1 ' 13 and sub-
critical for larger Ω. Near but below Ωt1 the nonlinear
state at onset was chaotic, as expected above ΩKL ' 3.8.
For Ωt1 < Ω <

∼ 50 we found a chaotically time-dependent
state which appeared discontinuously with a finite am-
plitude at onset, but surprisingly we found no hysteresis.
Directly at onset, the system fluctuated intermittently
between the chaotic convecting state and the ground
state. For Ω >

∼ 50 the amplitude increased dramatically
just above onset, but it was not possible to identify a
clear jump in the experiment. Although we searched for
it at Ω up to about 400, we were unable to find a clear
signature of the time-periodic pattern which should have
resulted from a Hopf bifurcation.

II. EXPERIMENTAL METHOD AND

APPARATUS

Our apparatus is described in detail elsewhere [16].
We used cylinderical cells of aspect ratios Γ ≡
radius/height = 8.3 and 11 with the same height d =
4.00±0.02 mm. The bottom of each cell was a diamond-
machined [17] aluminum plate. The top plate was an op-
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tically flat sapphire. A porous cardboard ring was sand-
wiched between the plates for the sidewall. The sample
was a commercially available high-purity mixture of H2-
Xe. The quoted molar ratio of H2-Xe was 0.496:0.504.
The apparatus was mounted on a rotating table. A
shadowgraph tower was mounted axi-symmetrically on
top of the apparatus to enable imaging in the rotating
frame. The direction of rotation of the whole assem-
bly was counter-clockwise when viewed from above. The
physical angular rotation frequency ωd = 2πf was scaled
by the vertical viscous diffusion time τν = d2/ν to yield
the dimensionless rotation frequency Ω ≡ ωdτν . Increas-
ing the pressure decreases ν and hence increases τν . Typ-
ically, τν was between 25 s and 70 s, depending on the
pressure and the mean temperature. We used pressures
of 10−45 bars which were held constant to within about
a millibar. With a reasonable choice of pressure and cell
height it was possible to explore the Ω-range from zero
up into the Hopf regime.

Most of the experiments were carried out at pressures
of 16.2 bars. With τν = 27.5 and ωd up to 5.82 rad/s,
this pressure allowed us to explore Ω <

∼ 160. For higher
Ω up to 400, we used a pressure of 40 bars. Varying the
pressure had only a small effect on σ, which varied in the
range of 0.174 (at small pressures) to 0.185. The samples
all conformed well to the Boussinesq approximation; the
Boussinesq parameter Q [18] varied from 0.066 to 0.49
over the whole range. The maximum Froude number,
F ≡ rω2

d/g, which measures the effect of the centrifugal
acceleration, was less than 0.15. Here r = Γd is the radius
of the cell. For our mixture the relevant binary-mixture
parameters (see Sect. III) were Ψ = 0.22 and L = 1.22.
These were the same within 1% for all the runs.

The temperature of the bath was fixed at 37.5 oC. At
each Ω, the temperature of the bottom plate was raised
quasistatically above ∆Tc(Ω) in small steps. The tem-
peratures were regulated to achieve a stability of ∆T of
better than 10−3 oC. At each step we waited for 2 hours,
which is much longer than Γ2τν(' 1/2 hour), for the sys-
tem to reach a steady state. The smallest ∆T -step used
was 5 mK. After reaching the highest ∆T , ∆T was low-
ered in small steps below onset to obtain data for both
increasing and decreasing ε. The typical ε-range explored
was −0.05 <

∼ ε <
∼ 0.1, although some runs went to larger

ε.

Usually, a large number of images (up to 2048/step)
of a central square part of the cell was analysed in real
time for each ∆T . The inscribed square had a diagonal
which was 91% of the cell diameter. The images were
taken at a constant time interval of about τκ = στν (≈ 5
sec). At large Ω >

∼ 100, where a bifurcation to a wall
mode [19] preceded the bulk bifurcation and where this
mode occupied a significant fraction of the cell, a smaller
square unencumbered by this mode was analysed. While
searching for the Hopf regime we also took images of the
entire circular cell.

III. THEORY

Our theoretical analysis of convection patterns is based
on the standard hydrodynamic description, i.e. the gen-
eralized Boussinesq equations with rotation for binary
mixtures. As usual the system is idealized to be laterally
infinite. A linear analysis yields the critical properties
(critical wavenumber, Rayleigh number, Hopf frequency)
of the rolls bifurcating at onset. The finite-amplitude
states above onset and their stability are determined with
the use of a weakly nonlinear analysis and a fully nonlin-
ear Galerkin approach. The main results are contained
in Figs. 1 to 4 and Table I. Further details are found in
Appendix A.
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FIG. 2. The theoretical critical Rayleigh numbers
rc = Rc(Ω)/Rc(0) as a function of Ω for σ = 0.174 for a
pure fluid (dashed line) and for a mixture with Ψ = 0.22 and
L = 1.22 (solid line). The small x shows the lower tricritical
point at Ωt1 of the mixture, which is nearly indistinguishable
from the pure case. The circles give the CD2 points. The
upper tricritical points are located above ΩCD2, and are thus
pre-empted by the Hopf bifurcation. The stationary bifurca-
tion lines are independent of σ.

The calculations concentrated on a pure fluid with
σ = 0.174 and on binary mixtures with σ = 0.174 and
0.185. These values correspond to most of the exper-
imental runs. For mixtures (see also App. A), addi-
tional parameters are required to describe the nature of
the convecting state because of the coupling between the
concentration and temperature fields. [20] The tempera-
ture gradient changes the concentration field because of
diffusion. This so-called Soret effect is characterized by
the separation ratio

Ψ ≡ −
β

α

kT

T
= −

β

α
C(1− C)ST , (2)

where β is the solutal expansion coefficient, kT the ther-
mal diffusion ratio, T the temperature, C the mass
concentration of the heavier component, and ST =
kT /[C(1 − C)T ] the Soret coefficient. The quantity kT
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is defined so that the heavier component moves to the
cold (hot) region when kT > 0 (kT < 0). When Ψ > 0,
the induced concentration gradient is destabilizing the
conduction state and the critical Rayleigh number is re-
duced, i.e., Rc(Ψ) < Rc(0).
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FIG. 3. The reduced critical Rayleigh number
rc = Rc(Ω)/Rc(0) for Ψ = 0.22 and L = 1.22 as a function
of Ω on a logarithmic scale. Circles (squares and triangles)
are experimental values for σ = 0.174 (0.185). The stationary
bifurcation (solid and dotted lines) is independent of σ. The
lower tricritical point (x), the codimension-two point (solid
circle), and the Hopf bifurcation (dashed line) are shown for
σ = 0.185.

TABLE I. Parameter values of special bifurcation
points for a pure fluid, and for the binary mixture with
Ψ = 0.22 and L = 1.22. The subscripts KL, t1, and
CD2 are explained in the caption of Fig. 1.

σ Pure Fluid Mixture

Rc(Ω = 0) — 1707.8 1131.0
ΩKL 0.174 3.67 5.08
rKL 0.174 1.015 1.032
rt1 0.174 1.113 1.192
Ωt1 0.174 10.15 12.83
rt1 0.185 1.127 1.224
Ωt1 0.185 10.79 13.93

rCD2 0.174 7.32 11.28
ΩCD2 0.174 122.4 168.4
rCD2 0.185 8.32 13.68
ΩCD2 0.185 138.0 197.2

An additional parameter arises in binary mixtures be-
cause the dynamics of the concentration variable is asso-
ciated with an independent time scale governed by the

concentration diffusivity D. Thus the Lewis number

L ≡ D/κ (3)

is important and serves as a measure of the ratio of the
mass-diffusion time to the thermal-diffusion time. In
binary-gas mixtures, L = O(1). For Ω = 0 the pattern
immediately above Rc then consists of rolls like those in
pure fluids. [10] In the calculations we used Ψ = 0.22 and
L = 1.22 which corresponds to the mixtures used in the
experiment. [10]
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FIG. 4. A more detailed plot on a linear Ω-scale of the re-
duced critical Rayleigh number rc at intermediate Ω. The
symbols and solid line have the same meaning as in the pre-
vious figure. The dashed line is the calculated location of the
saddlenode for the unstable straight rolls and σ = 0.174.

An important question is whether RBC in mixtures
with rotation behaves similarly to the pure-fluid case
with the same σ. For L = O(1) and positive Ψ we found
that Rc was reduced as expected, but that the bifurca-
tion lines when expressed in terms of rc = Rc(Ω)/Rc(0)
as well as the nature of the instabilities do not differ
qualitatively from those of a rotating pure fluid. This is
consistent with general considerations because for L = 1
the time scales of heat diffusion and mass diffusion are
equal, and because for positive Ψ both diffusion processes
lead to destabilization of the conduction state.

The results for the pure fluid and for the mixture with
σ = 0.174 are presented in Fig. 2. It is clear that both
have similar Ω ranges for the supercritical, subcritical,
and Hopf bifurcations. However, there are quantitative
differences. The largest difference is found in the location
of the CD2 point and the Hopf-bifurcation line. Precise
values for the special bifurcation points are given in Table
I. We note that the stationary bifurcation lines depend
on Ψ and L, but not on σ. The Hopf bifurcation line, on
the other hand, depends on σ as well. Thus the shift of
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the CD2 point with σ is a consequence of a shift of the
Hopf bifurcation line. All the nonlinear properties, i.e.
the location of the tricritical bifurcation and of the sad-
dlenode in the subcritical region, depend on σ as would
be expected.

IV. RESULTS

At small Ω where the bifurcation is supercritical, we
determined ∆Tc(Ω) at the onset of convection from the
contrast of the shadowgraph images as described for in-
stance in Ref. [7].

At larger Ω where the bifurcation is subcritical and
the pattern is chaotic, a different method was required.
There we determined a time average 〈Am〉(∆T ) of the
maximum local amplitude Am(t, ∆T ) of the pattern, and
located the jump or rapid rise of 〈Am〉(∆Tc). [21]

There was no hysteresis, and thus the change of 〈Am〉
yielded an experimentally well defined onset which could
be resolved with a precision of 10−3 to 10−2 in ε, depend-
ing on the Ω-range; but it is unclear whether this onset
should be identified with the limit of stability of the basic
state or with some other point below this limit but above
the saddlenode of a subcritical bifurcation. Nonetheless,
since this dicontinuity is the only experimentally well de-
fined signature of the onset of convection, we refer to it
as ∆Tc and used it to computed all ε values.

FIG. 5. A time series (from left top to right) of shadow-
graph images for Ω = 8.7 and ε = 0.035 at intervals of 720 s
or 26.2τν . The size of each image is 5.9d × 5.9d.

Since our samples all conform well to the Boussinesq
approximation (see Sect. II), we have to a very good ap-
proximation ∆Tc(Ω)/∆Tc(0) = Rc(Ω)/Rc(0) ≡ rc. Re-
sults for rc derived thusly from ∆Tc(Ω) are shown in
Fig. 3 over the entire experimental range of Ω on a log-
arithmic horizontal scale. The solid line is the theoret-
ical result for rc in the stationary regime. Above ΩCD2

the Hopf bifurcation line (dashed ) precedes the station-
ary one (dotted). The data for intermediate Ω-values are
shown in more detail in Fig. 4. Shown as well as a dashed
line in Fig. 4 is the calculated location of the saddlenode
rsa for the unstable straight rolls which form at the sub-
critical bifurcation. For Ω <

∼ 200 the data agree well with
the calculation of rc for the laterally infinite system. For
larger Ω, where a primary Hopf bifurcation is expected,
the agreement with the calculation is not as good. We
will return to this problem later in this paper.

FIG. 6. Timeseries (from top left to right) of images for
Ω = 44 and ε ' 0.004 at time intervals of 960 sec or 200 τκ.
The size of each image is 5.9d × 5.9d.

FIG. 7. Images for fairly small ε at various Ω. From
left to right and then top to bottom, the (Ω, ε)-values
are (9,0.052), (22,0.016), (30,0.039), (39,0.041), (48,0.038),
(52,0.052), (67,0.041), (96,0.055), (120,0.02). The size of all
but the last two images is 5.9d × 5.9d. For Ω = 96 and 120
the size of the images is 4.1d × 4.1d.

For Ω <
∼ 12, we observed the expected supercritical bi-

furcation to the KL state. There was no hysteresis, and
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the shadowgraph contrast grew continuously as ε was in-
creased beyond zero. A time series of images for Ω = 8.7
and ε = 0.035 at time intervals of 26.2τν is shown in
Fig. 5. Unlike experiments with larger Γ, [2] we had only
one domain of rolls in the cell. The rolls changed ori-
entation with time as is expected for the KL state. We
did not study this parameter range any further. A more
detailed investigation using a cell with a larger Γ would
be of interest.

The range 17 <
∼ Ω <

∼ 50 covers interesting new pattern-
formation phenomena above the subcritical bifurcation.
A time series of patterns for Ω = 44 just above the onset
at ε ' 0.004 is shown in Fig. 6. The pattern was inter-
mittent, switching irregularly between a spatially disor-
dered large-amplitude state and a state of much smaller
amplitude consisting of circular time independent rolls.
The origin of the small-amplitude circular pattern is un-
clear. It could be caused by thermal sidewall forcing,
[7] or it could be due to coupling between the Rayleigh-
Bénard instability and a weak large-scale radial flow in-
duced by the centrifugal force. It was observed well be-
low onset, and we will refer to it as the ”ground state”.
The pattern stayed in the ground state (large-amplitude
state) for long irregular time intervals, and jumped to
the large-amplitude state (ground state) randomly. The
high-amplitude pattern, once established, had a chaotic
dynamics with a typical time scale close to the vertical
thermal diffusion time τκ. As is evident from Fig. 6, the
patterns could be localized with some of the cell in the
ground state, or they could be extended, nearly or com-
pletely filling the cell.

FIG. 8. Images for Ω = 30.3 at various ε. From left to right
and then top to bottom, the ε-values are 0.034, 0.182, 0.33,
0.43, 0.48, and 0.63.The size of each image is 5.9d × 5.9d.

At very slightly larger ε the pattern always remained
in the high-amplitude state, i.e. it ceased being inter-
mittent, and it always filled the entire cell; but its ap-
pearance and time dependence remained similar to the
images shown in Fig. 6. Above onset, say for ε >

∼ 0.04,
the qualitative nature of the pattern depended very lit-
tle on Ω. A sequence of images at various Ω and small
ε is shown in Fig. 7. One sees that the characteristic
wavelength of the rolls decreases with increasing Ω.

In order to illustrate the pattern evolution with ε, we

present in Fig. 8 examples at several ε for Ω = 30.3.
Again the qualitative nature of the patterns does not
change much, although the characteristic wavelength of
the rolls increases with ε.

In Figs.9 and 10 we illustrate further the dynamics of
the patterns by showing time sequences at ε = 0.034 and
0.63 respectively, both for Ω = 30.3. In both cases, as
well as over a wide Ω range, a typical aspect of the dy-
namics is a wavy disturbance of the rolls which, with
growing amplitude, culminates in local pinching and dis-
connection of rolls. This is particularly evident, for in-
stance, in the middle of the third and fourth images of
Fig. 9. This process usually is followed by re-connection
to previously adjacent rolls as seen in the fifth and sixth
images of Fig. 9. Such an event typically results in a net
rotation of the pattern. This dynamics has significant
similarity to that found in the numerical work of Ref.
[13] and displayed in Figs. 10 and 11 of that reference.

FIG. 9. A time sequence of images for Ω = 30.3 and
ε = 0.034. From left to right and then top to bottom, they
are at intervals of 4.2 s (0.75 τκ). The size of each image is
5.9d × 5.9d.
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FIG. 10. A time sequence of images for Ω = 30.3 and
ε = 0.63. From left to right and then top to bottom, they
are at intervals of 4.2 s (0.75 τκ). The size of each image is
5.9d × 5.9d.

To characterize the transition to the large-amplitude
state, we show in Fig. 11 several time series of the max-
imum local pattern amplitude Am(t) for Ω = 44. The
lowest curve is for ε = −0.004±0.002. It is just below on-
set and samples only the low-amplitude circular ground-
state pattern. The next one was shifted upward by 0.1 for
clarity. It is just above onset, for ε = +0.004± 0.002. It
shows the fluctuations between the ground state and the
large-amplitude state illustrated by the images in Fig. 6.
The actual values of Am coresponding to these images are
shown as open circles. The third data set was displaced
vertically by 0.2 and correspond to ε = 0.008. Although
there are still a few fluctuations, they have become quite
rare and the system finds itself mostly in the convecting
state. Two more traces are shown, each upshifted by an-
other 0.1 relative to the previous one to avoid overlap.
They are for ε = 0.015 and 0.019 and show that the fluc-
tuations died out once the system was a percent or so
above onset.
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FIG. 11. Time series of the maximum shadowgraph ampli-
tude Am for Ω = 44. From bottom to top, the data are for ε =
-0.004, 0.004, 0.008, 0.015, 0.019. Starting at ε = −0.004, the
data are upshifted by 0.0, 0.1, 0.2, 0.3, 0.4 for the successive
ε-values. The circles are Am for ε = 0.004 and correspond to
the times of the images in Fig. 6.

For ω = 44, the time average 〈Am〉(∆T ) of Am(∆T, t)
is shown as a function of ε in Figure 12. The open (solid)
circles are for increasing (decreasing) ∆T . One sees that,
within our resolution of about 0.002 in ε, there is no
hysteresis at the transition even though there is a large,
sharp jump in 〈Am〉. The background level for ε < 0

is due in part to experimental noise, and in part to the
weak concentric pattern below onset.

In Fig. 13 we show results for 〈Am〉 for a few selected
Ω values. Over this entire range of Ω, 〈Am〉 shows a
jump ∆Am at onset which increases monotonically with
increasing Ω. We conclude that the bifurcation is sub-
critical even though there is no hysteresis. For ε < 0, the
background tends to grow with Ω. This suggests that
the contribution from the small-amplitude circular pat-
tern (which accounts for part of this background) may
be due to the centrifugal force.
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FIG. 12. The time average < Am > (∆T ) of Am(∆T, t)
for Ω = 44. Open (solid) circles were obtained with increas-
ing (decreasing) ∆T . These data illustrate the absence of
hysteresis.
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FIG. 13. The time average < Am > (∆T ) of Am(∆T, t) as
a function of ε for Ω = 17.2 (open circles), 29.5 (solid circles),
34.5 (open squares), and 44.2 (solid squares).

On the basis of a Landau model for tricritical points
we expect (∆Am)2 = g0 × (Ω − Ωt1)/k for the jump of
the amplitude at ε = 0. Here g0 × (Ω − Ωt1) is the cu-
bic and k the quintic coupling coefficient. Thus, within
this simple model, (∆Am)2 should be linear in Ω. A plot
of the experimental data as a function of Ω is shown in
Fig. 14a. They can be described by a straight line only
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if the point at Ω = 17.3 is ignored. Then a fit to the re-
maining data (dashed line in the figure) gives Ωt1 = 22.0,
which does not agree too well with the theoretical result
Ωt1 = 12.8 shown by the open circle. A problem with
this interpretation is that the data for Ω = 17.3 suggest
that the bifurcation is still subcritical at that rotation
rate. This can be seen more clearly in Fig 15 which gives
the results very near onset for the two lowest Ω values. A
better fit to all the data is illustrated in Fig. 14b where
(∆Am) (rather than it square) is shown as a function of
Ω. The data suggest a linear dependence, and a straight-
line fit (solid line in Fig. 14b as well as in Fig. 14a) yields
Ωt1 = 13.5 which is in satisfactory agreement with the
theoretical result. It is not clear why the Landau model
does not seem to apply; but it may be too simplified since
it does not anticipate a spatially and temporally chaotic
convecting state. As mentioned above, the region near
the tricritical point should be the topic of additional ex-
perimental work in a cell more suitable for this parameter
range.
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FIG. 14. The discontinuity ∆Am, in arbitrary units, of
〈Am〉(∆T ) at ε = 0 as a function of Ω. Solid circles: experi-
mental points. Open circle: theoretical value for the tricritical
bifurcation. (a) gives (∆Am)2 vs. Ω. The dashed line is a
straight-line fit to the points for Ω ≥ 25.9. (b) shows ∆Am

vs. Ω, and the straight solid line is a fit to all the data. This
fit is also shown in (a) as a solid line.
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FIG. 15. The time average < Am > (∆T ) of Am(∆T, t) for
Ω = 17.3 (open circles) and 25.9 (solid circles) on an expanded
horizontal scale.

The same procedure is followed for studying the finite-
amplitude convection for 53 < Ω < 150. As is shown
in Fig. 16, the bifurcation remains non-hysteretic. How-
ever, over this range the data do not show a clear jump
in amplitude. Rather, 〈Am〉 grows continuously, albeit
very rapidly, as ∆T increases. Such a rapid increase
of the amplitude would seem unlikely if the bifurcation
were genuinely supercritical, and we assume that it re-
mains subcritical as indicated by theory. Presumably
the discontinuity in 〈Am〉 is smoothed out by an inho-
mogeneity which arises above Ω ' 50. A likely candidate
for this inhomogeneity is the wall mode [19], which for
large Ω bifurcates from the conduction state before con-
vection occurs in the bulk. [22] In the experiment, the
bulk mode appeared first for Ω up to 53.2; but for our
next-higher Ω = 67.3 the wall mode appeared before con-
vection started in the system interior. The more gradual
transition to the fully developed large-amplitude state
introduces a somewhat larger uncertainty into the deter-
mination of the threshold; but this uncertainty still is
only in the vicinity of one percent. The nature of the
pattern just above onset was qualitatively similar to that
of the patterns at lower Ω, as already shown in Fig. 7.

At Ω = 53 and close to onset, the dynamics of the pat-
terns was different from what was observed at other Ω.
Bursts of finite-amplitude convection appeared and then
disappeared with a regular period of about 46τκ but at
different angular locations on a circle in the cell. A small
part of the corresponding time series of Am is shown in
Fig 17a. The power spectrum of the whole series of length
5290τκ is shown in Fig 17b. Strangely, we observed this
periodic bursting only at Ω = 53.
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FIG. 16. The time average < Am > (∆T ) of Am(∆T, t)
for Ω = 68 (squares) and Ω = 120 (circles). Open symbols:
increasing ∆T . Solid symbols: decreasing ∆T .

For Ω >
∼ 100 it became more and more difficult to de-

termine the bulk onset because, starting at Ω ' 60, it was
preceded by the appearance of the wall mode. [19] Here
we describe the observed phenomena for Ω close to 400.
Figure 18 shows an image of the entire cell for Ω = 403
and r = 28.96. At this Ω, the expected Hopf bifurcation
point is at rH = 27.2 and the stationary one at rs = 34.1.
One sees that the wall mode penetrated far into the cell
interior, leaving only a small central part for the observa-
tion of the bulk onset. In the counterclockwise-rotating
frame of the apparatus, the wall mode traveled in the
clockwise direction, with a frequency ωw ' −19. To a
good approximation ωw remained constant as r was in-
creased from below the bulk onset to above. We define
the wavenumber of the wall mode as qw = N/Γ where
N is the number of wavelenths along the perimeter of
the cell. For r close to the bulk onset qw remained con-
stant near 3.85. At higher r, the wall mode and the bulk
pattern overlapped in the entire cell, and we could not
measure ωw and qw beyond r = 30.25.

(a)

(b)
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FIG. 17. (a): A part of the timeseries of Am, in arbitrary
units, observed at Ω = 53 and ε = 0.004 (b): the power
spectrum of the entire time series at Ω = 53.

FIG. 18. A shadowgraph image of the entire cell for
Ω = 403, r = 28.96 and Γ = 8.3.

(a) (b) (c)

(f)(e)(d)
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FIG. 19. Shadowgraph images of the cell with uniform
spacing for Ω = 403, Γ = 8.3, and r = (a) 29.44, (b) 29.61,
(c) 29.76, (d) 29.93, (e) 30.09, (f) 30.25.
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FIG. 20. Shadowgraph intensity for the central square of
the cell with Γ = 8.3 at Ω = 403. The vertical dashed,
dash-dotted, and dotted lines are the theoretical convective
(rH), absolute (ra), and stationary (rs) bifurcation points re-
spectively. The solid line is the experimental onset.

When convection first appeared in the cell center, it
had the form of small packets of traveling waves moving
in random directions. Figure 19 shows images of the en-
tire cell with Γ = 8.3. By fitting a straight line to the
variance of the 3.9d x 3.9d square images in the center
section, a slightly rounded onset at r = 29.43 was found
as shown in Figure 20. As shown also in Fig. 21, the
onset was well below rs, but significantly above rH . This
is not surprising for a Hopf bifurcation in a finite sys-
tem. When the bifurcation leads to traveling convection
rolls, one has to distinguish between convective and abso-

lute instability (see e.g. [24]). For r > rH perturbations
grow exponentially; but below the absolute instability
at ra > rH they travel away faster than they can grow
and locally no structure evolves. In Fig. 20 ra (see the
Appendix) is shown as a vertical dash-dotted line. For a
finite system there will be an effective threshold ron, with
rH < ron < ra, below which no convection rolls occur.
[25] The value of ron depends on the system size; above
it the spatial extent of the system is sufficient to permit
growth to macroscopic amplitude before the rolls leave
the sample. For r > ra net growth occurs locally and
convective structures generally will be observed.
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FIG. 21. A linear plot of the reduced critical Rayleigh num-
ber rc at large Ω. The theoretical bifurcation lines are for
σ = 0.185, corresponding to the experiment in this Ω-range.
The dashed line is the primary Hopf bifurcation at rH . The
dash-dotted line is the absolute instability at ra. The dot-
ted line is the stability limit rs to stationary perturbations of
the conduction state in the Ω-range where it is expected to
be preceded by the primary Hopf bifurcation (dashed line).
Open squares: Onset of convection for Γ = 8.3 in the pres-
ence of sidewalls and a traveling wall mode. Open triangles:
Onset of convection in the presence of a radial ramp of the
cell spacing.

FIG. 22. Time series (from top left to right and then down)
of images of the central 7.5d × 7.5d square for the Γ = 11.1
cell at r = 29.8 and Ω = 396. The time between images is
0.70 sec, corresponding to 0.056 τκ.

In the Γ = 8.3 cell interference from the wall mode
prevented us from making a clean measurement of the
traveling-wave frequency of the structure which appeared
above ron. Thus, to study the bulk onset in detail with
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less interference from the wall mode, we made another
cell with larger aspect ratio Γ = 11.1. It had a spacing of
d = 3.96 mm which was only about 1% smaller than that
of the Γ = 8.3 cell. Images were obtained from 7.5d×7.5d
squares in the center. A typical time series of images at
Ω = 396 just above onset at r = 29.8 is shown in Fig. 22.
The observed waves could be travelling or “blinking” or
doing a combination of these. The frequency of the waves
was found to be ωb ' 41. Surprisingly, this is larger than
the expected Hopf frequency ω = 30.3. As r increased, ωb

decreased and beyond r = 30.2 only a time independent
structure remained.

(a)

(c) (d)

(e) (f)

(b)

FIG. 23. Shadowgraph images of the cell with a gentle
ramp in spacing for Ω = 307, Γ = 8.7 and (a) r = 22.5
(b) 22.6 (c) 22.7 (d) 23.1 (e) 23.4 (f) 23.43.

In an attempt to reduce the influence of the wall mode,
we constructed two cells with a gentle radial ramp in the
cell spacing for a radius a > a0 with a0 = 28.6 mm.
[23] These cells had a thicknesses in the uniform cen-
ter section of d0 = 3.27 mm and 3.93 mm, yielding
Γ0 = 8.7 and 7.3 respectively. Over the radius range
a0 < a < a1 = 4.13 cm the bottom plate had a quarter
of a cosine profile of amplitude 0.66 mm. A paper side-
wall was located radially 0.32 cm beyond a1. Figure 23
shows the patterns which evolved in this case for Ω = 307
in the cell with Γ = 8.7. Although the snapshots of the
system superficially look like those of the rigid-sidewall
case Fig. 18, a striking difference is that the circumfer-
ential roll structure was stationary in the rotating frame
of the cell [26]. The wavenumber of this structure was
about twice that of the cell with uniform spacing. Thus
this pattern is unrelated to the wall mode, and we pre-

sume that it is provoked by the inhomogeneity due to the
centrifugal force and the radial ramp.
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FIG. 24. The shadowgraph intensity for the cell with a gen-
tle ramp in spacing for (a) Ω = 307, Γ = 8.7 and (b) Ω = 383,
Γ = 7.3. Open (solid) circles are for increasing (decreasing)
r. The dashed (dotted) vertical line indicates the expected
location of the Hopf (stationary) bifurcation.

FIG. 25. Typical images above the bulk onset in a cell with
a gentle ramp in spacing for Ω = 383, Γ = 7.3 and r = 34.3.
On a time scale with arbitrary origin, the images were taken
at t = 3.0, 8.2, 9.5, 11.9, and 12.6 sec.

Square images of the central 5.6d × 5.6d of the cell
were used to study the bulk onset. We found that the
influence of the edge structure on the cell interior was
much less than that of the wall mode. Figure 24 shows
the bulk onsets for two values of Ω. Convection in the
interior started at Rayleigh numbers which were larger
than those for the uniform cells with rigid sidewalls. The
experimental bulk bifurcation points are shown in Fig. 21
as open triangles. The onset was consistent with the sta-
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bility limit at rs of the conduction state to stationary
perturbations, and well above rH and ra. Although the
convective structures were time dependent, the spectrum
of time series for the local intensity was broad-band and
we did not observe any characteristic frequencies. A typ-
ical time sequence of patterns is shown in Fig. 25. The
patterns are reminiscent of those with four-fold coordina-
tion which had been observed at large Ω and σ = O(1) in
pure gases [9]. We have to conclude that the observations
made in this cell are inconsistent with a Hopf bifurcation,
and have no concrete explanation for this disagreement
with the theoretical prediction for the laterally infinite
uniform system.

V. SUMMARY

In this paper we reported on experimental and theoret-
ical studies of convection at a Prandtl number σ ≈ 0.18
in the presence of rotation about a vertical axis. We
reached this parameter value by using a 50 % mixture of
gaseous H2 and Xe for the fluid. [10] In order to put the
experimental results on a firm footing and to provide a
direct comparison with theory, we carried out linear and
weakly-nonlinear bifurcation analyses of the Boussinesq
equations (Eqs. 6 in the Appendix) as a function of Ω. We
also performed Galerkin analyses of Eqs. 6 for the nonlin-
ear straight-roll states corresponding to selected aspects
of the problem.

For small Ω and in agreement with weakly-nonlinear
stability analysis, we found a supercritical bifurcation
from the conduction state to the familiar Küppers-Lortz
state of domain chaos. This parameter range deserves
more detailed future experimental attention because our
convection cells were not designed for its optimal study.

Above a tricritical rotation rate Ωt1 and in agreement
with weakly-nonlinear theory, the bifurcation was sub-
critical in the sense that it involved a discontinuous in-
crease of the amplitude at onset (ε = 0); but the bi-
furcation was free of any detectable hysteresis. There
were intermittent fluctuations between the ground state
and the nonlinear convecting state when ∆T was kept
within a fraction of a percent of the critical value, but no
large-amplitude convection could be found below the on-
set when ∆T was decreased from above ∆Tc. The exper-
imental patterns found above onset were time dependent
and spatially disordered.

In contrast to the experimental observations, a
Galerkin analysis yielded a saddlenode bifurcation to
rolls at εsa < 0 which, over a wide range of Ω, was about
15 % below the linear stability limit of the conduction
state (ε = 0). Stability analysis of the nonlinear convect-
ing state in the subcritical Ω-range above and below ε = 0
showed that the patterns were Küppers-Lortz unstable.
One might have expected finite-amplitude patterns above
a Maxwell point which, for a quintic Landau equation for
the straight-roll amplitude, is located at εT = 0.75εsa.

In the presence of rotation the system is non-potential
and the Maxwell point then corresponds to a value of
ε where an interface between the ground state and the
finite-amplitude state does not move.

Although it is not surprising that a disordered finite-
amplitude state failed to evolve out of the ground state
for ε < 0, one would have expected hysteresis in the sense
that a finite-amplitude state prepared at ε > 0 would
persist when lowering the control parameter to ε < 0.
However, this problem was investigated recently for the
one-dimensional quintic complex Ginzburg-Landau equa-
tion in the Benjamin-Feir unstable regime. [30] For that
case the absence of hysteresis was demonstrated in some
parameter regimes. Although this model is not directly
related to rotating RBC, it shows explicitly that, in the
case of a subcritical bifurcation where the finite ampli-
tude state is unstable, hysteresis is not necessarily ob-
servable.

For Ω >
∼ 50 the formation of a bulk pattern was pre-

ceded by a wall mode [19] of traveling waves. Nonetheless
it was possible to study the bulk bifurcation in the system
interior. For Ω values up to 120 or so there was still a very
rapid rise of the amplitude at onset, but the transition
was rounded and it was difficult to unambiguously assign
a quantitative value to the amplitude discontinuity. We
assume that the rounding is caused by the interaction of
the bulk pattern with the wall mode.

For even higher rotation rates, with Ω > ΩCD2, weakly
nonlinar analysis predicts that the stationary bifurcation
to convection should be preceded by a supercritical Hopf
bifurcation. An experimental search for this phenomenon
was somewhat indecisive. The problem is made more
complicated because in a finite system a pattern will not
form immediately above the convective instability; in-
stead, ∆T must be increased to a value which depends
on the system size but lies below the absolute instabil-
ity. [25] We calculated the absolute instability line and
found it to lie approximately 15 % above the convec-
tive Hopf bifurcation point. In a cell with rigid side-
walls disordered time dependent convection was found,
beginning about 10 % above the convective instability,
i.e. close to but below the absolute instability. How-
ever, the pattern was disordered and its frequency was a
factor of 1.5 larger than the predicted Hopf-bifurcation
frequency. This seems unusual since nonlinear dispersion
usually (but not necessarily) reduces the frequency.

In an attempt to remove the wallmode influence on
the system interior, we replaced the rigid sidewall of our
cell with a gentle radial ramp of the cell spacing. [23]
This was to suppress convection in and beyond the ramp.
However, the ramp led to a well organized roll pattern
localised radially near it. This pattern was stationary,
and thus it was unrelated to the wall mode even though
its spatial structure was similar. In the presence of the
ramp, we found no evidence of convection in the cell cen-
ter until the stationary instability point of the conduc-
tion state was reached. At that point, convection formed
in the form of disordered cells with a tendency toward
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four-fold spatial coordination such as was found at larger
σ. The observations made with this cell are inconsistent
with the expected Hopf bifurcation. We do not know the
reason for the difference between this system and the pre-
diction for the laterally infinite uniform system, but can
speculate that it may be associated with the large-scale
flow induced by the radial ramp.
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VII. APPENDIX

In this section we present in more detail than in Sect.
III the basic hydrodynamic equations and the calcula-
tional methods used in this paper. The theoretical de-
scription of thermal convection in binary fluids is well es-
tablished [20]. The standard Boussinesq equations have
to be generalized by including the concentration field C.
Together with the temperature T it determines the den-
sity ρ according to

ρ(T, C) = ρ0[1− α(T − T0)− β(C − C0)], (4)

with α and β the thermal and solutal expansion coeffi-
cients respectively, and T0, ρ0, and C0 the average values
of temperature, density and concentration respectively.
The diffusive part of the concentration current, Jc, is
driven by concentration gradients as well as by tempera-
ture gradients:

Jc = D(∇C +
kT

T0
∇T ) , (5)

with D the concentration diffusivity and kT the thermal
diffusion ratio which parametrizes the Soret effect, i.e.
the generation of concentration currents by temperature
variations. In principle there exists a contribution of the
concentration field to the heat current as well (the Dufour
effect, see e.g. [27]). However, consistent with previous
investigations [10] the Dufour effect is negligible in our
case and it does not modify noticeably any of the curves
shown in this paper.

In non-dimensionalized form [10,28] the Boussinesq
equations (generalized by adding the Coriolis force pro-
portional to the rotation frequency Ω) now read as fol-
lows:

1

σ
Dtv + 2Ωez × v = −∇Π + (θ + c)ez + ∆v,

Dtθ = Rvz + ∆θ, (6)

Dtc = RΨv · ez + L(∆c−Ψ∆θ)

with v the velocity and θ, Π, c the reduced deviations of
temperature, pressure, concentration respectively, from
their conductive profiles. Dt denotes the total derivative
∂t + v · ∇. The control parameters R,L, Ψ have already
been defined and interpreted in Sect. III. Equations (6)
have to be supplemented by the incompressibility con-
dition ∇ · v = 0, which is automatically guaranteed by
introducing the poloidal (f) and toroidal (g) velocity po-
tentials as u = ∇ × ∇ × fez + ∇ × gez. We use no-
slip boundary conditions for v at the vertical boundaries
z = ±d/2. Instead of c the introduction of ζ = c−Ψθ is
useful. It simplifies the notation of the nondimensional-
ized concentration current Jc = −L∇ζ (5), which like θ
vanishes at the impermeable boundaries z = ±d/2.

Let V(x, z, t) = (θ, f, g, c) be a symbolic vector nota-
tion for the field variables in Eq. (6). The onset of insta-
bility is obtained from a standard linear stability anal-
ysis of the basic state V = 0. The ansatz V(x, z, t) =
eλtei qx

U(q, z) diagonalizes the problem. The eigenvalue
λ(q, R) = σ(q, R)+iω(q, R) with the maximal real part σ
determines the growthrate, which crosses zero at R = Rc

and q = qc.

Let us first consider the case of large rotation frequency
Ω, where we find a Hopf bifurcation (see Fig. (2)) with
the critical Hopf frequency ωc = ω(Rc, qc). To assess the
resulting patterns in the weakly nonlinear regime we start
as ususal from a superposition of left- and right-traveling
waves:

V(x, z, t) = (A(x, t)ei (qcx+ωct)
U(q, z) (7)

+ B(x, t)ei (qcx−ωct))U∗(q, z) + c.c. .

The amplitude A of the left-traveling wave fulfills the
equation:

τ0(∂t − vg∂x)A = ε(1 + i c0)A + ξ2
0(1 + i c1)∂xxA (8)

− (ar + i ai)|A|
2A− (br + i bi)|B|

2A .

The corresponding equation for the right-traveling am-
plitude B is obtained from Eq. (8) by the substitutions:
vg → −vg , A ↔ B. All coefficients in Eq. (8) have been
calculated. They fulfill the condition ar + br > 0, br < 0,
which implies a supercritical bifurcation to stable stand-
ing waves as in the pure-fluid case [12]. According to
the Newell criterion ar + c1bi > 1 applied to standing
waves with vg = O(1) [29] the pattern is also Benjamin-
Feir stable against long-wavelength modulation along the
x-axis.

As pointed out above (see Fig. 20), for a Hopf bifur-
cation one has to distinguish between convective and ab-

solute instability (see e.g. [24]). Within the GLE ap-
proximation [24] the absolute instability is located at
εa = ra − 1 given by

εa =
τ2
0 v2

g

4ξ2
0(1 + c2

1)
. (9)
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In the opposite case of small rotation frequencies Ω
(see again Fig. (2)) the bifurcation is towards stationary
rolls (ω(qc, Rc) = 0). Besides the amplitude B and the
group velocity vg the imaginary parts of all coefficients
(i.e. c0, c1, ai, bi) vanish in Eq.(8). When Ω is continu-
ously increased from zero the coefficient ar changes sign
from positive to negative at a lower tricritical point Ωt1,
i.e. the bifurcation switches from supercritical to sub-
critical (see Fig. 1). The subcritical nonlinear periodic
roll solutions have been calculated within an Galerkin
approach for binary fluids, where we followed the unsta-
ble branch starting from onset ε = 0 via the saddlenode
towards the solutions at ε > 0. The Galerkin modes were
chosen as in Ref. [28].

If one follows the stationary branch the coefficient ar

changes sign again at a second tricritcal point Ωt2 (see
Fig. (1)). There exists a codimension-2 point at ΩCD2

where the critical Rayleigh numbers Rc of the stationary
and oscillatory branch coincide (but the corresponding
qc remain different). In our case (σ ' 0.2) the second
tricritical point is irrelevant, since at the relevant Ω the
Hopf bifurcation precedes the stationary bifurcation.

We have also performed a full nonlinear stability anal-
ysis of the periodic roll solutions within a Galerkin ap-
proach for the stationary branch. The rolls are always
unstable against the short-wavelength Küppers-Lortz in-
stability above Ω = ΩKL. As a test we have alterna-
tively identified the KL-instability in the supercritical
regime (ΩKL < Ω < Ωt1) by calculating appropriate
cross-coefficients of coupled amplitude equations. In the
subcritical regime Ω > Ωt1 we observed in addition long-
wavelength instabilities of the skewed-varicose type. The
detailed analysis as well as numerical simulations of Eqs.
(6) with the use of a pseudo-spectral code will appear in
a separate paper. In general, all scenarios we found in
binary fluids match qualitatively the pure fluid case with
rotation in the case of small σ.
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