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We present an experimental and theoretical investigation of a variant of electroconvection using an
unusual nematic liquid crystal in an isotropic configurati@momeotropic alignment The
significance of the system is a direct transition to the convecting state due to the negative
conductivity anisotropy and positive dielectric anisotropy. We observe at onset rolls or squares
depending on the frequency and amplitude of the applied ac voltage with a strong signature of the
zigzag instability. Good agreement with calculations based on the underlying hydrodynamic theory
is found. We also construct an extended Swift—Hohenberg model which allows us to capture
complex patterns like squares with a quasiperiodic modulatior2084 American Institute of

Physics. [DOI: 10.1063/1.1774412

Nonequilibrium transitions in spatially extended con-
tinuum systems lead to a wide variety of fascinating pat-
terns. The basic elements are stripesor rolls), squares,
and (under some restriction9 hexagons, which are the
only simple periodic patterns that appear directly via a
supercritical  bifurcation in isotropic  quasi-two-
dimensional systemé. In rare cases there is a direct(su-
percritical) transition to a disordered stateand/or to
spatial-temporal chaosHere we study electroconvection
(EC) in an unusual nematic liquid crystal with strongly
positive dielectric anisotropy and negative anisotropy of
the conductivity. This unusual combination of the mate-
rial parameters leads in the isotropic configuration (ho-
meotropic alignment) to a direct transition into rolls
and/or squares which in most cases show a characteristic
disorder and are well described by the theory. We per-
form a linear and nonlinear analysis of the full nemato-
hydrodynamic equations and carry out simulations of a
suitably constructed Swift-Hohenberg model. We obtain,
in agreement with the experiments modulated rolls and
squares at threshold. The type of modulation is of disor-
dered zigzag in the roll regime and undulated for the
squares. The square undulations are initially irregular
and after a long time they become almost periodic. For
some class of parameters and initial conditions in simu-
lations the undulations become completely regular and
the structure locks into a static, spatially quasiperiodic
attractor. To our knowledge a direct transition to a qua-
siperiodic pattern with square symmetry has never been
discussed.

I. INTRODUCTION

wide variety of interesting nonlinear dynamical phenomena
like optical instabilities’ flow-induced nonlinear waves,
critical properties of nonequilibrium transitiofisind in par-
ticular electrically or thermally driven convection
instabilities® Whereas convection in nematics has so far con-
tributed substantially to our general understanding of aniso-
tropic pattern-forming systems we present here in particular
a direct transition tasotropic convectiorwhich opens up
scenarios unaccessible in simple fluids.

In nematics the mean orientation of the rodlike mol-
ecules is described by the directarThe uniaxial anisotropy
is reflected in the material parameters such as the electric
conductivity tensoioj; = o, §; + o,nin; whereo,= o — o,
(and analogously the dielectric permittiviy;). Here o,
o, are the conductivities parallel and perpendiculamito
respectively ElectroconvectioEC) is driven in a nematic
layer by an ac voltagéeffective amplitudel, frequencyw
=27f) applied between two bounding plates. Commonly
the planar configuration is considered, where the uniaxial
anisotropy is externally expressed by anchoring the director
along an axis parallel to the plates. Typically one chooses
materials like  4-methoxybenzylidené-A-butyl-aniline
(MBBA)’ with negative dielectric anisotropye{=¢€,— e,
<0) and positive conductivity anisotropyr§>0) where
one obtains a satisfactory overall theoretical descriptioim.
this paper we focus on EC inteomeotropicallyaligned(no
external anisotropy is imposgdhematic with the unusual
combination ofo,<0 ande,>0. Whereas the possibility of
a direct transition to EC in this case has been anticipated in
the early literaturd,the experimental study has started only
recently'® Depending onw one finds transitions to rolls or
squares at onset with random global orientation. The patterns
exhibit spatial modulations with a slow dynami@ee Figs.

Nematic liquid crystals, the simplest type of intrinsically 1 _4 o pe discussed belpw

anisotropic fluids, continue to provide model systems for a
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The quantitative analysis of our experimental results is
first based on the standard nematohydrodynamic equations
(NHDE). In this framework even the linear stability analysis
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FIG. 1. Snapshots of ZZ roll patterns in experime@ (e=0.038,
wlwg,;=0.18) and in simulation(b) of the SH-equation £=0.006,
ol whe=0.16).
FIG. 2. Snapshots of rollssquares in experimer(g) (=0.08, w/wg,,
=0.65) and in simulation(b) of the SH-equation £=0.01, w/wje,
of the uniform homeotropic ground state requires already, if=0.74).

done rigorously, extensive numerics, not to mention the

much more difficult nonlinear regime. A much better insight . _ .
tropic ground state is included. The comparison between the

into pattern formation near threshold is provided by univer-". . I . .
sal amplitude and order parameter equations, whose form [igorous linear stability analysis and the experiments allows
’ s to extract some unknown material parameters of our nem-

governed by the symmetries of the problem, while Iargel;/", o . .
independent of physical detafi§*2The underlying concepts atic. In Sec. IV the stability of patterns in the nonlinear re-

have been mainly developed and tested in RayleigimaBe gime is discussed. This leads naturally to the construction of
convection(RBC) driven by a temperature gradient in a hori- the appropriate _Swn‘t—_H ohenberg equatiaSéie). _Sectl_on
zontal layer of a simple fluid“*3The competition between V deals with a discussion of results from numerical simula-

the prevailing stripegrolls) and hexagons near threshold is tions of the SHE. The paper ends with some conclusions and

well llinderstood after the pioneering work of Busse ingeneral remarks in Sec. V.
RBC.* Although squares are observed in quite diverse
system®’ studies of their nonlinear aspects are scafceo Il. EXPERIMENT
assess the complex patterns found in our experiments we The material used in the experiments was
have constructed on the basis of the NHDE results suitablp-(nitrobenzyloxybiphenyl?* which shows a nematic phase
chosen amplitude equations and their isotropic generalizatioim the temperature range from=110 to 94 °C, where a
(Swift—Hohenberg modgl which describe the experiments transition to a smectic phase takes pl&c®resumably the
near threshold very well. critical fluctuations associated with the continuous transition
The paper includes a brief review on general conceptérom the smectic C%;) to the nematic phase are responsible
and of results presented elsewh&lt is organized as fol-  for the negative conductivity anisotropy, <0 in the whole
lows: In Sec. Il we describe the experimental background ofiematic range. Some material parameters such as the dielec-
our system and present the typical patterns. Section Il igric susceptibilities & and e, ), the conductivities ¢, and
devoted to the onset of convection. A discussion of the mainr, ) and one of the elastic constaitg; have been measured
ingredients of the destabilization mechanism of the homeoas a function of temperature.
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FIG. 3. Snapshots of soft squares slightly abave in experiment(a) (e
=0.038, w/wg,;=1.16) and in simulationgb) of the SH-equation
=0.022, 0/ wje=1.07).

FIG. 4. Snapshots of “soft” square patterns with same parameter as in Fig.
3, but at a later stage.

EC measurements have been carried out in the nematifa)]. In most cases the roll orientation changes abruptly at
range at 96 °C. The temperature was controlled in an Instethe domain walls, which is typical for the zigzégZ) insta-
hotstage with an accuracy of 0.05°C. Cells with homeotro-bility driven by pure transverse modulations of rolls. The
pic alignment have been prepared with the nematic layer oih-plane director(projection of the director onto they
thicknessd=11+1 um sandwiched between Sp@oated plane is found experimentally to be perpendicular to the
float glass plateén thexy plane used as electrodes to apply (local) roll direction. The difference in brightness and con-
the electric voltage across the sampie the z direction.  trast in the different domains of Fig(d) is of purely optical
The patterns have been observed in a polarizing microscoprigin depending on the local angle between the director and
and recorded by a charge-coupled deic€D) camera con- the polarizer. Although the ZZ instability is characteristic for
nected to a frame grabber card. Images have been digitizadotropic systems this type of structure can rarely be ob-
with a spatial resolution of 522512 pixels and 256 gray- served in other systems under quasistationary condifsees
scales. the discussion belowThere is persistent slow dynamics.

For thehomeotropic alignmentwhere the director is an- Occasionally rolls at different angles form overlap re-
chored perpendicular to the bounding electro@es, paral- gions of rectangularlike patterns. Their area grows at the
lel to the applied voltage EC sets in directly from the un- expense of the uniform stripe patches with increasing fre-
distorted state via a supercritical bifurcation in the wholequency. In an intermediate frequency range extended patches
conductive range up to its upper limit at the cutoff frequencyof rolls and squares (RS, a mixture of the two patterps
weur- We foundwe,mq=0.7 with the charge relaxation time appear[see Fig. 22)] and above a critical frequenayg,,
7q=€, /o, . Note that, in the standard materials,€£0,0,  with w;Xqu=0.56 all stripe regions have disappeared. The
>0) a homogeneous director distortim Freedericks tran- resulting square patterns retain near threshold some features
sition) precedes the transition to EHC which changes theof the ZZ character of the stripes, i.e., the lines making up
situation completeR? (see also Ref. 10 and further refer- the squares are undulated. We call this strucsarfé square
ences therein pattern. In Fig. 88 we show a typical example at an early

For low frequencies we observe at threshold a pattern oftage of the experiment where in addition to the ZZ modu-
rolls (stripes broken up into different domaingsee Fig. lation one has defect lines. It needs a relaxation time
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FIG. 5. Snapshot of hard squaresuat;=0.53 ands =0.81. FIG. 6. Sketch of a convection roll for homeotropic alignment in the

x,z-plane A=2m/q): velocity field (short dashed and director fieldn
] ) ) =(n,,0n,) for experimental material parameters. Also indicated is the space
which is typically about a quarter of an hour, to reach thecharge distribution at a time where the electric field points upwatier-

steady state with nearly defect free regions and extremelyyise the signs are exchanged

slow dynamics, see Fig(d. t, is of the order 1tr4. Since

the director relaxation time4®® sets the scale for the local

dynamics,t, corresponds to the diffusion time over a hori- tivity tensors and leads in the presence of the applied electric

zontal distance of 100 coherence lenghts, which correspondield E,=E,2 cost), with Eq=2(U/d), via Eq. (1) to

to roughly 100 rolls. Note thaty is comparable to the char- space charge&charge focusing mechanism’and thus to a

acteristic Ginzburg—Landau time, introduced in Sec. IV deformation ofE, in the form SE=—V ¢ with the electric

below. potential ¢. After elimination of ¢ one obtains for the in-
Penetrating into the nonlinear regim@creasing the phase component of the charge denditje component

voltage further above threshglde observe at low frequen- ~ sin(wt) is not needed belojv

cies in the ZZ regime a persistent decrease of the size of the . .

patches with uniform roll orientation and acceleration of the ~ Pel(%:Z1) =Q(A", @ )an siN(gx)

dynamics. Thus the patterns look eventually spatiotempo- x cog 7z/d)cog wt) e, Ey, 2)

rally chaotic, but without the point defects typical for aniso-

tropic convection. At high frequenciéabovew},, already at where

rather smalle), on the other hand, the soft square patterns a(q')(1+q'?)

first undergo a transition ending in crystal-like, rigid, almost ~ Q(4",@")=—(0;—€;) 02+ @' 2e(q)2’ ()
perfect, quadratic, or slightly rhombic lattices with sharp

boundaries between differently oriented domaisse Fig. e(q)=1+¢€,+q'%, o(q)=1+0,+q'? 4

ey <o o i ne dmensioness quanie = o' <o o
. ) =o0,lo, , e,=€,/€, . For our material the Helfrich param-
voltage up to a critical value where they undergo a discon- e R 0. The space charge densit
tinuous transition to spatio-temporal chaos. The hard—squar%tema €a IS NEgative, I'G.}'Q> i pac ge d y
. Pel (2) is indicated in Fig. 6. The resulting flow field
patterns occur also below,, (at largere) down to wrg =(vy,00,) generated in the Navier—Stokes equations by the
=0.34 where their transition line merges with the onset of : .
spatio-temporal chaos. Coulomb force 1/g.E, (the fac_tor 1/2 arises fron_w thg time
average denoted by the overpar also illustrated in Fig. 6.
Note thatv andf are here constant in time in contrast to the
time periodic fieldsp andp.,. The velocity fieldv then acts
First we discuss the qualitative features of the basidack on the director via the viscous torquEg=1",+1;
(Carr—Helfrich destabilization mechanism operative in our where I',= — a,d,v, I'3=—azdw,~ a3q'%(d/ m)vy (the
material on the basis of the NHDE, which consist of thelast estimate makes use of the incompressibility condition
generalized incompressible Navier—Stokes equation, the rafé-v=0). The quantitiesa,, «3; are Leslie viscosity
equation for the director field (“torque balance’) and the coefficients® The coefficienta, is always negative, the sign
quasistatic Maxwell equations, i.e., the Poisson and chargef a3 depends on the material. In our cagg>0. The torque
conservation equatiofs contributionsI’, andI'; along a vertical cut through the roll
center k=0 in Fig. 6 are shown in Fig. 7 for our case with
V(eB)=per,  V(0"E)==diper, @ a rather large|a,| and a comparatively large value of
with the electric fieldE and the electric charge densiby; . asl|a,|=0.15. Both torques are symmetric m which is
Consider a(smal) director fluctuation sn=(n,,0,1  consistent with the velocity field shown in Fig. 6, has
- n§/2) where the planar perturbation about the homeotropiextrema of opposite sign at the midplare=(0) and at the
ground stateng=2 is given asn,= —n,q cos@x)cos@@z/d), boundaries £=*+d/2) of the convection celll'; has its
see Fig. 6. Note that the assumption of spatial variations onlynaximum atz=0, but is zero az= *=d/2. The torqued’,,
in the x-, z-plane is not a restriction in our isotropic system. I'5, which act in the same direction in most of theegion,
The director distortion modifies the permittivity and conduc- provide the positive feedback on the initial director distortion

IIl. THRESHOLD BEHAVIOR
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d/2
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FIG. 7. Torque contributionk, andI'; on a vertical cut through the center
of a convection rolx=0 in Fig. 6

éon necessary for the destabilization of the homeotropic di-
rector orientatiom,. Counteracting stabilizing mechanisms
are provided by the dielectric torque,>0) and the viscous
damping of the flow. Thus there is a threshold voltage
Uo(g,w) (“neutral curve”) above which patterns appear.
Minimizing Uy(q,w) with respect toq gives the critical
voltageU .(w) and the critical wavenumbey,(w).

In Figs. §a) and 8b) the experimental results for the (b) o,

threshold voItageUc and the critical Wave_numbmic. are FIG. 8. Comparison between experimengsblid squaresand theoretical
shown as functions Qqu.' The WavellengthCZZﬂ-/gC is of threéhéld voltagg@) and the corresponding critical wave numigy vs
the order of the cell thicknesd as is the case in planar dimensionless frequency. Solid line: rigorous Galerkin expansion; dot-
convection with conventional materials for frequences in thelashed: two-mode formuldcf. Eq. (5)], dashed: one-mode formula
conductive range. [M(g")=0 in Eq.(5)].

We note that in the usual nematics wittj — e,>0 the

sign of the space charge in Fig. 6, and thus the flow direchengence is captured by a Fourier expansion in time. Thus,
tion, would be reversed. Consequently the hydrodynamigne stability analysis amounts to a linear algebraic eigenvalue
torque I'y would have to be reverted as well in order 10 yoplem for the vector made up of the expansion coeffi-
reinforce the initial director fluctuation and to enable a direct;jents. Consequently one obtains for fixgd discrete set of
transition to EC. Sincd’,>0 is stabilizing in this case we eigenvalues(q,U) and eigenvectors/;(q,z,t) with the
would need a sufficiently strong negatiVig. This requires \;,i=1,2-- ordered according to decreasing real parts. The

a3<0 andq’?~|a,/as|/>1. It turns out thate, has to be growth rate Re(,(q,U)) crosses zero all=U,(q,®) (q
near zero to enable the instability and that the threshold IS q)). In our case the bifurcation is stationary, i.e

rather larggsee Refs. 24 and)8Therefore the experimental IM[A\y(qe,Uo)]=0.

situation for such materials is difficult. As already mentioned some of the material parameters

In order to proceed to a quantitative description a lineareeded in the calculations are available from measurements:
stability analysis of the homeotropic ground state with theel:7_560, €.=3.9,, o.lo,=—065 and K;;=9.5

use of the full NHDE is needed. The resulting eigenvaluey 15-12y 10 The remaining ones were chosen in order to get
problem diagonalizes in Fourier space with respect to the good fit for U(w) and ge(w), which led to Kas/Ky;
horizontal coordinates=(x,y) leading to modal solutions  _ 5 for the ratio between thieendand splay elastic con-
V(x,z,t)=€'™V(q,z,t)e"P". Here,V(q,z,t) is periodic in  stants, and toay/|a,| =35, as/|ay=0.15, n/|a)
time t with period 27/w. The symbolic vectoV=(¢,n,v)  =1.06, andy,/|a,|=0.21 for the viscosity constants. Here
represents the field variabléslectric potential, director, ve- the effective shear viscosities; = (— ap+ a,+ ag)/2 and
locity). V(g,z,t) is expanded with respect to the coordinate 7,=(a3+ as+ ag)/2 have been introduced. The positive
into a complete set of functions that satisfy the correct rigidand comparatively large values af, and a; might appear
boundary conditionsh=2, v=0, ¢=0 at the confining surprising to specialists. However, they were necessary to
plates of the cel(Galerkin methogl The periodic time de- obtain the correct low-frequency threshold and the strong
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increase ofg; versusw (in comparison to the conventional modes in the horizontal directions, /) =x and in timet, as
0,>0 casé. Also, as noted theoreticalfy,as well as experi- well as into Galerkin modes ia, similar to the previous
mentally using the material #-octyl-4'-cyanobiphenyl  section. The resulting nonlinear system of ordinary differen-
(8CB),*® and also in recent molecular dynamics tial equations(ODE’s) for the expansion coefficients yield
simulations}” «; and a5 are expected to become positive asthe roll solutions. The stability problem can be treated analo-
in our case and in fact even to diverge near a second-ordgjously, after separating out Floquet exponents andt. In
phase transition to a smectic phase. principle this approach can be extended to more complicated
In assessing the parameters we were guided by an angeriodic solutions like squares, but the stability analysis
lytic approximation for the neutral curvgy(q) [with the  based on the NHDE then becomes prohibitively complex.

minimum U= Uy(q,)] obtained from a Galerkin expansion Near threshold the calculations can be simplified in the
with one z mode forV (e.g., n,~sin(nz/d) and one time-  framework of an extended weakly nonlinear analysise,
Fourier mode. This leads to e.g., Ref. 8, Sec. 3)5which allows us to describe also ad-
Kagm? q'2 ditional slow variations of the patterns in time and space. At
U= —, (5) first the fieldsV are expressed in terms of the eigenvectors
€L Sy V,(q,z,t) corresponding to the smallest growth rates of the
1 a,—a3q'? . linearized problen{see the previous sectipn
Si=1 2| 1hQA) —————€& ()],
1+kiq 7n(d’)
et V(x,z,t)= 2 AQ,H)V1(a,z,t)explig), (6)
€, (q ) q
L@ (1+ o)+ w'?e(@)(1+e)](1+9%) with A(—q)=A*(q) because/ is real. This representation
€ a(q) %+ w'%e(q")? ' is inserted into the NHDE, which are expanded up to cubic
order in the amplitude#\. One thus arrives at the “order
()= o+ (mu+ mata) Q" 2+ N1 parameter equation(see, e.g., Refs. 8, 11, and)28vhich

where k;=K,,/Ks3, and 1,=0.97267,1;=0.026 056, | ; contains the standard four-wave-vector coupling of ampli-

—1.24652,\,=1.50562 are projection integrals. The re- tudes A at cubic order. This approach aIIow; an_efficient
sults of the one-mode formula are included in Figg) &nd ~ Study of rolls, squares, and hexagons and, in principle, of
8(b) (dashedl their stapll|ty near threshold. .

The one-mode formula, which captures the crucial In this way a perfect square pattern, which corresponds
mechanisms, has been given befdfawithout reference to to two nonvanishing ampllt.udes for the orthogonal wave-
its applicability foro,<0. Note also, that E¢5) can also be  Vectorsd: =(a,0), 4=(0,q) is constructed from the ansatz
used to describe conventional EC with,>0 and planar — —
alignment after some parameters have been interchanged A1) =A(Q1,1) 59— 01) + B(0d2,1) 8(q— ). ()
(apy——az, K= K'33,171<—> 7). In thg exprgssions for one arrives at
S;(q") one recognizes the EC mechanisms discussed above:

The driving part proportional t@(q’)(a,— a3q’?) and sta- 700 A= o (q)A—[ w(q)|A]2— v(q)|B|?]A, ®
bilizing effects included in the effective shear viscosity
7n(q") and the dielectric torque egﬁ(q’) (the complexity of Toﬁg: o(q)g—[v(q)|K|2—M(q)|§| z]g

this expression arises from the field distortierV ¢). Actu-

ally, in the homeotropic geometry, the effective viscosity iswith o(q)=¢—¢%(q—qc)?. Here & denotes the reduced
relatively large, which explains why the threshold is highercontrol parametes = (U2— UE)/UE, & the coherence length
than in the planar geometry. The strong damping effect of thend 7, the relaxation time. The functiong(q),»(q) are
dielectric torque resulting from the large value gfin our  found to be positive. For./u.>1, where we use the defi-
material is also responsible for the relatively low cutoff nitions v.=»(q.) and u.=u(q.), there is a supercritical
weyTq=0.7. bifurcation to rolls [B=0, A%(q.)xe or equivalently A

Finally we mention that an improved analytical thresh—Eo, gzms]. In the opposite case,/u.<1 rolls are un-
old formula can be derived by including a secanthode® —

to get even nearer to the Galerkin curdashed-dot in Figs.
8(a) and 8b). This improvement is essential for materials
where a3/|a,| is very small; otherwisdJ, is substantially
overestimated.

stable and stable squares wih-B bifurcate.

Slow spatial modulations of the roll pattern with wave-
vectorq, in the horizontal plane are described by an ampli-
tude A(x,t) which varies on a large scate 7/q in space.
A(x,t) is obtained fromA(qg) by a “shifted” Fourier trans-
form

IV. NONLINEAR RANGE

The theoretical methods for analyzing pattern forming ~ AD= fD(q )qu(q't)el(q 0, ©)
instabilities in the nonlinear regime are discussed quite ex- ¢
tensively in the literaturésee, e.g., Refs. 8, 11, and)1?h  The integration is concentrated on a small db€a.) around
order to describe stationary roll solutions and their stabilitythe critical wave vectoq.=(q.,0) which we can choose in
starting from the NHDE all fields are expanded in Fourierthe x-direction.
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Transforming the order parameter equation in this way 0.15
back to position space one arrives at two coupled equations 04
for A and a mean-flow velocity potenti& '
0.3
TodA=e(1—e52iq; TOA)A+ £2002A— u|A?A oi | 02
+2iq; as|AIPOA+agA’d* A* — A9, GI2]; . 0.1
, 0
\‘ 1
O=| dy— 5—a2], 10 A
29, Y (10 0.05 |\ \
\\ \\
(95+32)G=g,dy(A*OA) +c.C. (11) Y
These equations generalize the Newell-Whitehead equations \N\\\
[first line of Eq.(10) with e3=0], where the locally rotation 0092 ===

invariant combination of differential operatorsiihhas been
introduced®® The linear termse; yields to cubic order in

(@—gc) a correction to the neutral curve:N=§2(q FIG. 9. Stability diagram below the transition frequency to squares at
—0qc)?[1+2e3(q—qc)]. Fore>ey roll solutions exist. The  o/w}_~0.82. Above the neutral curvi, dashel the EckhausE, thin
nonlinear termsca,, ag contribute to the ZZ instabilitysee  dashed and ZZ instability(ZZ, thick solid are shown. The roll pattern is
below). The coupling to mean flow was first proposed in theunstgble against re_ctangles‘to thg right of the R Iing and against. squares to
Lo . the right of the SQ line. The inset indicates the merging of the R with the SQ

context Of.RBC with intermediate Pra_'ndtl “Umpéq$n hy- line (crosg at higher values o and the regions where one may expect rolls,
drodynamics, mean flow goes hand in hand with a pressur@iis+squares (+ s), and squares.
field, which satisfies a two-dimensional Poisson equation as
is the case fo6, see Eq(11). Thus the mean floWpressurg
is long range and acts instantaneously.

In a rigorous derivation of Eq$10) and(11) at first for ~ patterns. For increasing the point €sq,dsg) moves down
RBC®! and later for planar nematic convectidri®a system- along the neutral curve, meets @, the threshold £sq
atic method was presented to separate out the mean-flof0.dsq=dc) and moves again upward the neutral curve to
contribution. Thus a smooth gradient expansion of the ordethe left for o> wf,q,. The scenario can be understood very
parameter equation up to cubic order was ensured. In som#ell on the basis of the coupled amplitude E(®. for the
cases a fairly large number of additional gradient terms hagduare patterns. It is obvious that amplitude-stable square
to be kept, to capture quantitatively all long-wave longitudi- Solutions with wave-numbeq bifurcate if the condition
nal and transverse instabilities near threshold. The same cat{(d)/x(d) <1 is fulfilled. The ratior(q)/w(q) turned out to
culational scheme has now been applied to our system arfee & monotonically increasing function gffor all @ in our
we have determined all the necessary coefficients as a fungase. Thus squares exist for gllabove the lower limifgsq
tion of w. We found excellent agreement between the fulland fore>zgsqo=£°(q.—dsg)? Whereqsqis determined by
Galerkin method, the order parameter equations, and the arthe condition»(qsg)/1(dsg) =1. Since on the other hand
plitude equations near threshold in the weakly nonlinear rethe ratiov(q)/«(q) increases at fixed with w as well, it is
gime[Osg:(U2_U§)/Ug<1]_ obvious thatgsg has to move to smaller values along the

With the material parameters determined in Sec. Ill weheutral curve whem increases.
find a direct transition to squares at threshold for frequencies At onset the rolls are unstable against long wavelength
abovew}eqmq~0.60, which correlates well with the experi- ZZ modulations for allo<wfe,. Interestingly, the ZZ line
mentally observed crossover to squaresod,r,~0.56. In  Which emerges linearly from the onset poiet0,a=qc) is
Fig. 9 we show a full stability diagram for rolls in the g tilted strongly to the right. The slope can be easily calculated
plane for a frequency slightly belows ... Rolls with wave- ~ from the amplitude Eqg10) and(11) and is given by
numberqg exist above the neutral cureg(q). Outside the

_ 2.2
region limited by the lineR(q) the rolls become unstable to £57(Q)= (9~ 0c) €4; _ (13)
growth of transverse rolls with wavenumbey~q.. Near 0c Oitas—ag ‘e
onsetR(q) is easily obtai_ned by consideririg) as the linear Me 3

cross-roll perturbation oA in Eq. (8). One arrives at The contribution in the denominator due to the mean-flow

£2(q—0,)? contributiong; is about ten times larger than the other terms.
= (120 Note that in the simple SHE the slope of the ZZ line is
vertical. In contrast, in RBC the ZZ line tilts to the l&fx-
To the left of line SQ, which meets the neutral curve atcept for large Prandtl numbers, where it is essentially
(£s0,0sq), g is not contained in the band of, . Thus the vertica).! In both cases the slopes result mainly from mean-
perturbations do not saturate to stable rectangles, but initiatibow effects, Eq.(11), but the coupling constarf; has op-
a wavelength-changing process of the roll system. Howeveposite sign for the two systems. Thus, the mean flow gener-
to the right of line SQ there exist destabilizing cross-roll ated by roll curvature tends to reinforce the curvature in EC,
processes witly,, = q, which lead to amplitude-stable square whereas it reduces it in RBC. The sign reversal in EC can be

R(q)_ 1_I-LC/VC .
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0.03 mean flowU is also well establishetf. The termsc is in-
troduced to filter out short scale contributionsGo®”

The coefficients of the SHEL4) and(15) are determined
by mapping them for allv onto the amplitude Eq<8) for
squares and to Eq6L0) and(11) for rolls with the use of the
ansatz y=Ae'%+Be'%+c.c. We obtainu(q)=3+38q9"
+vg? and v(q)=2(3+ Bq*+ yg?). For our material the
cross coefficientv./u. varies from 2.5 atw=0.1 to 0.9 at
0=0.7 (it passes through 1 aby.). This range can be
covered in the SHE by varying continuously the coefficients
B and y. We fixed the so-far undetermined ratj$3 by the
requirement that the SHE should reproduce the values for
Osq: €sq Of the NHDE, ie., by the requirement
v(dsg)/ m(dsg) =1 as already discussed. The combination of
T008 -001 001 003 005 o007 a7, ag which appear in the slope afz; [see Eq.(13)] is

(9-q,)/q, given asa;—ag= — 3. As the final result of this mapping
one obtains the parametgsy, g; as a function ofv, which
FIG. 10. Stability diagram ab’=0.3 in the presence of a symmetry break- can be parametrized as followg=—1.516— 1.154p2
iward. =0 g +51.3%°+411.5%* with @=w7,. It tums that the stabil-
ity diagram obtained from the full SHE for rolls is practically
indistinguishable from Fig. 9 up te=0.1, which covers the

traced back to the influence of the Coulomb body force ap&XPeriments discussed in this paper. N
pearing in the(modified Navier—Stokes equation of the For completeness some analytical results for the stability
NHDE. of squares ¢ > w*) are added. The ZZ-instability line cor-

We have also studied the influence of a magnetic field if€SPonding to modulations of one of the roll systems in
the x-direction that breaks the isotropy. Then the amplitudeSduares is given by

0.02

0.01

0.00 :
-0.07 -0.05

equations become slightly more complicated. In effect, the (4—9.) &2

combinations of gradientsd{— i/2q, 83) typical for isotro- ez7(0)= oy (16)
pic systems, splits into two independent contributions. A rep- 9 91 +e,

resentative stability diagram is shown in Fig. 10. The ZZ line Mot Ve

is shifted upwards and a stable roll regime appears. Thus, it is obtained from the roll case E(.3) by the sub-

The complex dynamic patterns shown in Figs. 1, 2, andstitution a;—ag=—38— —98 and u.— u.+ v.. Further-
3 are not accessible to a Galerkin approach. Moreover, thghore, there exists a “rectangular” instability which involves
full NHDE are at present not amenable to direct simulationscoupled, symmetric modulations of both roll systems in
In this situation a model approach can be useful. Thus, wequareg? It is operative outside of the parabola
have constructed a suitable Swift—Hohenberg equation

2 2
(SHB), which is a standard approach to model isotropic ~ , — £€7(a~0c)"(Buct vo) _ 17)
pattern-forming systems in the weakly nonlinear regime. Our Mc— Ve
SHE model reads Note that the parabola collapseset.
2 e
Toduh=| &~ %(Aﬂﬁ)z— a%s(AJrqg) ¥ V. SIMULATIONS AND DISCUSSION
Cc Cc
In this chapter we describe and discuss results from nu-
—| ¢+ lzlﬁ(V ¥)?|+ gai[(ai 0)(3,1)2] merical simulations of the SHE. Our main goal is to compare
dc dc with the complex experimental patterns presented in Sec. Il.
1 Equations(14) and (15) have been solved using a standard
- —(U-V)y, (14)  pseudo-spectral code on a two-dimensional periodic domain,
e which covered up toN=30 rolls with wavelength\,
9, =2m/q.. The resolution was at least six gridpoints per.
(1—cA/q§)AG= - F(V(Aw)xw//)-i, (15 Thus, the relevant time scale is set by the horizontal diffu-
e sion timet,,=N?7,. Typically we started with random initial

with U=(4,G,—d,G), ¢=0.5. Herey(x,t) portrays the conditions and let the system evolve for at lea 5

pattern in the plane. This is a generalization of the “simple  The experimental ZZ patterns in Figial are well repro-
SHE” 34 obtained by settingg;=y=p8=g,=0. The addi- duced by the simulation of the SHE immediately above
tional cubic nonlinearities proportional tpare well known  threshold foro well below wj,., (ve/ 1. Well above 1). We
from the literature to improve the description of RBC within note that in Fig. 1 as in Figs. 2 and 3 the value: i smaller
the SH approximatioft The term~ 3 has been proposed to in the simulation than in the experiment. The larger experi-
capture bifurcations to squar&sThe description of the mentale was needed to obtain sufficient contrast for the pic-
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tures, but the pattern remains essentially the same in thgith wave-number> (s, i.€., in the regime of amplitude-
experiments at the lowes. The structure is reminiscent of stable squares. Thus, interestingly, the mean flow, which in-
patterns found in the simple SHE{(=0, corresponding to creases withe and destabilizes the roll pattern, seems to gen-
infinite Prandtl number Pr in RBICat comparables, which  erate a selection process toward squares, which, if perfectly
appear only as transiefitsvhen starting a simulation from a ordered, do not excite mean flow. We have checked that by
ZZ unstable roll patterng<q.). ZZ patterns are also ob- reducingg, in Eq. (15 this crossover to squares is sup-
served significantly above threshold. In the latter casejthe pressed.

band widens and certain resonance processes involving We suggest that the hard squares represent a superlattice
modes withq<q. become activ€ which leads to frozen where several groups of wave vectors interact to suppress the
states. By contrast, in our case there is persistent slow dy2Z instability, a process easily missing in our SHE. Such
namics. At intermediate Prandtl numbers in RB@., finite  superlattices, which often represent quasiperiodic structures,
g:%Pr 1) sharp structures in the roll pattern are smoothechave been of considerable general interest recé&hifjney

out by mean flow, whereas in our system grain boundariehave been investigated experimentally in particular in the
remain sharp despite the strong mean flow. With increasing Faraday instabilit§® in cells with aspect ratio up to about 50
approachingw* at smalle we find a mixture of rolls and and in oscillated RBG*

square§ R+ S, see Fig. )] in good agreement with the

experiments discussed in Sec. Il, see Fi@.2Zrhe undulated VI. CONCLUSION

squares observed in experiments near ofset Figs. &) We have studied a model system for isotropic pattern
and 4a)] are typically reproduced in the simulations fer  formation, namely, a variant of EC in a nematic liquid crys-
> 0fheor S€€ Fig. B). tal. Unlike other systems, the competition between rolls and

Interestingly, for not too large (£<0.022 atw/wge,  squares can be systematically investigated at small amplitude
=1.16), and then for large classes of initial conditions, allin the same large-aspect ratio cell by merely changing the
defects are pushed out in the simulations and one arrives flequency of the applied ac voltage. Since the system is
stationary soft squares with perfectly periodic undulationsgdriven by an ac voltage it has an intrinsic reflection symme-
see Fig. 4b), which is a continuation of the run shown in try about the mid plane. Thus the quadratic resonance cou-
Fig. 3(b). The final pattern represents a quasiperiodic solupling leading to competing hexagdnss absent. In most
tion of Egs.(14) and(15) with an exact cubic symmetry, i.e., cases the patterns near threshold exhibit a specific disorder
invariance under rotation by/2. Stationary solutions of this with a slow dynamics. The disordered pattern is of the
type are indeed expected to exist quite generally. Since thgigzag-type in the roll regime and undulated in the regime of
modulations are of long wavelength, an approximate descripsquares. Interestingly, in simulations the undulations some-
tion is given by the nonlinear phase equation for the rectantimes become completely regular, i.e., the soft squares settle
gular instability proposed in Ref. 19 with equal modulationinto a static, spatially quasiperiodic attractor. In the experi-
wave numbers in the& andy direction. The quasiperiodic ments the dynamics of soft squares can become extremely
solutions are usually expected to be unstable representirglow and very nearly quasiperiodic, see Fig. 4.
saddle points which separate stable periodic solutions with The scenario originates in particular from the well-
different wave vectors. When the periodic solutions are deknown transverse modulational ZZ instability, which is
stabilized, as is the case here, the situation may change. Asresent in rolls as in squares, since it acts on each roll system
analogous situation is known to arise in roll patterns underindividually (in contrast to hexagons, where the ZZ instabil-
going the ZZ instability. In anisotropic systems one then hasty is suppressed® The ZZ instability is here driven largely
stable undulated roll structures in the regime where rolls aréy the mean flow, which in our system acts quite differently
destabilized by the ZZ instabilif}? Similar effects have been than in RBC and has to be included already at threshold.
predicted for isotropic systeni8.For e —0 the allowed Thus we have the unique case of a direct transition to a
modulation wavenumber should tend to zero. In this sensstationary patterrthat is destabilized by long-wave instabili-
the quasiperiodic solutions do not bifurcate from the basidies leading to disorder or to an ordered, quasiperiodic pat-
state in a direct way. For completeness we mention that iern. Other experimentally accessible direct transitions to
the immediate vicinity of the threshol@rery smalle) the  long-wave destabilized patterns involve Hopf bifurcations to
simulations tend to settle down to perfect squares, which igravelling waveg$®*® Alternatively, destabilization can be
presumably an effect of the finite size suppressing the longprompted by a short-wave instability, as in rotating REC,
wave ZZ instability. This is not expected in the experimentsor by the presence of an additional Goldstone moda.all
because of the huge aspect ratio of the convection (sdls  these cases the destabilization leads to disorder only. A par-
eral thousands of rol)s ticularly intriguing feature is that mean flow, which in RBC

The transition to hard squares occurring in the experiis responsible for the skewed varicose instability and spiral
ments with increasing are not captured appropriately by defect chad® here leads to a very mild form of disorder or
our SHE model. Instead, in the regime> wj,.,, the simu-  even to the generation of an unconventional ordered pattern.
lations display with increasing increasingly disordered pat- In the future we plan to extract from weakly nonlinear
terns characterized by patches of undulated squares separathdory a quantitative understanding of the soft square attrac-
by grain boundaries. On the other handeat wj,.,, UPON  tor, in particular its quasiperiodic manifestation. Also, a de-
increase ofe abovee g the system tends to also settle in atailed description of the hard square pattern and the transition
state of rather well-ordered, undulated stationary squarefsom soft to hard squares appears of interest. We expect simi-
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lar phenomena in other systems provided the aspect ratio CafR. B. Hoyle, in Time-Dependent Nonlinear Convectjcedited by P. A.
be made comparably large. The ZZ instability may be re- Tyvand(Computational Mechanics, Southampton, 199851; Physica D

placed by some other long-wave destabilization, e.g., the,

skewed-varicose instability.
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