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We report experiments on spatially forced inclined layer convection, where the combined effect
of the intrinsic symmetry breaking due to a gravity-induced shear flow and a spatially periodic
1D forcing is studied. We observed pattern selection processes resulting in stabilization of spa-
tiotemporal chaos and the emergence of novel two-dimensional states. Phase diagrams depicting
the different observed states for typical forcing scenarios are presented. Convection in the weakly
nonlinear regime is compared with theory and a good agreement is found.

Understanding pattern formation processes is impor-
tant in a variety of research areas ranging from economics
[1], through fluid dynamics [2], to neuroscience [3]. Ide-
ally, patterns emerge with a well defined wavevector by
a spontaneous symmetry breaking bifurcation from an
initial homogeneous state [2]. Naturally driven systems,
however, often contain intrinsic symmetry breaking el-
ements which influence the observed patterns. This is
the case, for example, in atmospheric convection over
topography [4] and in fingerprint formation in the pres-
ence of normal epidermic displacements [5]. By applying
spatially periodic forcing to a carefully controlled pattern
forming system, such as Rayleigh-Bénard convection, one
is able to get valuable insight into the important role
of such symmetry breaking constituents. It also enables
the investigation of pattern forming aspects that are oth-
erwise difficult to assess, such as the stability regimes
of patterns (the ”Busse balloon”) [6, 7], commensurate-
incommensurate transitions [8] or defect aggregation re-
sulting in localized coherent states [9]. The combined
effect of spatial forcing and other symmetry breaking
mechanisms in a pattern forming system is largely un-
explored [10]. As shown in this letter, inclined layer con-
vection is well suited to study this problem.

Inclined layer convection, in which a thin fluid layer
of thickness d is subjected to a temperature gradient
∆T/d and oriented obliquely with respect to gravity, is
a rich variant of isotropic Rayleigh-Bénard convection.
The introduction of an in-plane gravitational component
through inclination breaks the rotational symmetry. As a
result, depending on the inclination angle θ, either longi-
tudinal rolls (buoyancy driven) or transverse rolls (shear-
flow driven) set in at onset [11]. The wealth of nonlinear
states observed with increasing ∆T has been the focus of
recent experimental and theoretical studies [12–14].

In this letter we applied periodic forcing at an angle ϕ
with respect to the in-plane gravity component (Fig. 1a),
with a wavevector qf . By varying θ we were able to tune
the relative importance of the two anisotropies. For a
given inclination angle, a 1D roll pattern with a wavevec-
tor equal to the forcing wavevector was observed at small
∆T (∆T << ∆Tc, where ∆Tc is the onset temperature
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FIG. 1: (a) Schematic of forced inclined layer convection con-
figuration. The Cartesian coordinate system used in this pa-
per is indicated. (b) Microscope image of fabricated SU-8
stripes on flat plate.

difference of the unforced system). As ∆T was increased,
the roll aligning mechanisms due to inclination and forc-
ing started to interact. For ϕ = 0 both mechanisms
cooperated and rendered the longitudinal rolls more sta-
ble. In particular, undulation chaos [12], which is a state
found close to onset for a large range of inclination an-
gles in the unforced system, was strongly suppressed. In
contrast, for ϕ = 90◦ competition and spatial resonances
between longitudinal and transverse rolls occurred. This
led to qualitatively new patterns, typically with rhom-
bic symmetry, a phenomenon rarely observed in pattern
forming systems.

The experimental system, described in detail in [15],
consisted of pressurized CO2 gas confined in the verti-
cal direction between two parallel, thermally well con-
ducting plates separated by a distance d and held at
a desired temperature difference ∆T to within 0.001◦C.
Two square convection cells of side lengths L = 85d and
L = 35d were used. The side walls were aligned parallel
to the inclination direction (y-axis in Fig. 1a) to avoid
undesired, boundary driven, large scale flows. The aver-
age temperature used was Tav = (25.00±0.02)◦C and the
pressure in the cell was kept at Pav = (48.26±0.03) bar
throughout the experiments. The Prandtl number was
Pr≡ν/κ = 1.3 (here ν and κ are the kinematic viscosity
and thermal diffusivity, respectively). The corresponding
Busse parameter was Q = 0.5, confirming the validity of
the Boussinesq approximation. The patterns were ob-
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FIG. 2: Parallel Forcing. (a) Phase diagram. The solid line
is a guide to the eye indicating the interface between states.
The broken line represents the theoretical curve of the insta-
bility to undulation chaos in the unforced case. (b) Selected
patterns observed (square area shown has side length equal
to 21d). Upper side of inclined layer is at top part of images.
From top left: Longitudinal rolls (LR), varicose pattern (VP),
sub-harmonic resonances (SR), periodically spaced kink-lines
(KL), undulations (UN) and transverse bursts (TB). Movies
depicting dynamics of UN and TB are presented in [16].

served by the standard shadowgraph technique [15].
The smaller cell was unforced and served as our ref-

erence. For inclination angles below the codimension-
two point θcd

∼= 80◦, theory predicts a bifurcation at
∆Tc(θ) = ∆Tc(0)/cos(θ) to buoyancy driven longitudi-
nal rolls. These have a wavenumber qL

c = 3.117/d and
are aligned with their axes parallel to the inclination
direction. Above the codimension-two point the shear
flow driven transverse rolls prevail with a wavenumber
qT
c
∼= 2.81/d and aligned with their axis orthogonal to

the inclination direction (x-axis). The onset of convec-
tion in the unforced cell, which has been studied previ-
ously [11, 12], agreed well with the linear theory [17].

The forcing mechanism in our experiment was sur-
face corrugations, realized by an array of photo-resist
(SU-8) stripes fabricated onto the bottom plate (Fig.
1b) [9]. The height and width of the stripes were
h = (65 ± 3) µm and l = (100 ± 1) µm, resepc-
tively, and they covered the area of the large square
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FIG. 3: Orthogonal Forcing. (a) Phase diagram. (b) Se-
lected patterns (size of area shown as in Fig. 2): transverse
rolls (TR), rhombic pattern (RO), hexarolls (HR), bimodals
(BM), scepter-shaped patterns (SP) and heart-shaped pat-
terns (HP). Movies depicting dynamics of BM, SP and HP
are presented in [16].

cell with a (1 ± 0.001)mm period, yielding a modula-
tion wavenumber qf = 2π/λf = π/0.5mm. Keeping
only the leading Fourier mode the surface of the lower
plate can thus be described as: z = −d/2 + zf with
zf = d(0.1h/d + δ cos(qfx)), where the modulation am-
plitude δ is given as δ = (2/π)sin(π/10)h/d.

Two main cases were investigated. In the first, the
forcing SU-8 stripes were aligned parallel to the gravita-
tional component (ϕ = 0) and in the second they were or-
thogonal (ϕ = π/2). Phase diagrams for both cases were
explored by setting the inclination angle θ and record-
ing the states while slowly scanning the reduced control
parameter ε = (∆T − ∆Tc(θ))/∆Tc(θ). The cell height
in these experiments was d = (540±5)µm, resulting in a
forcing wavenumber qf = 1.09qL

c . By using long waiting
times ( > 100τv; where τv = d2/κ is the vertical thermal
diffusion time, which was approximately 3 s) care was
taken that the system had sufficient time to settle into
steady state, before measurements were made.

Parallel forcing. Figure 2a shows the phase dia-
gram for the parallel case. While in the absence of forc-
ing convection sets in via a forward bifurcation at ε = 0,
the surface corrugations caused the bifurcation to become
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imperfect and we found longitudinal rolls (LR in Fig. 2b)
even for subcritical values of ∆T (i.e. −1 < ε < 0). For
inclination angles 0◦ ≤ θ < 28◦, the longitudinal roll were
stable up to fairly large control parameters (ε ∼ 1) be-
fore a bifurcation to varicose patterns (VP) was observed.
These were spanned by the wavevectors q0 = (qf , 0) and
q1 = s(cos(α), sin(α)) with s ∼= 0.6qf and α ∼= 36◦. In
the vicinity θ ≈ 0 the instability to VP can be interpreted
as a finite wavenumber modification of the well known
modulational (s → 0) skewed-varicose instability of the
unforced system for q > qL

c [18]. The role of transverse
modes in the destabilization of forced rolls, which was ob-
served recently also in [9], was not anticipated by theory
[19]. For θ < 10◦ the VP can coexist with sub-harmonic
resonances (SR) and periodically spaced kink-lines (KL).
These share some similarity with the 1D soliton states
observed in forced electro-hydrodynamic convection with
intrinsic anisotropy [8], and explained by theory [19].

For 28◦ < θ < 72◦ a rather large region of slowly
upward-drifting uniform undulations (UN) was observed.
Here the bifurcation was characterized by a wavevector
q1 with s ∼= 1.1qf and α ∼= 20◦. In contrast, the corre-
sponding instability observed in the unforced case sets in
at considerably smaller θ and ε (dashed curve in Fig. 2a),
and is of modulational type. Furthermore, without forc-
ing these patterns are defect turbulent [13]. This is an
excellent demonstration of the stabilizing effect of forcing
on spatiotemporal chaos. The UN became unstable, for
higher values of ε, to spatiotemporal chaos in the form of
crawling rolls (CR), which were also found in the same
parameter regime in the unforced system [12].

We now turn to the high inclination angles for which
the dominant instability is shear induced. For 72◦ < θ <
80◦ transverse bursts (TB) are observed. These were also
found in the unforced cell, but only in a narrow range
of angles in the immediate vicinity of θcd, in agreement
with prior measurements [12]. For 80◦ < θ < 90◦, as
in the non-forced case for θ > θcd, a transverse roll state
(TR) emerged at ε ≈ 0 and longitudinal bursts (LB) were
observed for higher values of ε.

Orthogonal forcing. Figure 3a depicts the phase
diagram for the orthogonal case, where transverse rolls
(TR) were forced and prevailed at small ε while the com-
peting LR were preferred at larger ε. None of the states
observed immediately above the instability line of the TR
was observed in the parallel case presented in Fig. 2a,
and the morphology of the phase diagram is completely
different. At θ = 0 a varicose pattern (VP) was observed,
as in the parallel case. In the low inclination regime
0◦ < θ < 10◦, a transition was observed to a station-
ary rhombic pattern (RO in Fig. 3b), which is spanned
by wavevectors q0 = (0, qf ) and q1 = s(cos(α), sin(α))
with s ∼= 0.9qf and α ∼= 10◦. We then observed, for
10◦ < θ < 30◦, a bifurcation to an intriguing, station-
ary hexagonal structure. This state is spanned by three
wavevectors q0, q1 and q̃1, where q1 ≈ q̃1 ≈ qc. Here, in

contrast to RO, both oblique modes (q1 and its symmet-
rical counterpart q̃1) participated in the destabilization,
and together with the forcing mode fulfilled the resonant
triad condition q0 + q1 + q̃1 = 0. We term this state
hexarolls (HR) in analogy with a similar pattern found
in centrifugally driven convection [20]. With increasing θ
the shear flow became more prevalent and enhanced the
tendency to LR. Thus, in the following large interval of
inclination angles, 30◦ < θ < 75◦, the TR bifurcated to a
bimodal (BM) state, characterized by a square structure
spanned by TR and LR with wavenumber qf . Note, how-
ever, that the wavenumber is locked, since the constituent
LR are characterized by a wavenumber q = qf , instead
of q = qL

c in the absence of forcing. Bimodal patterns
were observed in the non-forced cell only in the vicinity
θ = θcd, where the bouyancy driven (LR) and shear flow
driven (TR) destabilization mechanism become compara-
ble near ε = 0. Transverse forcing considerably extends
the BM region to lower inclination angles. The steep-
angle interval, 75◦ < θ < 90◦, was dominated by intrigu-
ing ’heart’ patterns (HP) arranged on a square lattice,
which is aligned at 45◦ to the forcing orientation.

Over the whole range of θ and for higher ε, where the
forcing influence is expected to diminish, secondary bi-
furcations were observed. The hexarolls were unstable to
the chaotic state of crawling rolls, which have been intro-
duced in the parallel forcing case. Quite interesting are
the dynamic ’scepter’ patterns (SP). Here extended sub-
units repeat periodically on a rectangular lattice, with a
vertical ’superlattice’ wavevector q ∼= qf/2. Recall that
in the absence of forcing one observes, at about the same
ε and θ, chaotic transverse bursts (TB), characterized
by the same subharmonic wavenumber. One could thus
interpret SP as bursts stabilized by transverse forcing.

Weakly nonlinear convection. In the following we
concentrate on a quantitative investigation of the ampli-
tude of forced longitudinal rolls for small ε. We show it
compares well with weakly nonlinear theory, essentially
for the whole buoyancy dominated range.

In line with [18], the ε dependence of the amplitudes at
small corrugation heights (h << d) can be described by
mapping the surface corrugations to a temperature mod-
ulation of the bottom plate. The latter leads to a generic
analytical expression for the temperature amplitude:

(ε + ε0)A− g0(qf , P r)A3 + g2(qf , P r)δ = 0, (1)

here the coefficients g0 and g2 are determined by theory
[9] and δ was defined previously. The offset ε0 origi-
nates from an increase of the critical temperature differ-
ence since qf '=qc and from a local increase in temperature
gradient due to corrugations. This experiment was done
with a cell height d = (520±2)µm, yielding qf = 1.05qL

c ,
δ = 0.025 and ε0 = 0.009.

The amplitude in (1) is related to the observed shad-
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FIG. 4: (a) Bifurcation curve for parallel forcing at θ = 20◦.
The triangles and circles represent the unforced and forced
experimental data, respectively. The broken line represents
the fitted sqare-root-law of the unforced cell and the solid
line depicts the theoretical imperfect bifurcation curve. Small
frame shows dependency of constant term (scaled by theoret-
ical value) on inclination angle.

owgraph amplitude through the following expression [21]:

As = G(qf/qc)2
(

c(qf )
∆T

∆Tc(θ)
δ + A

)
, (2)

where G depends on the shadowgraph setting and was
extracted by fitting the data from the unforced cell, while
the coefficient c was determined by theory [21].

As a representative example we compare in Fig. 4 the
Fourier coefficient |A0(qc)| ∝

√
ε for our unforced (small)

cell with the corresponding one, |As(qf )|, of the forced
cell, for θ = 20◦. The figure shows clearly the signature
of an imperfect bifurcation near ε = 0 in the latter case.
With increasing ε the impact of forcing decreases and the
curves of |A0| and the |As| approach each other.

The average values obtained from fitting the bifur-
cation data for inclination angles from θ = 0◦ up to
θ = 60◦ (in order to avoid the regime effected by shear in-
duced instabilities) are: 〈ε0〉exp = 0.03±0.01, 〈δ〉exp =
0.027±0.001. The good agreement between the latter
and the theoretical value is encouraging. This verifies
that a small-amplitude surface corrugation can in general
be mapped to a temperature modulation of the bottom
plate. As expected, the description of longitudinal rolls
via (1) works for the entire range investigated practically
with the same parameters. This is demonstrated in the
insert of Fig. 4, where we show δexp as function of θ.

In the present work we have used inclined layer con-
vection as a convenient system to study the combined
effect of different externally imposed symmetry breaking

mechanisms. The relative weight of anisotropy due to in-
clination and forcing in the form of surface corrugations
is tuned through the inclination angle θ and relative ori-
entation angle ϕ. When the preferred orientations are
parallel the two mechanisms cooperate and stabilization
of spatiotemporal chaos is observed. However, when the
orientations are orthogonal competing effects lead to spa-
tial resonances, which are reflected in a variety of intrigu-
ing novel states such as ’heart’ and ’scepter’ patterns.
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