Rayleigh-Taylor instability in a sedimenting suspension
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The temporal evolution of an interface between glycerin and a glycerin-sand suspension of small
packing fraction (obtained using the hindered settling phenomenon) driven by gravity is experimen-
tally investigated. The growth rates for the different wave numbers characterizing the developing
front are determined by means of a Fourier analysis. To model the observed behavior we apply the
idea of the Rayleigh-Taylor instability for a homogeneous fluid with vertically varying density and
viscosity (one-fluid model). A good agreement between the experimental and theoretical results is

obtained.

PACS number(s): 47.54.4+r, 47.20.Ma, 83.80.Hj

I. INTRODUCTION

Sedimentation of granular grains in a fluid environ-
ment is a familiar phenomenon in nature and has im-
portant technical applications ( [1], [2], [3], [4]). If the
forces on the particles are dominated by the viscous in-
teraction with the fluid, rather than by their inertia, a
hydrodynamic description of the whole system has been
proposed ( [5], [6], [7], for more references see [8]). Such
an approach demands confirmation in controlled exper-
iments. A sensitive challenge for the hydrodynamic ap-
proach is certainly the dynamics of interfaces between
regions in the fluid with different densities of the grains.
The investigations might shed some light on the general
understanding of interface dynamics in different branches
of science.

In this paper we consider the situation of sand par-
ticles immersed in highly viscous glycerin. One starts
with a situation, where the sand covers the bottom of
a vertically arranged Hele-Shaw-like cell. The cell is
then turned upside down. The sand is thus layered
above pure glycerin in a gravitationally unstable situa-
tion and starts sedimenting. The experiment is assumed
to run in the case of prevailing viscous forces. Their
relative importance is captured by the Bagnold number
B = VA pgrain @ ¥/ ttf1uia which expresses the ratio of
collision forces between the grains to viscous forces in
the fluid-grain mixture in a slightly different context, i.e.
for gravity-free suspensions of solid particles in a uniform
shear-flow. Here d is the diameter and pgrqin the den-
sity of the grains. The shear rate is denoted by 4 and
Mfiuid is the dynamic viscosity of the pure fluid. The
parameter A introduced by Bagnold [9] is a measure for
the concentration of the sand particles (i.e. the packing
density). Commonly the description of a suspension as
macro-viscous is believed to be valid for Bagnold number
B < 40 [9]. In our experiment we have a Bagnold num-
ber of about 5-107°, thus the description of the glycerin-
sand mixture as fluid-like seems to be conceptually well
founded. In the experiments we were in particular in-
terested in the instability of the initial flat glycerin-sand
interface, which evolves into a finger-like pattern. The
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In our hydrodynamic approach we model the fluid-
sand system as a uniform fluid with macroscopically vary-
ing density. In the initial situation the heavier glycerin-
sand mixture is stratified upon the lighter pure glycerin.
The resulting fingering process is assumed to correspond
closely to the well known Rayleigh-Taylor instability. To
model the glycerin-sand mixture as a Newtonian fluid
with effective properties, depending on the concentration
of the particles, is obviously a simplifying description. In
such a model it is assumed that the particle concentra-
tion in the flowing mixture is almost constant. Further-
more, the particles have to be large enough to neglect
their Brownian diffusion as in our experiments. Being
aware of the possible limitations of a one-fluid model for
the glycerin-sand mixture we will examine whether such
an approach can catch the essence of the experimental
results.

The destabilization process of the interface is charac-
terized by a collection of modes with different wave num-
bers k and different growth rates o(k). In earlier ex-
periments with water and polystyrene spheres [10] the
authors concentrated on the dominant wave number (i.e.
the fastest growing mode) seen in the early stages of the
interface destabilization. One should also mention exper-
iments with water and glass beads [11] which focus on
the characterization of voidage shock fronts caused by a
steep increase or decrease in the fluidization velocity for
a fluidized bed.

One goal of the present investigation is to measure the
whole spectrum o(k) for the wave numbers accessible in
the experiment and to compare in particular to the the-
oretical results along the general lines of the Rayleigh-
Taylor instability. A similar approach has already been
performed for a suspension of a high initial packing den-
sity of ¢ = 0.61 of grains and with a sharp density in-
terface [12]. The theoretical analysis based on a closed
expression for o(k) for an idealized infinitely steep step-
like interface gave a quite reasonable description of the
experiments. However, the dynamic viscosity of the sus-
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pension was fitted. The resulting value, which was 104
times larger than the viscosity of the pure fluid, is diffi-
cult to assess in view of the conflicting relations between
packing fraction and dynamic viscosity to be found in the
literature ( [13], [14], [15]).

In contrast, we will focus here on low packing fractions.
The density profile is directly measured and used as input
for the theoretical analysis. The dynamic viscosity can
be calculated directly from an expression due to Einstein
[16].

The paper is organized as follows. In the following
section the experimental setup is described. In Sec-
tion IIT the processing of the experimental data is de-
tailed. The information is finally condensed into a o (k)
relation which is then compared to the theoretical results.
Section IV describes the determination of the packing
densities and of the shape of the density profile, which
enter into theoretical analysis. The linear stability anal-
ysis is presented as well as further quantitative charac-
terization of the growth rates. The final section contains
the conclusions.

II. EXPERIMENTAL SETUP

In the experiments, a gravitationally unstable config-
uration of sand and glycerin is established by turning a
Hele-Shaw-like cell upside down by means of a stepper
motor, in a similar way as described in Ref. [12].

The interfacial instabilities in this paper develop from
a fairly sharp, flat interface between regions of different
packing densities. To prepare the initial situation the
self-sharpening effect of hindered settling is exploited (
[17], [4], [18]). The clue is that the sedimentation veloc-
ity of a homogeneous suspension in a closed vessel de-
creases with increasing packing fraction. Thus a sharp
interface, a shock, between the pure fluid and the sedi-
menting particles below the pure fluid is built. Then the
vessel is rotated and the interface, now with glycerin and
sand above pure glycerin, destabilizes.

To study the temporal evolution of a glycerin-sand in-
terface driven by gravity a closed Hele-Shaw-like cell with
a width of 2 mm, a length of 98.0 mm and a height of
50 mm is used. The cell is filled with technical glycerin
(~82%) as a carrier fluid and 2.0 g ”sand”.

The temperature during the whole measurements was
stabilized to 25.32 °C £ 0.01 °C for several days. The
standard deviation for any set of 201 measurements (see
later) varies between £ 0.004 °C and + 0.008 °C.

The kinematic viscosity of the technical glycerin was
measured with a viscometer to be 84.97 mm?/s at T =
25.32°C and was exactly evaluated for every set of mea-
surements. The material density of the technical glycerin
was determined with a density balance to be 1.25 g/cm?
at these temperatures.

As ”sand” we use spherical glass particles (Wiirth Bal-
lotini MGL) with a material density of 2.45 g/cm3. The

particles are sieved in order to obtain a well defined size
distribution which is then measured in a Coulter-counter
(see Fig. 1). This measurement of the particle size dis-
tribution is based on the principle of monitoring the elec-
trical current between two electrodes immersed in a con-
ductive liquid on either side of a small aperture, through
which the suspension of particles is forced to flow. As
a particle passes through the aperture, it changes the
impedance between the electrodes and produces an elec-
trical pulse of short duration with an amplitude essen-
tially proportional to the particle volume. An alternative
measurement of the particle size distribution was based
on light diffraction experiments. These measurements
confirm the results in Fig. 1.
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FIG. 1. Size distribution of the used particles, measured
from conductivity measurements.

The cell is illuminated from behind by a field of LEDs
which are run by dc current. The sand then appears
bright in front of a dark background and can easily be
detected by a CCD-camera connected to a frame-grabber
in the computer. The images have a dimension of 512
x 350 pixel. The optical resolution is given by Az =
0.159 mm /pixel. From the contrast of the pictures we ob-
tain the packing fraction (see Section IV A), which yields
the local density and the viscosity of the suspension.

To prepare the initial interface the cell is revolved twice
by the use of a stepper motor. At the very beginning the
cell is inserted into a frame when the sand is lying at
the bottom of the cell. Then the cell is revolved within
233 ms so that the sand is layered above the glycerin.
This is the starting point of continuously repeating cy-
cles (201 times). The sand is sedimenting to the bottom
of the cell and the self-sharpening effect forms a fairly
sharp interface between the sedimenting suspension and
the glycerin above. Before the sand has completed the
sedimentation, the cell is revolved again after a vary-
ing waiting time t,,1, so that the suspension comes to lie
above the glycerin with an interface of which the instabil-
ity is observed. The camera starts to take 55 snapshots,
the first one 545 us after the cell is turned. The time of
the first snapshot defines the starting time ¢ = 0. The
images are taken every second and show the middle part



of the cell. After the images have been taken the cell is
kept in its position for a constant waiting time t,2 = 5
minutes. Then the cell is rotated again and the cycle
repeats. Fig. 2 shows schematically the various stages of
the experimental cycle.

We have been able to prepare well defined distances of
the interface from the vertical walls by keeping t,2 = 5
minutes constant and varying t,1 in seven sets (each of
201 measurements) with t,,1 = 6, 8,10, 12,14, 16, 20 min.
(For comparison, full sedimentation would require t,,; ~
37 min.) The interface instability becomes active twice in
every cycle. Apparently an effective mixing of the sand
and the glycerin takes place, where memory effects are
wiped out. In fact we observe the interfaces at constant
tw1 always to form at the same height over the bottom
of the cell. The averaged height h,, for every measure-
ment is calculated by averaging the height of the inter-
face in the lateral extension at t = 0 s. Fig. 3 shows the
seven sets of different prepared heights of the interface
above the bottom wall of the cell, each containing 201
single measurements. (For comparison, full sedimenta-
tion would result in an averaged height hy, & 43 mm.)
Since hg, for the first cycle has not yet reached the sta-
tionary level (as can be seen in Fig.3) it is left out for the
further evaluation of the data.

Obviously the averaged height h,, increases monotoni-
cally with increasing t,,1. Fig. 4 shows the dependence of
the prepared height h,, as averaged over the remaining
200 measurements on the varying waiting time t,.
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FIG. 2. Schematic procedure of the experimental cycle. By
the different fonts the experimental preparation (normal font)

and the system response (cursive font) are discriminated.
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FIG. 3. Different interface heights above the bottom of the

cell for 7 series of measurements. The different symbols repre-
sent the different waiting times t,1: 20 min (open rhombus),
16 min (filled triangle), 14 min (open hexagon), 12 min (filled
square), 10 min (open hourglass), 8 min (filled circle), 6 min
(open triangle, upside down). The bold lines represent the
measurements and the fine lines give the standard deviation
of the averaging over all columns of an image. The symbols
attached to the curves are the same as in Fig. 4, Fig. 9, Fig.
10 and Fig. 11.
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FIG. 4. Averaged height hq, as function of ¢,,1. The error
bars which cannot be resolved in this plot, give the standard
deviation. The symbols are the same as in Fig. 3, Fig. 9,
Fig. 10 and Fig. 11.
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IIT. EXPERIMENTAL RESULTS

As already mentioned the measurements of the growth
rates have been performed for seven different series with
different distances of the initial interface from the bot-
tom of the cell (i.e. different waiting times t,). Fig. 5
shows a typical sequence of images during the develop-
ment of the instability with the initial height h,, = 9.1
mm, t,1 = 10 min.



FIG. 5. Temporal evolution of the sand-glycerin interface
at certain time steps: 0s, 30s, 35s, 40s and 45s. The frames
show the middle part of the cell and have a horizontal length
of 512 pixels, respectively 81.39 mm. The bright color repre-
sents the sand-glycerin suspension, the dark color represents
the glycerin. The contrast of the images is enhanced.

To analyze the sequences we apply a gradient al-
gorithm involving suitable smoothing to pin-point the
glycerin-sand interface. The resulting interfaces are then
passed through a low-pass filter keeping all wave lengths
which are larger than 56 particle diameters. Fig. 6 shows
the temporal evolution of the images presented in Fig. 5.

Height (mm)

Position (mm)
FIG. 6. The temporal evolution of the interface in Fig.5 in
the interval 0 < ¢t < 42 s in steps of 2s. The patterns are
shown with a constant vertical offset of 1 mm.

In Fourier space one runs into the leakage problem
when the offset between the heights at the limits of the
windows is large. In order to avoid this problem the
mismatch between the left and the right border of the
interface is minimized by disregarding some (between 0
and 62) pixels at the edges.

Discrete-Fourier-Transformation (DFT) of interfaces
treated in this manner gives the Fourier spectrum of each
interface. Fig. 7 shows characteristic Fourier spectra of
the interfaces at different times. Fig. 8 shows the tem-
poral evolution of the amplitude A of a typical Fourier
mode.
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FIG. 7. Fourier spectrum of the interface evolution
at times t = 0Os (dotted line), 30s (short-dashed), 35s
(long-dashed), 40s (solid line). The data belong to the in-
terface presented in Fig. 6.
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FIG. 8. Amplitude A of a DFT-analysis for a typical wave
number (here k ~ 6.1 cm™!) in dependence on time t. An
exponential fit is obtained. The data belong to the interfaces
presented in Fig. 6.

By an exponential fit

A(k, t) = Ai(k) exp(o (k)t) (3.1)

we obtain the growth rate o(k) for every wave number
k in the Fourier spectra with A; the initial amplitude
at t = 0. The time window used in the fit procedure
has been limited by two requirements: At first A(k,t)
(Eq. 3.1) was kept smaller than 40 % of the wavelength
27 [k, the criterion for the linear regime [19], and in addi-
tion A(k,t) was kept smaller than half the height between
the interface and the bottom of the cell.

As already explained before we have performed 200
cycles with a fixed set of parameters (t,1, hay). These
200 measurements are analyzed to obtain a mean growth
rate as a function of the wave number. The spectral res-
olution is Ak = 27/(450 - Az) = 0.88/cm. The ensuing
dispersion relations are shown in Fig. 9. The lines are
the theoretical results which will be explained in the next
chapter.
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FIG. 9. Comparison of experimental data (single points)
with the Rayleigh-Taylor model (lines from Eq. 4.2) for a
one-component fluid with vertically varying density and vis-
cosity. For details see Section IV B and IV C. The solid line
corresponds to the filled circles, the dashed line to the open
hourglasses and the dotted line to the open rhombi. The er-
ror bars give the standard deviation of the mean value. The
symbols are the same as in Fig. 3, Fig. 4, Fig. 10 and Fig.
11.

IV. THEORETICAL ANALYSIS AND
COMPARISON WITH EXPERIMENTS

A. Determination of the packing fraction and
density profile

The vertical variations of the grey values of the images
taken at ¢ = 0 are analyzed in terms of the packing den-
sity ¢(z) which measures the volumetric concentration
of the sand particles in the mixture and from which the
density p(z) of the suspension can be calculated :

p(2) = ¢(2)psand + [L — ¢(2) |pgiyes (4.1)

with psang = 2.45gem™ and pgye = 1.25gem™3. The
packing density is directly measured in the experiments.
It is always kept small in the experiments (< 7%).

A non-dimensionalized measure for the maximal den-
sity difference is the Atwood number A = (psus —
pglycerz'n)/(psus + pglyce’r'in) = 0.03 for Psus = P(Z) with
#(z) = 0.065.

The calibration between the grey values and the pack-
ing density is achieved by preparing suspensions of ho-
mogeneous packing fractions by repeatedly rotating the
cell and averaging the measured grey values. From this
calibration the actual packing fractions and density pro-
files are known. The mean density profiles are smoothed
with a cubic spline algorithm and enter directly into the
theoretical description (see Section IV B). The density
profiles for the different measurements are shown in Fig.
10.
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FIG. 10. Density profiles of different measurements, i.e.
different t,1. The profiles show different steepness and dif-
ferent distances to the vertical walls. They were smoothed
with a cubic spline algorithm. The symbols are the same as
in Fig. 3, Fig. 4, Fig. 9 and Fig. 11.

B. Linear stability analysis

The pattern forming process displayed in Fig. 5 starts
from a situation (top panel) where the concentration of
the suspended sand particles and consequently the den-
sity of the glycerin-sand mixture decreases monotonically
towards the bottom of the Hele-Shaw cell. Due to grav-
ity this configuration is mechanically unstable. Theoret-
ically the fairly sharp planar interface (see Fig.10) might
continuously move downward until the sand covers the
bottom as a dense package. However, the interface be-
comes obviously unstable with increasing time and devel-
ops fingerlike protrusions (Fig. 5), which we will analyze
in the following. In a hydrodynamic approach the system
is modelled as a homogeneous one-component fluid with
variable density. In the initial state the fluid is horizon-
tally stratified, with a heavier layer (bright in Fig. 5)
on top of a lighter one (black). Thus we make contact
to the well known Rayleigh-Taylor instability according
to which the destabilization of the interface between the
layers is inevitable.

In our analysis we will closely follow the standard ap-
proach to be found in Chandrasekhars authoritative work
[20]. A Cartesian coordinate system is used in the cell.
It extends from z = 0 to 2 = d in the vertical direction
(antiparallel to gravity) and is idealized as infinitely ex-
tended in the span-wise x—direction. The narrow gap
covers the interval —a/2 < y < a/2. The starting config-
uration is characterized by the density profile p(z) and a
pressure p(z). Its linear stability against density fluctua-
tions dp, pressure fluctuations dp and the ensuing velocity
field u is calculated via the suitably linearized Navier-
Stokes equations (see ( [20]):

poru = —Vip+V -X — Gépe.,
Vu=0, 0dp+(u-V)p(z)=0

(4.2)

The components of the stress tensor X are given as :

G denotes the gravity constant and u(z) the dynamical
viscosity. The density p(z) of the suspension is deter-
mined by ¢(z) according to Eq. 4.1. The viscosity pu is
also given in terms of ¢(z) by the following relation valid
for small ¢ [16]:

w(z) = ,U/glyc[l + 2.5¢(2)]-

The viscosity pgiyc of our carrier fluid, technical glycerin,
has been measured directly as function of temperature.

In the following we adopt an approximation scheme,
originally proposed by Brinkman [21], that has proven to
be adequate for a narrow slab geometry in a similar con-
text (see for instance the discussion in [22]). The main
idea is to keep in Eq. (4.2) only the spatial variations in
the x, 2z plane by appropriately averaging out the varia-
tions in the y—direction. This procedure is expected to
be reliable as long as the fingers remain two-dimensional
in the narrow gap case. The y—component of the velocity
perpendicular to the slab is certainly very small and is
consequently neglected. The remaining z, z components
of u, which have to vanish at y = +a/2 are then averaged
over the y—direction.

The incompressibility condition Vu = 0 is ensured by
the introduction of a velocity potential f:

(4.4)

u=146f(z,21),6 = (82,,0,-02,). (4.5)
After taking the scalar product of Eq.(4.2) with § one
arrives at an equation for f; the pressure drops out.
To perform the y—average, we use the following ansatz:

f(@,2,y,t) = exp(ikz + ot) f(2)p(y),
dp(e,y,2,t) = exp(ike + ot)p(2)p(y)

(4.6)

The smooth profile p(y) which vanishes at y = +a/2
captures the y—dependence of all fields. It is conveniently
characterized by the ”"mean curvature” ¢ defined as:

=

For p(y) = cos(ny/a) we obtain ¢ = (7/a)? and for the
Hagen-Poisseuille profile p(y) = —(y* — (a/2)?) the value
c=12/a%.

Inserting the ansatz (4.6) into Eq. (4.2) a linear eigen-
value problem is obtained which yields the growth rate
o = o(k) as function of k.

(M

dy C;l—;zp(y) / _E dyp(y) (4.7)

a a
2 2

o[D(pDf) - pok*f] = D[(Dp)(D* +k*)f  (4.8)

+p[(k* = D? — ¢) f] + 2k*(D f)(Dp)
— D[u(D* — k> — o)|f — 98p
op = k*Dp(z)



with D = d/dz. Note that Eq. (4.8) for ¢ = 0 is iden-
tical to the corresponding system in [20], where a large
extension in the y—direction had been assumed.

The eigenvalue problem Eq.(4.8) has to be solved with
the no-slip boundary conditions f = Df at z = 0,d and
c fixed. For general p(z), u(z) the growth rates have then
to be determined numerically; they are shown for a suit-

ably determined c (see below) as function of k in Fig.
9.

C. Quantitative characterization of the growth rates

We have calculated the o(k,c) from Eq. 4.8 for
a series of curvatures ¢ and to evaluate x?(c) =
(0ezp(k) — o(k,c))? for the corresponding experimental
points shown in Fig. 9 for k < 14.1/cm. By fitting x(c)
to a parabola about its minimum ¢ = ¢p:
X*(€) = ale — copt)® + Xopt (4.9)
we obtain the optimal mean curvature c,p; with mini-
mal x2. These curvatures copt Were used for calculat-
ing the theoretical growth rates o(k,c = copt). The
three selected examples shown in Fig. 9 correspond to
Copt = 11.48/a?, copr = 11.52/a® and c,py = 13.33/a?
from above. The values of ¢,y for all seven measure-
ments can be found in Fig. 11 ). All values are near to
¢ = 12/a?, corresponding to the Poiseuille profile.
By a fit of the experimental oz, (k) to

O'ez-p(k) = a(:c - kmaz)2 + Omazx (410)

for 3.51 < k < 10.54 we obtain the maximal growth
rate 0,4, and the wave number of maximal growth rate,
kmaa}-

Both parameters show a systematic dependence on the
distance from the wall, to be seen in Fig. 11 ¢) and d).
For smaller distances over the bottom of the cell k4, in-
creases since the distance decreases and hence the wave
length.

Omas increases for small distances as well. A possible
explanation could be that the profiles are steeper near
the bottom of the cell, as seen in Fig. 10. The steepness
k can be quantified by a tanh-fit

d(z) = A¢ tanh(k(z — b)) + ¢ (4.11)

which yields also A¢, the difference of packing density
between top and bottom of the cell. These quantities
show the expected decrease with increasing height hg,
over the bottom of the cell (Fig. 11 a) and b)).

A close correlation between &, A@, Omaz > kmaz and
the distance to the bottom wall or ¢,1, respectively, is
obvious.

There seems to be a deviation between the experimen-
tal and the theoretical growth rates for small k. This
might be due to the fact that the experiment is finite in
the z-direction in contrast to the theoretical idealization.

One sees further, that the theoretical growth rate o (k)
decreases more slowly as function of k£ compared to the
experimental results. A possible explanation could be,
that at larger k the diffusion of the sand particles gets
more relevant, which we have neglected in our approach.
Diffusion would effectively decrease the initial steepness
of the density profile in time and consequently lead to
smaller effective growth rates.
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FIG. 11. A¢, K, Omaz; kmaz, ¢ as function of the height
hav. The symbols are the same as in Fig. 3, Fig. 4, Fig. 9
and Fig. 10.

V. CONCLUSION

In a closed Hele-Shaw-like cell the temporal evolution
of a glycerin-sand interface was investigated. For the un-
stable stratification, a suspension of sand and glycerin
above glycerin, the instability is driven by gravity. The
images of the temporal evolution were analyzed by DFT.
The Fourier spectra show that the initial disturbances
of the interface grow exponentially at the beginning of
the pattern forming process. This enables us to deter-
mine the growth rates by an exponential fit for every
wave number k in our spectra. The data show that the
growth rate has a non-monotonic ¥ dependence: It in-
creases steeply towards a maximum at k ~ 7 cm~!. Then
it decreases moderately again.

To describe the general behavior we have chosen a one-
fluid model with vertically varying density. Carrying out
a linear stability analysis for the interface we calculate
the growth rates from the dispersion relation.

The analysis of the dependence of 0,4, and k4, 0N
the height over the bottom of the cell shows a systematic
behavior, as well as the dependence of A¢ and k.

The continuum approach gives a good agreement with
the experimental results: the one-fluid model describes
satisfactorily the experimental results. Thus, our present
results show convincingly that a simple hydrodynamic
approach to diluted suspensions is reasonable. More
refined theoretical models like two-fluid models ( [5],
[6]) seem to yield no additional insight for the low-
concentration suspension used in our experiment.
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