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Abstract
Various cases of phase turbulence in convection layers heated from below are

reviewed. In several cases a close connection between the onset of phase
turbulence and the existence of a heteroclinic orbit in a reduced system of
equations can be found. New results are presented for phase turbulence in
the case of centrifugally driven convection in a rotating cylindrical annulus.

1 Introduction
Phase turbulence is observed in many extended fluid systems that are char-
acterized by supercritical or only weakly subcritical bifurcations from the
uniform basic static state under steady external conditions. A large number
of bifurcating solutions usually exists in the neighborhood of the critical value
of the control parameter and the mathematical problem can be considered as
an unfolding from a bifurcation point of infinite codimension. In the absence
of a variational principle guaranteeing a unique asymptotic state the compet-
ing modes often give rise to a spatio-temporally complex state. In particular
the phases of the flow at a given location appear to vary in a chaotic fashion.

The standard methods for analyzing pattern forming instabilities apply
to large aspect-ratio systems, which can be idealized as infinitely extended.
Therefore a description in terms of Fourier modes in dependence on two-
dimensional wave vectors k is natural. In particular near onset of convection,
i.e. when the main control parameter R, such as the Rayleigh number in
Rayleigh-Bénard convection, is slightly beyond its critical value, almost per-
fect periodic patterns like rolls (characterized by a single wave vector), but
also squares (two distinct wave vectors) or hexagons can be obtained. Be-
sides the nearly periodic pattern, experiments often exhibit persistent spatio-
temporal dynamics. Snapshots of the patterns in this case show local roll
patches corresponding to wave vectors varying with respect to their direc-
tion while the absolute values of the wave vectors are nearly constant. The
discontinuities in the wave vector field like grain boundaries or immersed
point defects (dislocations) trigger the dynamics of the patterns. The notion
‘phase turbulence’ or ‘weak turbulence’ has been introduced for such states
in distinct contrast to more fully developed turbulence.
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Properties of Turbulence

Chaotic time Decay of spatial Broad wavenumber  Inertial range,
dependence correlations spectrum fractal structure

e —
Dynamical Systems
few degrees of freedom,
e.g. convection in a box

Phase Turbulence
many degrees of freedom, nearly degenerate bifurcation,
e.g. convection in extended layers with rotation

Classical Turbulence
Interaction with boundaries, e.g. turbulent pipe and
channel flow; thermal convection at high Rayleigh numbers

Asymptoticf'l\&rbulence
Inertial range scaling, .g. atmospheric flows and other high Reynolds number systems

Table 1

Phase turbulence is thus a phenomenon that exhibits certain properties of
fluid turbulence while others are missing. The reduced complexity of phase
turbulent systems can therefore provide examples in which certain aspects of
Auid turbulence can be studied in a relatively simple setting. Table 1 may
serve to illustrate the place of phase turbulence within the general field of
fluid turbulence.

One way of elucidating the mechanism of phase turbulence is the explo--
ration of the stability of periodic patterns in the R-k-space. In fact, in the
most important and representative cases phase turbulence originates from the
nonexistence of stable periodic states immediately above onset. Historically
the first example has been convection in a rotating Rayleigh-Bénard layer.
Kiippers and Lortz (1969) realized that all steady solutions describing con-
vection flows in a horizontal fluid layer heated from below and rotating about
a vertical axis are unstable when the rotation parameter {1 exceeds a critical
value. They concluded that some kind of turbulent motion must be realized
as a result. In later studies a close connection of the time-dependent states
with a heteroclinic orbit was recognized (Busse and Clever, 1979a) and simple
models based on this idea (Busse, 1984) could explain the experimental ob-
servations (Busse and Heikes, 1980; Heikes and Busse, 1980) quite well. Since
then the system of rotating convection has become a favored example for the
study of spatio-temporal chaos in pattern forming systems. Both experimen-
tal investigations (Zhong et al, 1991; Zhong and Ecke, 1992; Bodenschatz
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et al, 1992; Hu et al., 1995, 1997, 1998) and numerical simulations (Tu and
Cross, 1992; Fantz et al., 1992; Neufeld and Friedrich, 1995; Millan-Rodriguez
et al, 1995; Pesch, 1996; Ponty et al., 1997) have been employed to study
various aspects of this phase turbulent system.

In the meantime other systems exhibiting phase turbulence were found.
Zippelius and Siggia (1982) showed that Rayleigh-Bénard convection in a
non-rotating layer with stress-free boundaries also exhibits the property that
none of the existing infinite steady solutions is stable for sufficiently low
Prandtl numbers and as a consequence phase turbulence must be expected.
The mathematical analysis of Zippelius and Siggia was based on incorrect
assumptions, but a later, more general analysis of Busse and Bolton (1984)
confirmed that all solutions are indeed unstable albeit through different mech-
anisms of instability. The resulting phase turbulence has been studied in var-
ious papers (Busse, 1986; Busse and Sieber, 1991; Busse et al., 1992; Xi et al.,
1997). But, unfortunately, there exists no possibility for a direct comparison
with experiments since stress-free boundaries can be realized only for fluid
layers with large Prandtl numbers (Goldstein and Graham, 1969).

Another system in which spatio-temporal chaos is easily observable is elec-
troconvection in a layer of nematic liquid crystals. For experimental and
theoretical studies of this system we refer to a recent review by Pesch and
Behn (1998). Of special interest are cases where the primary bifurcation from
the spatially homogeneous state occurs in the form of an oscillatory instabil-
ity giving rise to traveling waves at threshold. It can happen that none of
these wave states is stable owing to the Benjamin-Feir instability resulting
in spatio-temporally disordered patterns {Dangelmayr and Kramer, 1998).
Less well understood are the situations where phase turbulence cannot be
related to an instability such as spiral defect chaos which has attracted much
attention in recent years (Morris et al, 1993).

It is common to make a distinction between phase turbulence and defect
turbulence. The latter is characterized by the persistent spontaneous creation
and extinction of defects which are defined as points where the phase jumps by
27 while the amplitude vanishes in an otherwise smooth pattern. But since
experimentally realized phase turbulence is always associated with certain
kinds of defects and grain boundaries, it is difficult to sustain the distinction
for physical systems. The two ideal cases of spatio-temporal chaos generated
solely by defects corresponding to phase singularities and the spatio-temporal
chaos associated with entirely smoothly varying phase can be regarded as
extreme cases of various possibilities for turbulence close to the critical value
of the control parameter.

In the following we shall first discuss briefly the cases of variational and
non-variational dynamics in Rayleigh-Bénard layers and then focus in the
third section on the role of heteroclinie orbits. In the fourth section the newly
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Fig. 1: Sketch of a horizontal fluid layer heated from below and
possibly rotating about a vertical axis.

studied case of a Rayleigh-Bénard layer with ‘horizontal’ axis of rotation will
be presented in which heteroclinic cycles also play a role. The paper closes
with some concluding remarks in section 5.

2 Variational and Non-Variational Dynamics

in Rayleigh—Bénard Convection

We consider a horizontal, infinitely extended fluid layer of height d heated
from below as shown in figure 1. Because of the horizontal isotropy the
onset of convection corresponds to a bifurcation of infinite codimension. The
general solution of the linearized basic equations (see, for example, Busse,
1978) can be written in the form

w= f(z,a) i C, exp{ik, - T} (2.1a)
n=-N

where the conventions

Q. =C* kp,=—-kn, |kn|l =0, kn-A=0 foraln (2.1b)

—-n)

have been used and where a Cartesian system of coordinates (z,y,z) with
» in the vertical direction has been assumed; A is the vertical unit vector
and O denotes the complex conjugate of C. Expression (2.1a) is given
for the vertical velocity component. Analogous expressions hold for the other
variables such as the temperature field. A special role is played by the regular
distributions of k-vectors for which all angles ¢ between neighboring vectors
k, assume the same value, ¢ = m/N. Patterns which are periodic in the
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plane are obtained in the special cases N = 1,2, 3 which correspond to rolls
(or stripes), squares and hexagons, respectively. In the general case N may
tend to infinity in which case functions of the form (2.1) correspond to the
class of almost periodic functions in the z-y-plane with fixed wavenumber.

The control parameter of the problem is the Rayleigh number R which
is proportional to the applied temperature difference between bottom and
top of the layer and which assumes a minimum as a function of wavenumber
a for a, = 3.116/d and a, = 7/dv/2 in the cases of no-slip and stress-free
conditions at the boundaries, respectively. The corresponding critical values
of the Rayleigh number are R, = 1707.76 and 277%/4. A solution of the form
(2.1) is also obtained when the layer is rotating about a vertical axis, since it
is possible to design experiments such that the centrifugal force is negligible
while the Coriolis force plays an important role.

The arbitrary choice of the amplitudes C, becomes restricted when the
nonlinear problem is considered. For example, |C1|? = |C3]? = --- = |On [
must be satisfied for steady solutions corresponding to regular distributions
of the vectors k,,. These constraints on the coefficients C,, are obtained from
the solvability conditions in the cubic order of the expansion of the basic
equation in powers of the amplitude of convection. More general constraints
are obtained when a time dependence of the coefficients on a long time scale
is admitted. The solvability conditions give rise to evolution equations for
the amplitudes C,,(t) of the form

d N
Ecj =(R—Ro)KC} +8 Y CnCrb(k;+kn+km)

nm=—N

N
- [g (CalPAlk; - kn) + QE(k; - kn) A-k; X _kf] ct

+iMVy x X - k;CF for j=-N,...,N, (2.2a)
a o o )
== — =Y §.,CrCpexp{i(k, + k) - T} (2.2b)
(815 ox?  Oy? %,: e ?

Here K, 3 and M are constants while A and E are functions of k; - k,, and
(3 provides a measure for deviations from the Boussinesq approximation, i.e.
for the temperature dependence of the viscosity ete., which tend to favor
hexagonal convection cells. The terms underlined by a solid line enter the
problem only in the case of stress-free boundary conditions in which case
a z-independent mean flow described by a slowly varying stream function
¥(x,y,t) can be generated. The term proportional to 2 and underlined by
a dashed line enters the problem only in the case of a rotating layer where
Q = Qpd?/v is the rotation parameter made dimensionless with the thickness
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d of the layer and the kinematic viscosity v of the fluid. p is the dimensional
angular velocity of rotation. Because the reflection symmetry of the basic
equations with respect to vertical planes is lost in a rotating system, terms
proportional to A+ k; X kn, enter in addition to those depending only on inner
products k; - k,, between k-vectors. Without the underlined terms the right
hand side of expressions (2.2a) can be written as derivatives of a Lyapunov
functional F(C_y,...,Cn),

d 0

EC;=_B_CJ-F(C_N"”'CN) forj=—N,...,N (2.3a)
with
F(C_pr....CN)
= —%(R — Ro)KjiN G512 — %ﬁjnzm CiCnCmb(kj + kn + k)
+§§A(kj k) PIGH. (2:30)

The variational dynamics expressed by these equations guarantees the exis-
tence of at least one stable stationary solution of the problem corresponding
to a minimum of the functional F. But, of course, there may be more than
one attractor corresponding to more than one local minimum of F, as hap-
pens in the case of the competition between rolls and hexagonal convection
cells (Busse, 1967).

The property (2.3) disappears in problems of Rayleigh-Bénard convection
with rotation about a vertical axis or with stress-free boundaries and indeed
it can be demonstrated that all steady solutions are unstable if either Q is
sufficiently large (Kiippers and Lortz, 1969) in the former case or the Prandtl
number P is less than 0.543 in the case of stress-free boundaries (Busse and
Bolton, 1984; see also Mielke, 1997). In other cases of Rayleigh-Bénard con-
vection the steady attracting flow also does not remain stable as the Rayleigh
number R is increased much beyond the critical value due to higher order
terms which can no longer be neglected in equations (2.2). But except for
the two special cases mentioned above there always exists a region close to
the critical value of the Rayleigh number where the variational dynamics
described by equations (2.3) is applicable.

3 Phase Turbulence in a Convection Layer
Rotating about a Vertical Axis

In the case of a rotating layer as shown in figure 1 the phase turbulence as-
sumes a particularly simple form and the connection to a heteroclinic cycle
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Fig. 2: Sketch of a trajectory in the phase space spanned by the
amplitudes I'?, i = 1,2, 3, which approaches the heteroclinic orbit con-
necting the fixed points I'? = §;; with j = 1,2, 3.

is most evident. As shown by Kiippers and Lortz (1969), the growing dis-
turbance of steady rolls, which is the only stable steady solution in the case
3 =0, §2 < (., assumes the form of rolls oriented with an angle of about 60°
with respect to the given rolls when Q exceeds .. Because of this property
it is sufficient to use a set of three rolls for a simple model of the time depen-
dence of convection (Busse and Clever, 1979a). The corresponding evolution
equations are

AT, = (1- T2 — 3 - T3,

#:Ta = (1 - T3 — €T3 — Ty, (3.1)

#Ta = (1T — I} -3,

where the variables I', are rescaled versions of the amplitudes C,, and 7
is identical with the time ¢ except for a constant factor. Without losing
generality we may assume real variables I',,. The system (3.1) of equations has
eight fixed points all of which are unstable for v+ £ > 2 when either v < 1 or
¢ < 1 holds. The same system (3.1) of equations was first used in the context
of population biology by May and Leonard (1975) and some mathematical
properties are discussed in their paper. ;From arbitrary initial conditions
the trajectory in the space spanned by coordinates I'f, '3, T2 approaches a
heteroclinic cycle in the plane I'f + I'; + '] = 1 as indicated in figure 2.
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Fig. 3: Trajectory of the statistical limit cycle described by equa-
tions (3.1) with superimposed noise (see Busse, 1984) in the triangular
domain given by the three corners I'? = bij,d = 1,2,3. The trajec-
tory starts at the unstable fixpoint I'y = I'; = I's in the center of the
triangle. The stars are placed at equal time intervals,

As the heteroclinic cycle is approached the unphysical feature of an ever
increasing period becomes apparent. In realistic situations the interaction
of patches of rolls with varying orientations will create disturbances which
will prevent the ultimate approach to the heteroclinic orbit. The effect of the
disturbances can be modeled through the addition of noise in the system (3.1)
of equations as was done by Busse (1984). A typical picture of the conversion
of the heteroclinic cycle into a ‘statistical limit cycle’ is shown in figure 3.
The average frequency of this cycle is proportional to

(R — Re)(1 = 7)(log(1/m))~*

where R — R, is the excess of the Rayleigh number over its critical value,
1 — 7 is proportional to the growth rate of the Kiippers-Lortz instability in
the case ¥ < 1 and 7 is a typical amplitude of the disturbances generated by
white noise.

The statistical limit cycle concept is useful for the understanding of the
local replacement of rolls by other rolls differing in their orientation by ap-
proximately 60° as seen in experiments with high Prandtl number fluids. An



52 Busse et al.

Fig. 4: Phase turbulent convection induced by the Kiippers-Lortz
instability in a horizontal layer of methyl alcohol of thickness d =
3.3mm rotating about a vertical axis. The shadowgraph pictures have
been taken 2 minutes apart in the clockwise sequence (upper row left
to right, then lower row right to left). The central circle originates
from the cooling water channel at the top of the layer and does not
interfere with the pattern dynamics. Rolls tend to be replaced by other
rolls turned counterclockwise by about 60°. (For details see Heikes and
Busse, 1980; Busse and Heikes, 1980.)

example from the work of Heikes and Busse (1980) is shown in figure 4. The
disturbance amplitude 7 can be interpreted as the influence of neighboring
patches and 5! thus is roughly proportional to the size of the patches which
increases as the critical Rayleigh number is approached. Through the in-
clusion of gradient terms in the system (3.1) non-local effects can be taken
into account (Tu and Cross, 1992) and a statistical limit cycle can be found
without the inclusion of noise. In the case of rotating convection layers with
Prandtl numbers of the order of unity the angle between rolls and the most
strongly growing disturbance rolls becomes smaller than 60° and the dynam-
ics can no longer be described by as simple a system as (3.1). In spite of a
smaller angle of the strongest growing disturbance a predominance of rolls
differing by 60° in orientation can still be noticed in the experimental mea-
surements (Hu et al, 1995, 1998).

Heteroclinic cycles also play a role in the other case of phase turbulence
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Fig. 5: Geometrical configuration of an annular convection layer with
‘horizontal” axis of rotation.

occurring at the critical value of the Rayleigh number. A discussion of the
dynamical features leading to phase turbulence in a convection layer with
stress-free boundaries has been given by Busse ef al. (1992). But, as has
already been mentioned, a comparison between theory and experiment does
not seem to be possible in this case.

4 Phase Turbulence in a Convection Layer
with Horizontal Axis of Rotation

Another way of realizing buoyancy driven motions is to use the centrifugal
force in place of gravity. By cooling an inner rotating cylinder and heating
an outer co-rotating one a Rayleigh-Bénard convection layer is realized with
the Rayleigh number given by

R— YTy — T1)% (ry + 12)d®
' Uk

3 (4.1a)

where v is the thermal expansivity, 75 and T are the temperatures at which
the outer and inner cylindrical boundaries are kept and r, and r; are the
corresponding radii, d is the gap width, d = r, — ry, {0p is the rotation rate,
v is the kinematic viscosity and & is the thermal diffusivity. A sketch of the
geometrical configuration is shown in figure 5. There are two additional di-

T
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Fig. 6: Hexarolls (left) for R = 2300 with k; = (3.117,0), koaz =
(—1.559, £2.2) and knot convection (right) for R = 2400 with k; =
(3.117,0), k2(0,2.2). P = 1000, = 20 in both cases. Solid (dashed)
lines indicate positive (negative) isotherms in the midplane z = 0 of
the fluid layer.

mensionless parameters, the rotation parameter (2 and the Prandt] number P,
Q=Qpd*/y, P= E (4.1b)

if we restrict our attention to the small gap limit, d < r;. The idea is to
minimize the effect of the Coriolis force by keeping  small while making the
centrifugal force sufficiently large that it exceeds gravity by a good margin.
This constraint can be satisfied for laboratory experiments through the use
of high Prandtl number fluids such as highly viscous silicone oils.

On the theoretical side the assumption of a small 2 permits the consid-
eration of the problem as an unfolding from the bifurcation with infinite
codimension in the isotropic limit of Q = 0. We can thus use the formula-
tion of the problem (2.1), (2.2) and restricting ourselves to the case of rigid
boundaries with 3 = 0 we arrive at the equations

d

N
7l = (B=Re—1(ki-§)’a ®)KC} - 3 Col?Alky - k,)C}F
n=1

N
+i(2 E é(kl o kn + km)BCnCm (kﬂ X km 5 A)J i km (4-2)
nm=—N

where B is a constant as long as the absolute values of the k-vectors are
constant. Equations (4.2) admit the familiar roll solutions corresponding to



Phase turbulence and heteroclinic cycles 55

10

Fig. T7: Regions in the R-Q-plane where axial rolls are stable or
unstable with respect to the indicated instabilities for P = 7.

N = 1. Among these the axially oriented rolls corresponding to k; - 7 = 0
are preferred since the (}-dependence vanishes for these rolls. The unusual
last term of equations (4.2) gives rise to new instabilities and new forms of
three-dimensional convection flows. An example of the latter are the hexarolls
which are shown in figure 6. They have been derived by Auer et al. (1995)
in the case N = 3 with k; -5 = 0 and ky + ky + k3 = 0. Another form
of three-dimensional convection is knot convection. This type of convection
can be observed in a non-rotating Rayleigh-Bénard layer (Busse and Clever,
1979b) and has also been investigated numerically (Clever and Busse, 1989).
In the present case of a convection layer with horizontal axis of rotation, knot
convection occurs at much lower values of the Rayleigh number so that the
analysis of the weakly nonlinear limit applies. Auer et al. (1995) have shown
that the description of knot convection based on equations (4.2) in the case
N = 2 agrees well with the numerical solutions of the full equations. A plot
of knot convection is also given in figure 6. A diagram indicating the regions
of the R-()-plane where axial rolls are stable and where they are unstable
with respect to the hexaroll and knot instabilities is given in figure 7.

The hexaroll instability leads to the evolution of stable steady hexarolls
only in a small fraction of the unstable region. For small values of R — R, the
hexarolls are also unstable and a nearly heteroclinic cycle results (Busse and
Clever, 1999). It manifests itself in the form of the long period oscillation
shown in figure 8. Axial rolls described by k; become unstable with respect
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Fig. 8: Nearly heteroclinic cycle between axial rolls 180° out of phase
with the brief changeover induced by the hexaroll instability. The
energies Eyop, Etor and Ey, ¢ of the poloidal and toroidal components
of the velocity field and of the mean flow have been plotted as functions
of time. Also shown is the Nusselt number Nu in dependence on ¢.
Hexaroll convection is characterized by a finite toroidal component and
by a finite mean z-component of the velocity field both of which vanish
in the case of axial rolls.

to the hexaroll instability, the amplitudes Cy, C; corresponding to ks, ks with
ki + ky + k3 = 0 grow while C, decays to zero. But a new steady state can
not be attained. Instead C; changes sign and axial rolls 180° out of phase
with the original one become established until after many thermal diffusion
times the hexaroll disturbances grow again. The switch over can be seen in
the time sequence of plots of figure 9. For the analysis of convection it is
convenient. to use the decomposition of the velocity field u into poloidal and
toroidal components, and into its mean component U which represents the
average of u over the z-y-plane,

u=Vx(VexA)+VyxA+U, (4.3)

where the condition can be imposed that the z-y-average of the functions ¢
and 1 vanishes. Axial rolls are characterized by the property 1 = 0 while all
other solutions exhibit a toroidal function v proportional to Q. The results
are essentially independent of the Prandtl number P as soon as P exceeds
order 10. The time scale of all dynamic processes is the thermal diffusion
time, d*/x, where  is the thermal diffusivity.

Considerable efforts have been expended to realize the interesting dynamics
of a convection layer with parallel axis of rotation in the laboratory (Jaletzky
and Busse, 1998; Jaletzky, 1999). A sketch of the apparatus is given in
those papers. It represents a realization of the configuration of figure 5 with
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Fig. 9: Time sequence of plots At = 4 apart (At = 2 for the last
five intervals), from top to bottom then left to right, in the transition
regime when axial rolls become unstable to the hexaroll instability and
convection returns to axial rolls 180° out of phase with the original
ones. The plots show lines of constant temperature in the midplane
of the layer for R = 1800, = 5,P = 7. The wavenumber in the
z-direction (upwards) is 2.7d~! and in the y-direction (towards the
right) it is 1.559d ! (after Busse and Clever, 1999.)

vertical axis such that laboratory gravity does not give rise to an oscillatory
force. It has been possible to generate both hexaroll convection and knot
convection, as shown in figure 10. Through the use of highly viscous fluids
it is possible to achieve low values of €, while the centrifugal acceleration
exceeds that of gravity by as much as a factor of 10. Thermochromatic liquid
crystals embedded in thin plastic sheets and attached to the inner cylinder
have been used for visualization. As shown in the photographs of figure 10,
hexaroll convection and knot convection can be observed in accordance with
the theory. At higher Rayleigh numbers oblique rolls predominate which
have not been considered in the theoretical analysis of Auer et al (1995).
Unfortunately, it has not yet been possible to observe experimentally the
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Fig. 10: Hexaroll convection at R = 2300,Q = 10 (middle), knot
convection at R = 4880, () = 24 (left) and phase turbulent convection
at R = 3970, = 14 (right) observed in a rotating cylindrical annulus
as sketched in figure 5. P = 400 and rotation is clockwise in all three
cases,

phase turbulence arising from the existence of the nearly heteroclinic cycle
shown in figures 8 and 9. Since this cycle seems to be confined to a region
of less than 10% above the critical value of the Rayleigh number it can not
easily be visualized. The amplitude of the temperature variations induced by
convection is too weak in this regime to induce a visible change of color of
the liquid crystals.

It is possible, however, to carry out numerical simulations based on com-
puter code developed by Pesch (1996). An example of these simulations is
shown in figure 11 where the intermittent appearance of hexaroll convection
is clearly visible. It can also be seen that the phase of the two-dimensional
axial rolls changes by 180° as they reappear after the hexaroll episode. The
numerical simulations can be run for extended periods in time and the statis-
tical properties of the phase turbulence can be analyzed as functions of the
parameters of the problem. As must be expected on the basis of the analysis
of the spatially periodic convection displayed in figures 8 and 9 the phase tur-
bulent convection becomes purely time periodic in the case of low aspect ratio
layers when the coherence length of patches of hexaroll convection becomes
comparable to the horizontal periodicity interval.

The numerical simulation can also be employed to describe the phase tur-
bulent convection at higher Rayleigh numbers as seen in the third picture of
figure 10. A typical time sequence of the spatio-temporally chaotic state is
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Fig. 11: Time sequence of plots ( )
with At = 14 showing the normal velocity in the midplane of the layer
in the case of phase turbulence induced by the hexaroll instability of
axial rolls in the case R = 1814, = 5, P = 10. ‘"The shift of the rolls
by 180° after the hexaroll interlude is clearly visible.

shown in figure 12 which resembles the experimental observation in figure 10.
It is of interest to note that an oscillation in which the axial roll component
switches phase by 180° is still noticeable. A full period corresponds to about
1.6 thermal time units so that after four pictures in figure 12 vertical line
segments have switched from black to white or vice versa. A quantitative
measure of this chaotic switching phenomenon can be obtained from the cor-
relation between patterns at the times t; and t; +t. As a typical example
the correlation averaged over ¢, for the pattern of the vertical velocity has
been plotted in figure 13. The period evident in this figure appears to be a
remnant of the heteroclinic cycle. Attempts to measure the correlation ex-
perimentally are under way. Preliminary results appear to be consistent with
the numerical results.

5 Concluding Remarks

In this article we have focused on systems where the phenomenon of phase tur-
bulence is related to heteroclinic cycles. It is an open question whether similar
mechanisms operate in other situations as well. The absence of a Lyapunov
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Fig. 12: Time sequence of plots (left to right, top to bottom) with
At = 0.2 showing the normal velocity in the midplane of the layer
in the case R = 3440, = 15, P = 10. The phase of the axial roll
component still appears to switch by 180° about every fourth plot.

potential is a necessary condition for complex spatio-temporal dynamics, but
not a sufficient one. High Prandt] number convection in a non-rotating layer,
for instance, shows little time dependence even at 10 times the critical value
of the Rayleigh number.

In the case of convection with stress-free boundaries a Lyapunov potential
does not exist owing to the presence of the mean-flow mode. This mode
can be understood as a Goldstone mode originating from the spontaneously
broken (continuous) Galilean invariance. Since such modes are only weakly
damped they can easily be excited by any small perturbations in the patterns,
which are then typically reinforced. Phase turbulence in liquid erystals is
closely related to this mechanism. Here a Goldstone mode with respect to
the orientational degrees of freedom comes into play (Rossberg et al., 1996).

Even less well understood is the phenomenon of spiral-defect chaos in con-
vection layers with Prandt]l numbers of the order of unity. It seems that here
a kind of wave vector frustration is important. The different building blocks
of the patterns (spirals, grain boundaries etc.) select different wave vectors
and the system is unable to reconcile those into a stationary periodic pattern
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Fig. 13: Correlation function [ w(to)w(to+t)drdy averaged over tp in
the range 0 < ty < 400 as a function of ¢, for the parameters of figure
12: w denotes the normal component of the velocity at the midplane
of the layer.

(Cakmur et al., 1997).
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