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Abstract. It is demonstrated that the key findings of the paper by Y.G. Marinov and H.P. Hinov, Eur.
Phys. J. E 31, 179-189 (2010) are in direct conflict with the general physical background of flexoelectric
domains. This is caused by a methodological error in the theoretical analysis of the paper.

Flexoelectric domains (flexodomains) which appear in
experiments as stripe patterns have been first described
by Bobylev&Pikin [1]. They are observed in a planarly
aligned nematic layer (parallel to the x−y plane) of thick-
ness d, when an electric potential, U , larger than a thresh-
old Uc is applied along the z-direction. Flexodomains are
characterized by a specific spatial variation of the locally
preferred axis of the uniaxial nematics, i.e., of the director
n: the planar basic director configuration n0 = x̂ is modi-
fied by a distortion δn = (0, δny, δnz) in the form of splay
(δnz 6= 0) and twist (δny 6= 0). The director distortion δn
depends on z and is in addition spatially periodic along
the y-axis with wavenumber q.

The existence of flexodomains requires a balance of
the dielectric, elastic and flexo torques on the director
[2]. The first is determined by two dielectric permittiv-
ities ǫ‖(ǫ⊥), for an electric field parallel (perpendicular)
to n. Obviously this torque tends to stabilize (destabi-
lize) the planar basic state when the dielectric anisotropy
ǫa = ǫ‖−ǫ⊥ is negative (positive). The strength of the elas-
tic torques, stabilizing the planar configuration, is mea-
sured by two positive elastic constants, namely by k11
and k22 in the presence of splay and twist distortions,
respectively. The parameterization k11,22 = kav(1 ± δk)
with kav = (k11 + k22)/2 and −1 < δk < 1 is conve-
nient. Nonzero flexo torques, which are destabilizing in
the present case, necessitate a splay distortion (δnz 6= 0)
accompanied with a certain amount of twist (δny 6= 0).
Their strength is determined by the parameter combina-
tion δe = |e1 − e3| of the flexo-electric coefficients e1, e3.

The calculation of the threshold Uc and the critical
wavenumber q = qc at U = Uc of flexodomains in [1] ad-
dresses only the special case of isotropic elasticity (δk =
0). In the paper of Marinov&Hinov [3] (MH) the general
case of anisotropic elasticity (δk 6= 0) has been investi-
gated. Their analysis starts from the familiar system of

two coupled linear differential equations for the director
perturbations δny, δnz (see Eqs. (6) in MH), which re-
sult directly from the minimization of the orientational
free energy density of nematics (see, e.g., Eq. (5) in MH)
[4]. As a central result of their analysis (see Eq. (34) in
MH), the authors claim that flexodomains can only ex-
ist, if the elastic constants are restricted to the interval
1/3 < k22/k11 < 3 (corresponding to |δk| < 1/2 in our no-
tation). On the grounds of general considerations it will be
demonstrated below, that such a restriction has no phys-
ical basis and points thus to a crucial error in the paper.

To understand the generic features of the existence
regime of flexodomains in the (ǫa, δk) plane (see Fig. 1)
it is most useful to consider at first the case δe = 0
where only the dielectric and the elastic torques com-
pete. For ǫa < 0 (below the dot-dashed abscissa in Fig. 1)
the system remains for arbitrary U in the planar basic
state, which is stabilized by both torques. For any ǫa > 0,
however, the destabilizing dielectric torque will eventu-
ally overcome the elastic torques with increasing voltage
U : in the interval −1 < δk < δkc with δkc ≈ 0.535
(k22/k11 ≈ 0.303), i.e., to the left of the dotted vertical
line ST in Fig. 1, the standard splay Freedericksz tran-
sition takes place at UF = π

√

kav(1 + δk)/(ǫ0ǫa). The
resulting distortion δnz of the planar state does not vary
in the x − y plane, while δny ≡ 0. In contrast, in the
interval δkc < δk < 1 (on the right of the line ST and
above the dot-dashed line ǫa = 0), the destabilization of
the basic state happens in form of the splay-twist Freeder-
icksz transition first described by Lonberg&Meyer [5]. In
perfect analogy to flexodomains the resulting director dis-
tortions show nonzero δny, δnz contributions, which are
periodic along the y-direction. The determination of the
transition voltage UST < UF and of δkc ≈ 0.535 quoted
above, requires the numerical solution of a transcendental
equation given in [5].
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Fig. 1. Schematic illustration of the upper and lower limit
curves, ǫua(δk) (solid) and ǫla(δk) (dashed), respectively of the
existence range of flexodomains in the (ǫa, δk) plane (arbitrary
units for ǫa). ǫ

u
a(δk) diverges at δk ≈ 0.535 (dotted line ST),

while ǫla(δk) → −∞ for δk → −1 (for details see text). In
the absence of flexo torques (δe = 0) the planar state exists
everywhere below the dot-dashed line ǫa = 0. For ǫa > 0 the
homogeneous Freedericksz-state is replaced by the splay-twist
Freedericksz-state to the right of the line ST (dotted).

In the case of finite δe the destabilizing flexo torque en-
hances in general the tendency towards spatially periodic
splay-twist director variations, i.e., towards flexodomains.
Thus an “upper” transition curve ǫa = ǫua(δk) must exist
in the whole interval −1 < δk < δkc, at which the ho-
mogeneous Freedericksz configurations with qc = 0 trans-
form continuously into the flexodomains with finite qc for
ǫa < ǫua(δk). For δk > δkc and ǫa > 0 the flexo torques
yield only a minor modification of the periodic state al-
ready present for δe = 0.

For ǫa < 0 the flexo torques may also overcome the
stabilizing dielectric and elastic torques allowing for flex-
odomains in this regime as well. As is well known, the
strength of the flexo torque increases linearly with the
wavenumber q of the flexodomains. Thus when decreasing
ǫa their critical wavenumber qc has to become larger in
order to over-compensate the increasing stabilizing effect
of the dielectric torque (∝ |ǫa|). Eventually qc and also Uc

diverge at the “lower” transition line ǫla(δk) separating the
flexodomains and the planar basic state. Note, that, as in-
dicated in Fig. 1, both functions, ǫu,la (δk), have to decrease
strictly with decreasing δk. Regarding ǫua(δk), where a fi-
nite δnz is already provided by the dielectric torque, the
increase of k22 hinders more and more the necessary twist
distortion (δny) of the director. In contrast, for ǫla(δk),
which diverges at δk → −1 (i.e., at k11 → 0), the more
easy generation of the finite splay distortion is decisive.

In summary, the existence regime of the periodic splay-
twist distortions for δe = 0, ǫa > 0 and δk > δkc in the
upper right corner of Fig. 1 is bound to expand for δe 6= 0
into the “dumbell”-like existence regime of flexodomains
intervening between the homogeneous Freedericksz state
and the basic state for −1 < δk < δkc in Fig. 1. The crit-

ical wavenumber qc increases monotonically from 0 to ∞
when moving with ǫa from the upper to the lower tran-
sition line. In the limit δk → δkc from below the line ST
is approached by ǫua(δk) in the limit ǫa → ∞. Note, that
the general scenario described above is consistent with the
special case of δk = 0 where one finds the analytical re-
sults ǫua(0) = −ǫla(0) = δe2/(ǫ0kav) [1].

The phase diagram for the flexodomains shown in Fig. 1,
which has been constructed from basic physical arguments,
is in strong disagreement with the results of MH. Besides
the unphysical limitation |δk| < 1/2 (Eq. (34) in MH) for
the existence of flexodomains, their upper limit function
ǫua(δk) (according to Eq. (35) in MH) is strictly increasing
with decreasing δk until it diverges at δk = −1/2. This
is in distinct contrast to Fig. 1 where ǫua(δk) approaches
zero with δk → −1.

A closer look at MH shows that their analysis suffers in
general from a basic mathematical error. Instead of start-
ing with the standard text-book ansatz δny(z), δnz(z) ∝
exp(λz) to analyze their Eqs. (6), they have applied a
sequence of matrix manipulations to “diagonalize” them.
This method, which has been also applied by the authors
in other papers (see, e.g., [6]), has been first proposed in
[7]. Unfortunately, in all these publications it has been
overlooked, that the procedure (starting at Eq. (14) in
MH) works only for constant matrices while these depend
in fact on z in the present case. As a consequence, the
expressions for the critical voltage and the wavenumber
(Eqs. (26), (28) in MH) are incorrect, which thus applies
to all the results presented in the paper.

Our general, qualitative considerations in this com-
ment have been confirmed by the standard treatment of
the underlying equations (Eqs. (6) of MH) in a recent pub-
lication [8]. Here one finds detailed discussions of Uc and
qc in dependence on the material parameters. In addition
the application of an ac-voltage and the competition with
patterns arising from the electrohydrodynamic instability
have been discussed.
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