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I. INTRODUCTION

Electrohydrodynamic convection (or, briefly, electroconvection, EC) occurs when a voltage above a critical
threshold strength is applied across a thin layer of a nematic liquid crystal (nematic) with nonvanishing
conductivity [1-7]. At onset one observes typically periodic patterns of convection rolls (see Fig.1). With
increasing voltage transitions take place either to rather complex spatio-temporal states, which are heavily
influenced by defects or, under appropriate conditions, to more complicated (quasi-)stationary patterns,
typically periodic in two directions. Eventually one arrives at turbulent states, which are characterised by
strong light scattering (dynamic scattering mode, DMS [8]).
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Fig.1a. Cell geometry with section of a Fig.1b. Normal roll pattern for EC with
roll pattern for EC (planar configuration). a dislocation (courtesy I. Rehberg).

E = electric field, v= velocity.

After the first systematic experimental characterisation of EC in 1963 by Williams [9] and Kapustin and
Larinova [10] the phenomenon has been intensively investigated in the early *70th. In the last 15 years EC in
nematics has developed into an important model system for pattern formation in hydrodynamic instabilities
[11]. The specific anisotropy of nematics brings out totally new phenomena compared to the canonical
example of Rayleigh-Bénard convection in simple fluids [12].

From an experimental point of view EC is, up to some point, a convenient system: simple, multiple
control (e.g. amplitude and frequency of voltage, additional magnetic field), convenient time scales, and
easy visualisation of the gross features. Limitations result from limited accuracy, reproducibility and optical
resolution as well as from the lack of 3D visualisation of the director field inside the layer.



From a theoretical point of view the picture is also two-fold: The full hydrodynamic description (see next
section) is mostly well established and transparent, whereas extracting the consequences of its various com-
peting mechanisms is highly demanding. A complete description of the onset behaviour is now feasible (Sec
ITI). On the nonlinear level there is also considerable progress in understanding the secondary instabilities
of the roll pattern and more complex states (Sec.IV). The problem has been treated by purely numerical
methods, but also by a description in terms of appropriate order parameters. In comparison to full hy-
drodynamics they satisfy much simpler equations, which can be approached even phenomenologically. The
reduced level of order parameter equations allows valuable analytical insight and by numerical simulations,
e.g. the description of defects and other spatio-temporal disordered states.

A problem that touches both, experiment and theory, is connected with the large number of material
parameters involved in the hydrodynamic description. There are only two room temperature nematics with
negative dielectric anisotropy where all the material parameters have been measured: MBBA, see [13], and
Merck Phase 5, see [14] (and references therein). Since these nematics are similar in their properties, the
investigation of other classes is highly desirable and promising. A recent successful example is the very stable
material I52 doped with iodine [15]. Even at onset qualitatively new localised structures (“worms”) [16] have
been detected, which provide a new challenge for the theory. This applies also to materials where one can
shift continuously from the nematic to the smectic phase by decreasing continuously the temperature [17].

II. BASIC EQUATIONS AND INSTABILITY MECHANISMS

The dynamics of nematics is described by a set of macroscopic equations (see e.g. [2,18,19]), which couple
the director n, the velocity field v and the (static or low-frequency) electric and magnetic fields E, H.
The rate equation for the director can be written as (we use 0; = 0z;)
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with the orientational elastic modules K1, K92, K33 describing the three basic deformations splay, twist and
bend of the director field (K;; ~ 107! kg). x, and ¢, are the anisotropic parts of the magnetic and electric
susceptibilities. A distortion of the director field leads to an electric polarisation Pf%z° (“flexoeffect”)
with the flexoelectric coefficients ey, e3, which are hard to measure. In Eq.(1) only the last contribution is
dissipative (irreversible).

The momentum balance equation (generalised Navier-Stokes equation) and (approximate) incompressibil-
ity are given by
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The viscous part of the stress tensor can be written as
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Thus one has three independent shear viscosities and the two parameters which characterise the orientational
behaviour (71 = a3 — a2, 2 = as + az). We note that in the usual Leslie-Ericksen formulation the last
two terms in o appear together with the viscous terms, which from a systematic point of view may be less
appealing. af}é can be symmetrised by adding terms that do not change the body force dyo;), [19-21]. For
the occurrence of EC a nonzero conductivity is essential. One may (or even must) add an ionisable dopant
to the LC in order to obtain sufficient and/or well-controlled conductivity. Then the following quasi-static
Maxwell equations determine the current J and the charge density pe;
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The condition V x E = 0 is used to introduce an electric potential. In the ”standard model” of EC one

assumes Ohm’s law
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to hold, with fixed, anisotropic conductivity. Diffusion currents are usually negligible. From Eqgs.(8,9) it
can be seen that, as long as o,/0, # €,/€, holds, any spatial variation of the director in the presence of
an electric field (i.e. when a current is flowing) leads to the generation of nonzero p.;. This is an intrinsic
property of any anisotropic and inhomogeneous conductor.

Now we can appreciate the main driving mechanism for EC. The important point is that in almost all
nematics o/, is substantially positive. Choosing materials with negative or only slightly positive dielectric
anisotropy €, (here the materials show great diversity) one easily sees that charges are generated (”focused”)
at locations where the director bends. The Coulomb force pe;E inherent in the term 0y (E;Dy) in Eq.(5) will
then drive a velocity field v. Via flow-alignment coupling this enhances the spatial variation of the director
and thus generates a positive feedback. Above some threshold V. this will overcome the stabilising elastic
and viscous forces. For typical materials at low frequencies (usually ac driving is used) the threshold voltage
is of the order Vo = \/72k;1 /€. The introduction of the reduced control parameter R = V2/V;? is often
useful. When €, becomes too positive a bend Fréedericksz transition will preempt EC [13].

The SM has three typical (linear) time scales associated with the three dynamical equations shown above:
The director relaxation time 74 = y1d?/(K117?) ~ 1s, the viscous diffusion time 7, = pd?/ay ~ 107°s (d =
thickness of the layer ~ 10 — 100p), and the charge relaxation time 7, = €, /o ~ 1072s. In the frequency
ranges usually covered the effect of viscous relaxation is a very fast process, so the velocity field can be
treated adiabatically, which means dropping the left-hand side in Navier-Stokes equation (”inertial terms”).
The flexoeffect is for ac driving of minor relevance, but under dc conditions it is certainly important (see
below).

There is a very distinct effect which is not captured by the above standard model, namely the travelling rolls
arising via a Hopf bifurcation, often observed at threshold, in particular in thin and clean cells [22]. A rather
natural generalisation, where the conduction mechanism via two types of mobile ions (generated by a (slow)
dissociation-recombination reaction) is included, has been shown to describe all the experimental results.
Then the ion densities n™ and n~ with pe; = e(n*t —n~) become dynamic variables (e = elementary charge).
This may be accommodated in the simplest manner by letting the conductivity o; = e(,ujr_n+ +puin)
become a dynamic variable by adding the balance equation
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This description has been called the weak electrolyte model (WEM) [23,24].



III. BEHAVIOUR NEAR THRESHOLD

The theoretical task is to solve the equations presented in the previous section with boundary conditions
appropriate for the usual slab geometry (see Fig.1a): the director and the electric potentials are fixed at
the confining plates and the velocity vanishes there. The large lateral extension allows the use of periodic
boundary conditions, and thus a transformation from position to Fourier space (x = (x,y) — q = (q,p))
in the horizontal directions is advantageous. Also, the time-periodic driving (ac-frequency w suggests an
expansion in a Fourier series in wt. The remaining transverse direction (z) can be treated by (truncated)
expansions in terms of suitable test functions which satisfy the boundary conditions (Galerkin method). In
general one then arrives at highly nonlinear algebraic equations for the expansion coefficients. The resulting
solutions have to be tested for stability with respect to general fluctuations [25].

This program is simplified considerably when only the onset of the convection instability is to be de-
termined. At onset certain linear perturbations of the basic (primary) state start to grow exponen-
tially ("linear stability analysis”). One has to analyse an eigenvalue problem, where the eigenvalue
Aq, R) = o(q, R) £ i2(q, R) with the largest real part, determines the growth rate o and the frequency (.
The condition o(q, R) = 0 defines the neutral surface R = Ry(q). Minimising Ry(q) with respect to q gives
the threshold R, = Ry(q.) with the critical wavevector q. = (¢.,p.) and the critical frequency Q. = Q(q.),
which vanishes for a stationary bifurcation (the more common case in EC) but differs from zero for a Hopf
(oscillatory) bifurcation.

The linear stability analysis within the SM for planarly aligned samples (n || %) has a long history starting
with Helfrich [26], who considered the case of dc driving. He chose the wave vector q = (g, 0) parallel to
2 ("normal rolls”, NRs as in Fig.1) and discarded any z dependence (1D model”). The resulting growth
rate has its maximum at ¢ = 0. By setting ¢ = 27 /d a reasonable low-frequency threshold was obtained.
The analysis was generalised to ac driving by the Orsay group [27], who thereby established the increase
of the threshold with increasing frequency and found a crossover from the low-frequency conduction mode
(“conduction regime” in Fig.2a) to a destabilising mode with opposite time-reflection symmetries at higher
frequency (the scale is set by 7,') in the *dielectric regime” [Fig.2a]. This dielectric mode can usually be
described well within the 1D model, since its wave number is not determined by the width d but rather by
the (intrinsic) orientational diffusion length \/K33/(Jaz|w). In the dielectric range this length is typically
small compared to d and then variations in the z direction are indeed negligible. The threshold voltage

1/2 is in agreement with many experiments, but is at conflict with some others in particular at very
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high frequency [4,28,29]. Note, that for materials with positive €, there exists a competing homogeneous
(¢ = 0) splay Fréedericksz destabilisation, so here the threshold curve remains finite at high frequencies [13].
Recently there was renewed interest in the interaction between EC and the Fréedericksz transition, which
can also be influenced by an additional vertical magnetic field [30].

Inclusion of the variations in the z direction (2D model), thereby allowing for a complete description of
the normal-roll threshold, was initiated by Pikin (dc case with some approximations) [31] and Penz and Ford
(dc, rigorous) [32]. The 2D theory gives a good account of the threshold behaviour in the NR regime (i.e.

the transition line “normal rolls” in Fig.2a).
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The apparent divergence of the conduction mode threshold at the ”cut-off frequency” for negative ¢, is a
result of the lowest-order time-Fourier expansion. Including higher Fourier modes [33,13] or considering a
square-wave voltage, where the problem can be handled essentially analytically [34], it was found that there
is in fact restabilisation of the conduction mode at high voltage.

Fifteen years ago, the two most important tasks left for linear theory were understanding the oblique rolls
that typically occur at low frequencies and the travelling rolls that appear predominantly in thin and clean
cells. The first task proved comparatively simple: The SM, even without inclusion of the flexoeffect, when
evaluated properly in 3D, describes the oblique rolls [35,13,36]. The crossover from NRs to oblique rolls
occurs at a characteristic codimension-2 point called the Lifshitz point at frequency wr. As first shown by
Madhusdana et al. [37] in the dc case the flexoeflect provides an additional mechanism for oblique rolls. In
the ac case the flexoeffect becomes important only for not too thin and clean cells [36,38]. For a discussion
of the dielectric regime, see [39]. Meanwhile there exist computer programs to calculate the threshold curves
and the critical wave vector q. from the SM to any desired accuracy (with flexoeffect and higher Fourier
modes). In addition there exist approximate closed expressions based on one-mode Galerkin expansions
which describe satisfactorily the threshold behaviour of the SM over a large parameter range [40].

Understanding the Hopf bifurcation [22] proved more difficult. After all possibilities within the SM were
exhausted the WEM was constructed and shown to provide for the Hopf bifurcation. The threshold behaviour
in MBBA [41,42], I52 [23] and Phase 5 [14] can be described.

For homeotropic alignment (n || Z Jone has two very different cases: for negative dielectric anisotropy (not
too near to zero) one first has a bend Fréedericksz transition, where the director gains a planar component
(planar director ¢). Increasing the voltage one has eventually a transition to convection, which is, on the
linear level, in many ways similar to that in planar cells [43]. The tendency to oblique rolls is enhanced. In
Merck Phase 5 one has two Lifshitz points, so that at very low frequency NRs are recovered [44]. For dielectric
anisotropy around zero and negative as one has a direct transition to EC with very small wavelength [43].

Very near to a symmetry-breaking bifurcation thermal fluctuations become important. The first clear
identification in EC (in fact in any pattern forming instability to our knowledge) was presented in [46] (for
recent measurements, see [47]). For their description one has to generalise the hydrodynamic framework, see
e.g. [48].



IV. NONLINEAR REGIME

The first task of the nonlinear theory is to describe the saturation of the pattern evolving from the linear
modes in the spirit of a (time-dependent) Landau theory. This was achieved by Bodenschatz et al. [13],
thereby establishing that the SM leads to a supercritical (continuous) bifurcation. In the oblique-roll regime
a superposition of zig and zag rolls leading to rectangular structures is in principle possible, but for small
angles of obliqueness this can be excluded by general phenomenological arguments [49].

Next, slow spatial modulations of the ideal periodic pattern with wave vector q. can be included in the
spirit of a Ginzburg-Landau theory by introducing a complex amplitude A such that the pattern is described
by the real part of A(x)exp(iq.x). The generic amplitude equation for anisotropic systems in the range of
static normal rolls is the real Ginzburg-Landau equation [25]

TOA = (e —glAP? + 182 + r28§) A. (11)

Generalisation to the neighbourhood of the Lifshitz point is possible [49]. Deep inside the oblique-roll range
one has to use two coupled equations. The coefficients of the amplitude equations were calculated from the
SM in [13] (without flexoeffect). The Ginzburg-Landau equations can be used in particular to study the
structure and dynamics of dislocations [50] (see Fig.1b) in good agreement with experiments [51]. In this
framework the motion of defects provides a a mechanism for the selection of the preferred wavevector qp.
The nonlinear velocity vs. wavevector relation at small mismatch (in fact, there is a logarithmic singularity
for |q — qp| — 0) has recently been verified for motion along the rolls [52] and (in a homeotropic systems
with a planar magnetic field, see below), perpendicular to the rolls [53].

In the framework of the WEM it was established that the Hopf bifurcation to travelling rolls is supercritical
and then one has the complex Ginzburg-Landau equation (actually two or four coupled such equations for
the counter-propagating, and possibly oblique, roll systems [54])) to describe the weakly nonlinear behaviour
[24]. Tt turns out that the stationary bifurcation near the crossover to travelling rolls is typically subcritical.
The resulting small hysteresis has been measured in various materials [46,55,23]. Particularly interesting
scenarios involving extended spatio-temporal chaos at onset [56] and subcritically arising localised struc-
tures ("worms”) [16] have been found in 152. The former can be understood on the basis of two coupled
complex Ginzburg-Landau equations describing zig and zag rolls travelling in the same direction [57]. A
phenomenological model has been proposed to describe the worms [58].

To extend the range of validity of the above description finite—e corrections have to be taken into account
(in the following we will often use a reduced voltage e = (V? — V2)/V2, with the critical voltage V.) . Then
various higher-order terms appear. In particular the curvature of rolls is known to induce a so called mean
flow. In the presence of 2D lateral spatial variations (3D on the hydrodynamic level) the mean flow cannot be
fully eliminated due to the singular structure of its spatial dependence. Thus, one is left with an additional
(static) equation [59]. Meanwhile there exist efficient computer programs to calculate the coefficients [60,61].
The analysis showed that, at least near to the transition to oblique rolls, normal rolls are destabilised with
increasing € by a zigzag (or undulatory) instability (see the “ZZ instability line” in Fig. 2a) as found in
experiments [63] (see Fig.2b for a ZZ pattern).

A full numerical Galerkin calculation confirmed this result and extended it to larger € and frequencies
[62,60]. Surprisingly, at frequencies above some value wagr(> wr) (to the right of C2 in Fig. 2a) desta-
bilisation of normal rolls occurs at € = e4r via a spatially homogeneous (in the plane of the layer) mode
involving a twist of the director. The mode is the analog of that which destabilises the basic state in a twist
Fréedericksz transition (magnetic field in the y direction). The instability signalises a (continuous) pitchfork
bifurcation from normal to ”abnormal rolls” (ARs) where the director attains such a twist deformation,
either to the left or to the right. Another interesting effect is the restabilisation of ARs for w < wagr above



the € aRrstap (see the line “restabilization” in Fig. 2a). At larger € the ARs destabilise either via a long-wave
skewed-varicose instability (here the modulation wave vector of the destabilising mode is at an oblique angle),
or, at smaller frequency, via a short-wave skewed-varicose instability. This is also called a bimodal varicose
instability [64,60], because it indicates the transition to a bimodal state composed of the superposition of
two roll systems with different orientation.

When one extends this diagram to oblique rolls (wavevector q = (g, p) with nonzero p, as in Fig. 2b), the
AR bifurcation becomes imperfect (smooth), since in oblique rolls the left-right symmetry is already broken.
Also, the destabilisation is shifted upward and restabilisation downward, so that the curves meet at some
value Py, (w) (with vertical slope) [62]. Thus one has an unstable bubble in the e — P plane which is bounded
from below by €zz, and from above by €4Rstap [40,67]. Thus there is a very interesting codimension-2 (C2)
point at wAR, €AR.

The reason why ARs had escaped the notice of experimentalists is that in planarly aligned cells and with
the ordinary visualisation (at most one polariser in x direction) they cannot be distinguished from NRs. For
homeotropic alignment this is different, and there the signature of ARs had indeed been observed before
(see below). Indirect evidence comes from the observation of domain walls between the two variants of ARs.
They are observable because inside the wall the amplitude of the periodic n, deformation is larger than in
ARs [62]. Meanwhile direct evidence has been obtained from measurements of the ellipticity of the light
induced by ARs [65,66]. In these measurements also the ZZ instability, together with the restabilisation
line, could be identified. Apparently the rather small width of the system in the z direction, which allowed
for 12 roll pairs, stabilised the ZZ structures, which appear above the instability. Interestingly, another line
exp was found, which lies above €4rstqp and also goes through the C2 point: whereas the angle of the ZZ
structures first increases with € when ez is crossed, it subsequently decreases again, becoming zero at egp.
Then one is left with ARs with domain walls, because the different orientations in the ZZs induce different
variants of ARs. The domain walls quickly annihilate and there remains a single AR domain. When one
now decreases €, a massive hysteresis occurs: the ARs persist down to € srsiap- Then there is a discontinuous
transition to the ZZ branch, which is then followed down.

These features can be understood in terms of a simple, phenomenological description of the AR bifurcation
[65,67]. The two active modes involved are the twist mode, characterised by an angle ¢, and the phase of
the roll pattern 6. The equations are
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The control parameters p and v are to be associated with € — e4g and w — wagr. The coupling terms are
obtained from symmetry considerations. The term proportional to h is included because v goes through zero.
(A similar term in the ¢ equation would allow to include destabilisation of ARs at larger values of u.) This
model contains all the features described above. The slopes of the different lines are easily expressed in terms
of the parameters of the model. In particular, for v < 0, the ZZ instability of NRs at u = (7v/D3)v preempts
the AR instability and ARs exhibit the observed restabilisation. At the HB line there is a heteroclinic
connection between ZZ solutions and Wars. Above the LB line domain walls perpendicular to the rolls move
spontaneously [67].

This description is well-founded when only modulations along y occur, like in the OZ instability and in
OZ solutions. The coefficients can in principle be deduced from hydrodynamics, including (regular) mean
flow. In order to describe y and x variations, additional terms that include in particular the singular mean
flow have to be included. This changes the re-stabilisation into a skewed-varicose instability and moves it
upward [68,61].

Before going to a more general description let us discuss homeotropically aligned systems in materials with



manifestly negative dielectric anisotropy, where one first has a bend Fréedericksz transition through which
the director acquires a planar component (planar director ¢). The transition to convection occurring at
higher voltage is in many ways similar to that in planar cells, except that the preferred axis (the c director)
is not externally fixed. Consequently, in a weakly nonlinear description, the Goldstone mode related to
rotation of the ¢ director has to be included from the beginning on. In generalisation of (11) one then
obtains for small angles ¢, which now denotes the angle between ¢ and the z axis [69,70]

TOLA = [e — glA]> +110] + r2(0) — 2iC1¢0, — Ca¢® —iv 8y ¢)] A,
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with C; = C2 = 1 (we introduce the coefficients for later purpose). Then the first three terms in the
bracket proportional to 75 can be combined to a full square, which expresses (local) invariance with respect
to rotation of the rolls together with c. If this were an equilibrium system derivable from a potential, then
one would need v = 1. Here, however, v is an independent coefficient that can (and will, for w < wag)
even become negative. The first term in the ¢—equation expresses the ”abnormal torque“ on the ¢ director
(G > 01), which arises at second order in the convection amplitude. We have included a (small) linear
damping, which appears only in the presence of an additional planar magnetic field (then T ~ x,H?). For
T = 0 all roll solutions are unstable. In simulations ¢ grows without bounds (for C; = Cy = 1!), and then
a globally invariant generalisation of these equations must be used, which exhibits dynamic disorder (defect
turbulence) [69,70], which is essentially what is found experimentally [71-73].

For T > 0 (nonzero planar field) Eqs.(13) describe NRs at band center (|A| = \/e/g, ¢ = 0), which
are stable against homogeneous ¢ perturbations for € < ear = T/(2G) and against ZZ fluctuations for
€ < €zz = €4r/(1 — v). Thus, one has a similar situation as in planar cells with the near-Goldstone mode
in homeotropic systems corresponding to the twist mode in planar cells. Here, for C; = C2 = 1, the ARs
A= \/m, ¢ = \/(6—7@13/(7“1%) destabilise for v > 0 at € = 3/2e4p. There is no restabilisation for
v < 0 because the short-wave instability sets in right at the restabilisation line (also at € = 3/2e4g). For
larger values of € one has dynamic disorder (defect turbulence). In this system ARs are easily identified by
birefringence measurements, and the symmetry breaking was indeed first detected in such a system (with
H = 0) in the disordered state [71]. Meanwhile a quantitative comparison of the pitchfork bifurcation to
ARs (H # 0) with theory has been made [44].

For € >> eap (this can be achieved for any positive value of € by choosing the planar field sufficiently
small) one has a spontaneous ordering of defects along periodically arranged lines, which appears to explain
the most common types of chevrons observed in the dielectric range of planarly aligned cells [?]. The
theory is indeed applicable to the dielectric range because here the orienting effects of the boundaries can
be considered as small perturbations [39], which is consistent with experiments [74,75]. The prediction that
chevrons should occur in homeotropic systems also in the conduction range has been verified [72,73].

Let us now come back to the case of planar alignment. The scenario found there can be described qualita-
tively by Egs.(13) with 1 > C2 > C}. The surface anchoring now leads to T' = x,H% (Hp=twist Fréedericksz
field). The destabilisation of NRs is independent of Cy, Cs. For negative v one has a restabilisation curve
for ARs which passes through the C2 point with slope de/dv = —1/(2(1 — C1)) and saturates for v — —oo
at €0 = C2/(2C1 + C3). Destabilisation of ARs at large € is also captured. For negative values of v there is
a short-wave instability merging with a long-wave instability curve at some positive v (for Cy, Cy — 1 this
point becomes v =0, € = 3/2e4R). For v — oo the instability curve tends to €5, from above. In the range
of stable ARs the equations describe interesting defect scenarios. For € >> e4r they describe the dynamic
chevrons mentioned before and also a new type of static chevrons [68] (at larger €). The equations can be
taken as a quantitative description only when the AR bifurcation occurs sufficiently near to the primary
instability. This can be achieved in planar systems by applying an additional (destabilising) magnetic field



in the y direction. Then T = x,(H% — H?) so that for H - Hp T, and therefore also € 4g, tends to zero for
H — Hp. In simulations ¢ remains bounded even for 7" = 0, in contrast to the rotationally invariant case.

When e4p is not sufficiently small, as is the case for planar systems without additional magnetic field,
corrections have to be included, which in particular involve mean flow. This has been carried out for the case
with modulations only in the y direction [60] (as mentioned before, mean flow can then be eliminated leading
to important higher-order terms in the A equation). Otherwise the equations become rather complicated
[68,61].

Some of the above studies have been carried over to the oblique-roll regime [69,70,62,60]. The signature
of the twist mode (like in ARs) has also been observed in travelling rolls [76].

V. CONCLUDING REMARKS

Although EC in nematics has come a long way since the early days there remains much to do. There are
unsolved problems concerning the threshold behaviour of materials near a nematic smectic transition. It
appears that in a region where o/, has become negative one can get EC in the form of localised structures
(worms) [17,77]. In highly doped MBBA [28,78,73] and other materials [29,79] one finds at high frequency a
stationary periodic domain structure (period ~ cell thickness), often without detectable convection rolls. The
structure appears to persist at least in some cases with increasing temperature up to the nematic-isotropic
phase transition. In the “swallow tailed” compounds used in [29] a treatment of the bounding plates by
ten-sides led to a considerable increase of the frequency range, where the domains appeared. The periodic
behaviour of the in-plane director reminds of chevrons, but the origin is at present not clear (see also [39]).

There are various complex structures which are as yet only partially understood, see e.g. [80,81]. Because
of space limitations we have concentrated on the basic phenomena in standard EHC. There exist various
other interesting possibilities, which have been mentioned in previous reviews [40,7]. Of particular interest
are the use of a periodic modulation of the driving ac-voltage [41,82,76] and superposing noise [83]. It
should also be mentioned, that EC in small aspect-ratio systems (very few short rolls) yields interesting
bifurcation scenarios [84]. Finally, it would certainly be rewarding to understand better electroconvectively
driven turbulence, i.e. the so-called dynamic scattering modes [8].
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