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Spatially-extended dynamical systems exhibit in-
triguing behavior that is complex in both space and
time (“spatiotemporal chaos”)?®. Whereas insight
into the crucial dynamical degrees of freedom in
low-dimensional chaos has been routinely obtained
through the analysis of dynamical quantities such
as fractal dimensions and Lyapunov exponents!,
high-dimensional spatiotemporal chaos has proven
quite difficult to understand despite abundant
data describing its statistical properties®>*’. Ini-
tial attempts to extend the dynamical approach
to higher-dimensional systems demonstrated nu-
merically that the spatiotemporal chaos in several
simple models is extensive® '° in that the num-
ber of dynamical degrees of freedom scales with
the system volume. Here we enumerate for the
first time the dynamical degrees of freedom (of or-
der 100) underlying spatiotemporal chaos exhib-
ited by equations that accurately describe a phe-
nomenon found in nature, Rayleigh-Bénard con-
vection, in the Spiral Defect Chaos state”!® ex-
haustively studied in experiment. By studying
the detailed space-time evolution of the dynami-
cal degrees of freedom, we determine not only that
the dynamics is extensively chaotic, but that the
mechanism for the generation of chaotic disorder
is spatially- and temporally-localized to defect cre-
ation/annihilation events.

The strong irregularity in both space and time observed
in Rayleigh-Bénard convection is found in other complex
dynamical systems such as heart tissue, nonlinear chemi-
cal and fluid patterns, planetary atmospheres and oceans,
fluid turbulence, and environmental ecosystems. In some
instances, the effective degrees of freedom in the prob-
lem (roughly, the average number of independent vari-
ables needed to describe the system) are thought to be
extensive® '°, In others, new behaviors are found at all
scales. In both cases, identifying the dynamical degrees of
freedom and the instability mechanisms leading to disorder
is of great importance. For example, better prediction of
the nucleation and paths of tornadoes or hurricanes, the
evolution of the global climate, or the transition to car-
diac arrhythmia might be expected. Whereas scientists
can often develop intuition by studying detailed experi-

ments or large computer simulations, a general quantita-
tive technique for identifying instability mechanisms lead-
ing to loss of predictability in physically-realizable, com-
plex, spatially-extended systems has not been achieved.
For developing and testing such methods, pattern for-
mation in nonlinear, nonequilibrium systems is ideal be-
cause there are many high-precision laboratory experi-
ments on pattern dynamics®’ and because numerical simu-
lation of the evolution equations for such systems is within
the grasp of present-day supercomputers. With such ad-
vances, the identification of dynamic mechanisms for com-
plex spatially-extended systems can move beyond intuition
towards a firm quantitative foundation.

Some of the most detailed experiments on complex dy-
namics in pattern-forming systems have studied Rayleigh-
Bénard convection (RBC). An RBC experiment consists
of a fluid layer of depth d confined between two horizontal
conducting plates held at temperatures Tiop and Thottom-
For temperature differences AT = Thottom — Thop less than
a critical temperature difference AT, the fluid is station-
ary. When AT > AT,, the stationary state is unstable
and the fluid begins to flow’ with the “distance” from the
onset of flow expressed as e = AT /AT, — 1. For systems
with small aspect ratios (lateral dimension L relative to
d), the flow is typically organized into parallel convective
“rolls” of diameter approximately equal to d, with each
roll consisting of hot fluid moving upward on one side and
cold fluid moving downward on the other. The convec-
tive flow carries heat and enhances heat transport, making
convection an important process in the atmosphere and
oceans and in many technological applications. For large
aspect ratios (L/d of order 100), Morris, et al'® discov-
ered the persistent state of Spiral Defect Chaos (SDC)
consisting of locally parallel rolls arranged in temporally-
chaotic, spatially-complex patterns. This initial work led
to many additional experiments yielding a large quantity
of high-precision data’. In these experiments, the complex
two-dimensional convective patterns are visualized using
the optical shadowgraph technique'’. Virtually indistin-
guishable patterns (e.g., Fig. 1) are observed in simulations
of the Boussinesq equations, the standard hydrodynamic
equations describing convection'?. The patterns have been
characterized by global Fourier transform methods!3*%5:¢,
with local roll properties such as curvature and wave-
number variations®®'5, and by the statistics of spiral-
defect populations’®”. Researchers have also studied the
mechanism of spiral creation and stability both experimen-
tally and theoretically'® '8, Despite this formidable effort,
the direct dynamical degrees of freedom are unknown.

A common method for quantifying the dynamics of non-
linear systems is to study the evolution of states that
are nearly identical to a reference state. The divergences
of these states from the reference state are character-
ized by a set of exponents called the Lyapunov spectrum
A1 > A2 > ...1. Each Lyapunov exponent \; corresponds
to a Lyapunov vector, which is simply a particular pertur-
bation (out of all of the possible choices of perturbations)
away from the reference state, and each Lyapunov vector is
orthogonal to all of the others. Each Lyapunov exponent



FIG. 1. Instantaneous temperature field of Rayleigh-Bénard
convection for € = 0.8 showing the state of spiral defect chaos.

quantifies the average exponential rate of growth of the
perturbation represented by the corresponding Lyapunov
vector. For RBC, the perturbations represented by the
Lyapunov vectors are small differences in the temperature
and/or velocity fields with respect to a reference state ex-
hibiting SDC. The evolution of the reference state is com-
puted using the Boussinesq equations, and the evolutions
of the Lyapunov vectors are computed according to the
linearization of the Boussinesq equations about the time-
dependent reference state. (The linearized equations en-
sure that the exponents describe the divergence of states
that differ only infinitesimally from the reference.) The
“direction” of each Lyapunov vector characterizes the spa-
tial distribution of perturbations in the temperature and
velocity fields (with each component of the vector repre-
senting the perturbation at a particular point in space for
the temperature or velocity fields).

The (fractal) Lyapunov dimension D is a measure of
the complexity of the dynamics (or, in other words, how
chaotic the system is) and can be calculated by the Kaplan-
Yorke formula which expresses D in terms of the Lyapunov
exponents \;. From arguments first given by Ruelle®, we
expect that in large systems distant regions will be dy-
namically independent, so D will grow in proportion to
the volume L%, where d, is the spatial dimensionality
(ds = 2 for SDC) and L is the lateral length scale; i.e.,
the dimension is extensive with intensive dimension den-
sity = D/L% . This chaotic extensivity can be phrased
in stronger terms by studying the Lyapunov spectral den-
sity A(i/L%) as L — oo (where i is the same index as in
A;). For extensively chaotic systems A(i/L% ) becomes in-
variant. Even for relatively low-dimensional dynamical sys-
tems it is extremely difficult to measure enough Lyapunov
exponents from experimental data to compute D. Thus,
researchers studying spatiotemporal chaos have turned to
relatively simple spatially-extended model systems such
as the Kuramoto-Sivashinsky equation® and the complex
Ginzburg-Landau (CGL) equation'® for which simple but
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FIG. 2. a) Spectrum of Lyapunov exponents \; vs sys-
tem-size-normalized index i/L? for ¢ = 0.8 and L: 48 (o), 56
(o), 64 (O). The solid line is a 7th-degree polynomial fit to the
data. b) Integral of the Lyapunov spectral density A(i/L2) vs
i/L? computed from the curve fit in a). The dimension density
d 2 0.019 is determined by the zero intercept of the data.

computationally intensive methods have allowed the com-
putation of the Lyapunov spectra for several different sys-
tem sizes L. For these systems, the chaotic dynamics was
convincingly demonstrated to be extensive.

To test whether an actual experimental system exhibits
extensive chaos, we studied the Boussinesq equations com-
putationally. Even though several simple models exhibit
extensive chaos, it is not obvious a priori that the chaos in
RBC is extensive. RBC differs from the simple models in
significant ways. In RBC, pressure modes that act instan-
taneously and decay slowly in space could couple distant
spatial regions. Also, simple non-chaotic RBC states exist
for the same experimental parameters at which spatiotem-
poral chaos is found’.

We integrated the Boussinesq equations using a pseu-
dospectral method with time-splitting of the operators. To
minimize boundary effects and emphasize bulk properties,
periodic boundary conditions were employed. Our code is
consistent with exact linear and weakly-nonlinear results.
We verified numerical convergence with respect to spatial
and temporal resolutions and integration times. The Lya-
punov spectrum was obtained by simultaneously evolving
up to N = 128 orthogonal fields (the Lyapunov vectors)
according to the linearization of the Boussinesq equations
about a particular solution exhibiting SDC. The N Lya-
punov vectors are the N (orthogonal) perturbations with
the largest average growth rates A;. Further details are
provided elsewhere (In preparation).

Fig. 2a shows the Lyapunov spectral density A(i/L?) for
the Spiral Defect Chaos state of RBC at € = 0.8. The Lya-
punov spectral densities for system sizes L = 48, 56, and 64
collapse onto a single curve, demonstrating unambiguously



that SDC is extensive. These data represent the first direct
demonstration of the principle of extensivity of the dynam-
ics of an experimentally-relevant spatiotemporal chaotic
system. The value of the dimension density ¢ is calcu-
lated using the Kaplan-Yorke formula as the value of i/L?
such that the area under the curve shown in Fig. 2a from
0 to § = i/L* is zero. This procedure is shown schemat-
ically in Fig. 2b and yields § = 0.019 (in units of d~?)
corresponding to a fractal dimension D = 80 for L=64.
‘We note that the number of dynamical degrees of freedom
(~ 10?) is smaller by several orders of magnitude than the
number of spatial modes obtained by orthogonal decom-
position (~ 10 using either Karhunen-Loeve!® or Fourier
methods). It is the same order of magnitude, however, as
estimates'? from experiments (D ~ 200) based on mea-
sured correlation lengths and adjusted for our system size.

Because the Lyapunov spectrum is an infinite-time av-
erage, the intriguing dynamical behavior of the underlying
Lyapunov vectors is often overlooked. The spatial distri-
butions of the perturbations, as well as their growth rates,
vary substantially in time. The growth rates are quan-
tified by the time-dependent finite-time Lyapunov spec-
trum of exponents )\EAT)(t) describing the exponential di-
vergence of similar states over the interval (¢,t+ A7). The
time-dependent Lyapunov vector directions (spatial distri-
butions of perturbations) and finite-time Lyapunov expo-
nents reflect the dynamical features within the evolution of
the system itself?*>'. Here we study the dynamical degrees
of freedom in greater detail by comparing the space-time
structures of the Lyapunov vectors to the evolution of the
system in order to reveal the mechanism of the spatiotem-
poral chaos in RBC.

For our system, the positive Lyapunov exponents cor-
respond to highly-localized vectors, whereas the zero and
negative exponents correspond to vectors that are more
homogeneously distributed in space. The localization of
the Lyapunov vectors with positive exponents is correlated
with regions of the pattern that are linearly unstable due to
the rolls being too narrow or too wide'>??. The finite-time
Lyapunov exponents have considerable fluctuations with
the largest positive Lyapunov exponents having the great-
est standard deviations. The highest maxima in the time
sequences of finite-time exponents correspond to dramatic
defect nucleation events. Fig. 3a shows the magnitudes of
the temperature field components of the Lyapunov vector
corresponding to the largest Lyapunov exponent, suitably
scaled and color-coded to represent local magnitude (red
being highest, blue smallest). Much of the pattern is quies-
cent but there is a strong event in the lower left. This local-
ization is common for the vectors corresponding to positive
Lyapunov exponents ( “chaotic”) and is further evidence for
the Ruelle picture of extensive chaos — a doubling of the
system size simply results in new Lyapunov vectors local-
ized to the newly-added area of the system.

Fig. 3b-e show an expanded, time-ordered view of a par-
ticular event in Fig. 3a. The largest finite-time Lyapunov
exponent quickly builds (Fig. 3b,c) to a maximum (Fig. 3d)
at the moment of roll-breaking, followed by a rapid relax-
ation (Fig. 3e) to a negative value. The Lyapunov vector is

FIG. 3. First Lyapunov vector scaled by the first finite-time
exponents, color-coded by magnitude, and superimposed on
a) Whole 64 x 64 pattern, b)
blown-up section At = 0.37507, before a); c) blown-up sec-
tion At = 0.18757, before a); d) blown-up section of a); e)
blown-up section At = 0.18757, after a).

the underlying roll pattern.

The color scale
(blue-cyan-green-yellow-red) is linear in the 1/4 power of the
magnitude of the scaled vector. The size of the box is about one
chaotic domain £2 = L?/D.

strongly localized to the small spatial region at which the
breakage occurs, signifying that the evolution of the system
is highly susceptible to small perturbations in this particu-
lar region, with minute details of the state determining the
exact breaking point and defect motions and ultimately
the future dynamics of the system. (In contrast, small
differences between states in regions away from roll break-
ing/reconnection events will decay exponentially.) After
the rolls break/reconnect, the dynamics of this Lyapunov
vector is mostly relaxational as the defects diffuse away.
This scenario of strong localization of the Lyapunov vec-
tor and positive spikes in the finite-time Lyapunov ex-
ponent correlated with roll breaking/reconnection events
is intermittently repeated throughout the chaotic evolu-
tion of the system. (The strongly chaotic events include
not only defect-generating skewed varicose events shown
in Fig. 3, but also cross-roll events in regions of large local
wavenumber??.)

These data demonstrate that the mechanism generating
the chaotic dynamics in the SDC state of RBC is roll break-
ing/reconnection rather than the more apparent motion of



the large spiral defects (in direct contrast to the active
cores of chemical spirals). This mechanism for the genera-
tion of chaotic disorder makes intuitive sense because ma-
jor roll reorientations occur via roll breaking/reconnection.
Thus, the disorder in the patterns arises from the compli-
cated regions between the spirals rather than in the spirals
themselves (although the spirals may contribute to the gen-
eration of the complicated regions).

With sufficient computer power, the analysis technique

described here is applicable to many complex problems
for which the evolution equations are well-known or well-

a

pproximated. Although no methods for obtaining Lya-

punov vectors from experimental data currently exist, this
type of analysis might be possible in the not-so-distant fu-
ture using an experimental technique to repeatedly recreate
particular chaotic states or an analysis technique based on
recurring substates.

Understanding the instability mechanisms of complex

dynamical systems such as the global climate, ecological
systems, fluid and chemical systems, financial markets, and
large-aperture lasers would help immensely in controlling
their spatiotemporal dynamics, in determining their long-
time behavior, and in engineering systems to avoid or limit
instabilities. Application of the techniques presented here
to fibrillation patterns in the heart or to fully-developed
three-dimensional turbulence are attainable using present-
day computers.
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