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Flexoelectricity and pattern formation in nematic liquid crystals
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We present in this paper a detailed analysis of the flexoelectric instability of a planar nematic layer in the
presence of an alternating electric field (frequency ω), which leads to stripe patterns (flexodomains) in the plane of
the layer. This equilibrium transition is governed by the free energy of the nematic, which describes the elasticity
with respect to the orientational degrees of freedom supplemented by an electric part. Surprisingly the limit ω → 0
is highly singular. In distinct contrast to the dc case, where the patterns are stationary and time independent,
they appear at finite, small ω periodically in time as sudden bursts. Flexodomains are in competition with the
intensively studied electrohydrodynamic instability in nematics, which presents a nonequilibrium dissipative
transition. It will be demonstrated that ω is a very convenient control parameter to tune between flexodomains
and convection patterns, which are clearly distinguished by the orientation of their stripes.
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I. INTRODUCTION

Nematic liquid crystals (nematics) are materials that prefer
in some temperature range a uniaxial mean orientational
ordering of their nonspherical molecules, while the positional
order is fluidlike. The locally preferred axis is described by the
director field n with n2 = 1 [1–3]. The basic equilibrium state,
in the absence of external stresses, corresponds to a spatially
uniform director configuration, where the orientational elastic
free energy Fel with respect to n takes a minimum. Thus spatial
variations of n, which can be decomposed into splay, twist,
and bend distortions with the elastic constants k11, k22, k33,
respectively, lead to an increase of Fel, i.e., to torques on
n to restore equilibrium. In the presence of an electric field
E and in nonequilibrium configurations electric torques on
the director have to be considered as well. They originate
from a nonzero electric polarization P , which contains at
first the standard dielectric contribution Pdiel = ε0(ε − 1)E.
The dielectric tensor ε, which depends on the local director
orientation, is governed by the two dielectric permittivities ε‖
and ε⊥ for E parallel and perpendicular to n, respectively; ε0

denotes the vacuum permittivity. Furthermore, in a rough anal-
ogy to the piezo-electric polarization of certain insulators due
to mechanical strains, director distortions lead also to the so-
called flexopolarization, Pfl = e1n(∇ · n) + e3(n · ∇)n, char-
acterized by the two flexocoefficients e1, e3. If the electric field
is strong enough, the balance of electric and elastic torques
may even require spatially periodic director variations where
typically the flexoelectric torques play a crucial role. The
main goal of this paper is a detailed study of the resulting
patterns, which are easily detected by optical means due to the
accompanying variations of the refraction index.

Our analysis is restricted to the mostly used planar director
configuration, which is very convenient for experimental and
theoretical studies. In this case a uniform basic state is achieved
by sandwiching a thin nematic layer between two plates
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(parallel to the x-y plane), which may also serve as electrodes
for the application of a transverse electric field E. By a suitable
treatment of the plate surfaces the same in-plane director
orientation n = n0 = x̂ is enforced at the confining plates,
which then persists throughout the whole layer in the basic
state.

Before concentrating on the impact of the flexotorque we
will briefly touch on the familiar consequences of the dielectric
torque. It is destabilizing for a positive dielectric anisotropy,
εa = ε‖ − ε⊥ > 0, in the planar case. Thus above a certain
field amplitude the compensation of the dielectric torque
by the stabilizing elastic one becomes impossible and the
Freedericksz transition takes place: The director experiences
a distortion in the x–z plane, maximal at the midplane of
the nematic layer [1]. The resulting director variation is in
most cases uniform in the plane of the layer and varies only
in the z direction. Only in some exceptional cases, when
k22/k11 < 0.303, the homogeneous Freedericksz transition for
εa > 0 is replaced by the so-called splay-twist Freedericksz
transition, which leads to director distortions in the form of
stripes parallel to n0. We are aware of only one experimental
realization [4], since almost exclusively 0.5 < k22/k11 < 1
for nematics. Just for completeness, we mention that during
the temporal evolution of the homogeneous Freedericksz state
transient stripe patterns parallel to the x axis have also been
described [5].

We now turn to the effect of a finite flexopolarization,
which provides a robust mechanism (independent on the sign
of εa) to generate stripe patterns (flexodomains) parallel to
n0 as well. The pattern-forming instability of the basic state
takes place when the flexotorque (∝ |e1 − e3|) is sufficiently
strong compared with the elastic and dielectric torques [6].
Flexodomains are indeed observed in several nematic ma-
terials; also for εa < 0, where a Freedericksz transition is
excluded [7–9]. In this paper we present a comprehensive
analysis of the flexodomains in the presence of an electric
field E = ẑE0 cos(ωt), both in the dc case (circular frequency
ω = 0) and in the ac case for small ω. Unfortunately a previous
analysis of the dc case [10,11] suffers from a serious error.
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So far we have concentrated on equilibrium transitions
driven by an electric field, which are governed by a mini-
mization principle of the free energy. In nematics, however,
we find often under the term electrohydrodynamic convection
(EC) a nonequilibrium, dissipative transition from the basic
state toward a periodic arrangement of convection rolls. Since
the resulting stripes run rather perpendicular to the initial
director orientation n0 they are easily distinguishable from
the flexodomains. The mechanism of EC, which has been first
elucidated by Carr and Helfrich [12,13] in pioneering papers,
has been comprehensively discussed in a number of reviews in
the last few years (see, e.g., Ref. [14] and references therein).
Some new aspects of the effect of flexoelectricity on EC will
be given in Sec. IV.

An interesting feature of our system is the possibility
to switch between an equilibrium pattern-forming instability
(flexodomains) and the dissipative EC instability just by tuning
the ac frequency ω. This scenario has indeed been observed
in recent experiments on certain nematics [9]: In the dc case
and at very small ω one finds flexodomains, before EC takes
over at increasing ω. Systematic theoretical analyzes, however,
are practically missing so far. To provide those has been an
important issue of our work.

In Sec. II we will briefly comment on the mathematical
background of our theoretical investigations. Section III is
devoted to the flexodomains. In Sec. IV we concentrate on
EC at low frequencies in comparison with the transition to
flexodomains. It will become obvious that in particular the
limit ω → 0 is far from trivial and requires a careful analysis.
The paper concludes with some final remarks.

II. MATHEMATICAL BACKGROUND

Our starting point is a nematic layer (parallel to the x-y
plane) of thickness d under the action of the applied potential
U (t) = E0d cos(ωt) in the z direction. In the quiescent basic
state the director field is homogeneous throughout the layer
(n = n0 = x̂) and flow is absent. Pattern-forming instabilities
are associated with a distortion, δn, of n0. They lead often to
flow (v �= 0) and to a perturbation φ of the applied voltage
U (t). Since both the planar director orientation at z = ±d/2
and U (t) are considered to be fixed, the conditions φ = 0 and
δn = 0 have to be fulfilled at the confining plates (z = ±d/2).
This applies also to v under the realistic assumption of no-slip
at the boundaries.

The general theoretical framework to analyze electrically
driven pattern-forming instabilities in nematic liquid crystals is
well established in terms of the standard nematohydrodynamic
equations [1–3]. The electric field distribution is determined by
the Maxwell equations in the electroquasistatic approximation.
As material parameters we need the dielectric permittivities
ε‖, ε⊥, the electric conductivities σ‖, σ⊥ (for n parallel and
perpendicular to the electric field E), and the flexocoefficients
e1, e3. The director dynamics is driven by elastic and electric
torques; in the presence of flow also viscous torques have to
be taken into account. The velocity field is determined by
the (generalized) Navier-Stokes equation, where the viscous
stress tensor depends on the orientation of n with respect to
v and its gradients. For explicit calculations one needs the
values of the elastic constants kii ,i = 1,2,3 and furthermore

the five independent viscosity coefficients αi,i = 1, . . . ,5
to quantify the stress tensor and the viscous torques. It is
natural to introduce dimensionless material parameters of
order one (labeled by primes). They appear then in the
nondimensionalized basic equations (see, e.g., Ref. [15]) and
are usually defined as follows:

kii = k′
iik0, αi = α′

iα0,

(σ‖,σ⊥) = (σ ′
‖,σ

′
⊥)σ0, (1)

(e1,e3) = (e′
1,e

′
3)

√
ε0k0,

with

k0 = 10−12N, α0 = 10−3 Pa s, σ0 = 10−8(� m)−1,
(2)

ε0 = 8.8542 × 10−12 A s

V m
.

For quantitative calculations in this paper we refer to the
standard nematic N-p-methoxybenzylidene p-n-butylaniline
(MBBA) [16], which has been used in many experimental
investigations in the past. The material parameters of MBBA
are well known; for instance, for the analysis of flexodomains
we use the following dimensionless elastic and electric
constants (the primes are omitted):

k11 = 6.66, k22 = 4.2, e1 = −3.25,
(3)

e3 = −4.59, εa = −0.53.

By using Eq. (1) it is conventional to measure lengths in units
of d/π , time in units of τ̃ , and to introduce a dimensionless
control parameter R instead of the voltage amplitude U0, where

R = ε0E
2
0d

2

k0π2
= ε0U

2
0

k0π2
, τ̃ = α0d

2

k0π2
. (4)

To describe the onset behavior of the pattern-forming
instabilities the nematohydrodynamic equations are linearized
about the basic state. As a result we arrive at a linear system
of coupled partial differential equations in the variables x,
y, z, t for the perturbations δn = (0,ny,nz), v, and φ. Since
the lateral extensions of the nematic layer are much larger
than the layer thickness d, periodic boundary conditions in
the layer plane are appropriate. By switching accordingly with
respect to the planar coordinates x = (x,y) to Fourier space
q = (q,p), one gets the linear equations in the form to be found
in the Appendix of Ref. [15]; a simplified version to analyze
the flexodomains will be presented explicitly in Sec. III.

As already explained, the perturbations δn, v, φ are assumed
to vanish at z = ±d/2; this is guaranteed by expanding
these fields in terms of a complete set of Galerkin trial
functions, which vanish at z = ±π/2 in dimensionless units.
For instance, the director component nz(q,z,t) is represented
as

nz(q,z,t) =
M∑

m=1

n̄z(q,m,t)Sm(z), (5)

with Sm(z) = sin[m(z + π/2)]. We have tested that using
a truncation parameter M = 4 yields already data to an
accuracy of better than 0.1%; in many cases even M = 2
is sufficient. Introducing the symbolic vector V (q,t) for the
expansion coefficients n̄z(q,m,t), m = 1, . . . ,M [Eq. (5)] and
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the corresponding ones for ny , v, φ we arrive after projection
onto the trial functions at a linear system of coupled ordinary
differential equations of the following form:

C(q,t)
∂

∂t
V (q,t) = L(R,q,t)V (q,t). (6)

The matrices C and L are periodic with the ac voltage period
T = 2π/ω. The general solutions of Eq. (6) have the Floquet
representation V (t) = exp(σ t)V 0(t) with V 0(t + T ) = V 0(t),
where σ defines the Floquet exponent. We are interested
in time-periodic solutions V (t). Here σ has to be purely
imaginary of the form σ = iωk/l with co-prime integers
l > k. As a result the period of V (t) is given as lT if k �= 0
and as T if k = 0. For a given q periodic solutions exist
only for a discrete set of control parameters R = R0(q) <

R1(q) < R2(q), etc. Minimizing R0(q) with respect to q
yields the critical wave vector qc and the critical control
parameter Rc = R0(qc) at which the quiescent basic state
becomes unstable. In the context of the present paper the
destabilizing modes at onset had always the period T ; i.e.,
they are characterized by σ = 0.

We have used two methods to calculate the periodic
solutions of Eq. (6). One option is to expand V 0(t) into
a (truncated) Fourier series in terms of exp(inωt) with
|n| � N . Then Eq. (6) transforms into an algebraic linear
eigenvalue problem for the Fourier coefficients, from which
we obtain R0(q) (for more details see Ref. [15]). As will
be documented below the time variations in V (t) become
increasingly sharper with decreasing ω; consequently many
Fourier modes up to N = 60 had to be eventually kept. Thus,
in an alternative, less time-consuming approach, we construct
numerically the matrix solution P(t) of Eq. (6) for the initial
condition P(0) = I where I denotes the unit matrix (see, e.g.,
Ref. [17] and for a recent application Ref. [18]). We have
to calculate the eigenvalues μ1,μ2, . . . of the “monodromy
matrix” M ≡ P(t = T ) where |μ1| > |μ2|, etc. A periodic
solution of Eq. (6) with period T exists when μ1 = 1. The
smallest R to fulfill this condition yields again R = R0(q).

As demonstrated in Ref. [15], the general nematohydrody-
namic equations as used in this paper are invariant against a
reflection z → −z at the midplane combined with a translation
in time by half a period T/2. Thus the solution manifold of
Eq. (6) naturally splits into separate classes with different
parity p = ±1, for which the notions “conductive” (p = 1)
and “dielectric” (p = −1), respectively, have been introduced.
For instance, with respect to the director component nz

one finds nz(−z,t + T/2) = p nz(z,t) (for more details, see
Ref. [15]). This means that for the dielectric symmetry the
time average of nz vanishes, while it is finite for the conductive
symmetry.

III. FLEXODOMAINS

In the following we will investigate the bifurcation to
flexodomains, which leads to stripe patterns with the wave
vector q = (0,p). It is easy to see that U (t) is not modified, i.e.,
φ ≡ 0. Inspection of the full nematohydrodynamic equations
(for instance, in Ref. [15]), shows that time variations of the
director at nonzero ω lead in principle to a “back flow,”
which acts back onto the director in the form of viscous

torques. They lead to small corrections to the dielectric and
flexotorques of the order O(α2

3/η
2
2), with the Miesowicz coeffi-

cient η2 = (α3 + α4 + α6)/2 > 0. Since |α3/η2|2 = O(10−3–
10−4) for MBBA and similar nematics, the viscous torques
are safely neglected in this paper, which also facilitates
the quasianalytical approaches in Sec. III B. Moreover, this
approximation has been validated by full numerical studies of
the basic equations.

It is convenient to introduce instead of the elastic constants
k11, k22 their average value kav, and their relative deviation δk

from kav as follows:

k11 = kav(1 + δk), k22 = kav(1 − δk), (7)

where obviously |δk| < 1. In contrast to the rodlike nematics
like MBBA where k22 < k11, i.e., δk > 0 [see Eq. (3)], discotic
nematics are characterized by k22 > k11 (δk < 0) [19]. Thus
our analysis will cover negative δk for completeness as
well. Neglecting the back flow effects (v = 0) the director
dynamics in flexodomains is only determined by dielectric and
flexotorques. We start from the linear perturbations δn(y,z,t)
of the basic state in position space and switch to Fourier space
using the (real) ansatz:

ny(y,z,t) = sin(py)n̄y(z,t), nz(y,z,t) = cos(py)n̄z(z,t).

(8)

As a consequence the general equations (6) reduce to the fol-
lowing linear system of coupled partial differential equations
(PDEs) in the variables z and t for the Fourier components n̄y

and n̄z:

∂t n̄y = −[p2(1 + δk) − (1 − δk)∂zz]n̄y

+p[sgn(e1 − e3)u cos(ωt) − 2δk∂z]n̄z, (9a)
∂t n̄z = −[p2(1 − δk) − μu2 cos2(ωt) − (1 + δk)∂zz]n̄z

+p[sgn(e1 − e3)u cos(ωt) + 2δk∂z]n̄y . (9b)

Instead of the time scale τ̃ and the main control parameter
R [Eq. (4)] we have used in Eq. (9) the director relaxation
time τd and the dimensionless voltage amplitude u, which are
defined as follows:

u2 = 1

μ

εa

kav
R = 1

μ

εa

kav

ε0E
2
0d

2

k0π2
, τd = (γ1/kav)τ̃

(10)

with μ = εakav

(e1 − e3)2
and γ1 = α3 − α2.

Note that we will often refer in the following to the parameter
μ as a reduced measure of the dielectric anisotropy εa .
Furthermore it should be realized that in Eqs. (9) and (10)
only the difference of the flexocoefficients (e1 − e3) comes into
play. It is sufficient to confine oneself to the case (e1 − e3) > 0,
since the solutions of Eqs. (9) for (e1 − e3) → −(e1 − e3)
can be recovered by the transformation {n̄y(z),n̄z(z)} →
{n̄y(z),n̄z(−z)}.

A. Flexodomains driven by a dc voltage

This subsection is devoted to the analysis of the flex-
odomains in the dc case (ω = 0) where Eqs. (9) are exact due
to v ≡ 0. Because all coefficients in Eqs. (9) are constant, the
familiar separation ansatz n̄(y,z)(z,t) = eσ t ñ(y,z)(z) can be used
to get rid of the time dependence. Thus the time derivatives
∂t in Eqs. (9) are replaced by σ , and one arrives at an

051706-3
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FIG. 1. (Color online) Critical voltage uc (a) and critical wave number pc (b) as a function of μ for δk = 0 (μmin = −1, μmax = 1), for
δk = 0.3 (μmin = −0.769, μmax = 3.072), and for δk = −0.3 (μmin = −1.427, μmax = 0.413).

autonomous linear system of ordinary differential equations
(ODEs) for the functions ñ(y,z)(z). As they have to vanish at
z = ±π/2, the eigenvalues σ will belong to a discrete set. The
condition that the maximal eigenvalue σ = σ0(u,p) (growth
rate) vanishes, determines the nondimensional neutral curve
u0(p). The minimum of u0(p) at p = pc yields the critical
voltage uc = u0(pc), where (uc,pc) depend on δk and μ.
Alternatively u0(p) is given as the smallest u value, where
Eqs. (9) have time-independent solutions, which vanish at
z = ±π/2. Inspection of Eqs. (9) shows that u0(p) is even
in p since it depends only on p2.

Let us first concentrate on the case of a destabilizing
dielectric torque with positive εa where μ ∝ εa > 0 [see
Eq. (10)]. For p = 0 Eqs. (9) can be easily solved by choosing
ñy ≡ 0 and ñz ∝ sin(z + π/2). As a result we obtain

uc(p = 0)2 ≡ u2
F = (1 + δk)/μ. (11)

This solution obviously describes the homogeneous splay
Freedericksz distortion of the director. In fact, we recover
from u2

F with the help of Eq. (10) the familiar critical
Freedericksz voltage U0 = UF = π

√
k0kav(1 + δk)/(εaε0) in

physical units (which is not influenced by the flexoeffect).
Clearly the condition u0(pc) = uc < uF is necessary for the
prevalence of flexodomains with wave number pc �= 0 against
the homogeneous Freedericksz distortion. It will turn out that
they exist only for μ less than an upper limit μmax(δk), at which
their critical wave number pc approaches zero.

In the case of negative εa (μ < 0), on the other hand, the
dielectric torque is stabilizing. It overcomes eventually the
destabilizing flexotorques when μ approaches a lower limit
μmin(δk) < 0 from above, where pc diverges. Thus the director
remains undistorted in the basic planar state for μ < μmin(δk).

In general, the z dependence of the functions ñy,z(z), which
have to fulfill the ODEs introduced above, is captured by
an ansatz ∝ eλz. In our case we obtain four different values
λ = ±λ1, ±iλ2, where only real λi are compatible with
the existence of flexodomains. The general solution, which
consists of a linear combination of the four exponentials e±λ1z,
e±iλ2z has to fulfill the boundary conditions of vanishing ñy ,
ñz at z = ±π/2. As shown in the Appendix, one arrives thus
at the following implicit equation for the neutral curve u0(p):

A1 sinh(λ1π ) sin(λ2π )

+A2λ1λ2 [1 − cosh(λ1π ) cos(λ2π )] = 0. (12)

For the explicit expressions of the λi , Ai , i = 1,2, which
depend on p, u, δk, μ, we refer to the Appendix as well.
Equation (12) represents the neutral curve u0(p) in implicit
form. Minimization of u0(p) with respect to p gives the
critical wave number pc and the corresponding critical voltage
uc ≡ u0(pc) of the flexodomains.

In Fig. 1(a) we show representative examples for uc as a
function of μ for δk = 0 and for δk = ±0.3 calculated with the
help of Eq. (12). The corresponding critical wave numbers pc

are shown in Fig. 1(b). As discussed before the Freedericksz
state with pc = 0 and uc(0) = uF is smoothly approached
when μ → μmax(δk). Decreasing μ from μmax on is associated
with a monotonic increase of both uc and pc until they diverge
at μ = μmin(δk) < 0. It is obvious that the knowledge of
the limit curves μmin(δk) and μmax(δk) plays an important
role to identify the regime of flexodomains in dependence on
the parameters μ and δk. Thus we show these limit curves
in Fig. 2 in the (μ,δk) plane, where |δk| < 1 according to
Eq. (7). On a first look, it is surprising that μmax(δk) diverges
at δk ≈ 0.53. However, as discussed in detail in the following
subsection, this divergence is closely related to the existence of
the (spatially periodic) splay-twist Freedericksz transition for
δk � 0.53 in the absence of the flexotorque (e1 − e3 = 0) [4].

Before we turn, however, to further discussions of Eq. (12),
we present at first a very useful approximate analysis of

−1 −0.5 0 0.5 1
δk

−3

−2

−1

0

1

2

3

μ

basic state

flexodomains

homogeneous
Freedericksz

FIG. 2. (Color online) Upper and lower limit curves, μmax(δk)
(dashed, red) and μmin(δk) (solid, black), respectively, in the (δk − μ)
plane. μmax(δk) diverges for δk ≈ 0.53, while μmin → −∞ for
δk → −1.
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flexodomains for small |δk|. Instead of using Eq. (12) directly it
is more transparent to start again from Eqs. (9), by introducing
the “one-mode” approximation ñ(y,z) ∝ sin(z + π/2). One ob-
tains then immediately a quadratic equation for the eigenvalues
σ ; the largest one determines the growth rate σ0. Note that
in this approximation the terms ∝ 2pδk∂zñ(y,z) in Eqs. (9)
do not contribute. Standard perturbation analysis shows that
they would produce corrections of the order δk2 to σ0. The
condition σ0 = 0 leads within the one-mode approximation to
the following expression for the neutral curve:

u2
0(p) = (p2 + 1)2 − δk2(p2 − 1)2

p2 + μ[p2 + 1 + δk(p2 − 1)]
(13)

with its minimum at p2 = p2
c , where

p2
c = (−1 + δk2)μ + √

(1 + δk)[1 + δk(1 + 4μ)]

(1 + δk)[1 + μ(1 + δk)]
. (14)

The explicit expression for u2
c = u2

0(pc) obtained from
Eqs. (13) and (14) is quite lengthy and will not be shown.
According to the general remarks above, the μ interval, where
flexodomains exist, can in general be read off from p2

c given in
Eq. (14): The zero of the numerator determines the upper limit
μmax and the zero of the denominator the lower limit μmin.
Thus we obtain the following approximate expressions valid
for small δk:

μa
min(δk) = − 1

1 + δk
, μa

max(δk) = 1 + δk

(1 − δk)2
. (15)

The one-mode approximation becomes exact in the special
case δk = 0 (one constant approximation, k11 = k22), where it
yields a rigorous solution of Eqs. (9). We recover in this case
the results of Ref. [6]:

p2
c = 1 − μ

1 + μ
, u2

c = 4

(1 + μ)2
, (16)

where μmin(0) = −1 and μmax(0) = 1. In general the exact
neutral curve from Eq. (12) is described to an accuracy
of better than 0.5% by Eq. (13) for small |δk| < 0.2. We
will demonstrate below that μa

min(δk) given in Eq. (15) even
coincides with the exact curve μmin(δk) shown in Fig. 2 for all
|δk| < 1.

Finally we would like to stress that our analysis of
flexodomains is at variance with recent investigations [10,11]
on the same subject. It will be explained in more detail in
the Appendix that this work suffers from a basic mathematical
error. Thus, for instance, the prediction of a “singular” behavior
of pc and uc in both cases k11/k22 = 3 (δk = 1/2) and
k11/k22 = 1/3 (δk = −1/2) is unfounded.

1. Analytical treatment of μmax(δk) and μmin(δk)

So far we have given the exact description of flexodomains
through Eq. (12). In addition we have demonstrated the
usefulness of the analytical one-mode approximation (13) of
the neutral curve u0(p) at small δk. In this section we will
derive analytical expressions for the limiting curves μmin(δk)
and μmax(δk) in the whole range −1 < δk < 1.

Let us start with the discussion of μmax(δk) for the case
μ > 0, where we have competition between the flexodomains
and the homogeneous Freedericksz state. In Fig. 3 we show

0 0.1 0.2 0.3 0.4 0.5
p [in units of π/d]

0.98

0.99

1

1.01

1.02

u 02 /u
F

2

μ1

μ2

μ3

μ4

FIG. 3. (Color online) The neutral curve u2
0(p) normalized to the

Freedericksz threshold uF Eq. (11) as a function of p for δk = 0.2
and different μ with μ1 = 1.4,μ2 = 1.6,μ3 = 1.8, μ4 = 2.0.

a typical neutral curve u0(p) for δk = 0.2 and different μ

obtained from Eq. (12). At p = 0 the function u0(p) has an
extremum with u0(0) = uF ; see Eq. (11). For μ < μmax(δk)
this point corresponds to a maximum where ∂2

pu0(p = 0) < 0;
here and in the following the notation ∂n

p for the derivatives
(dn/dpn) has been used. The minimum of u0(p) at finite p =
pc where ∂2

pu0(p = pc) > 0 and u0(pc) = uc < uF describes
the flexodomains with wave number p = pc.

With increasing μ both the critical wave number pc and the
difference (uF − uc) decrease in Fig. 3. At μ = μmax(δk) =
1.965 the minimum and the maximum of u0(p) merge at
p = 0. Thus the equations u0(p = 0) = uF and ∂2

pu0(p =
0) = 0 are fulfilled, which can be solved with respect to μ by
expanding Eq. (12) up to order O(p2). The resulting analytical
solution is given as μ = μmax(δk) with

μmax(δk) = 1 + δk

1 − 2δk + δk2(32/π2 − 3)
. (17)

It is convenient to introduce also the function δkF (μ) as the
inverse of μmax(δk), which is given as

δkF (μ) = 1 + 2μ −
√

(4μ − 1)2 − 128μ(μ − 1)/π2

2μ(32/π2 − 3)
. (18)

Thus δkF (μ) marks at fixed μ the transition from the homoge-
neous Freedericksz state for δk < δkF (μ) to the flexodomains
in the interval δkF (μ) < δk < 1 (see also Fig. 2). The special
case δkF (μ = 1) = 0 is consistent with μmax(0) = 1 [see
Eqs. (16)].

From our reasoning it seems obvious that the analytical
expression μmax(δk) should reproduce the curve μmax(δk)
shown in Fig. 2. As demonstrated in Fig. 4 this is indeed the
case for the interval −δklow < δk < 1 where δklow ≈ −0.566.
On this δk interval we will first concentrate.

One sees immediately that the denominator of μmax(δk)
approaches zero (i.e., μmax diverges) when δk approaches a
critical value δkc > 0 from below, where δkc is given as

δkc = 1 − 2
√

1 − 8/π2

32/π2 − 3
= 0.5346. (19)

Consistently δkF (μ) in Eq. (18) approaches for μ → ∞ the
limit δkc. As a result, flexodomains exist for any μ > 0 when
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FIG. 4. (Color online) Upper limit curve μmax (solid line, black)
as a function δk from Eq. (12) in comparison with μmax from Eq. (17)
(dashed line, red).

δk > δkc, while they are restricted to the region μ < μmax(δk)
in the case of δk < δkc.

It is not a coincidence that δkc is very near to the number
δkST ≈ 0.53, which has been quoted in the literature more
than two decades ago in a different context: According to [4]
the homogeneous Freedericksz transition, in the absence of
flexoeffects (e1 − e3 = 0), is replaced for δk > δkST by the
spatially periodic splay-twist (ST) Freedericksz transition.
Similar to the flexodomains a state of finite ny,nz bifurcates
from the basic state, which is periodic in the y direction with
a critical wave number pc, to balance the dielectric and the
elastic torques. In this case additional flexotorques should not
play a crucial role and the striped director configuration should
develop even at arbitrary small |e1 − e3|, which corresponds
to an arbitrary large μ = εakav/(e1 − e3)2. In fact, as shown
in the Appendix, the limit e1 − e3 = 0 is covered by Eq. (12),
and one finds δkST ≡ δkc.

Our theoretical considerations are confirmed by the repre-
sentative numerical results for the critical voltage uc and the
critical wave number pc of flexodomains, which are shown in
Fig. 5 as function of δk < 1 for two different μ. In the case
μ = 2 the homogeneous Freedericksz state is replaced at δk =
δkF (μ = 2) ≈ 0.206 by the flexodomains; with increasing δk

the critical voltage uc monotonically decreases from uc = uF

on, while pc increases from p = 0 on. For μ → ∞ (i.e., in
the absence of flexoeffects) with δkF → δkST we get in the
interval δkST � δk < 1 the splay-twist Freedericksz distortion
as a special case of the flexopatterns.

We will now return to the case −1 < δk < δklow ≈ −0.566
in Fig. 4, where the exact μmax(δk) from Eq. (12) is slightly
larger than μ̄max(δk) given in Eq. (17). The reasoning, which
led to the expression μ̄max, is rigorous as long as the p

dependence of neutral curves is of the type shown in Fig. 3. As
demonstrated for instance in Fig. 6 for δk = −0.7 this does not
hold in the vicinity of δk = −1. The condition u0(p) = uF ,
which determines μmax(δk), is now already realized at a finite
p = pc, where u0(p) has a second local minimum of height
u0(pc) = uF . Since a merging of the two extrema is not
required, as assumed in the calculation of μ̄(δk) from Eq. (17),
we have now μmax(δk) > μmax(δk) in agreement with Fig. 4.
The exact neutral curve for δk < δklow is only accessible by
numerically solving Eq. (12). The special value δk = δklow,
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u c2 /u
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c [
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ts
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FIG. 5. (Color online) Relative critical voltage u2
c/u

2
F and the

critical wave number pc as function of δk for μ = 2 (solid line
for u2

c/u
2
F and dotted line for pc, black) and in the absence of

the flexoeffect (e1 − e3 = 0) (dashed line for u2
c/u

2
F and dot-dashed

line for pc, red). For μ = 2 the Freedericksz state is approached at
δkF ≈ 0.206, while this happens for e1 − e3 = 0 at δk = δkST [data
from Eq. (12)].

where μmax starts to deviate from μmax(δk), is obviously
determined by the condition ∂2

pu0(p = 0) = ∂4
pu0(p = 0) = 0

at u = uF and μ = μmax(δk). With the use of Eq. (12) one
obtains from these conditions the following closed analytical
expression for δklow:

δklow = −
[
π2(96 − 5π2 − 8

√
π4 − 54π2 + 468)

−13π4 + 832π2 − 6912

]1/2

= −0.5666, (20)

which agrees perfectly with the results presented in Fig. 4.
Finally we consider the case μ ∝ εa < 0, where the

dielectric torque is stabilizing and where the competing
Freedericksz transition is absent. As already mentioned we
found μmin(δk) ≡ μa

min(δk), given in Eq. (15). This can be
explained by the fact, that exactly at μ = μa

min the purely
imaginary roots ±iλ2 in Eq. (12) become real (see the
Appendix). As a consequence the trigonometric functions
sin(λ2π ) and cos(λ2π ) change into hyperbolic ones; then
Eq. (12) allows only for the trivial solution u = 0, p = 0.

0 0.5 1 1.5
0.8

0.9

1

1.1

1.2

u 02 /u
F

2

μ4

μ3

μ2

μ1

p [in units of π/d]

FIG. 6. (Color online) The neutral curve u2
0(p) as a function of

p for δk = −0.7 and different μ where μ1 = 0.11,μ2 = 0.12,μ3 =
0.13, and μ4 = 0.14.
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FIG. 7. (Color online) Critical voltage uc(ω) in dimensionless units (a) and critical wave number (b) of the flexodomains as function of ωτd

for MBBA parameters with the flexostrengths ξ− = 2 and ξ− = 3. The symmetry of the solution is indicated.

B. Flexodomains driven by an ac voltage

While the onset of flexodomains in the presence of a dc
voltage is well described by the closed expression [Eq. (12)],
the case of an ac voltage requires in general numerical
methods along the lines described in Sec. II. We consider
only low frequencies ω where ωτd < 20, which corresponds
to frequencies f = ω/(2π ) up to 20 Hz for a cell of thickness
d = 10 μm filled with MBBA. Note that we will sometimes
use in the ac case instead of the voltage amplitude, U0 = E0d,
the effective [root mean square (RMS)] voltage U0/

√
2, which

derives from the time average of U 2(t).
As a warm-up we first consider the Freedericksz transition

(μ ∝ εa > 0) at finite ω, where n̄y ≡ 0 and p = 0 in Eqs. (9).
In analogy to Sec. III A we obtain the solution n̄z(z,t) =
ñz(t) sin(z + π/2) with

ñz(t) = ñz(0) exp

{
−

∫ t

0
dt ′[1 + δk − μu2 cos2(ωt ′)]

}
.

(21)

The solution ñz(t) is periodic with period T = 2π/ω when
the integral in Eq. (21) vanishes for the upper limit t = T .
Thus the Freedericksz transition voltage, uFr (ω), for ω �= 0 is
obtained as

[uFr(ω)/
√

2]2 = (1 + δk)/μ = u2
F . (22)

Obviously it is the (nondimensionalized) effective (RMS)
critical voltage uFr (ω)/

√
2, which continuously approaches

in the limit ω → 0 the Freedericksz transition voltage uF [see
Eq. (11)] in the dc case. At onset for u = uFr the solution
Eq. (21), normalized to its maximal value, has the following
form:

ñz(t) = exp

[
−(1 + δk)

1 − sin(2ωt)

2ω

]
. (23)

At small ω Eq. (23) represents sudden burstlike director
distortions similar to those shown in Fig. 9. The peaks of
the ñz(t) are located at ωt = π/4,5π/4, etc., and their width
is proportional to

√
ω.

Now we turn to the discussion of flexodomains where
ny �= 0 and p �= 0. The threshold uc and the critical wave
number pc for finite frequency ω are calculated as explained

in Sec. II. As a rule we get two types of solutions, one with the
conductive, the other with the dielectric temporal symmetry.
In the following we use in general the material parameters
of MBBA given in Eq. (3), where kav = 5.43, δk = 0.2265
[see Eq. (7)] and e1 − e3 = 1.34. The dielectric torque is
stabilizing, since εa = −0.53. According to our investigations
the existence of flexodomains in the dc case seems to be in
general a necessary prerequisite for their existence in the ac
case. In fact, at ω = 0 flexodomains solutions do not exist
for standard MBBA, since according to Eq. (10) we have
μ = −1.6027 < μmin(δk) = −0.815; they have also not been
observed in experiments. Thus we follow an idea in Ref. [20]
and replace the difference (e1 − e3) of the flexocoefficients
in Eq. (9) by the product ξ− · (e1 − e3) to study specifically
the impact of the flexotorque. Flexodomains then exist for
ξ− > 1.402.

Representative examples for the dependence of the critical
voltage uc and the critical wave number pc on the “flexo-
strength” ξ− and on the ac frequency ω (in units of τ−1

d ) are
shown in Fig. 7. For ξ− = 3, corresponding to μ = −0.178, the
conductive symmetry prevails in the whole frequency range,
while for ξ− = 2, corresponding to μ = −0.401, a switch over
from the conductive symmetry to the dielectric symmetry takes
place at larger ωτd . For both symmetry types the uc and pc

curves rise monotonously as a function of ωτd at fixed ξ−. On
the other hand, for the same symmetry type uc and pc are seen
to decrease with increasing ξ−, i.e., with growing magnitude
of the flexotorque in analogy to the dc case.

To study the dependence of the critical voltage uc(ω) and the
critical wave number pc(ω) on the elastic constants, MBBA
parameters still have been used, except for a change of δk.
Furthermore we have chosen ξ− = 2 to favor the flexodomains
against the homogeneous basic state. The resulting data are
shown in Fig. 8. As before uc and pc increase monotonically
with ωτd . We are, however, unable to offer a simple explanation
for the change of symmetry with δk: While the dielectric
symmetry of the flexodomains solutions prevails for δk =
−0.3, 0, we find the conductive symmetry for δk = 0.3. The
switch over between the symmetries happens at δk ≈ 0.1.

In Fig. 9 we show an example of the director dynamics in
the midplane (z = 0) as a function of time at the low frequency
ωτd = 0.05. Remarkable are the sudden burstlike director
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FIG. 8. (Color online) Critical voltage uc(ω) in dimensionless units (a) and critical wave number (b) of the flexodomains as function of ωτd

for different δk and ξ− = 2.

distortions; i.e., patterns would appear in the experiments only
for very short time intervals. The conductive time symmetry
for δk = 0.3 is reflected in the finite time average of nz(t); it
vanishes for ny(t). On the other hand, for δk < 0.1 the behavior
of nz and ny with the dielectric time symmetry would be just
opposite.

Before we have concentrated on the MBBA-like materials
with μ < 0. In the case of μ > 0 we are faced with the
competition of flexodomains with the Freedericksz transition
as discussed in Sec. III A for the dc case. The threshold voltage
for the flexodomains increases monotonically with ω similar
to the case of negative μ (see Figs. 7 and 8). Since, on the other
hand, uFr(ω) in Eq. (22) does not depend on ω, the Freedericksz
transition will replace the flexodomains in any case above a
certain finite ω. The frequency range where the flexodomains
prevail will shrink with increasing μ.

1. The limit ω → 0

The limit ω → 0 is obviously not smooth: In the dc case
both nz and ny have finite amplitudes at onset, while in the
ac case the time average of one of the director components
vanishes depending on the time symmetry. An interesting
question is how this discontinuity is reflected in the critical

0 0.25 0.5 0.75 1
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−0.5
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1

n z(
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0,
t)

,  
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0,
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nz
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FIG. 9. (Color online) The director fields as a function of time at
flexodomains threshold for a periodic excitation. ωτd = 0.05, δk =
0.3, and ξ− = 2 (conductive symmetry).

voltage. As a rule of the thumb it is typically assumed, that the
effective (RMS) voltages in the limit ω → 0 do not differ too
much from critical voltages in the dc case. For the Freedericksz
transition that difference is even zero [see Eq. (22)], and
for electroconvection it is of the order of 10% of uc (see
the Appendix of Ref. [21]). In the case of flexodomains
the corresponding differences are considerably larger in most
cases.

As a representative example we discuss the ω → 0 limit of
the uc, pc curves in Fig. 7 in comparison with the dc case from
Eq. (12). Here MBBA material parameters have been used
except that we allow for a modification of e1 − e3 via a factor
ξ− introduced above. At low frequencies the threshold curves
both for ξ− = 2 and ξ− = 3 have conductive symmetry. For
ξ− = 2 (μ = −0.401) we find for instance ueff(0) ≡ uc(ω →
0)/

√
2 = 4.52 compared to the dc value uc(0) = 3.49; for

ξ− = 3 (μ = −0.178) the difference between ueff(0) = 2.83
and uc(0) = 2.42 is smaller. The discontinuity of ueff(ω) at
ω = 0 is associated with corresponding discontinuities of
pc: We find pc(ω → 0) = 1.66 compared to pc(0) = 1.5 for
ξ− = 2 and pc(ω → 0) = 1.25 compared to pc(0) = 1.17
when ξ− = 3. For the parameters chosen in Fig. 8 we find
comparable discontinuities as in Fig. 7 for ξ− = 2, where
the symmetry of the director configuration (dielectric for
δk = −0.3, 0 and conductive for δk = 0.3) does not seem to
play a significant role.

The discontinuities in the limit ω → 0 can be demonstrated
most clearly in the special case δk = 0. Then the z dependence
of the director fields in Eqs. (9) is rigorously described by
the ansatz {n̄y(z,t),n̄z(z,t)} = {n̂y(t),n̂z(t)} sin(z + π/2). The
transformation of the time variable t → t/ω leads to

ω∂t n̂y = −(p2 + 1)n̂y + sgn(e1 − e3)pu cos(t)n̂z,

ω∂t n̂z = −[p2 + 1 − μu2 cos2(t)]n̂z

+ sgn(e1 − e3)pu cos(t)n̂y . (24)

From a mathematical point of view Eqs. (24) present an
interesting dynamical system. It is kind of “singular” since
the prefactor of the time derivatives is proportional to ω and
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FIG. 10. The critical effective voltage for flexodomains uW
c /

√
2 (a) and the critical wave number pW

c (b) from Eq. (29) in the limit ω → 0
normalized to the dc values.

thus small in the limit ω → 0. For the special case μ = 0
(εa = 0) the general solution of Eqs. (24) is given as

n̂y(t) = exp

(
−p2 + 1

ω
t

)
{c1e

φ(t) − c2e
−φ(t)},

n̂z(t) = exp

(
−p2 + 1

ω
t

)
{c1e

φ(t) + c2e
−φ(t)}, with (25)

φ(t) = sgn(e1 − e3)pu sin(t)

ω
,

where c1, c2 denote integration constants. Inspection of
Eqs. (25) shows immediately that one is unable to find values
of c1, c2 to allow for periodic solutions. This result is a further
hint that the limit ω → 0 is not trivial, since in the dc case
according to Eqs. (16) flexodomains do exist at μ ∝ εa = 0.

The system Eqs. (24) for μ �= 0 has been in general
investigated by the methods presented in Sec. II. To study
in particular the limit ω → 0 we have employed the approxi-
mation scheme presented in the Appendix of Ref. [21], which
is closely related to the familiar Wentzel-Kramers-Brillouin
(WKB) approximation [22] in quantum mechanics. We use the
ansatz {n̂y(t),n̂z(t)} = {ñy(t),ñz(t)} exp[S0(t)/ω] and neglect
the derivatives of ñy(t), ñz(t). The resulting coupled homoge-
neous equations for ñy(t), ñz(t) will have a nontrivial solution
when the corresponding determinant vanishes. In this way the
following equation for S0(t) is obtained:

(∂tS0)2 + g1(t)∂tS0 + g0(t) = 0, (26)

where

g1(t) = 2(p2 + 1) − μu2 cos2(t),
(27)

g0(t) = (p2 + 1)2 − [p2 + μ(p2 + 1)]u2 cos2(t).

From Eq. (26) we obtain

2∂tS0 = −g1 +
√
g2

1 − 4g0. (28)

In analogy to the discussion of the Freedericksz transition [see
Eq. (21)] the solution is bounded when the average over one
period (2π ) of the right-hand side of Eq. (28) vanishes. The
required time integration can be performed analytically and

leads to the following implicit equation for the neutral curve
u0(p) ≡ u0(p,ω → 0):

π
[
2(p2 + 1) − μu2

0

/
2
]|μ|

= 2
√

p2μ2u2
0 + (

4p2 + μ2u2
0

)
arcsin

(√
μ2u2

0

4p2 + μ2u2
0

)
.

(29)

This transcendental equation is solved numerically, which
yields within the WKB approximation the critical voltage uW

c

and the critical wave number pW
c of the flexodomains in the

limit ω → 0. The data agree perfectly with the exact solution
of Eq. (24) on the basis of the monodromy matrix method
in the limit ω → 0. In Fig. 10(a) the ratio of dimensionless
effective (RMS) critical voltage (uW

c /
√

2), and the dc value
is plotted as function of μ. While this ratio is near 1 for
−1/2 < μ < 1, it increases strongly when further decreasing
μ toward μ = μmin(δk = 0) = −1. The corresponding ratio
of the critical wave number pW

c and the dc value is shown
in Fig. 10(b). In comparison to the critical voltages one finds
even larger deviations of this ratio from one in particular at
larger positive μ where pc itself becomes small.

Finally we would like to point out that the transition to
the dc limit and the interesting time evolution of director
perturbations characterized by bursts depend also on the
wave-form of the exciting ac voltage. To demonstrate this we
have considered a square-wave excitation that consists of an
alternating sequence of constant voltages ±u on time intervals
of the length T/2, i.e., U (t) = U0sgn[cos(ωt)]. Then Eqs. (9)
can be solved quasianalytically by joining continuously the
analytical solutions on the parts with constant voltage, which
leads to an implicit transcendental equation (“boundary deter-
minant”) for the neutral curve u0(p). Since for small ωτd the
values of uc and pc are practically determined by the long-time
intervals of constant u, they are practically identical to the dc
values. Consequently, as demonstrated in Fig. 11, the time
variations of nz, ny are rather smooth compared to the bursts
observed with the harmonic ac driving at low ω.

In the following section, we will study the alternative
electroconvection (EC) solutions of the nematohydrodynamic
equations, which compete with the flexodomains. In general it
will turn out that only for small ω the flexodomains have the
chance to prevail.
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FIG. 11. (Color online) The director fields as function of time at
the threshold of flexodomains for a square-wave excitation. ωτd =
0.05, δk = 0, and ξ− = 2 (dielectric symmetry).

IV. ELECTROCONVECTION

The salient elements of the positive feedback loop lead-
ing to the dissipative electro-hydrodynamic instability (EC),
which are contained in the familiar nematohydrodynamic
equations (see Sec. II), have been elucidated by Carr and
Helfrich [12,13]: A necessary condition is that the nematic
is “contaminated” by a small amount of mobile ions, which
results in a finite, though very small, electrical conductivity of
the order of σ0 = 10−8 (� m)−1. Then spatial fluctuations of

n in the presence of a nonzero E lead to an electric charge
density ρel = ∇ · D + ρfl. The first contribution to ρel is the
standard one, which derives from the dielectric displacement
D = ε0ε E. The latter “nonstandard” contribution, the flex-
ocharge ρfl, is determined by the earlier introduced flex-
opolarization as ρfl = ∇ · Pfl. Via the Coulomb force, ρel E,
in the (generalized) Navier-Stokes equation a material flow,
v, is driven which exerts an additional viscous torque on
the director. Under a favorable constellation of the material
parameters the viscous torque reinforces the initial director
distortion leading to EC. For more details in particular a very
recent review [14] might be useful, where systematically the
sensitive influence of the sign of the dielectric anisotropy
εa , of the electric conductivity, σa , and of the basic director
configuration on the patterns is discussed.

Exploiting the calculational scheme briefly discussed in
Sec. II we have precisely characterized the onset of EC.
While in flexodomains the time scale is set by the director
relaxation time τd ∝ d2 [see Eq. (10)], in electroconvection the
thickness independent charge relaxation time τq = ε0ε⊥/σ⊥
plays an important role as well. Thus we observe in EC a
thickness dependence of the critical properties, which cannot
be absorbed by a suitable frequency rescaling. For definiteness
we concentrate in the following on a nematic layer of thickness
d = 10 μm and use MBBA parameters (if not otherwise
stated), where τd = 0.2 s and τq = 4.65 × 10−3 s. The impact
of the flexocharge ρf l on EC is determined by the sum (e1 + e3)
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FIG. 12. (Color online) Critical effective voltage Uc of electroconvection (RMS value in volts) (a), modulus of the critical wave vector |qc|
(b), and the angle α of the critical wave vector with the x axis (c) as a function of frequency ω (in units of the charge relaxation time τq ) for
different magnitudes of the flexocoefficients ξ = ξ− = ξ+ (for more details, see text).
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FIG. 13. (Color online) The director fields as a function of time
at EC threshold for ωτq = 2.3 × 10−3 (ωτd = 0.1).

of the flexocoefficients. In analogy to the factor ξ− introduced
in Sec. (9) to tune the strength of the flexotorque, we replace
here in addition (e1 + e3) by ξ+(e1 + e3) to allow for a selective
modification of ρf l . To facilitate a direct comparison with
experiments we will refer to effective (RMS) critical voltages
in physical units in this section.

In Fig. 12 we present representative critical EC data for
MBBA parameters [16] as a function of ωτq for different
ξ = ξ− = ξ+. In general Uc and |qc| [see Figs. 12(a), and
12(b)] increase monotonically with increasing ω. While the
two curves are smooth for ξ = ξ− = ξ+ = 2, where the
dielectric symmetry prevails, we observe discontinuities for
the two smaller ξ . Here the conductive branch at small ω is
replaced by the dielectric one at a crossover frequency ωc

where ωcτq ≈ 1.2. The obliqueness of the rolls, as shown in
Fig. 12(c), is measured by the angle α between qc and the
preferred director orientation in the basic planar configuration
(our x axis). In the absence of flexoeffects (ξ = 0) we
find α ≡ 0 for all ω. When ξ− = ξ+ = 1 the obliqueness of
the rolls in the conductive regime vanishes continuously at the
“Lifshitz point” ωLτq ≈ 0.35 and becomes finite again in the
dielectric regime. At the largest ξ = 2 the angle α ≈ 40◦ is
finite for all ω. Note that recently for other nematic material
a “Lifshitz point” in the dielectric regime of EC has been
identified as well [9].

In analogy to the flexodomains the limit ω → 0 for the
critical voltage in EC is not smooth. However, the dc-critical
voltage is much better approximated by the limit ω → 0 of
the effective voltage Uc(ω) than for the flexodomains. This
finding can be explained within a WKB approximation [21],
where the relative corrections are indeed small, on the order of
τq/τd (up to some q-dependent factors). EC shares, however,
with the flexodomains the typical spiky time evolution of the
director components at very low ω, as comparison of Fig. 9
with Fig. 13 shows.

Besides the flexocoefficients a further crucial parameter
is the anisotropy σa of the electric conductivity, since the
Carr-Helfrich charge separation mechanism depends strongly
on the magnitude and the sign of σa/σ⊥. This dependence had
not been investigated in detail for many years, since in the
materials used at that time σa/σ⊥ would vary only between
0.3 and 0.7. Recently, however, materials have been found,
where by decreasing the temperature σa decreases as well;
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FIG. 14. (Color online) Critical voltage Uc (RMS value in volts)
for EC as a function of frequency ω (in units of the charge
relaxation time τq ) for five different values of σa/σ⊥ between 0.5
and −0.5 and for ξ− = ξ+ = 2. The corresponding critical voltages
for the flexodomains (conductive symmetry at small ω and dielectric
symmetry at larger ω) are included as well.

it passes even zero and becomes negative. Thus it has now
become important and attractive to study the σa dependence in
more detail. This has been done partially in Ref. [15], where
Uc(ω) has been observed to move up in general with decreasing
σa . To study the details we have taken MBBA parameters as
before except that σa/σ⊥ was allowed to vary. Furthermore,
to explore the competition with flexodomains, which do not
exist for standard MBBA (see Sec. III B), the flexocoefficients
have to be increased as well. We have centered on the case
ξ = ξ− = ξ+ = 2, which has been shown already in Fig. 12
for EC and in Fig. 7 for flexodomains. The EC threshold,
which is characterized by the dielectric symmetry, increases
strongly with decreasing σa/σ⊥ for all ω as documented in
Fig. 14. Only for σa/σ⊥ = −0.5 and for very small frequencies
up to ωτq ≈ 0.1 (where ωτd ≈ 3.6) do flexodomains with
conductive symmetry prevail. For the case ξ− = ξ+ = 1 one
finds the same behavior of Uc(ω) when changing σa , while the
flexodomains do not exist.
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FIG. 15. (Color online) Critical effective voltage Uc (RMS value
in volts) as a function of frequency ω (in units of the charge relaxation
time τq ) for flexodomains and EC patterns. Material parameters of
MBBA except σa/σ⊥ = 0.2, ξ− = 3, and ξ+ = 0.25.
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FIG. 16. (Color online) Critical effective voltage Uc of electro-
convection (RMS value in volts) as a function of frequency ω (in
units of the charge relaxation time τq ) for MBBA material parameters
(ξ+ = ξ− = 1) except σa/σ⊥ = −0.05.

To find material combinations, where flexodomains have a
chance to dominate the pattern-forming instability for standard
and not too small values of σa , one has obviously to choose
different values of ξ− and ξ+. One needs a relatively large
ξ− to increase the flexotorques, which are responsible for the
existence of flexodomains. Conversely, ξ+ should be fairly
small to suppress the positive influence of the flexocharge on
EC. Since systematic experimental studies, also including dif-
ferent nematic materials, are lacking so far, extended parameter
studies seem to be futile at the moment. So we present only
one example with ξ− = 3, ξ+ = 0.25, and σa/σ⊥ = 0.2, where
flexodomains (with conductive symmetry) indeed prevail EC
at low frequencies as shown in Fig. 15.

Finally, we address briefly the intriguing limiting behavior
of EC at low frequencies, when ξ− is too small for the existence
of flexodomains at ω = 0. As demonstrated in Fig. 16, we
predict in this situation a persistent switching between the
conductive and the dielectric solutions for σa/σ⊥ = −0.05.

V. CONCLUSIONS

In this paper we have investigated pattern-forming instabil-
ities in nematic liquid crystals originally in the basic planar
configuration, which are driven out of equilibrium by an
electric dc or ac voltage applied perpendicular to the layer.
In the basic state the director field is homogeneous over the
nematic layer, and a preferred direction is singled out in the
layer plane.

In particular we have concentrated on the impact of the
flexoeffects, which generically exist, when the director varies
in space. They result, on the one hand, in the flexotorque,
which may lead at sufficiently large voltage amplitude to the
flexodomains. These are spatially periodic in the layer plane
and can be visualized in experiments as stripes parallel to
the preferred planar direction. In this paper the bifurcation
scenario to flexodomains is for the first time comprehensively
analyzed for applied dc and ac voltages. We have also
demonstrated that the well-established splay-twist Freeder-
icksz transition in the absence of flexoeffects can be described
in this framework. Particular focus was on the intriguing
phenomena in the limit of the vanishing ac frequency ω of

the driving voltage. One finds, for instance, periodic-in-time,
burstlike excursion of the director from the planar basic state.

Furthermore we have investigated the competition between
the flexodomains and the familiar EC convective rolls. The
latter are visualized as stripes, which include a finite angle
typically larger than 45◦ with the preferred axis. In general
EC prevails, except at very low frequencies where the flex-
odomains may trigger the destabilization of the homogeneous
basic state. Like the flexodomains the EC pattern appears also
periodically in time as sudden bursts, while the system remains
otherwise in the structureless basic planar state.

We expect that our theoretical analysis will motivate
further investigations of electrically driven pattern formation
in nematics with special focus on the low-frequency regime.
Though in particular the sudden, periodic-in-time “blow-up”
of flexodomains and EC patterns as well a crossover between
them have been clearly seen in recent experiments [9], a
quantitative comparison with the theory is far from trivial. On
one hand, one is faced with considerable uncertainties in the
material parameters even for a nematic like MBBA. Moreover,
one has to realize that the nematic layer is confined by metal-
lically coated glass plates with a thin polymeric alignment
film on top, which themselves may have fairly complicated
electric properties. Thus the whole system is represented as an
equivalent circuit diagram (see, e.g., Refs. [23,24]) where the
total voltage applied to the cell is different from “theoretical”
results like Uc, which represent only the voltage drop over the
nematic layer. The necessary corrections to Uc are not easy to
model and would also require systematic measurements on the
empty cell. Finally the coexistence between flexodomains and
EC pattern in the nonlinear regime when their linear thresholds
are comparable has to be investigated. For instance, such a
scenario has indeed been observed in hybrid aligned nematic
cells [25] in the presence of a dc voltage.
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APPENDIX: FLEXODOMAINS DRIVEN BY A DC VOLTAGE

In this Appendix we describe briefly the derivation of the
implicit equation (12), which yields the neutral curve u0(p).
We use the ansatz {n̄z(z),n̄y(z)} = {n̂z,n̂y}eλz in Eq. (9) and
set σ = 0 from the beginning. Thus we arrive at a linear
homogeneous 2 × 2 system for n̂y n̂z, which leads to the
following secular equation for λ:

[p2(1 + δk) − (1 − δk)λ2][p2(1 − δk) − μu2 − (1 + δk)λ2]

−p2[sgn2(e1 − e3)u2 − 4δk2λ2] = 0. (A1)

From Eq. (A1) we obtain the two eigenvalues λ2 = λ2
1, − λ2

2,
where λ2

1,λ
2
2 > 0, which read as follows:

λ2
1 = p2 − μu2

2(1 + δk)
+ S, λ2

2 = −p2 + μu2

2(1 + δk)
+ S,

S =
{

sgn2(e1 − e3) + 2δkμ

1 − δk2
p2u2 +

[
μu2

2(1 + δk)

]2 }1/2

.

(A2)
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The eigenvector of the linear system is chosen as

{n̂z(λ),n̂y(λ)} =
{

1,p
sgn(e1 − e3)u − 2δkλ

p2(1 + δk) − (1 − δk)λ2

}
. (A3)

In line with the standard procedure we express the general
solution as a linear combination of the eigenmodes (A3)

n̄z(z) = a1e
λ1z + a2e

−λ1z + a3e
iλ2z + a4e

−iλ2z,

n̄y(z) = a1n̂y(λ1)eλ1z + a2n̂y(−λ1)e−λ1z

+ a3n̂y(iλ2)eiλ2z + a4n̂y(−iλ2)e−iλ2z, (A4)

to fulfill the boundary conditions n̄z(±π/2) = n̄y(±π/2) =
0. A nontrivial solution exists, when the determinant of the
resulting set of four linear homogeneous equations for the ai

vanishes. The resulting implicit equation for the neutral curve
has been already given in Eq. (12). It contains the λi (A2) and
coefficients Ai , which are given as follows:

A1 = [ (
f 2

1 λ2
2 − f 2

2 λ2
1

)
C2 + (

λ2
1 + λ2

2

)2
D2

]
,

(A5)
A2 = 2f1f2C

2,

with

f1 = λ2
1 − B, f2 = λ2

2 + B, B = p2 1 + δk

1 − δk
,

C = 2δk√
1 − δk2

, D = sgn(e1 − e3)u√
1 − δk2

. (A6)

MAPLE and MATHEMATICA have been very useful in performing
and in validating all our calculations.

The Freedericksz transition in the absence of flexoeffects
(e1 − e3 = 0) is formally covered by Eq. (12) as well. First,
the voltage u appears always in the combination (μu2) where
according to Eq. (10) the factors (e1 − e3) cancel. Furthermore
we have D ≡ 0 [see Eq. (A6)] in this limit. The critical value
δkST at which the splay-twist Freedericksz transition starts to
prevail is obviously determined by the conditions ∂2

pu0(p =
0) = ∂4

pu0(p = 0) = 0 at u0(p)/uF = 1. This condition is
exploited by expanding Eq. (12) to order p4, and we arrive
in fact at an expression for δkST, which is identical to
δkc in Eq. (19). Note that in Ref. [4] instead of an exact
value for δkc = 0.534624 the approximation δkc ≈ 0.53 was
given.

On the background of the exact textbook analysis presented
in this Appendix it is easy to demonstrate why the authors
of Refs. [10,11] arrived at wrong results. Starting from
the basic equations for the flexodomains in the dc case
[equivalent to Eqs. (9)] at first a set of two coupled ODEs
that contain only second-order z derivatives has been obtained
[see Eq. (12) in Ref. [11]]. Unfortunately the second step,
namely, diagonalizing the ODEs by a “unitary” transformation
V̂ [see Eq. (14) in Ref. [11]], does not work since V̂ explicitly
depends on z. Thus the main conclusion in Ref. [11] that
the eigenmodes associated with the eigenvalues P and Q [see
Eq. (20) in Ref. [11]] would decouple is untenable. This applies
also to the resulting simple relation tan(iQd) = 0 [see Eq. (22)
in Ref. [11]], which would replace our correct Eq. (12) for the
neutral curve u0(p). Note that the same erroneous procedure
has appeared already in a previous investigation [26], cited
also in Refs. [10,11].
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