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Motivated by the impact of rotation on the stability of convection roll patterns, we investigate
the stability of hexagon patterns in non-Boussinesq rotating convection for several experimentally
relevant fluid systems and its dependence on the Rayleigh number, the wavenumber, and the rotation
rate. In the weakly nonlinear regime the coefficients of the appropriate coupled Ginzburg-Landau
equations are derived. Further above threshold a fully nonlinear Galerkin approach is employed to
compute the hexagon and roll solutions and to perform their general linear stability analysis. Long-
and shortwave instabilities, both steady and oscillatory, are identified. For small Prandtl numbers
the band of stable hexagon solutions becomes very asymmetric in the wavenumber and oscillatory
sideband instabilities are found already very close to onset.

PACS numbers: 47.20.Bp,47.54.41,47.20.Ky,47.27.Te

I. INTRODUCTION

Rayleigh-Bénard convection, the convection instability of a fluid layer subject to a temperature gradient,
has proven to be a rich system exhibiting various types of complex pattern-formation phenomena (for a
recent review see [1]). Of particular current interest has been the spatio-temporal chaos found in rotating
convection [2—4] that arises due to the Kiippers-Lortz instability [5], and the spiral-defect chaos observed in
non-rotating convection at small Prandtl numbers [6-11], which is driven by mean flow. In these states the
disordered patterns are always of roll-type. For chaotic states based on other planforms like hexagons or
squares, considerably less experimental data are available [12, 13].

Recently the stability of hexagon patterns in systems with broken chiral symmetry (e.g. due to rotation)
has been investigated using coupled Ginzburg-Landau equations in the weakly nonlinear regime [14-16], as
well as Swift-Hohenberg type equations [17] and a longwave order-parameter equation [18]. It was found
that although there is always a wavenumber band of stable hexagons near onset, sideband instabilities can
induce a transition to separate attractors that exhibit persistent spatio-temporal chaos. Within the Swift-
Hohenberg and the longwave equation the stability balloon can close further above onset leading again to
spatio-temporal chaos.

In the presence of rotation, the instability of the hexagons to rolls [19] via a mixed mode is replaced by a
Hopf bifurcation to oscillating hexagons [20, 21]. Within the framework of the Ginzburg-Landau equations
the oscillating hexagons are linearly stable but nonlinearly unstable to the formation of spiral defects [15],
which then exhibit chaotic dynamics described by a single complex Ginzburg-Landau equation [22].

In experiments, hexagonal convection patterns are obtained in surface-tension-driven Marangoni convec-
tion (e.g. [23, 24]) and in buoyancy-driven non-Boussinesq convection (e.g. [25, 26]). In these systems
deformations of the periodic patterns drive a mean flow. It becomes increasingly important in fluids with
small Prandtl number and provides a non-local coupling of the convection modes [27-29]. To describe this
coupling the usual coupled Ginzburg-Landau equations have recently been extended [30]. In the absence of
mean flow only a transverse longwave phase mode is relevant in limiting the stable wavenumber band in the
weakly nonlinear regime [31]. It leads to a shearing of the hexagon patterns since its modulation wavevector
is perpendicular to the translation induced by the phase modulation. For sufficiently small Prandtl num-
bers, however, the longitudinal phase mode, which leads to compressions and expansions of the hexagons,
is expected to be relevant as well and to lead to qualitatively different transients in the relaxation from
unstable to stable hexagon patterns [30]. Preliminary investigations indicate that in the presence of rotation
mean flow can induce a transition to a spatio-temporally chaotic state characterized by the proliferation of
penta-hepta defects [32].

No quantitative results have been available so far for the stability of hexagonal patterns in rotating non-
Boussinesq convection. In this paper we address this problem from two directions. We first derive the
coefficients for the weakly nonlinear coupled Ginzburg-Landau equations, which are valid in the weakly non-
Boussinesq regime when the fluid parameters vary only slightly with temperature. They provide quantitative



predictions for the stability of hexagons with respect to sideband perturbations as well as the domain of
existence of oscillating hexagons. Then we use a fully nonlinear Galerkin method to determine the general
stability of hexagons and rolls for realistic set-ups using water and CO- as fluids. Of particular interest are the
shortwave and the oscillatory sideband instabilities that arise in the rotating system. If the new laser heating
technique that allows the printing of (almost) arbitrary planforms as initial conditions in Bénard-Marangoni
convection [24] can be applied to buoyancy-driven convection with rotation, experimental investigations of
these instabilities will be very interesting, since various simulations of model systems suggest the possibility
of persistent time-periodic or chaotic dynamics [14, 17, 32]. In the strongly non-Boussinesq case, in which
hexagons persist up to relatively large values of the control parameter, we find that for small wavenumbers
certain resonant mode interactions have a strong effect on the hexagon patterns and their stability limits.

The paper is organized as follows. In sec.Il we state the basic convection equations. Sec.III is dedicated
to the coefficients for the weakly nonlinear Ginzburg-Landau equations. In sec.IV we discuss the resulting
stability properties of hexagons. The results of a fully nonlinear stability analysis of hexagons with rotation
are presented in sec.V.

II. BASIC EQUATIONS

We consider convection in a horizontal liquid layer of thickness d, heated from below (at temperature T7)
and cooled from above (at temperature Ty < T7), which is rotated about a vertical axis with angular velocity

wk. It is described by the Navier-Stokes equations
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Here 4@ = (uy1,u2,u3) is the fluid velocity, T' the temperature, p the density of the fluid, p the pressure, g
the acceleration of gravity, v the viscosity, 7 the volume viscosity, ® the viscous heating (cf. (4)), and ¢,
the specific heat of the fluid. The orthogonal coordinates are chosen so that the z-axis is directed vertically
upwards. The radius vector 7= (z,y, 2) is measured from some point on the axis of rotation, K is the unit
vector in the z-direction, d;; is the Kronecker delta, and ¢;;; is the unit antisymmetric tensor of the third
rank. The Einstein convention of summation over repeated indices is assumed. The viscous heating ® in the
heat equation (3) is given by

2
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with e;; = 1(d;u; + d;u;) being the stress tensor.

Realistic rigid boundary conditions are taken at the top and bottom plates, which are assumed to be kept
at fixed temperatures Tp + AT/2 :
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Here Ty = (T1 + T»)/2 denotes the mean temperature and AT = (T; — T3) > 0 the temperature difference
between z = Fd/2.



Since we focus in this paper on weakly non-Boussinesq convection we keep the temperature dependence
of the various fluid properties to leading order. In our treatment we closely follow the formulation of the
problem in [19]. For typical fluids the ratio %‘1 (with a the thermal expansion coefficient) is very small.

For water it is approximately equal to 5 -107%, for oil and air it is approximately 3 -10~7. In the heat
equation this allows us to neglect the compressibility term proportional to p as well as the viscous heating
®. In addition, in this parameter regime the pressure dependence of the fluid parameters is much weaker
than their temperature dependence. We therefore neglect the pressure dependence. We write the Taylor
expansion about the mean temperature Ty in the form [19]
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where pg, 9, Ao, and cpo denote the values of the respective quantities at the mean temperature 7. The
dots denote higher-order terms to be neglected in the sequel. In line with a clever experimental strategy
we assume that Ty is kept fixed when changing the main control parameter AT. Thus, the quantities
~i/AT,i = 0,2,3,4, which describe, respectively, the slope of the density, viscosity, heat conductivity, and
heat capacity at Ty are fixed as well. The usual heat expansion coefficient at T' = Tj is, for instance, given
by ap = v /AT. Going beyond the Boussinesq approximation also the curvature of p(T") at Tp which is
proportional to yoy1/AT? comes into play. Note that the ; themselves, which give the relative change of
the respective physical quantity across the layer, depend linearily on AT and thus on the Rayleigh number
R (see below).

For constant fluid parameters the volume viscosity term #pd;;drux, and the centrifugal force 1 pw?0; (2% +y?)
can be absorbed into the pressure term. This is not true for the contributions from the temperature-
dependent parts of # and p. While the z-dependence of the volume viscosity generates only a higher-order
correction, neglecting the centrifugal force is only possible as long as the rotation rates are not too large, i.e.
as long as 9 Lw?/g is small. Here L is a characteristic measure of the horizontal system size.

For the non-dimensionalization it is convenient to introduce the heat diffusivity ko = Ao/pocpo, the
dimensionless rotation rate 2 = 2wd?/vy, the Prandtl number Pr = vy/ko and the Rayleigh number
R = apATgd?/vgko. We rescale the variables using the following units: length d, time d?/kqg, velocity
Kko/d, pressure vokopo/d?, temperature voro/apgd® = AT/R. We also introduce the dimensionless rescaled
pressure p = vgkopo/d> (p — 7pdy(vkpoko/pd)) and rewrite the equations in terms of the dimensionless mo-
menta v; = pdu;/poko instead of the velocities. With all of the above approximations the dimensionless
equations are given by
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The conduction solution (7 = 0) of (12)-(14) is given by

1
Tcond = TO + R (—Z - %(ZZ - Z) + O(7§)> - (15)

We rewrite the temperature T' in terms of the deviation © from the conductive profile (15) neglecting its
contribution of O(v3),

e)=T—Tc,md=T—T0—R(—z—ﬁ(z2——)>, (16)



and obtain as final dimensionless equations
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The dimensionless boundary conditions are
(z,y,2,t) = O(z,y,2,t) =0 at z = :I:%. (20)

The nondimensionalized fluid parameters (8)-(11) read now:

p(O) = 1-0(~2+2), (1)
v(©) = 1+y(—2z+ %), (22)
AO) = 14+y3(—2+ %), (23)
p(0) = 14+y(—2z+ %). (24)

We consider the non-Boussinesq effects to be weak and keep in all material properties only the leading-order
temperature dependence beyond the Boussinesq approximation. Therefore the v;-term appears explicitly in
(17), while in all other terms it would constitute only a quadratic correction just like the terms omitted in

(8)-(11).

III. DERIVATION OF THE WEAKLY NON-BOUSSINESQ GINZBURG-LANDAU EQUATIONS

Here we derive the Ginzburg-Landau equations for weakly nonlinear hexagonal patterns in weakly non-
Boussinesq convection. The main qualitative change from the Boussinesq case is that the Boussinesq sym-
metry, which prohibits quadratic terms in the amplitudes and therefore excludes a transcritical bifurcation
to hexagons, is broken by the non-Boussinesq terms. We therefore focus on the derivation of the coefficient
of the quadratic term as a function of the rotation rate and the fluid parameters. In order to obtain an
asymptotically valid expansion, we assume the non-Boussinesq terms to be of the order of the convection
amplitude in the nondimensionalised equations and use the expansion

(#,0) = 6(vi,01) + 8(v3, ©2) + 6°(v3, 03) + ..., (25)
v; = 6L, 1 =0.4, 0K 1. (26)

Generally speaking, the non-Boussinesq terms lead to corrections in all coefficients of the amplitude
equation. However, in the weakly non-Boussinesq case (26) only the contributions to the quadratic amplitude
term and to the shift in the convection threshold appear to O(§®) in the amplitude expansion. As mentioned
before, vy plays two different roles. In the buoyancy term it is the driving force for convection; it is
incorporated into the Rayleigh number and is not affected by the smallness assumption (26). In the other
terms it corresponds to a temperature-dependent correction of the material parameters.

We introduce the scaling

R= Rc(’)/ia Q) + 62R27 T2 = 62t7 X = 5'777 Y = 5:‘/7 (27)

with Rc(7:,Q) = RAQ)(1 + AR:(7v:,)). In this paper we mostly use the control parameter ¢ =
(R—R.(7i,9Q)) /Re(7:,Q) = 6°Ra/R.(;, Q). The threshold shift AR.(y;,Q), which is due to the non-
Boussinesq effects, is O(62). We do not determine it in the weakly nonlinear expansion (26) but extract



it from the Galerkin approach discussed in sec.V (see appendix for numerical values at various rotation
rates). Note that we choose an isotropic scaling for the slow spatial scales rather than the anisotropic
Newell-Whitehead-Segel scaling [33-35].

It follows from the continuity equation (18) that up to (%) the momentum field is solenoidal,

V-T=—8p= 0627 -38) = O (28)

Since the amplitude equation will arise from the Fredholm alternative at O(§%), we can express the momen-
tum in terms of poloidal and toroidal stream functions ¢(z,y, 2,t) and ¥ (z,y, 2,t) [19]:

T=V XV x (K§) +V x (ki) = (9= 0y, ~29)6 + (0, =0z, O, (29)
where Ay = (0zz + Oyy). The boundary conditions for the stream functions follow from the boundary
conditions (20) for the momentum -

1
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The evolution equations for the two stream functions are obtained by applying k-Vx and k- V x (Vx to
(7).
Expanding the stream functions analogously to (25), the O(d)-equations are given by

Az (A%¢y — Q8.4 — O1) = 0, (31)
Ay (0.1 + Apy) = 0, (32)
—RC(Q)A2¢1 + Af; = 0. (33)

They determine the critical Rayleigh number R.(Q) and the critical wavenumber ¢.(Q2). Since we take
the non-Boussinesq terms to be of O(d), the linear problem is identical to the Boussinesq case. Thus, the
critical Rayleigh number and the critical wavenumber depend only on the rotation rate {2 but not on the
non-Boussinesq coefficients 7; and one has in particular R.(Q = 0) = 1707.8 and ¢.(2 = 0) = 3.12. By
introducing a suitably weighted scalar product between two functions,

<(91,91,01), (¢2,12,02) >= —/dV (¢1¢2+¢1¢2+ R0 )@192) (34)
the eigenvalue problem (31)-(33) is made self-adjoint [19].
The hexagon solution is expanded as
3 -
(8(7,1), (7, 1), O(7, 1)) = (do(2), 9 2)) DA (XY, D) + ce. + O(6%). (35)
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Here ¢i = g¢.71 and ¢b,3 = g3 with @7 = (1,0,0) and Al 3 = (=1/2,+/3/2,0), and (o, o, Oy) is the
critical eigenvector of (31)-(33). Each component of the eigenvector can be expressed as a sum of three
hyperbolic/trigonometric functions, respectively. We normalize the eigenvector as in [19],

qc(Q)Z% / dV - AAT =1, (36)

where ¥y is the momentum associated with the stream functions ¢ and ).

Due to the rotation and the presence of the non-Boussinesq terms the calculations become very involved at
the higher orders in §. For instance, at O(6%) hundreds of products involving hyperbolic and trigonometric
functions as well as powers of z are required. Thus, the final equations contain thousands of terms. To
handle this, we used the analytical software package “Mathematica”.

Eventually, at O(6%) the Fredholm alternative yields the coupled Ginzburg-Landau equations for the
convection amplitudes A;,

TOr, A1 = pAr + (il - V)2 A1 + xA5 A5 — BAL|AL]> — (n + ) A1 | A2 — (n — 7) A1 A5, (37)



Cell [fluid |d [em]|po [psi]|To [°C]|AT® [°C]|Pr 7(()0) ~{0 ~{0 'y?(’o) 70 Q11
A [44] |Water|0.17 |n/a 40 9.356 4.382(0.00357(0.0894 |-0.167|0.0198|0.000428 |54.7
B [26]|CO. [0.052 |316.18 {27.3 36.04 0.865(0.181 |-0.245 |0.288 |0.100 [-0.090 |4.81
C CO2 [0.07 |316.18 |27.3 14.77 0.865(0.0733 |-0.0965|0.118 |0.0412|-0.0331 |8.77

TABLE I: Parameter values for the three different cells A, B, and C used in the stability calculations (cf. egs.(21)-
(24)). The non-Boussinesq coefficients are given for a temperature difference corresponding to R = R.(y; = 0,2 =
0) = 1707.8, which corresponds to a temperature difference AT?. The dimensionless rotation rate corresponding to
1Hz is given by Q1 ..

with the equations for the two remaining amplitudes obtained by cyclic permutation. Here y is proportional
to the control parameter €, V is a slow gradient with respect to (X,Y"), and the coherence length £ and the
relaxation time 7 are related to the wavenumber dependence of the growth rate o(g) of the linear modes via
2¢? = —7d?0/dq®. Note that due to the isotropic scaling there is no direct damping of transverse variations
in the amplitudes. In principle, this can lead to degeneracies in certain growth rates like that of the zig-
zag instability [36, 37]; to resolve these, the higher-order terms would have to be kept. For the hexagonal
patterns this is, however, not necessary since there is an indirect damping; transverse variations of A;, i.e.
perpendicular to the respective ¢; in (35), induce (damped) longitudinal variations of A; ; and A;q, in
particular through the interaction term Aj_; A7, ;.

The expressions for the various coefficients in (37) are much too large to be presented explicitly. Their
dependence on the rotation rate and on the non-Boussinesq coefficients «y; will be given in [38]. The Q-
dependence of the individual contributions from the various non-Boussinesq terms to the crucial quadratic
coefficient x (cf. (39) below) are shown in figs.1a,b (to be discussed below) for two realistic cases. Every
effort was made to test the correctness of the coefficients. For the non-rotating non-Boussinesq case they were
compared with the results for infinite Prandtl number in [19] and for arbitrary Prandtl number in [1, 39]. In
both cases agreement was found except for the previously identified mistake in [19], where the contribution
from 3 is in error for the rigid-rigid case, and for some typographic errors in [39]. For the Boussinesq case
with rotation we compared our results with those in [40]. The only discrepancy we identified concerns the
tricritical line of steady rolls in their fig.3. Our results are in line with [41, 42], which also indicates that the
tricritical line of steady rolls in fig.3 of [40] is incorrect. This has also been discussed in [43]. Finally, we have
compared our weakly nonlinear results with full numerical Galerkin solutions as discussed below (sec.V).

IV. WEAKLY NONLINEAR RESULTS

We have used the values of the coefficients of the weakly nonlinear Ginzburg-Landau equation (37) to
study convection in two sample cells. Our first cell (cell A) has a thickness of d = 0.17¢m and is filled with
water. To study convection at low Prandtl numbers, we have chosen the second cell to be a COs-cell of
thickness d = 0.052cm (cell B). Both cases correspond to cells used in previous experiments [26, 44]. The
parameter values for the coefficients ; that we used for these cells and for an additional, thicker cell with
COs (cell C, discussed in more detail in sec.V) are listed in table I. As mentioned before the «y; depend on

the temperature difference applied to the cell. The values %(0) listed in table I are given for a temperature

difference ATC(O) that corresponds to R.(2 = 0,v; = 0) = aoATc(O)gd3 /voko = 1707.8. Thus, within the
linear approximation (21)-(24) for the temperature dependence of the fluid parameters one has the relation

R R (2,

() = iy = Bl () 40 (38)
The second part of (38) shows that for fixed e the +; depend on the rotation rate. Note also that to compute
R.(9,7;) the values of the ~; have to be determined at AT,, which in turn depends on the 7;. This can be
done iteratively and since the non-Boussinesq terms lead only to a small shift in R, one iteration is usually
sufficient. The last column in table I gives the dimensionless rotation rate i g, that corresponds to a
physical rotation rate of 1 Hz, which is about the typical maximal rotation rate in the experimental setups

described in [26, 44].
In the spirit of [19] it is useful to identify the contributions to the quadratic coefficient x in (37) from the
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FIG. 1: Contributions to x from the individual non-Boussinesq coefficients y;(R.(£2,:)) as a function of the rotation
rate Q (see equations (8)-(11) and (39)): long-dashed line - linear temperature dependence of density (7o), dash-dotted
- quadratic temperature dependence of density (1), dotted line - viscosity (72), thick dashed line - heat conductivity
(y3), thin solid line - heat capacity (ya). The thick solid line gives the sum x of all non-Boussinesq effects. a) water
cell A, b) CO2-cell B.

individual non-Boussinesq terms +;,

4

X = Y xi(Q, Pr) 7i(Re(Q,7))- (39)
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For cells A and B the dependence of x on the rotation rate, as well as that of the individual contributions
Xi Vi to x from each of the non-Boussinesq coefficients ;, are shown in fig.1a,b. In the case of cell A (water)
two contributions dominate: the quadratic density term () and the temperature dependence of the viscosity
(72). In cell B these two effects are less prominent. In both cells the 2-dependence of x is essentially due to
the viscosity term. Interestingly, in cell B its contribution even changes sign with increasing rotation rate.

Rolls Rolls Mixed Mode

Mixed Mode ’ Oscillating Hexagons

Steady Hexagons Steady Hexagons

€ €

FIG. 2: Sketch of bifurcation diagrams without (a) and with (b) rotation.

In our analysis, we first focus on spatially periodic solutions at a fixed wavenumber and discuss their
domains of existence and stability as a function of the rotation rate and the Rayleigh number. As sketched
in the bifurcation diagram fig.2a, without rotation the steady hexagons, which arise unstably in a transcritical
bifurcation from the conductive state and become stable in a saddle-node bifurcation, become unstable again
in another steady transcritical bifurcation to a mixed-mode solution. Since that solution is unstable, the
hexagons actually evolve to steady rolls. With rotation the secondary steady bifurcation off the hexagons
turns into a Hopf bifurcation, which leads to a branch of oscillating hexagons (cf. fig.2b) [20, 21]. In the
oscillating hexagons the amplitudes of the three modes making up the hexagons differ from each other and
oscillate periodically with a phase shift 27/3 between them. In simulations this gives the appearance as if
the centers of the convection cells were rotating.



In fig.3a,b we give the dependence of the transitions sketched in fig.2b on the rotation rate for cells A and
B. Increasing the control parameter €, hexagons become stable first in a saddle-node bifurcation along the
thin solid line (the neutral curve is virtually indistinguishable from the saddle-node line) and are stable with
respect to perturbations with the same wavevector up to the thick solid line. Rolls are only stable above
the dotted line. This line diverges at a certain rotation rate Qg beyond which rolls remain unstable for
all values of e. This marks the onset of the Kiippers-Lortz instability [5]. More precisely, the divergence
occurs for a rotation rate slightly above Qg1 because the dotted line marks the stability limit of rolls within
the framework of the three amplitude equations describing the hexagonal patterns. Thus, only instabilities
with respect to rolls that subtend an angle of 60° relative to the original rolls are considered. However,
depending on the Prandtl number the Kiippers-Lortz instability sets in at an angle somewhat below 60°
and can therefore destabilize the rolls already for lower rotation rates. The oscillating hexagons appear at
the solid line and are stable up to the dashed-dotted line where they undergo a global bifurcation. In cell
B (fig.3b) the non-Boussinesq effects are quite strong and the transitions occur at relatively large values of
the control parameter. In this regime the weakly nonlinear approach may not be appropriate any more. We
include this case mostly as an extrapolation of the weakly-nonlinear theory to the strongly nonlinear regime.
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FIG. 3: Domains of existence for rolls, hexagons and oscillating hexagons for water cell A and CO: cell B (cf. table
I). Saddle-node bifurcation of the steady hexagons (thin solid line), Hopf bifurcation of hexagons (solid line), global
bifurcation to rolls (dashed-dotted line), instability of rolls (dotted).

Using the stability analysis of (37) in [14] we now give explicit stability diagrams for weakly nonlinear
steady hexagons. In the absence of rotation the sideband instabilities of hexagons for both small and large
Prandtl numbers are given by two longwave modes that can be described by two coupled phase equations
[14, 30, 31, 45, 46]. They correspond to longitudinal and transverse deformations of the hexagon pattern,
respectively. As discussed in [30, 31], both lead to the formation of defects, albeit in different configurations.
While the configurations generated by the longitudinal mode heal relatively quickly, those induced by the
transverse mode persist for a long time and transiently render the pattern quite disordered. The longitudinal
mode becomes relevant mostly for small Prandtl numbers when mean flows are important [30]. No shortwave
or oscillatory instability arises in the weakly nonlinear regime and the band of stable wavenumbers closes
where it reaches the transition to the unstable mixed mode (cf. thick solid line at 2 = 0 in fig.3).

Fig.4a,b gives as an example for the effect of rotation on the stability regions the weakly nonlinear results
for cell A for small and intermediate rotation rates. For small rotation rates (2 = 5 in Fig.4a) the two
steady long-wave phase modes persist with the transverse mode determining the stability limit for all but
the smallest values of € (dashed lines). For larger values of the control parameter the two modes interact and
the two instability lines merge and generate an oscillatory longwave branch (dashed line above € = 0.015).
The oscillatory part is, however, preempted by a shortwave instability (thick solid line). It is in most cases
a steady instability; only if non-linear gradient terms are kept in the Ginzburg-Landau equations (37), an
oscillatory shortwave instability has been found [14]. Here we do not keep, however, these higher-order
terms. With increasing rotation rate the shortwave instability becomes more and more prevalent and for
Q = 20 (Fig.4b), which in this cell corresponds to a rotation rate of 0.369H z, the stability limits are solely
given by the shortwave instability. Previous simulations of (37) have shown that with rotation the long-



and the shortwave instabilities typically lead to the formation of defects that eventually anneal and render
a new regular hexagon pattern with different wavenumber or orientation. There are indications, however,
that with nonlinear gradient terms included in (37) the defects may not always anneal, which then leads to
disordered patterns with persistent chaotic dynamics [14, 32].
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FIG. 4: Weakly nonlinear stability diagrams for steady hexagons for water cell A. a) Q@ =5 (R, = 1721.4, q. = 3.126),
b) Q@ = 20 (R, = 1898.0, g. = 3.280). Saddle-node bifurcation (thin solid line), long-wave sideband instability (dashed
line), short-wave instability (thick solid line), Hopf bifurcation to oscillating hexagons (dashed-dotted line), amplitude
stability limit of rolls (dotted line). In a) the long-wave instability is oscillatory above the merging of the two long-wave
stability limits (e = 0.015). In b) it is oscillatory for all e shown.

V. GALERKIN RESULTS

In this section we study the stability of hexagonal patterns in the fully nonlinear regime by solving eqs.(17)-
(19) together with (20) and (21)-(24) without assuming the non-Boussinesq coefficients 7; to be small. Thus,
they are kept to all orders. In principle, also higher-order temperature derivatives of the material parameters
can become important. Here we assume that the fluid properties are sufficiently well described by (8)-(11).

We compute the steady hexagon solutions using a Galerkin method on a hexagonal grid in Fourier space in
the horizontal direction and an expansion in trigonometric and Chandrasekhar eigenfunctions in the vertical
direction [7, 47]. The linear stability of the hexagons is then determined using a Floquet analysis, in which
the Floquet parameter § is scanned over the whole Brillouin zone, adjusted for symmetries of the system.
Long- and shortwave instabilities are distinguished by separate runs in which the magnitude of 7 is chosen
in the range (0...107%) ¢. and (0.01...0.5) q., respectively. For a complete characterization also the angle
between § and the hexagon pattern as well as the eigenvector associated with the destabilizing mode of
interest have to be monitored, as well. Thus, without rotation hexagon patterns have two different long-
wave phase modes, a longitudinal and a transverse one, which differ in their eigenvectors. Both phase modes
can destabilize the pattern [30, 31, 45, 46]. Amplitude instabilities, for which 7 = 0, can also be relevant (cf.
Hopf bifurcation to oscillating hexagons).

In the Galerkin expansion for the computation of the solution as well for its stability analysis we have
typically used 4 vertical modes and have restricted the horizontal modes to those with wavenumbers up to
2q.. We have checked that keeping more than 4 modes in the vertical direction resulted only in a small
correction in the solutions (at most 3 percent), while reducing their number below 4 could lead to changes
of more than 10 percent, depending on 2. Similarly, keeping more than 2 modes in the horizontal direction
did not have any pronounced effect on the computation results for the e-Q-range considered.

To get an estimate of the expected range of validity of the weakly nonlinear analysis, we compare first
the weakly nonlinear hexagon amplitudes to those obtained with the Galerkin approach. According to the
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weakly nonlinear theory, the convection amplitude depends on the reduced Rayleigh number € as

A—- Asn ~ ma (40)

where €5, is the reduced Rayleigh number at the saddle-node bifurcation (cf. fig.2). Fig.5a shows that for
cell B the weakly nonlinear approach is limited to values of the reduced Rayleigh number up to € =~ 0.2.
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FIG. 5: Comparison of the weakly nonlinear results (solid line) with the fully nonlinear Galerkin results (symbols).
a) Scaling of the convection amplitude wit €. b) Location of the saddle-node bifurcation as a function of ~s.

According to the weakly nonlinear theory ei,/f should be linear in the non-Boussinesq coefficients ;.

Fig.5b shows the dependence of 6%2 on 73, the non-Boussinesq term associated with the heat conductivity.
It exhibits the strongest nonlinearity of all ;. This criterion suggests that the weakly nonlinear, weakly non-
Boussinesq approach (26), in which the contributions of the non-Boussinesq effects to the cubic coefficients
and the nonlinear contributions to the quadratic terms in (37) are omitted, is limited to values +; < 0.5.

We now present stability regimes for the three different cells listed in table I covering moderate and low
Prandtl numbers. First, we consider the system with moderate Prandtl number (water cell A). Fig.6 shows
the stability limits for hexagons and rolls without and with rotation. In order to compare with the weakly
nonlinear analysis we have chosen a relatively thick cell for which the non-Boussinesq effects and consequently
the hexagon amplitudes are quite small. Thus, the instability of the hexagons to rolls occurs at a value of
€ as low as 0.04 (dashed-dotted line). In the absence of rotation, Q2 = 0, all sideband instabilities of the
hexagons are longwave instabilities (dashed line in Fig.6a). Rolls are linearly stable all the way down to
€ =~ 0.01 depending on their wavenumber (dotted line). In the order of increasing wavenumber (from left
to right), the three segments of their stability limits are given by the zig-zag instability involving long-wave
modulations along the roll axis, the amplitude instability to hexagons, and the knot instability towards
square patterns, respectively.

Fig.6b shows the stability limits with relatively slow rotation (2 = 5, which corresponds to 0.0923H z).
Compared to the non-rotating case, the two longwave instabilities of the hexagons merge now at € ~ 0.010
for ¢ < ¢. and at € ~ 0.013 for ¢ > ¢.. Above these values they become oscillatory (cf. fig.4a). However,
as in the weakly nonlinear approach this oscillatory branch is preempted by a shortwave instability (solid
line). For a comparison, the open circles give the stability limits obtained in the weakly nonlinear approach.
Very close to onset the two limits agree well. For larger €, however, deviations arise. Most notably, the
numerical stability limits develop a clear asymmetry in ¢ — g.. It may be due to higher-order nonlinear
gradient terms (cf. [14, 46]) or due to finite Prandtl number effects, which lead to the excitation of a (weak)
mean flow (cf. [30]). Both effects act differently for larger and smaller wavenumbers and are not contained
in the leading-order Ginzburg-Landau equation (37). The diamonds denote the parts of the stability limits
along which the instability is oscillatory, i.e. for which the imaginary part of the leading eigenvalue with
positive real part is larger than 10™*. Along the dashed-dotted line with solid diamonds the oscillatory
instability is an amplitude instability. There the oscillating hexagons bifurcate off the steady hexagons (see
also figs.2b,3a) [14, 20, 21]. Close to that transition the shortwave instability of the steady hexagons also
becomes oscillatory on the low-q side.
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FIG. 6: Stability limits of steady hexagons for cell A with increasing Q. a) Q@ = 0 (R. = 1705.9, g. = 3.114), b)
Q=5 (R. = 1718.2, . = 3.126), ¢) Q = 20 (R, = 1859.3, g. = 3.280), d) Q = 40 (R. = 2389.4, ¢, = 3.650). Saddle-
node bifurcation (thin solid line), long-wave instability (dashed line), short-wave instability (thick solid line), Hopf
bifurcation to oscillating hexagons (solid diamonds), stability limits of rolls (dotted line). Open diamonds indicate

oscillatory side-band instabilities. In a) the dashed-dotted line indicates the amplitude instability of hexagons to the
mixed-mode. In b) the open circles give the stability limits obtained from the weakly nonlinear analysis.

With increasing rotation rate the steady longwave instabilities are confined to a decreasing range in € and
eventually disappear as shown in fig.6c,d (2 = 20 and Q = 40). Consequently, the short-wave instability
sets in essentially immediately above threshold; the e-range over which it is oscillatory increases, as well. At
the same time the stability limit of rolls is shifted to larger values of €. For 2 = 40 they become linearly
stable only for values of € well above the transition from steady to oscillatory hexagons (Fig.6d).

Now we turn to fluids with low Prandtl number and show in fig.7 the stability limits for cell B, which
exhibits strong non-Boussinesq effects. Even in the absence of rotation (fig.7a) the stability limits for the
steady hexagons are strongly asymmetric in ¢ — ¢. and resemble qualitatively those obtained in a weakly
nonlinear approach that includes the effects of mean flow [30]. In particular, the dramatic change in behavior
at very small € on the high-q side is noteworthy in this respect. Along that stability limit it is difficult to
determine whether the instability is long- or shortwave since modes with small and large values of the Floquet
parameter 7 become unstable within a very narrow window of parameters.
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FIG. 7: Stability limits for hexagons and rolls for COz-cell B. a) Q = 0 (R, = 1687.3, ¢. = 3.118), b) Q = 4.612,

corresponding to 1 Hz (R, = 1697.8, g = 3.127). Saddle-node bifurcation (thin solid line), side-band instability
(thick solid line), stability limits of rolls (dotted line). Diamonds indicate oscillatory instability.

It is remarkable that the hexagons remain amplitude-stable with respect to the mixed mode (cf. fig.2) up
to quite large values of €. In fact, in our computations, which covered the range up to € = 0.5 and higher, we
did not encounter the amplitude instability at all. This may be related to the fact that the non-Boussinesq
effects v; become stronger with increasing €, i.e. with increasing AT (cf. (38)). Thus, at least for idealized
periodic boundary conditions no transition from hexagons to rolls is expected to occur up to € = 0.5. Rolls,
on the other hand, are linearly stable down to € = 0.1, yielding nominally a large hysteresis between the
hexagons and the rolls. One may surmise that even in experimental set-ups in which rolls are present at
the side walls the rolls will invade the hexagonal patterns only for e-values well above 0.1. However, in
experiments a transition from hexagons to rolls has been reported already for e-values as low as 0.1 [26].
The stability results of fig.7a suggest that this transition is actually not that associated with the amplitude
instability of hexagons to the mixed mode but with a sideband instability, which then triggers a transition
to the rolls via the nucleation of defects.

In the case of rotation (fig.7b) the absence of the amplitude instability to the mixed mode all the way to
€ = (.5 implies that in this range of € also no Hopf bifurcation to oscillating hexagons occurs. The side-band
stability limits of the steady hexagons are hardly affected by the rotation on the high-¢ side. However, on
the low-g side the sideband instability becomes oscillatory, with frequencies ranging from 0.1 to 0.4.

An interesting aspect of this strongly non-Boussinesq case is that for the larger Rayleigh numbers spa-
tial resonances between modes of different wavenumbers come into play near the left stability limit of the
hexagons. The first such resonance involves the modes A; with the fundamental wavevectors ¢7i; and their
harmonics B; with wavevectors ¢ (7; —7;+1). The latter modes are rotated by 30° relative to the fundamental
modes. As the wavenumber ¢ of the hexagons is decreased the harmonic modes B; become dominant and
the fundamental modes A; go to 0 already before the neutral curve is reached. Thus, the solution branch
corresponding to the usual hexagons ends on a branch of hexagons with larger wavenumber. This bifurcation
influences the stability limits of the hexagons [48].

One of the goals of the current work is to explore whether the regime of oscillating hexagons can be reached
experimentally. There is always a competition with the roll states, and one may speculate that the situation
is most favorable if the roll states are Kiippers-Lortz unstable, which requires relatively large dimensionless
rotation rates 2. For fixed physical rotation rate the dimensionless rotation rate €2 increases with increasing
layer thickness. However, for a given fluid, the non-Boussinesq effects decrease with increasing thickness,
and, as a consequence, the e-range for the oscillating hexagons is shifted to smaller and smaller values of
€ where they are difficult to study experimentally. Thus, for a given maximal physical rotation rate and a
given fluid the maximal dimensionless rotation rate is obtained when the thickness is chosen such that the
oscillating hexagons arise at values of € near the experimental resolution.

As shown in Fig.6d, in cell A (water) the lower stability limit of rolls is shifted above the onset of the
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FIG. 8: Stability limits for hexagons and rolls for cell C at 2 = 8.77, corresponding to 1Hz; R. = 1743.1, gc =

3.149. Saddle-node bifurcation (thin solid line), side-band instability (thick solid line), Hopf bifurcation to oscillating
hexagons (solid diamonds), stability limits of rolls (dotted line). Diamonds indicate oscillatory instability.

oscillating hexagons already for a rotation rate of 0.73Hz. In cell B, containing C'O2, no transition to
oscillating hexagons was found up to € = 0.5 and higher. We therefore investigate another cell at low
Prandtl number (COs-cell C), which is thicker, and show in fig.8 the corresponding stability results. For
the chosen thickness the oscillating hexagons appear at a value of € that is close to the resolution limit at
which minute experimental cell inhomogeneities come into play. A physical rotation rate of 1Hz then yields
0 = 8.77. For this rotation rate the long-wave instability is oscillatory over the whole range of e. The
relevant side-band instabilities are, however, short-wave. They are steady on the large-g side and oscillatory
on the low-g side. In contrast to the thinner C'O,-cell, this cell exhibits a transition to oscillating hexagons.
For this rotation rate it is, however, still above the lower stability limit of rolls and bistability between the
oscillating hexagons and rolls exists.

VI. CONCLUSION

In this paper we have investigated the stability of hexagon patterns in rotating non-Boussinesq convection
with an emphasis on quantitative results for specific, experimentally relevant configurations. This work
complements previous analyses of coupled Ginzburg-Landau equations in the weakly nonlinear regime and
of Swift-Hohenberg-type equations. While previously the focus was on the qualitative features that can
be expected in hexagon patterns with broken chiral symmetry [14-18, 30] here we have determined the
coefficients in the Ginzburg-Landau equations and their dependence on the fluid and system parameters.
For the strongly nonlinear regime we have utilized a Galerkin method.

The weakly nonlinear analysis, which focused on moderate Prandtl numbers (using water as the fluid),
confirmed the expected transition from longwave to shortwave steady sideband perturbations as the insta-
bilities that limit the band of stable wavenumbers. In this regime the oscillatory instability that arises from
the interaction of the two different phase modes is experimentally not relevant. This analysis also gives the
existence range of the oscillating hexagons that arise in a Hopf bifurcation off the steady hexagons and end
in a heteroclinic cycle as the Rayleigh number is increased.

The fully nonlinear Galerkin analysis confirmed the validity of the leading-order weakly nonlinear results
close to threshold and for not too small Prandtl numbers. For small Prandtl numbers, as exemplified by
CO, as fluid, the stability region becomes very asymmetric indicating the relevance of higher-order gradient
terms or of a mean flow driven by pattern deformations. Similar stability regions have been obtained in a
weakly nonlinear analysis in which the three coupled Ginzburg-Landau equations are extended to include
the non-local interaction induced by the mean flow [30]. A comparison with that analysis suggests that
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the longwave modes that limit the stable band of wavenumbers in the non-rotating system are different
on the high- and the low-wavenumber side. For large wavenumbers the destabilizing mode is expected to
be the transverse phase mode, whereas for low wavenumbers the longitudinal mode is predicted. It was
found that the transverse mode leads to much more disordered transient patterns and as a consequence the
ensuing relaxation to the stable pattern takes noticeably longer [30]. Once the system is rotated, the relevant
perturbations on the low-wavenumber side become oscillatory. The nonlinear evolution developing from this
instability is not known.

Interestingly, in the strongly non-Boussinesq case, which in fact corresponds to the experimental set-up of
[26], no amplitude instability from steady hexagons to rolls via the mixed mode could be found for € < 0.5.
Experimentally, however, in the absence of rotation the transition from hexagons to rolls had been observed
near € = 0.1. Based on our stability analysis this transition would be expected to be a sideband instability
of hexagons rather than the amplitude instability associated with the mixed mode, suggesting that the
transition to rolls would involve the formation of defects from which then rolls invade the hexagon patterns.
The fact that in the experiments rolls are always present to some extent near the boundaries may make the
interpretation of the transition more subtle.

In the strongly non-Boussinesq case, in which the hexagons are linearly stable quite far above onset,
the hexagon solutions with small wavenumbers are strongly influenced by a spatial resonance involving the
fundamental modes and their first harmonics, similar to the case of Taylor vortex flow [49-51]. While in
the latter case the pattern is quasi-onedimensional and the resonating wavenumbers have a ratio of 1 : 2,
the resonance of the two-dimensional hexagon patterns involves modes subtending an angle of 30° and with
wavenumber ratio 1 : v/3. Similar to the case of Taylor vortex flow, the solution branch of the usual (hexagon)
pattern ends on the branch of harmonic modes. This bifurcation occurs very close to the side-band stability
limit of the hexagons [48].

We have also determined the stability regions of roll convection in these non-Boussinesq cases without and
with rotation. For the high-Prandtl number case rotation rates are experimentally accessible at which the
rolls become linearly stable only above the transition from steady to oscillating hexagons. One may expect
that this would provide a situation in which oscillating hexagons are experimentally accessible. It is, however,
possible that the instability of the rolls does not lead to the linearly stable oscillating hexagons, which are
the only spatially periodic stable solutions, but instead to a disordered chaotic state of the Kiippers-Lortz
type.

We have not addressed the stability of hexagons that have slightly different wavevectors in the three
components [52].

The predictions for the stability boundaries and the type of instabilities determining them appear now
amenable not only to numerical simulations but also to experimental studies since recently the printing of
two-dimensional convection patterns by laser heating has been used successfully in measuring the band of
stable wavenumbers in hexagonal Marangoni convection [24]. In particular the oscillatory sideband instability
identified in our stability analysis may lead to interesting dynamics.
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and C'O; in the different experimental regimes.
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VII. APPENDIX

The non-Boussinesq terms -y; lead to shifts AR, and Ag. in the threshold value of the Rayleigh number
and the associated critical wavenumber, respectively. To leading order in ~y; the shifts are quadratic in the
non-Boussinesq terms,

4
R.(7:,Q) = R.(0,9) [ 1+ Y AR;(Q)v; |, (41)
1,7=0
4
0(16 Q) = 40,2 {1+ D Agyi(D) v | - (42)

%,j=0
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Note that in (41,42) the 7; are given by those corresponding to R.(0,Q) (cf. (38)). In principle, due to
the dependence of the «y; on the temperature difference, which in turn depends on the Rayleigh number,
the critical Rayleigh number is given by a nonlinear eigenvalue problem, which can be solved iteratively.
However, since the threshold shift due to the non-Boussinesq terms is quite small for most experimental
situations, the leading-order correction of O(v?) indicated in (41,42) with ~; corresponding to R.(v; = 0,)
is sufficient. In tables ILIILIV we give the coeflicients AR;; and Ag;; for @ = 0, 2 = 30, and Q2 = 50,
respectively. Since the coeflicient matrices AR;; and Ag;; are symmetric the upper right triangle of each
table gives the coefficients Ag;; for ¢ = 0..4 and j = i..4, whereas the lower left triangle gives the coeflicients
AR;j, for i = 0.4 and j = 0..i. Note that in the sums in (41,42) the off-diagonal terms are summed over
twice. It is worth noting that some of the coefficients depend non-monotonically on Q over the range Q2 =0
to Q = 50, e.g. ARy increases and decreases substantially over that range of Q.

0 1 2 3 4 [10°- Agi;
0 0.597 -1.336 0.464 |-0.000{-0.000[-0.231 0
1 -0.367(-0.758 -3.318]2.633 | 5.422 |-3.653 1
2 0.000 | 2.233[-5.074 4.821[-2.636|1.316 2
3 0.000 | 4.499 [-2.232[-4.521 -5.432] 2.665 3
4 0.183 [-1.514] 1.116 | 0.948 [-0.189 -0.831 4
10> - AR;;| 0 1 2 3 4

TABLE II: Expansion coefficients AR;;(x10%) and Ag;;(x10?) for the threshold shift and the shift in the critical
wavenumber, respectively, for Q = 0.

0 1 2 3 4 [10°. Agy
0 -0.247 2.968 [-0.938]0.002 [-0.000| 0.469 0
1 -0.069-1.431 -5.160] 4.055 | 6.800 [-4.509 1
2 -0.000] 1.966 | 0.763 -15.90(-4.064 2.028 2
3 0.000 | 5.668 |-1.970(-5.700 -6.793] 3.553 3
4 0.034 [-2.174]0.983 | 1.449 |-0.357 -1.289 4
10 - AR;;| 0 1 2 3 4

TABLE III: Expansion coefficients AR;;(x10?) and Agq;;(x10%) for the threshold shift and the shift in the critical
wavenumber, respectively, for Q = 30.

0 1 2 3 4 [10°- Agy;
0 -0.229 1.837 |-1.315] 0.000 [-0.001] 0.659 0
1 0.036 |-2.053 -6.955 | 5.290 | 7.985 |-5.274 1
2 -0.000] 1.629 | 2.752 -17.97(-5.302| 2.646 2
3 -0.000| 6.715 [-1.638(-6.758 -7.952] 4.385 3
4 -0.018]-2.743] 0.815 | 1.892 [-0.513 -1.739 4
10° - AR;;| 0 1 2 3 4

TABLE IV: Expansion coefficients AR;;(x10%) and Ag;;(x10%) for the threshold shift and the shift in the critical
wavenumber, respectively, for 2 = 50.
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