Competition of periodic and homogeneous modes in extended dynamical systems
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Despite their simple structure, spatially homogeneous modes can participate directly in pattern-

formation processes. This is demonstrated by new experimental and theoretical results for thermo-

and electro-convection in planar nematic liquid crystals, where two distinct homogeneous modes,

twist and splay distortions of the director field, emerge. Their nonlinear excitation is due to certain

spontaneous symmetry-breaking bifurcations.

PACS numbers: 47.54.4+r, 47.20.Ky, 47.20.Lz, 82.70.Df

The transition to spatio-temporal complexity in driven
systems is typically traced back to the spatial and tempo-
ral periodicity of the linear exponentially growing modes,
their nonlinear couplings and saturation [1]. Recently
also the importance of spatially homogeneous modes with
zero wavevector for the pattern selection in chemical sys-
tems has been emphasized [2]. Another example is homo-
geneous shear flow in inclined layer convection [3]. It is
understandable, that homogeneous modes have attracted
less attention so far. They are more difficult to identify
directly by standard optical methods. Moreover, they
are often associated with spontaneous symmetry break-
ing bifurcations in the nonlinear regime, which can be
easily overlooked in the theoretical analysis as well.

In order to study the possible scenarios associated with
multiple homogeneous modes, thermally or electrically
driven convection in nematic liquid crystals (nematics)
provides interesting model systems [4, 5]. The mean ori-
entation of the elongated molecules of nematics is de-
scribed by their director field fi. The coupling of direc-
tor distortions to the other fields (e.g. velocity, tem-
perature, charge density) allows for new efficient con-
vection mechanisms typical for intrinsically anisotropic
fluids [4-6]. Another advantage of nematics is that i
can be monitored optically and oriented through electro-
magnetic fields. Such effects are for instance exploited in

liquid crystal displays.

Since the first systematic investigations of convection
in nematics in the seventies, the use of a homogeneous
magnetic field as a secondary control parameter has con-
tributed considerably to the analysis of the underlying
mechanisms [6-9]. In the case of planar nematic convec-
tion where i = X at the cell boundaries, a planar mag-

netic field H = HX tends to hinder director rotations
off the X direction on the linear level and the convection
threshold does increase rapidly with H. Our new results
yet prove that two homogeneous modes, twist and splay
(Fig. 1), surprisingly with a director component perpen-
dicular to H, control the secondary bifurcation sequen-
cies in the nonlinear regime above onset. Before only
the importance of a homogeneous twist has been realized
[10, 11], which is, however, more difficult to visualize in
the experiments than the new splay mode in Figs. 2 and
3. The theoretical analysis of the complicated interplay
between the twist and splay modes is condensed into Fig.
4.

We focus mainly on nematic thermoconvection which
is obtained when the temperature difference AT across a
nematic layer between two horizontal plates at z = +d/2
exceeds a critical value AT, [5, 12, 13]. In addition, we
present preliminary results in nematic electroconvection
where an ac-voltage V' of frequency f drives the convec-
tion instabilities [5, 14, 15]. In both systems normal rolls,
characterized by a director field of the form

ny =0, n, = Acos(q-r)cos(nz/d) (1)
to leading order, with a wavevector q = ¢.X parallel to
the anchoring direction, are preferred at onset. As usual,
the magnetic field is scaled in units of a characteristic
Fréedericks field Hr [7, 12]. In the regime h = H/Hp S
3, when € = AT/AT.(h)—1 (or € = V2/V2—1 in electro-
convection, respectively) is slowly increased, the normal
rolls bifurcate at € = ezz to oblique rolls, where q - ¥
becomes non-vanishing. At higher € = ey, a secondary
oblique-roll mode of wavevector k becomes excited, lead-
ing to the bimodal varicose structure [13, 15]. This se-



quence has been interpreted by an extended weakly non-
linear analysis [14], which shows that the z-y homoge-
neous twist mode

Ny = (pCOS(ﬂ'Z/d) , ny=0, (2)

excited by nonlinear effects for € > ezz, drives the zigzag
and bimodal bifurcations.

Our experiments at larger h, however, reveal new pat-
terns, with no change of periodicity of the rolls, but in-
stead with an increasing asymmetry of the roll diameters.
In ordinary light, where the intensity variations are pro-
portional to the vertical average n2 of n? across the layer
[16], every second roll becomes larger and brighter. From
Fig. 2 it can be deduced that a homogeneous splay mode

ny =0, n,=1cos(rz/d), 3)

is superimposed onto the periodic n.-variations (1),
which leads to the notion of splay rolls. The excita-
tion of homogeneous splay at large h is further con-
firmed by the observation of a new type of bimodal
varicose structure (Fig. 3a). In contrast to the clas-
sical bimodal structure [13], the varicose pinchings are
more pronounced at every second roll due to the en-
hanced splay. A quite accurate reconstruction of such
a pattern is indeed obtained by using a combination
n, = [Acos(q-r) + Bceos(k - r) + ¢] cos(rz/d) of the
two corresponding roll modes (1) plus the splay mode
(3). This new pattern is generic in nematic convection
since it also appears in electroconvection in the presence
of a planar magnetic field (Fig. 3b).

The various higher-order bifurcations and in particular
a subcritical regime for h > hy ~ 4 [12] cannot be cap-
tured by weakly nonlinear methods. Thus a fully nonlin-
ear analysis of the nematohydrodynamic equations based
on Galerkin methods [17] has been developped. Our re-
sults for thermoconvection are summarized in the sta-
bility diagram Fig. 4. The diagram for electroconvec-
tion looks similar according to some first calculations.
At € = er, we do find a bifurcation to twist normal rolls,
which have been called “abnormal rolls” in electrocon-
vection [10]. At larger h, above the codimension-2 point
C1, the bifurcation to splay normal rolls at eg is found.
Between the codimension-2 points C; and Cj splay rolls
bifurcate to splay-twist normal rolls at egt until the twist
suppresses the splay at er between Cy and C5. At large €
bimodal instabilities are predicted, either leading to clas-
sical bimodal varicose at egy or to splay bimodal vari-
cose at espy. Note that between C3 and (4, the splay

bimodal contains four active modes: the homogeneous
splay mode and twist mode and the two periodic roll
modes. At large h, we find stable subcritical splay roll
solutions even slightly below the tricritical point h¢. The
line espy merges with hg, but the bifurcation becomes
oscillatory.

Some basic features of the new splay rolls can be re-
vealed by a generic description of the coupled periodic
and homogeneous modes. Following the general scheme
in [14] the resulting coupled-amplitude equations for the
roll (A) and splay (¢) amplitudes,

TO, A = €A —gA3 — BAY?
O = —osp +Ts A%, (4)

are systematically derived from the nematohydrody-
namic equations. The linear damping factor og =
ki1/m(m/d)*(1 + h?) does increase with h (ki1 is the
splay elastic constant, vy; a characteristic viscosity of the
nematic), but can be compensated by the positive term
o« I'sA?, leading to a continuous splay bifurcation at
es = g og/Ts, slightly lower than the Galerkin value.
The positive sign of the nonlinear coefficient I's is im-
posed by a combination of magnetic and viscous effects.
The first one, which is associated with a term +h?n? in
the n, equation, originates from the magnetic quadrupo-
lar nature of nematics, which aligned along Z would feel
no magnetic torque. The second one is active for ar-
bitrary h in thermally and electrically driven convec-
tion. It describes the general tendency of the director
to avoid director-transverse velocity gradients: with the
splay mode the director escapes vertically the velocity
gradients due to the roll modulation Fig. 1.

From a quantitative point of view, there is a good
agreement between theory and experiments in thermo-
convection in the low-h regime and in particular for the
bimodal bifurcations [18]. The measurements shown in
Figs. (2,3a) at larger h are also consistent with the the-
ory. The roll-diameter modulation and the results for
espv and the secondary wavevector k at the bifurcations
to splay bimodals match within 15% the theoretical pre-
dictions. The Hopf bifurcation at large h, probably con-
nected with the oscillating bimodal instability appearing
at rather large € in the limit A — 0 [13, 14], may explain
the peculiar Nusselt number oscillations reported in [7]
very close to onset in the subcritical regime [19].

In this work, new bifurcations have been identified in
nematic convection and explained by the competition of
homogeneous with periodic modes. Fig. 4 proves that



the balance achieved in the nonlinear regime between
efficient convection, minimizing torques on the director
and viscosity dissipation can be subtle. We point out
that the orientational role of the magnetic field in the
linear regime, which is well known in the context of the
simple Fréedericks transitions, cannot be extrapolated in
the nonlinear regime: in our system the planar magnetic
field does contribute to the excitation of a homogeneous
splay. Of course, homogeneous splay can be already ex-
cited in the linear regime by a vertical magnetic field or a
pretilt at the boundary; splay bimodals have in fact been
observed in such cases [8] as well, though not explained
at this time. To describe the slow spatial variations of
homogeneous and periodic modes, Egs. (4) have now to

be generalized by including spatial derivatives. Thus con-
tact will be made to the description of quasihomogeneous
modes, which have recently attracted some interest [20].
Moreover, a theoretical description of walls between the
equivalent +1 states observed in some experiments or of
other defect structures will become possible [21].

In conclusion, our results show that the interaction be-
tween multiple homogeneous modes and periodic modes
can lead to quite complicated scenarios in the nonlinear
regime (Fig. 4). They should motivate further analyses
of this competition in other extended dynamical systems.

We are grateful to L. Kramer and S. Kai for valuable
discussions.
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FIG. 1: Schematic convection cell with the periodic director
field /i of a normal roll mode (1) (solid arrows). To avoid

viscous torques created by the velocity field (circular stream
lines), the director has a tendency to align along ¥, thus cre-
ating an homogeneous twist (2). The dashed arrows show the
new homogeneous splay mode (3) superimposed on fi. The
director rotation towards Z presents a different option to avoid
viscous torques in the roll-edges regions.
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FIG. 2: Top: ordinary light splay-rolls picture in thermocon-
vection of the nematic 5CB in a cell of thickness 1.52 mm
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at h = 3, € = 0.14. Bottom: corresponding intensity line-
profiles I(z') along the wavevector direction (coordinate z’).
The periodic roll-diameter modulation (marked by bars) can-
not be explained by the theoretical expression for standard
rolls deduced from (1), I(z') x n2(z') = A%cos®qz’. The
more general form nZ(z') = (Acosqz’ + v)2, corresponding
to the superposition of rolls (1) and splay (3), leads instead
to an accurate reproduction of the experimental profiles.



FIG. 3: (a): Picture of a splay-bimodal pattern in thermo-
convection of the nematic MBBA in a cell of thickness 1.3 mm
at h = 3.3, e = 0.22. With the use of eztraordinary light the
spatial variations of n, are mapped into edge and center-lines
caustics [16]. The thin (thick) arrows on the pattern indi-
cate the direct (reciprocal) lattice base vectors. (b): Splay-
bimodal in electroconvection of the nematic Phase 5 in a cell
of thickness 50 pym at h = 5.1, f = 80 Hz, ¢ = 0.58. The
double arrows at the bottom indicate on both pictures the
modulation of the roll diameters.
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FIG. 4: Theoretical stability diagram for the thermoconvec-
tion of the nematic 5CB and rolls with a critical wavevector
q = gc(h)x. The bifurcation lines above onset (¢ = 0) indi-
cate zig-zag (ZZ), twist (T), splay (S) and bimodal varicose
(BV) bifurcations, together with their possible combinations,
and a Hopf bifurcation close to the tricritical point h¢ (see
text). The codimension-2 points C; where several bifurcation
lines meet are marked.



