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Abstract. The purpose of this review is to present a status report on the elec-
trohydrodynamic convection in nematic liquid crystals. The considerable progress
achieved in the past two years is emphasized.

1 Introduction

Pattern formation in fluid systems driven away from equilibrium is a common
phenomenon in nature [1, 2]. A famous canonical example is the Rayleigh-
Bénard convection (RBC) in simple isotropic fluids which continues to be
the subject of numerous experimental and theoretical studies (see e.g. [3]).
More recently the rich variety of dynamical structures found in liquid crystals
(LCs) has attracted considerable and still growing attention.

LCs are materials made up of highly anisotropic organic molecules in a
state that reflects the anisotropy [4, 5]. Thus LCs have become a prime model
for the study of pattern formation in anisotropic systems. There are several
classes among which nematic LCs (nematics) play a dominant role in this
article. Nematics are fully liquid without long-range translational, but with
long-range uniaxial orientational ordering of the molecules. As a result of
the coupling of the molecular alignment axis (described by the director fi)
with mass flow, electric and thermal currents, the hydrodynamic equations
involve numerous nonlinearities (see Sect.2), which easily lead to instabili-
ties when a state of nonequilibrium is maintained (see e.g. [6]). Convective
flows can be driven either electrically through space charges that naturally
arise in an anisotropic conductor in the presence of spatial variations (elec-
trohydrodynamic convection, EHC) or thermally through buoyancy forces
(Rayleigh-Bénard convection, RBC).

EHC has attracted most of the attention and will be exclusively discussed
in this review. In the typical thin-layer geometry shown in Fig.la the nematic
is sandwiched between glass plates (separation d ~ 10 — 100y) with trans-
parent electrodes. The surfaces are treated to provide uniform anchoring of
the director, in most cases along the « direction (”planar” or ”homogeneous”
alignment), but sometimes also in the z direction (“homeotropic” alignment).
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Above an applied (critical) voltage V., ~ 10V (typically low-frequency ac)
convection rolls appear with associated director distortions, which are easily
detected optically. The spacing of the rolls is of order d except in the higher-
frequency ”dielectric range”. Fig.1b shows a typical pattern with normalrolls,
i.e. normal to the undistorted director in the x direction.

i

Fig.1a. Cell geometry with section of Fig.1b. Normal roll pattern for EHC
a roll pattern for EHC (planar con- with a dislocation.

figuration). E = electric field, v= ve-

locitey.

From the experimental point of view EHC is attractive because of the
easily accessible control parameters like electric and magnetic fields. The
characteristic times are typically short (¢ sec) and the extension of the pat-
terns large (up to 1000 perfectly aligned convection rolls). For the theory it
is important that spatio-temporal complexity appears quite often already in
the vicinity of the convection onset. Thus common perturbational schemes,
like the order parameter approach can be put on a sound basis and their
reliability can easily be evaluated.

Liquid crystals are complicated and an intuitive understanding of all the
mechanisms hidden in the nematohydrodynamic equations is not easy. In fact,
the remarkable progress in the last two decades is not imaginable without the
particularly close collaboration between experimental and theoretical groups
in this field. There are numerous examples (only some of which we will men-
tion explicitly) where experimental findings have motivated the theoretical
efforts and vice versa. For a classical review of convective instabilities in LCs,
see [7] and for EHC one may consult the books of Blinov [8] and Pikin [9] and
the review articles [10, 11, 12, 13, 14]. In recent overviews [15, 16] in particular
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the progress achieved in the years from 1984 - 1996 was emphasized.

The investigation of convection scenarios in LCs is also a problem of
materials. In experiments the standard reference materials MBBA (4-meth-
oxybenzylidene-4’-n-butyl-aniline) or a mixture, Merck Phase 5, have typi-
cally been used (sometimes doped with an ionic substance). These are the
only room-temperature nematics with dielectric anisotropy, ¢, < 0, where vir-
tually all the material parameters have been measured (for tabulated values:
see e.g. [17] for MBBA, [18] for Phase 5 and references therein). Since these
nematics are similar in their properties, the investigation of other classes is
highly desirable and promising. A recent successful example is the new very
stable material 152 (4-ethyl-2-fluoro-4’-[2-(trans-4-n-pentylcyclohexyl)-ethyl]-
biphenyl) doped with iodine [19, 20]. Even at onset qualitatively new localized
structures (“worms”) [21] have been detected, which provide a new challenge
for the theory. This applies also to materials where one can switch continu-
ously from the nematic to the smectic phase by decreasing the temperature
[22].

In the present article we will concentrate on the most recent results in
various realizations of EHC. In addition we will focus on an interesting topic
in detail which could be addressed only briefly in the previous reviews [15, 16]
because of space limitations. The restoring forces on the director in LCs are
not very strong and its dynamics is susceptible to very weak external bias.
In hindsight it is therefore not too surprising that for the first time the influ-
ence of thermal noise on a continuous nonequilibrium phase transition was
successfully analyzed in nematics [23, 24]. In this paper it will be demon-
strated that a controlled application of noise is very attractive both from the
experimental and theoretical point of view.

After the introduction and explanation of the basic equations (Sect.2)
the theoretical concepts (the linear and weakly nonlinear analysis) will be
sketched in Section 3. Section 4 deals with various new aspects of EHC in
the planar configuration and in Section 5 the homeotropic configuration is
discussed. Section 6 is devoted to the noise-driven EHC near threshold. Fi-
nally, in the General Conclusions (Sect. 7), we shall mention some perspec-
tives for future work. Furthermore a brief connection to other hydrodynamic
instabilities in nematics 1s made.

2 Basic equations and instability mechanisms

The dynamics of liquid crystals is described by a well accepted set of macro-
scopic equations (see e.g. [4, 5, 25, 26]). Here we will sketch only the most
simplest version pertaining to nematic LCs.

In the nematic state the isotropy 1s spontaneously broken and the averaged
molecular orientation is described by the director n, i.e. a unit vector where
+n are equivalent. The dynamical balance of torques on the director n is

determined by:
ymxn=nx (heg+hys) (1)



4 W. Pesch, U. Behn

where the dot stands for the material derivative % +v-V.In Eq. (1), the
elastic molecular field, h,; , derives from the elastic free energy density f.;:

1
Ja = 9 [£11(V 1) + kas(n - V x1)® + kaz(n x V x n)?] (2)
1 1
—§ﬂ0Xa(n -H)? - §€0€a(n -E)?

according to the relationship

dfa dfa

(he)i = —

The k11, ko2, k33 terms are associated with splay, twist and bend distortions
of the director field. The importance of electric (E) and magnetic (H) con-
tributions is determined by the anisotropy of the magnetic and electric sus-
ceptibilities xo = x) — x1 and €, = € — €., respectively.

The viscous part of the molecular field, h,, can be written as:

h,=—-a2D n—asn-D (4)

where the tensor D characterizes the velocity shear (D;; = Jv;/0x;). Since
ay < 0,and y1 = az—asz > 0 (see Eq.(1) with |as| > a3) the torque tends to
rotate the director in order to avoid the director-transverse velocity gradients
n x Dn.

The momentum balance results in the (generalized) Navier-Stokes equa-
tion for the velocity field

dv
m—— =1 -T
pm B+V (5)
with the bulk force fg to be discussed below and the stress tensor
ofe
Tij = —péij — 3n—l,nw +tij (6)

where p,, denotes the mass density and p the pressure. The viscous contri-
bution ¢;; contains the six Leslie shear viscosity coefficients «; [27]

t;; = ainpnm Armning +aan Ny +ozn; Ny +aa Ay fasning Ay +asnjng Ag;.
(7)
with the positional strain tensor A4; ; = 1/2(D; ; +D; ;). There exists also an
orientational strain (~ a9, ag, cf Eq.(7)) which is associated with the director
dynamics relative to the local solid body rotation (with the rate %curlv):

d 1

= d_:fl — §(curlv X n). (8)
With the use of an Onsager relation ag — a5 = as + a3 the number of

independent parameters can be reduced [28]. Incompressible flow is assumed
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(V -v = 0), which is guaranteed by the introduction of the toroidal and
poloidal velocity potentials (see [29]).

Crucial for the occurrence of EHC is the bulk force f5 in the Navier-Stokes
equation (5):

fg = pagE+ (P -V)E, P=(e— 1)E. (9)

The first term in fg is the classical Coulomb force on the charge density p.;.
Much less important is ponderomotive force in the second term which con-
tains the macroscopic polarization P (for the dielectric tensor € see Eq.(11)).
In principle there exist also flexoelectric contributions to P [30, 31]. They
seem to be negligible except for very thin cells and for not too large ac fre-
quencies [32, 16, 26]. The equation determining p.; is obtained from charge
conservation and Poisson’s law

dp.
%‘FV'(O"E):O, pa=V-(e-E). (10)

Here the dielectric and conductivity tensors € and o (typical for uniaxial
anisotropy) are given by:

€ = €L+ €nng; 055 =01+ 0qnin;. (11)
The assumption of an anisotropic, but fixed ohmic conductivity is character-
istic for the standard model. A more general ansatz (the “weak-electrolyte”
model, WEM [33]) is discussed in Section 4.2.
According to the standard model (SM) described above one can distin-
guish between three relaxation-time scales for the director (r4), the velocity
(Tvise) and the charge (7). The following expressions are easily derived:

Ty = 'yldz/(ﬂ'zkn), Toise = medz/(72a4), Ty =c0eL /oL, (12)

74 is typically the longest time (1 — 10sec) followed by 7, (~ 10+3s). Even
shorter is Ty5¢ ( 10“’5). Thus the velocity field can usually be treated adia-
batically (neglect of ”inertial terms”).

Now we are in a position to discuss the basic driving mechanism for
EHC. The important point is that in almost all nematics o, is substantially
positive (typically o4/ ~ 0.3 — 1). Choosing materials with negative or
only slightly positive dielectric anisotropy ¢, (here the materials show great
diversity) one easily sees that in the presence of an applied field E and with
a (small) spatial fluctuation of the director n a space charge pe; results (no
solution of Eqgs. (10) with p.; = 0). Roughly speaking the charges are focused
at locations where the director bends. The bulk force in the Navier-Stokes
equation (5) may then overcome viscous stresses and drive a velocity field v.
Via the viscous coupling (see Eq.(1)) this may enhance the spatial variation
of the director and thus generate an instability. For low frequencies and for
materials with not too large dielectric anisotropy the threshold voltage is of
the order V. &~ \/7%k11/(017;) and the introduction of the reduced control

parameter R = VZ:;—le"l is often useful.
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3 Elements of the Theoretical Analysis

The theoretical methods for analyzing pattern forming instabilities are quite
extensively discussed in the literature (see e.g. [2, 34, 35] and [36] in particular
for nematics) The set of macroscopic equations as presented in the previous
section can be written in the following symbolic form:

LV 4+ No(VIV)+ N3(VIVIV)+ - = By + B1(V) + BQ(V|V))%—‘;. (13)
V = (¢,n,v,....) stands for the collection of field variables involved in
EHC; they are choosen in such a way that V = 0 corresponds to the noncon-
vecting ("basic”, "primary”) state. The components of the vector operators
Nj, N3... are quadratic, cubic... in V and its spatial derivatives, whereas
the quantities £ and B; represent matrix differential operators of the order in
V indicated. A reformulation of Eq.(13) in Fourier space is often appropriate
with respect to the horizontal directions x = (z, y) of ”infinite” extent. In the
transverse direction (z) the boundary conditions are satisfied by expanding V
with respect to a suitable complete set of test functions (Galerkin method).
The onset of the instability is obtained from a standard linear stability
analysis of the basic (primary) state. For a certain Fourier mode U(q) with
the wave vector q = (¢, p) one arrives from Eq. (13) at an eigenvalue problem:

ABo(iq, 9., R)Uq(2) = L(iq, 8., R)Uq(2), (14)

where R denotes the main control parameter (e.g. the squared voltage in the
case of EHC).

The eigenvalue A(q, R) = o(q, R) + i2(q, R) with the largest real part,
determines the growthrate ¢ and the frequency §2 of planforms near onset.
The condition o(q, R) = 0 defines the neutral surface R = Ry(q). Minimizing
Ro(q) with respect to q gives the threshold R, = Ry(q.) with the critical
wavevector . = (¢¢, pe) and the critical frequency 2, = £2(q.), which van-
ishes for a stationary bifurcation (the more common case) but differs from
zero for a Hopf (oscillatory) bifurcation.

In an axially anisotropic system like planar EHC, one speaks of “normal”
rolls (see Fig.la) if q. is parallel to the preferred direction (p. = 0). If q. is
at an oblique angle, one speaks of "oblique” rolls (see Fig.2a below). Clearly
one then has the two symmetry-degenerate directions (”zig” and ”zag”) which
may superpose to give rectangles. In the case of a Hopf bifurcation one has
a degeneracy between waves traveling in opposite directions, which may also
superpose to give standing waves. In the oblique-roll case even four degenerate
modes are involved.

In EHC, for the usual case of driving with a pure ac field of angular
frequency w = 27 f, the eigenvector Uq of Eq.(14) inherits the additional
periodic time dependence and the eigenvalue A becomes a Floquet coefficient.
Then there is an additional discrete symmetry (z,t) — (—z,t+ 1/(2f)) and
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each component of Ug has a definite parity: Generally the "conductive” mode
(nonvanishing time average of all fields except the induced electric potential
¢) destabilizes first at low frequencies f. Above a ”crossover frequency” fy
the “dielectric” mode with the opposite parity determines the threshold. The
existence of these two regimes planar EHC was first pointed out by the Orsay
group [37, 38] (for further details see [12, 13, 16]).

A good understanding of the regime slightly above threshold is conven-
tionally achieved by the weakly nonlinear analysis [39, 40, 1, 34]. The basic
idea in its rather general form (for a recent more detailed presentation see
[41, 42, 36]), is to reduce the phase-space dimension of the system by expand-
ing V in an appropriate basis of states, characterized as the ”dynamically
active” ones [34]. At first the linear modes in Eq. (14) of positive or slightly
negative growthrate are included in this set. Their expansion coefficients A(q)
correspond to order parameters, which vanishes at threshold. By a systematic
expansion up to cubic order in A one arrives at the order parameter equa-
tions for the A(q) [36, 43, 41], which permit the calculation of roll solutions
and their stability at threshold. In particular the universal features become
more transparent when the order parameter equations are reformulated in
real space in terms of amplitude (envelope) or Ginzburg-Landau equations
(GLE), for which the fast spatial variations (~ ¢!) are separated out. This
real-space formulation is essential when 1t comes to the description of more
complex spatio-temporal patterns with disorder and defects, which have been
studied extensively in EHC slightly above threshold (see Fig.1b). One ends
up with the famous (slightly generalized) Ginzburg Landau equation [44]

A =Nq. —iV,e)A —v]|A*A (15)

where A is the linear growth rate of Eq.(14). Clearly A is zero at threshold
¢e=(R—R.)/R. =0,V =0 and should be expanded in both arguments. At
threshold it is sufficient to keep the following terms

Mae =iV, €) & €+ &1 07 + 2061620, 0y + EEW O] — i261€50,0] — €30, (16)

The various constants in Eq.(16) determine the curvature of the neutral curve
at e = 0.

On this level the expansion can be cast into an overall expansion scheme
in terms of €1/2, or equivalently A. In the anisotropic case, where there is
no continuous degeneracy of the critical mode(s), one may in general assume
€~ A2~ 0y ~ 02 ~ 65, so that the higher order terms ~ 6x65 and 8;} drop
out (W = O(1)). The terms in Eq. (15) thus become uniformly of order ¢3/2.

Going back to Eqs.(15, 16) with @ = 0 it is easy to see that a decrease
of W from positive to negative value owing to the change of some secondary
control parameter, like the frequency in EHC describes a transition from
normal to oblique rolls. Details of this transition, which is the analog of
a Lifshitz point in the theory of equilibrium phase transitions, have been
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discussed elsewhere [45, 17, 46, 47]. The corresponding uniform scaling ~ R
as in Eq.(15) is recovered with W ~ e'/? ~ 8, and now Oy ~ e'/* This
corresponds to the scaling adopted in 1sotropic media. In fact the well-known
Newell-Whitehead-Segel amplitude equation for isotropic systems [48, 49]
can now be obtained as the special case W = 0 and 7 = £2 in Eq.(16).
In the case of a Hopf bifurcation (as observed in EHC) all the coefficients
of Eq.(15,16) become complex. The resulting celebrated ”complex Ginzburg-
Landau equation” (CGLE) exhibits transitions (e.g. at the Benjamin-Feir
instability) to various forms of spatio-temporal chaos and is presently studied
intensely (for general reviews see e.g. [2, 34]).

The general structure of GLE’s can be deduced a priori from the sym-
metries in a system as for instance the invariance properties with respect
to space- and time translations or suitable reflections. The symmetries also
manifest themselves in the linear growth-rate function (16). In simple cases
very few coefficients determine the GLE, which can be extracted by com-
parison with the experiments. But in general for a quantitative comparison
with experiments the often tedious calculation of the coefficients is inevitable
[17, 12, 41, 50, 33, 16].

The GLE(15) determines only the stability of rolls with respect to dis-
turbances of the generalized Eckhaus type, i.e. slow modulations of the roll
spacing and undulations along the roll axis [45]. For the description of sec-
ondary bifurcations and modulated roll patterns away from threshold the
weakly nonlinear analysis must be extended through the consideration of ad-
ditional modes. For instance nonanalytic “mean flow ” contributions of the
order ~ A? have been included [43, 51].

In the simplest version the equation for the mean-flow amplitude B as-
sumes the form:

(clﬁi + 6265) B = q16x6y|A|2 + qa0y (iA*@;A + c.c.) 4+ (17)

Eq.(15) is supplemented by a coupling term term ~ AJy B. The mean flow is
excited by long-wavelenght modulations of the pattern A(z,y,t). Since the
field B satisfies an anisotropic Poisson equation, its long-range character is
evident. In nematics the mean flow turns out to enhance transverse modula-
tions (g4 > 0) in distinct contrast to isotropic fluids in most cases (g4 < 0)
[43].

Very recently is has been emphasized that in EHC other slowly damped
modes have to be included in the set of active modes besides mean flow.
Their inclusion leads to additional equations, which have a structure similar
to Eq.(17). Most important are the twist modes of the director n, which cor-
respond to a rotation of n in the plane of the layer. They are weakly damped
and can easily be excited near threshold. In the case of homeotropic aligne-
ment with rotational invariance this is obvious [52]. Any configuration with a
finite in-plane component of the director spontaneously breaks a continuous
symmetry, namely the isotropy. The growthrate of the associated Goldstone
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modes, which tend to restore the isotropy by a rotation of the in-plane di-
rector approaches zero in the homogenous case and 1s consequently small for
slow modulations. But in the planar case inspite of the elastic torques due to
anchoring of the director at the boundaries the damping of the twistmode is
also weak [56].

The coupling of a short-wavelength patterning mode to a weakly damped
long-wavelength one (like a Goldstone mode) readily leads to complex-spatio
temporal patterns at threshold. One should mention a 1d model for seismic
waves, where a spontaneous symmetry breaking is also important[53] or the
coupling to a concentration mode in binary fluids [54]. The occurence of
localized ”worm” structures [21] and their modelling by a slow ” charge-mode”
[55] will be discussed in Sect.4.2.

An order-parameter approach for the regime further above threshold is
certainly less systematic than the derivation of Eq.(15) since for instance
the e-scaling is no longer benificial. Therefore fully nonlinear calculations are
indispensable. One follows the approved method in isotropic RBC: Galerkin
expansions are applied and the resulting coupled highly nonlinear equations
for the expansion coefficients are solved by Newton methods. Afterwards the
solutions are tested for stability.

On the basis of numerical results and of comparison with experiments
it has been demonstrated that EHC in nematics is one of the very few
cases where secondary (and even higher bifurcations) can be captured semi-
quantitavely by an order-parameter approach (see e.g. [56]). A further very
useful simplified description makes use of a suitable phase-diffusion equa-
tion ([57]), which allows for a transparent description of the quite intricate
bifurcation scenarios in EHC [58]. Convection instabilities in nematics are
therefore an important paradigm for the validation of a reduced dynamical
description of pattern forming systems in general.

4 EHC in the planar configuration

4.1 General background

The mechanism for the instability in EHC is based mainly on space charges
generated by preferential conduction along fi (”charge focusing”, see Sect.2).
The basic idea has been suggested by Carr [59] and incorporated into a first
one-dimensional model by Helfrich [60]. A first generalization to include the
common case of ac driving followed almost immediately [37, 38]. Tt became
clear that one has to distinguish between the low-frequency ”conductive”
and the ”dielectric” regime above a certain transition frequency f;. In the
following sections we will first concentrate on the conductive regime.

For example, the need to go beyond one dimensional models became evi-
dent on the basis of the observation of specific three-dimensional structures,
called oblique rolls [61, 62, 63, 64]. At low frequencies they can nucleate
already at threshold, but otherwise appear at a secondary bifurcation. A
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representative pattern is shown in Fig.2a. One observes domains with two
symmetry-degenerate directions ("zig” and ”zag”) separated by walls. Note
that such a kind of spontaneously broken chiral symmetry is unique for
anisotropic systems. In fact, the fully three dimensional linear stability anal-
ysis of the standard nematohydrodynamic equations (see Sect.2 and e.g.,
[17, 16] for references) has yielded the properties at onset of the instability:
the threshold voltage and the wavevector of the twodimensional patterns. The
agreement between experimental and theoretical results is typically quite sat-
isfactory (see Fig.2b).

% . . . .
0 10 20 30 40
Driving Frequency f [Hz]

Fig.2a. Zig-zag pattern after increas- Fig.2b. Threshold curve for EHC as

Threshold Voltage [V]

o

ing the voltage in Fig.1b. function of frequency. Experimental
points from [65].

However the “standard model” SM, as described in Sect.2 ;where LCs are
treated as ohmic conductors is incapable of explaining the Hopf bifurcation
leading to travelling waves, which are often observed in sufficiently thin layers
(below about 504) and clean materials (low conductivity) [63, 66, 67, 68]. An
extension (the ”weak-electrolyte model”, WEM), where electric transport
in the nematic is described in terms of two mobile ion species (of opposite
charge) which are coupled via a slow dissociation-recombination reaction[69,
33] has proven to be successful (see Sect.4.2).

In the further progress of the theory the weakly nonlinear analysis in
terms of Ginzburg-Landau amplitude equations [17, 12] have provided in-
formation on the Eckhaus stability boundaries of periodic roll patterns, in
good agreement with experiments [70, 71, 72]. An even more sensitive test
is the analysis of the dynamics and interaction of defects (dislocations) in
ideal patterns, which compares well with experiments [73, 74, 75, 76] too.
It was realized that mean-flow effects are very important in the transition
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from ordered periodic to weakly turbulent patterns [47, 77, 78, 43] (for a
phenomenological treatment, see [79, 80, 81, 82]).

Fully nonlinear theoretical studies have followed [83], which put the con-
cept of abnormal rolls, at first observed in homeotropic EHC, [84] on a
sound basis. At low frequency their bifurcation is usually preceded by a
long-wavelength zig-zag instability; at higher frequency they appear after
a secondary bifurcation of normal rolls. The wave vector of abnormal rolls
is parallel to the preferred x -direction, but the underlying director field has
experienced a spontaneous rotation in the xz — y plane. Previous experimental
findings in EHC in different geometries are now understood for the first time
and new experimental activities have been motivated. The abnormal rolls
will be discussed in detail in Sect.4.3. Very recently the dielectric regime has
attracted considerable attention. For instance a first convincing explanation
for the common chevron pattern has been given (see Sect.4.4).

4.2 The weak electrolyte model (WEM)

The WEM model [33, 69] has provided the basis for the understanding of
the Hopf bifurcation observed quite frequently at threshold [85, 86]. For a
Hopf bifurcation two processes that compete on a comparable time scale are
necessary. One might think of the director and charge relaxations, but they
do not compete. Instead they support each other usually; in addition the time
scales (12) are very different; the director relaxation is much slower than all
other processes, and thus determines the dynamics.

According to the WEM model it is assumed that a slow process is con-
nected with the relaxation of the mobile ion densities nt and n* on the time
scale T,¢., which may results from a dissociation-recombination reaction. One
thus obtains for singly charged ions

per = e(nt — nJ‘), o=oc0’, (18)

where -
o= e(uin"’ + pinJ‘), 02]» =6 + inm]’. (19)

Here uf, uﬁ are the ionic mobilities perpendicular and parallel to the di-
rector, respectively. For simplicity the anisotropies have been assumed to be
the same for both types of ions so that ¢,/0;, = uﬁ/uf — 1. Thus o is an
additional variable now. From the balance equations for nt and n' one easily
recovers Eq.(10) and in addition one obtains

el 1 1
Ccll_t+v' [((F‘i +/M_)‘7+F‘IF‘J_P<51)] (20)
= e 1 bl | o L (g - gy,) 4 Mg

2, Trec

where 0.y = e(ui + pi)neq contains the equilibrium ion density n.,. The
last expression is obtained by linearization in the quantities n* — n., and
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nt— Neg. In this model the effect of ion accumulation on the conductivity is
thus included, whereas ionic diffusion is neglected as in the SM. The charge
accumulation counteracts the standard (Helfrich) mechanism of generation of
space charges. If the time scale 7,... is sufficiently slow one can expect to find
an oscillatory behavior of the system at threshold, i.e. a Hopf bifurcation.

The detailed linear stability calculations for the WEM model have been
performed [69, 33] using the same approximations that led to the analytic
threshold formulas within the SM [87, 17, 12, 16]. It is found that there is
an upward shift in the stationary threshold, which may be quite small, and
more importantly, that indeed a Hopf bifurcation occurs [85, 18] with critical
frequency

R.aC (14 w?)Aoma\’
(.dHTdIQTFfHTdI 1+w/2\/l— (RCT s (21)
when the expression under the square root is positive. Here R = VZ:;—le"l is

the reduced control parameter (see Sect.2), &% = uiui’ylﬂ'z/(m_dz) is pro-
portional to the geometric means of the mobilities and w’ = w7, with 7 =

24y B N
% is areduced frequency. Moreover A, = —[TTJ;%—I—Tj‘lRaZﬁ/(l—I—

w'?)] (< 0) is the damping rate of the (new) WEM mode. Its dominant con-
tribution is usually just determined by the ion recombination rate 1/7,... The
factor C' [33] contains only SM quantities and is about one (see Ref. (28) in
[86] for a misprint in [33]).

For the Hopf bifurcation to occur, i.e. for a positive argument of the
square root in Eq.(21), the quantity 74/(&7re.) must be sufficiently small.
This requires that the recombination of ions is sufficiently slow and that the
layer is sufficiently thin and clean. Note, however, that for materials with
negative dielectric conductivity, where R, diverges at the cutoff frequency
fa (in the approximation used), the Hopf condition is always satisfied near
the cutoff, and the Hopf frequency, which is then just given by the prefac-
tor of the square root in Eq.(21), becomes large there. This appears to be
consistent with the experiments [63, 66, 67]. Moreover, the prediction of the
theory, that for materials with vanishing dielectric anisotropy the Hopf fre-
quency becomes essentially independent of the external frequency, has been
verified experimentally using the material 152 [85]. 152 has the property that
€4 changes from negative to positive values when the temperature is increased
through 7' =~ 60°C.

A quantitative test of Eq.(21) with experiments has been performed re-
cently for the nematic Phase b, where (almost) all material parameters have
been measured. In Fig.3a the Hopf frequency (21) is shown as function of
the ac frequency (solid line). The units are chosen according to the predicted
theoretical scaling behavior: wy ~ dJ‘3UJJ:1/2 is easily obtained from Eq. (21),
if the d—dependencies of the director relaxation time 74, the threshold R,
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and of & are combined; the proportionality ~ 01_1/2 is due to @. The ac-
frequency scale in ' is set by 7,. The agreement with the WEM theory is
very convincing.
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Subsequently a weakly nonlinear analyis of the WEM model has been
performed [86] in order to determine the bifurcation type at threshold. Some
results are shown Fig. 3b. In dependence on the mobility parameter & and
the recombination parameter # = 74/7... one finds below the curve labelled
C?2 a supercritical Hopf bifurcation. In the regime bounded by C2 and the
curve labelled TC the bifurcation is stationary and hysteretic, while above
TC one finds a continuous stationary bifurcation. In the limit 7 — oo the
standard model is recovered. The point A corresponds to the experiments
discussed in [21] for the material 52 at 30°C". The arrow to point C indicates
a change of the bifurcation type as the temperature is increased to 60°. In
contrast to the SM the bifurcation scenarios depend also on the cell thickness
d: The arrow to B corresponds to a doubling of d.

As has already been mentioned, the WEM model has first been compared
with experiments for the new nematic 152 [85]. Recently two-dimensional
localized states, called 'worms’ (see the snapshots in Fig.4), have been de-
scribed in this material [88, 21]. They are localized and have a unique, small
width in the y direction but are of much a greater varying length along X, i.e.
the anisotropy axis. Rapidly traveling waves in one direction || X pass under
a slowly moving envelope moving in the opposite direction. Their number
increases with increasing voltage and they tend to grow by coalescing until
at higher voltage the cell is filled with convection.
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The theoretical analysis of the worms is challenging. One-dimensional
pulses have been experimentally discovered in binary fluids [89, 90] and have
been obtained as solutions of the one-dimensional CGL [91] (for further refer-
ences, see [55]). Two-dimensional localization in such hydrodynamic pattern-
forming systems is not well documented in experiments. From theoretical
studies (see e.g. [92, 93]) one expects that 2d-localized structures can be ob-
tained in the case of a subcritical Hopf bifurcations. Thus an ad hoc model
[94] has been proposed in the form of an anisotropic Swift-Hohenberg equa-
tion with adjustable complex coefficients and a quintic nonlinearity to cap-
ture the subcritical bifurcation. It is not too surprising that indeed localized
structures similar to the experiments could be produced. However, the basic
assumption of the subcritical Hopf bifurcation in planar EHC is in conflict
with theory and experiments [95].

Fig.4. Localized worm structures for e = 0.012 left and for € = 0.057 (right) (Courtesy
G. Ahlers)

Therefore a more realistic model was recently proposed [55] where two
amplitude equations for oblique travelling rolls were coupled to a slow mode,
which might be identified with the charge-accumulation mode. Even details of
the experiments could be reproduced satisfactorily. From a theoretical point
of view the model is also very interesting, since it involves a new mechanism
for the localized states. One has a forward Hopf bifurcation for extended cell-
filling patterns in agreement with the “microscopic” theory [86]. However,
the transition to localized states is predicted to be hysteretic in line with the
recent experimental results [95]. The final step, i.e. the derivation of the new
equations from the WEM model, has not yet been accomplished.

While the localized worms are certainly spectacular in EHC for 152, the
cell filling-states developing from the supercritical Hopf bifurcation are also
very interesting. The system is below a Lifshitz point, obviously with a bifur-
cation of four degenerate oblique-roll solutions (zig-zag, left-right traveling).
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Their interaction can easily lead to various types of spatio-temporal chaos
(STC) near threshold [96], which can be controlled through a variation of
the conductivity of the nematic. The experimental have stimulated efforts of
theoretical modeling [97].

4.3 Abnormal rolls

Conventional normal rolls (NR) can only exhibit point defects (dislocations).
Oblique rolls (OR) break the reflection symmetry y — —y and thus can
show in addition line defects (grain boundaries) separating domains with
wavevectors (q,p) (“zig”) and (¢, —p) (“zag”) [98, 99]. In Fig.ba,b typical
grain boundaries along X and ¥ are shown for the nematic Phase 5.

Surprisingly, in an apparently NR structure, line defects have been ob-
served as well. With increasing voltage (i.e. €) the angle between the roll axis
and ¥ is found to systematically decrease and may even reach zero. In this
process the grain boundary of Fig.bb is transformed into the wall of Fig.5c.
That the two domains on either side of the wall are not equivalent becomes
more evident as ¢ is further increased. Indeed, one then observes the branch-
ing of an additional wavevector (ky,+ky) on the right side, and (k,, —ky) on
the left side (see Fig.hd).

Fig.5. Representative snapshots of the experimental evolution of electroconvection in
a cell of thickness 5pm, at wrg = 0.3. a, b: zig-zag structures near threshold (e ~ 0.02),
with “horizontal” and “vertical” grain boundaries. c¢: wall at € ~ 0.40 originating
from the grain boundary of b. d: varicose structures at € ~ 0.70, originating from the
structure c. The two modulation directions are indicated by the white lines.

The existence of a two-variant state of normal rolls indicates a new sym-
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metry breaking. Those rolls have been named “abrormal rolls” (AR), a term
introduced in the context of homeotropically aligned cells [84] for rolls with
an optically detected symmetry breaking, see Sect.h below.

AR cannot be understood by the standard weakly nonlinear approach
where the roll structure is characterized unambiguously by its wavevector
and the linear eigenvector at threshold (see Sect.3).

Fig.6 Amplitude nf of the twist mode in roll patterns of wavevector q = (g, p), as
a function of p and ¢ at wrg = 0.3 (parameters of Phase 5). Unstable regions in gray
(Eckhaus boundary dotted, Bimodal Varicose boundary dashed). Arrows: sketch of
the experimental evolution of p(e). In the experiments also ¢ evolves with €, which
leads to quantitative changes of the diagram.

The key result of a fully nonlinear Galerkin analysis is presented in Fig.6.
It shows the amplitude nf of a twist mode corresponding to a homogeneous
rotation (i.e. independent of x, y) of the director in the z, y plane as function
of € and p for roll solutions with q = (¢.,p). This rotation is symmetric
with respect to the mid plane of the layer, and is largest there. At p = 0,
nf vanishes 1f € is sufficiently small, in agreement with the predictions of
the weakly nonlinear theory. The novel and striking feature 1s the pitchfork
bifurcation at a secondary transition point € = e4g to a state with nf #0
(at p = 0 1). In these AR the y — —y symmetry is spontaneously broken
without tilting of the rolls. In addition the amplitude of the (periodic) n,
component, which increases like n, ~ /¢ for small €, as expected from the
weakly nonlinear theory, is found to remain nearly constant for ¢ > e4g.
For p # 0 the director “prefers” to rotate towards the axis of the rolls: e.g.

nf < 0 for p > 0 (see the lower sheet in Fig.6).
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WY,

Fig.7. Stability diagram for rolls in the normal direction (p = 0) in the w, e plane
(unstable regimes in gray). ear (thick line): NR — AR bifurcation. w; = Lifshitz
frequency, €zz (thin line): zig-zag instability. € arstas (dotted line): restabilization of
the abnormal rolls. The upper dashed line is at low frequencies a short-wavelength
varicose instability (EBv) that transforms into a long-wavelength skewed-varicose in-
stability (esv) at wro ~ 2.8 ().

In Fig.7 the stability regime (in white) for rolls with q = (¢, 0) is shown
in more detail in the €, w plane. For w < wg, where the primary bifurcation is
to OR, NR are unstable near threshold (e ~ 0) against long-wavelength un-
dulations along the roll axis (“zig-zag” instability). The mechanism becomes
less efficient for AR, where the y — —y symmetry is broken. Thus AR become
stable when |n5[| is large enough, for € > €4 pstqs(w) (dotted line). When ¢ is
increased further the AR are destabilized at epy (w) (dashed line), now by a
short-wavelength instability with a new wavevector |k| ~ ¢. roughly parallel
to the homogeneous part of the in-plane director (nf, nf) in the AR. The
bimodal patterns in Fig.5bd then obviously result from the destabilisation of
AR at € = egy (see Fig.7).

In an intermediate frequency range wy < w < wapr, NR are stable for
€ < ezz(w) (solid line). At ezz a zig-zag instability (ZZ) develops [100], which
derives continuously from the oblique rolls at onset for low w: ezz(w) — 0 for
w — wr. Above ezz the situation is analogous to the low-frequency regime,
i.e. one gets stable AR for € > €4grsiqp. When € is increased further the AR
experience the varicose destabilisation at e¢gy as before.

The stability limits eag, €4rstqp and egy decrease with increasing w as
seen in Fig.7. Above the frequency wag, where €77, €aRrsiqp meet the line
€AR, the bifurcation NR — AR occurs in the stable range. Along the varicose
line epy (w), the modulation wavevector s = k — q approaches zero with
increasing w, whereas the ratio s, /s, stays finite (sy/sy ~ £2.7). Above
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wry =~ 2.8 (see the cross in Fig.7), the varicose instability thus becomes a
long-wavelength modulational instability of the skewed-varicose type [101].
The substance MBBA has no Lifshitz point. Therefore the part of the stability
diagram for w > wy in Fig.7 is shifted to lower w.

The detailed bifurcation sequences can be discussed with the help of Fig.8
at a representative frequency wmy = 0.5 for patterns with wave vectors q =
(g¢, p). In contrast to Fig.6 the amplitude nf is not shown. For e < ¢, ~ 0.05
normal rolls (p = 0) are stable. Above ¢,, a bifurcation to oblique rolls
with finite p takes place, where a whole p band is available except for the
unstable ” bubble” marked by the dashed line. At €4gs1q (in the ZZ-unstable
regime within the bubble) abnormal rolls bifurcate. They become 7 Z-stable

ab € ARstab-

It seems that in experiments when slowly increasing € beyond ez 7 the pat-
terns follow at first more or less the boundary curve of the unstable bubble.
Thus the angle o = arctan(q/p) of the wavevector with respect to the z-axis
does not become too large. The pattern appearing beyond the ZZ-instability
can be described at first as rolls with a smooth undulation along their axis.
If € is increased further (presumably above e€4r) zig-zag patterns with sharp
boundaries as shown in Fig.2a develop. The sequence NR-undulated rolls-OR,
has been first described in Ref. [62]. For higher € < epy it is a pattern selec-
tion problem whether the system actually uses the opportunity to return to
AR patterns with p = 0 or not. In most experiments reported up to now p
decreases but p = 0 is not reached (except in the case of a wall as in Fig.5¢).
However, there is a new very promising approach to map the stability dia-
gram in Figs. 7,8. directly. A strip-like cell is used where straight rolls along
the long side seem to be strongly preferred such that above e4r perfect AR
are recovered. The whole scenario is quite complicated and involves modu-
lated roll patterns, which can exist in the unstable bubble when decreasing
€ starting from above €apgsiq5. There exist already first results based on a
phase diffusion equation which seem to explain the rather intricate phenom-
ena [58, 57].

In Ref. [83] further examples are given which prove that the concept of
abnormal rolls 1s very important for EHC in nematics. There exists semi-
quantitative agreement with experiments, which now allow for a new in-
terpretation. This applies for instance to various kinds of (dynamic) defect
structures [98, 99, 102], which are presumably triggered by the SV-instabilites
in Fig.7. The bifurcation phenomena in particular associated with abnormal
rolls appear to be generic for planar nematic convection, since they are also
found in Rayleigh-Bénard convection of nematics [56].

Finally one might ask why abnormal rolls have escaped the attention of
experimentalists until quite recently. The direct observation of a homoge-
neous n, distortion in the planar configuration is difficult. The optical axis
of the uniaxial nematics is the director. Maximal optical contrast 1s achieved
in extraordinary light, when the polarization of the light is parallel to the
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€ARstab
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Fig.8. Stability diagram (MBBA) for rolls escaping in the oblique direction at fixed
(¢ = g.) The unstable bubble was tested with Galerkin expansions truncated at four
(shaded) and six terms (diamond)

director at the plates, X. The polarization then follows adiabatically any n,
excursion in the bulk and exits parallel to X again, as long as n, varies slowly
over a wavelength of the light (Mauguin’s principle). Therefore only n, is
monitored, whereas the n, distortion has almost no effect on the propaga-
tion of the rays. An exception is the grain boundary in Fig.5bc with opposite
nf orientations on either side. The resulting strong n, gradients inside the
grain, coupled to a localized peak of n,, explain the observed optical contrast
of the wall. However, a small modification of the optical setup permits to vi-
sualize the small differences between clockwise and counterclockwise twisted
domains in general. The trick is to lift the (optical) equivalence according to
Maugin’s principle through the introduction of a quarter-wave plate at a 45°
orientation to % [103]. It is also very illuminating to observe the slow relax-
ation time of the twist mode. At first a strong in-plane rotation is seeded in
an abnormal roll pattern for ¢ > ¢4gr. Then ¢ is suddenly quenched to zero.
While the pattern itself vanishes almost immediately, it takes much longer
time for the director to turn back in the z direction.

4.4 Dielectric regime

In the dielectric regime (see Sect.3) the director and the velocities oscillate
with the external frequency about the basic state while the polarity of the
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space charge remains time independent in leading order. The theoretical anal-
ysis of the patterns follows in principle the techniques already approved in
the conduction regime.

With respect to the linear regime it is not difficult to determine numeri-
cally the critical wavevector and the onset voltage. The salient features are
however already contained in an approximate analytic threshold formula,
which can be derived with the help of appropriate lowest-order test functions
[16, 104]. In comparison with the conductive regime convection sets in at a
higher voltage, which increases continuously with the ac-frequency w. In or-
der to overcome the stabilizing dielectric torque larger in-plane gradients are
required for the convection destabilisation and thus the wavelength increases
a function of w. Unless the critical wavelenght becomes comparable to the cell
thickness the dielectric instability is a ”bulk instability” which is insensitive
to the boundary conditions. The wavelenght is determined by the diffusion
length of the bend deformation ks3/(y1w), i.e. by material parameters and
not by the vertical distance d of the cell boundaries. The convection rolls are
very thin and the pattern looks like a planar lamellar structure. Consequently
the appropriate order parameter in the dielectric regime is the d-independent
electric field instead of the voltage as in the conductive regime.

In addition one finds from the analytical formulation that the threshold
stays finite for ¢, — 0, and in fact remains so when ¢, becomes positive. This
appears to be in conflict with early treatments [38], but improved formulas
have been developed later [105, 7]. Very recent and particularly careful mea-
surements of the linear properties in the nematic Phase b agree very well
with the theory [106]. In MBBA the measured threshold exceeds typically
the theoretical prediction. The reason might be, that MBBA is a quite un-
stable nematic and thus its conductivity increases with time due to molecular
dissociation processes. In addition dopants are often added to increase the
conductive frequency range. It has never been tested systematically whether
the commonly used material parameter may not have to be modified ac-
cordingly. Also the flexoelectric effects could be more important than in the
conduction regime [104]. On the other hand it is reassuring that quite subtle
properties like the phase shift of the director oscillations with respect to the
applied voltage compare favourably with experiment [107].

Passing to the weakly-nonlinear dielectric regime the lamellar-type struc-
ture is only weakly anchored at the boundaries and it should be easily desta-
bilized by (slow) transverse modulations. Thus it is not surprisising that
again the twist mode 1s found to be responsible for a secondary bifurcation
to abnormal rolls, typically at a very small € ~ 1012 [104]. The results are
consistent with recent experiments in Phase b, where the dielectric regimes
takes over at a small frequency (fgq = 26 Hz) [108]. The secondary instability
is found at a rather small €;; < 0.08. As already stated abnormal rolls at a

very small € were also found directly in an particularly designed experimental
setup [103].
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With increasing e the situation becomes simpler at least from the exper-
imental point of view. We again refer to the recent experiment [108]; above
€sp the rolls become slightly undulated and a persistent dynamics is intro-
duced by the appearance of well separated dislocations. The number of these
dislocations increases continuously and above ¢ = 0.24 one observes periodi-
cally ordered chains of dislocations oriented along the normal-roll direction.
The polarity of the defects is the same along each chain and alternates from
chain to chain. The defects move in alternating directions (for a snapshot
see Fig.9). The name ”chevron structure” has been coined for this pattern,
which is known for many years (see e.g [109]).

YN
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Fig.9. Chevron pattern at ¢ = 0.26 in Phase 5 [108]

Recently a first theoretical explanation has been proposed for the chevrons
[110]. The starting point are Eqs.(24, 25) (see Section 5) originally derived
for homeotropic EHC. They describe the coupling of the patterning mode
A to the order parameter of the abnormal rolls (i.e. the in-plane director ¢
with an angle ¢ relative to the z axis). In the dielectric as well as in the
homeotropic case the convection starts in a situation where the electric field
is perpendicular to the in-plane director ¢, which is subject to a very weak
external torque. The boundary effects in the dielectric case can be identified
with the action of a small magnetic field H parallel to x in the homeotropic
case. In some parameter regimes defect-chaotic solutions (see Figs.12, 13)
are indeed observed in simulations of Eqs.(24, 25), when h? = H?/(—2I¢)
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drops below a critical value O(1) (corresponding to small anchoring). With
increasing € the defects become then ordered in chevron-like stripes as in Fig.
9 [111].

The quite regular chevrons at larger € can then be captured theoreti-
cally by a coarse-grained description in terms of reaction-diffusion equations
[111, 110]. The key to the formation of chevrons is the “anomalous” torque
on ¢, which already leads to the abnormal-roll bifurcation at small ¢ and
to defect chaos with increasing e. When the density of defects is sufficiently
high a topological charge field can be defined as the difference between the
densities of defects with positive and negative polarity. The chaotic motion
of the defects leads to a finite diffusivity of the topological charge density. In
the theoretical description the angle ¢ plays the role of an activator, which
enhances the (local) topological charge imbalance. The reason is that the rolls
tend to follow the rotation of ¢. The resulting reorientation of the roll pattern
entails the motion of defects with oppositely charges in opposite directions,
which then play the roll of an inhibitor. Elastic effects are responsible for dif-
fusion in ¢. Once having arrived at the level of a reaction-diffusion systems
the possible scenarios are well known: One can have either oscillatory insta-
bilities or a steady spatially periodic Turing pattern, which, in the present
system, is identified with the chevron structure.

5 EHC in the homeotropic configuration

In this chapter we will discuss in some detail the electrohydrodynamic insta-
bilities in the homeotropic configuration. The general setup is very similar to
Fig.la except that the director is initially oriented parallel to the electric ac
field E || z by an appropriate surface treatment of the confining plates. The
system is now isotropic in the plane of the nematic layer. We will address the
case of negative dielectric anisotropy €, < 0, where, for energetic reasons, the
director has the tendency to orient perpendicular to E in order to minimize
the electric torque. For the case of positive ¢4, see e.g. [112, 113, 16]. If E
(or the applied voltage V' = |E|d) is strong enough to overcome the opposing
elastic torque at first the homogeneous Freédericksz transition [4, 5] shows
up, which is a equilibrium transition. The isotropy is then spontaneously bro-
ken and a definite orientation of the in-plane director component is singled
out, which we call the x— axis. In some cases an additional magnetic field
H || x is applied perpendicular to E to lift the rotational invariance and to
single out a definite orientation. Under the combined action of H and V the
Freédericksz transition takes place if

() ()
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is fullfilled [4]. Vp and Hp are defined as:
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where €, and x, are the dielectric and diamagnetic anisotropies, respectively,
and ka3 is the elastic bend constant (see Sect.2). By testing experimentally
the transition lines according to the inequality (22) one can check for imper-
fections in the anchoring of the director at the cell boundaries [106].

Above the Freédericksz transition a planar layer develops in the central
region of the cell. In view of the obvious analogy to the planar configuration
it is not too surprising that it can become unstable against a convection
instability above a second threshold. The transitions are sketched in Fig.10.
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Fig.10 a) Homeotropic groundstate, b) Director configuration after the Freédericksz
transition ¢) Modulated director configuration in the EHC state. d) Velocity field in
the EHC state.

The theoretical analysis of the bifurcations is more complicated than in
the planar configuration due to the inhomogeeous ground state. It has been
achieved with the use of Galerkin-expansions [112] which are numerically
demanding. The linear analysis reproduces the scenarios already known from
planar EHC. At low frequencies oblique rolls, at higher frequencies, above a
Lifshitz point wr, normal rolls are found. By further increasing the frequency
one switches at w = w; from the conductive to the dielectric regime. The
agreement with experiments is very satisfactory [106].

In Fig.11la the secondary destabilisation of normal rolls at wry = 1 is
shown as function of an imposed planar magnetic field H on the basis of
a full Galerkin calculation (GAL). For a sufficiently strong magnetic field a
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long wavelength zig-zag instability is obtained. The details become clearer
from Fig.11b, where the secondary destabilisation €4 is shown as function of
wry for a fixed magnetic field (H = 1). Starting from the Lifshitz point (near
wry = 0.6) the zig-zag line increases continuously. Near wry = 1.5 there is an
abrupt change to the homogeneous abnormal-roll bifurcation. The bifurcation
scenario is in perfect analogy to the planar case (see Figs.7,8). The bifurcation
lines do not join smoothly at the Lifshitz point. This is explained by the fact
that the stability of patterns with the critical wavevector qe¢ = (¢¢, pe) is
shown. Approaching wr from above ithe bifurcation point ezz (the lowest
point of the bubble in Fig.8), moves down until it vanishes at wy. Below wg
the bubble is deformed and increasingly less important for increasing p; the
patterns remain stable up to much higher e.

020 () 1 gy (b)
€sh WNL 0.05
0.10
GAL
0.000 1 3 O.OOO 1
magnetic field H frequency wr,

Fig.11 a) Secondary destabilisation €s; of normal rolls at bandcenter for wry = 1.0
(GAL: Full Galerkin analysis; WNL: weakly nonlinear analysis. b)Secondary destabil-
isation of normal rolls at bandcenter as function of the frequency wry for the reduced
magnetic field h, = 1, from [112].

However, in the limit of zero magnetic field, when the preferred axis, i.e
the in-plane director ¢, is not fixed externally, the analogy to the planar case
breaks down. This is already evident from Fig.11a where normal rolls become
unstable immediately at threshold. The reason is that transverse modulations
lead to a torque on & which cannot be compensated. Oblique roll solutions do
not even exist because of this torque [114]. Even with a finite magnetic field
the standard weakly nonlinear analysis breaks down (see the curve WNL in
Fig.11a) because the rotation of & becomes too large.

The important difference between the homeotropic and the planar case
has been explained in Sect.3 in terms of the Goldstone mode associated with
the spontaneously broken isotropy due to the Freédericksz transition. The
action of the Goldstone mode corresponds to a rotation of the director in the
plane, i.e. to a finite n, component, with a nonvanishing z-average. There is
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iin fact a close analogy to the AR bifurcation and the abnormal rolls have
been identified at first in the homeotropic case [84].

The absence of stable roll patterns has led to the conjecture of a new
type of spatio-temporal chaos at onset [114]. A convincing experimental con-
firmation is shown in Fig.12. On the right side the oblique-roll pattern for
a frequency below the Lifshitz point (upper panel) and normal rolls (lower
panel) for the frequency above the Lifshitz point are stabilized by a magnetic
field. Switching off the magnetic field leads within seconds to the disordered
patterns shown on the left hand side.

Fig.12 Experimental pictures from [115]. Typical convection patterns with (left
panel) and without magnetic field (right panel) are shown at two different frequencies, .
60 Hz (above) and 300 Hz (below)

A clear understanding of the disordered patterns near threshold has been
achieved from a novel weakly nonlinear description that incorporates the
critical convection mode together with the Goldstone mode [52].

The general form of the equations is governed by symmetry considerations
(we write €1 =7 x &):

T A= |e+E2,(¢- 0 —iq.)” + & (8L 0:)° (24)

— glA? +iB,e. - V| A,

Y10ip = K3&) - Ve + (Ky — K3)ép - V(V - &) (25)
+ xa(&-H) (&L - H) 4+ —(—ig. A (&L - Op)A+c.c.).
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The various coefficients in Eqs.(24,25) can be obtained from the Galerkin
code used for Fig.11.

At first one recognizes a generalized Swift-Hohenberg equation for the
pattern amplitude A in Eq.(24) where the local coordinate system is deter-
mined by the (local) anisotropy axis ¢ = (cos(¢), sin(¢)). The torque due to
spatial modulations exerted on the in-plane director is included in Eq. (25).
where in addition the magnetic torque is taken into account.

These equations have been used for numerical simulations. In Fig.13 a rep-
resentative snapshots of 1) = A+c.c. (left side) is compared with experimental
observations (right side) for ¢ = 0.02, I = 0 [116]). Material parameters as in
[114] have been used used to calculate the coefficients of (24,25) (for details
see [52]). Evidently the patterns in experiments and simulations look very
similar. Though in the normal roll regime some defects appear, the rolls are
locally aligned along a main direction. The oblique roll regime is dominated
by a superposition of zig and zag. Again the preferred axis changes only over
large distances. A persistent time dependence is observed in the simulations
in agreement with the experiments in the oblique roll case. However, the ex-
periments in the normal roll regime at higher frequency reveal two different
regimes near threshold [106, 117, 118]. First a frozen-in disordered pattern is
observed which looks like the one shown in Fig.13 (lower left panel). When
the control parameter is increased a crossover to a time dependent disordered
patterns is found. It is not yet clear whether an important term is missing
in Egs. (24,25), or whether small inhomogeneities in the experimental cell
suppress a persistent dynamics at threshold.

Equations (24,25) represent normal-form equations for quasi-2D pattern-
forming systems with a novel kind of symmetry, and thus should be of gen-
eral interest. Other realizations might be found in convection instabilities in
smectic-C liquid crystals, where a ¢-director exists ab initio , and in Rayleigh-
Bénard convection of homeotropically aligned NLCs with an additional elec-
tric field. In this case the fields that drive the Freédericksz transition and
the convection instability, respectively, can be varied independently, which
should permit access to a large parameter range of Eqs. (24,25).

For H = 0 and I' < 0 Eqgs. (24,25) yield STC at onset. Other exam-
ples are the Kuppers-Lortz instability in rotating Rayleigh-Bénard convec-
tion [119, 120] and systems undergoing a Hopf bifurcation. An example for
the latter is the Benjamin-Feir destabilisation mechanism (see e.g. [2]) or the
so-called dispersive chaos [19], where a description by a simple Ginzburg-
Landau equation should be possible [121]. The origin of chaotic behavior is
of course very different in the various systems and their detailed comparison
will be fruitful.
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Fig.13 Simulations of Eqs. (24,25) (left) vs. experiment [116] (right) for normal (top)
and oblique (bottom) rolls (see text).

6 EHC driven by multiplicative noise

6.1 Experimental situation and motivation

The influence of stochastic temporal modulation of external parameters in
spatially extended systems is an interesting topic of current research [123].
Among the possible effects of the external noise are: shifts of thresholds,
the appearance of new bifurcation types, modifications of the bifurcation se-
quences (e.g. a direct transition towards chaos), or a change from a continuous
to hysteretic onset of the pattern-forming instabilities.

The understanding of the various phenomena has been considerably pro-
moted by the investigation of the electrohydrodynamic instabilities in ne-
matic liquid crystals (EHC). The starting point is the common planar con-
figuration (see Fig. 1a), however the applied electric field across the nematic
layer is now a superposition of a deterministic component £4.; and a stochas-
tic one, Fsioen. In the experiments a low-frequency periodic Eg.; was used,
il.e. in a regime where the deterministic threshold curve as a function of fre-
quency is almost flat (see Fig. 2b). This justifies to use in the theoretical
description almost exclusively a time-independent Eg4. [124, 125, 126, 127,
128, 129, 130, 131, 132, 133, 134, 135, 136, 137, 138, 139, 140], cf. however
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[141]. The stochastic field Eio0p is mainly characterized by its strength and
the correlation time 7,005 of 1ts auto-correlation function.

In the first experiments a ’fast’ stochastic component was superimposed
[124, 125, 126], then subsequent work was also devoted to ’slow’ stochastic
driving [127, 128, 129]. Slow and fast refer here to the relation of 7g45.p to
the characteristic times of the liquid crystal, which govern the relaxation of
space charge and director in absence of external electric fields.

In these early experiments [124, 125, 126, 127, 128, 129] a highly doped
nematic MBBA was used, where the electric conductivity is quite large. It has
been demonstrated that adding a fast stochastic field Ey4cp with its strength
below a certain critical value E, leads to a stabilisation of the homogeneous
state, 1.e. the threshold increases in comparison to a pure deterministic case.
However beyond FE. the stochastic component is destabilizing and a discon-
tinuous behaviour of the threshold curve as a function of stochastic-field
strength is found (direct transition). With increasing stochastic driving the
planforms at the convection threshold changed as well from normal rolls to a
grid pattern and finally to a chaotic state (the dynamical scattering mode).
The direct transition towards chaos at very high strength of the external noise
was described to occur via intermittent bursts of spatially incoherent struc-
tures embedded in a homogeneous background [126]. The frequency of the
bursts, as well as their duration and the area filled with spatially disordered
structures increase with increasing deterministic voltage until the whole cell
is filled with a strongly fluctuating spatially disordered structure. The super-
position with a slow stochastic field on the other hand would always decrease
the deterministic threshold. There were also some indications that the tran-
sition might be slightly hysteretic [129, 130]. For a comprehensive review see
[129].

In later experiments undoped MBBA (low conductivity) [136, 137] and
a different, chemically more stable nematics (Mischung 5) [138] was used. It
was at first confirmed that slow external noise was destabilizing, in contrast
to a not too strong, fast external noise, which was stabilizing. With increasing
strength destabilizing effects take over, i.e. the threshold was eventually found
to decrease continuously with the strength of the stochastic field.

In these experiments, for pure stochastic driving (Fge: = 0), a new sce-
nario was revealed: With decreasing correlation time a transition from a
“conductive” to a “dielectric” regime was observed at a critical 75405. In
the latter regime the threshold was no longer sharp, since stripe pattern
would appear and disappears randomly in time [137, 138, 140]. The pat-
tern exhibits a characteristic blinking which corresponds to the phenomenon
of on-off-intermittency, recently discussed for low-dimensional systems ran-
domly driven just below their threshold of stability, cf. e.g. [142]. The prob-
ability distribution for the duration of the laminar phases, i.e., off-periods is
governed by a power-law over several orders of magnitude [140].

An important issue for the following is the appropriate description of the
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stochastic process. A common approximation is Gaussian white noise, which
applies to situations, where the correlation time of the driving stochastic field,
Tstoeh, 18 kept much shorter than all characteristic time scales in the system.
One might argue, that due to the critical-slowing-down the time scale at the
onset of EHC is always long, but in fact it turns out that the dynamics of
other important processes is not well separated in time from Tgzocp. Since
the system couples to the square of the field strength there is another -more
formal- reason which forbids to use a Gaussian white noise: The square of
such a process 1s not a well defined mathematical quantity.

For these reasons the modelling of the stochastic process by a white noise
is excluded: One has to use a stochastic model process with finite correlation
time, such as the Ornstein-Uhlenbeck process or the dichotomous Markov
process. The latter one allows a rigorous treatment of linear problems and
can easily be generated in the experiment.

An interesting mathematical problem is posed by the stability of a stochas-
tic trajectory. Different criteria have been discussed in the literature such as
the bifurcation of the maximum of the probability density [143], the stabil-
ity of the first or higher moments [144], or the asymptotic stability of the
stochastic trajectory with a probability one (sample stability) [145, 146]. Tt
is plausible that as long as the noise is fast compared to the time scales of
the system these stability criteria should give similar results. However, as
will be demonstrated for EHC, the correlation time 75,5 18 not in all cases
short. Thus the different criteria give indeed different results except in some
limits. Typically, for a fixed noise strength, the tendency towards a desta-
bilisation increases with increasing order of the moments. This feature can
be understood, since large but rare fluctuations of a stochastic process are
progressively enhanced in the high-order moments. In any case, the sample-
stability criterion is consistent with numerical simulations and appears as the
natural proper choice [139].

The standard tool to describe the convection instability of the quiescent
state is the linear stability analysis. For a deterministic driving voltage the
procedure is not difficult to carry through and is well understood (see Sect. 3).
However, for stochastic driving already the linear regime presents a strong
challenge. Due to the inherent difficulties of the problem further approxi-
mations have to be introduced, which amount to a simplified treatment of
all convection fields with respect to their vertical (z-) dependence, which
is captured by one single mode. This treatment leads to the so called two-
dimensional model [148, 134, 135] and its simplified one-dimensional version
[38, 105]. In the case of deterministic driving it has been shown in detail that
the exact critical properties can thus be satisfactorily reproduced within a
few percent [17, 16].

In the sequel at first the model for stochastically driven EHC is presented
(Sect. 6.2), before the criteria for stochastic stability are discussed in Sect.
6.3. The detailed results of the linear analysis in comparison with experiments
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are presented in Sect. 6.4. It will turn out, that the theory can explain well a
variety of different experimental findings. A discussion of related topics and
a outlook to future work can be found in some Concluding remarks.

6.2 Modelling of stochastically driven EHC

In the following at first the basic equations and its formal solutions are pre-
sented. Furthermore several criteria of stochastic stability are discussed.

The linearized equations of the two-dimensional model. The stability
investigation of the quiescent state against the formation of normal rolls
follows the standard method (see Sect. 3). The anisotropy axis of the system
is parallel to x, and all field variables vary only in x and z. The starting point
are the basic equations as discussed in Sect. 2. In the horizontal directions
with infinite extent a Fourier transformation (wavenumber k;) is applied;
with respect to the transverse direction one Galerkin mode (with wavenumber
k) for each field (velocity, director etc) is used. Their choice is dictated by the
boundary conditions at the confining horizontal plates. We have used stress-
free boundary conditions, which simplify the calculations and are known to
give satisfactory results [17, 149]. The director distortions, the induced space
charge, and the quantities v,, 9,v;(z) have to vanish at the boundaries,
where v;, v, denote the velocity components parallel and perpendicular to
the confining plates, respectively. The velocity field can then be adiabatically
eliminated because of the small viscous time scale.

One ends up with a system of two coupled ODFE’s, which describe the
dynamics of the space charge ¢ and the spatial variation of the angle # between
the director and electrode plates, v = 9,0 [148], given as:

7z = C(t)z, (26)
where z = (q, 1/))T, and

17, ol
o0 =~(g n7he) @
The total driving electric field Fy = Fg.p + Esiocn 18 the superposition of a
constant component Fy.; and a dichotomous Markovian component E;oe, =
EPMP which takes randomly the values +F and has the autocorrelation
< EPMPRDME ~— P2 exp[—2v(t —1)]. v determines the inverse correlation
time (i.e. Tsroen = 1/2v) and describes the mean number of jumps in unit
time. One sees immediately that the square of the stochastic field enters,
which excludes the use of Gaussian white noise as already mentionned in the
introduction.
The parameters T, oy, a, Ay /5 are explicitely given by:

Ty = cole ky +e k2) /(o7 + o k2), (28)
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Oy = (0-||€J_ _5“0]_)(]9%+k§)/(€||kz+5¢k§) ) (29)
S |2 ankZRZ A (k2 A RD) (kD k) e kI e k2|
Ay = [KsskZ + Kik2) /f (31)
Ay = €o€af (kazr + k?)/ [f(EH kazr + ka)] . (32)
where 715 = [a4 Fy2 + a5 + as] /2 are the well-known Miesowicz coeffi-

cients constructed from the viscous constants a;, i = 1,5 (11 = ag—aa; y2 =
as + as, see e.g. [17]). For the sake of brevity we have introduced

foo L [ —mk+ (n +92)k2)"
T A k2R (R R (k2 ok?)

(33)

The coefficients depend on the wavenumber k., which is to be deter-
mined by minimizing the threshold voltage. From the vertical boundary con-
dition k, = w/d holds (odd solutions with k, = 2x/d play no role like in
the deterministic case). Note that both 1/7, and og are proportional to
o) if o)/oL = const. The one-dimensional model is readily obtained set-
ting k, = 0, i.e. by neglecting the influence of the vertical boundaries. As
the characteristic length A, of the pattern in the low frequency conduction
regime is set by the width of the nematic layer, the 1d theory fails to predict
Az; one has to insert A, & d as a fit parameter to obtain reasonable values
for thresholds. However note, that in the high-frequency dielectric regime the
critical wavelength becomes an intrinsic bulk property [147, 16] and is already
determined within the one-dimensional approach.

For a deterministic driving the undistorted state remains stable against
the formation of normal rolls if the solution of (26) converges to zero. For
stochastic driving there exist several stability criteria to be discussed below.

Formal solution. To obtain a formal solution of Eq. (26) for a given real-
ization of EPMFP with jumps at timest,, v =0, 1, ..., n, where t,, > t,, 11 >

> t1 > ty we first consider a time interval between two jumps where
C(t) = C7 = const,o = + and diagonalize C? by a unitary transformation

u'c (Ut = (Aol Aog) = diag (A7) (34)

Introducing W7 = Uz one finds W7 = diag (A\7)W? which is solved by
WO (1) = diag {exp [A\7(t — )]} W7 (t'). The inverse transformation leads to

z,(t) = T7(t — ')z, (1), (35)
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where T? is the time evolution matrix
T7(r) = (U?)*" diaglexp(A\! 7)]U”. (36)

For a given realization of the driving process with jumps at the random times
t, iteration of (35) gives the formal solution [139]

Zo‘n(t) =T~ (t — tn) N (tz — tl)TUD (tl — to)ZUD(to). (37)

The stability of the stochastic trajectory z,, (t) is determined by the
largest Lyapunov exponent A; of the product of random matrices in (37)
in the limit n — co. If this exponent has a positive real part the trajectory
diverges, otherwise it converges to zero. The evaluation of infinite products
of random matrices is a notorious difficult problem, which appears also in a
number of different fields in statistical physics [150] (for further references see
e.g. [139]). Eq. (37) is used for the numerical simulations in order to deter-
mine stability thresholds (to be compared with analytical results) [139] and
also the probability density of the duration of quiescent periods just below
the threshold [140].

6.3 Stochastic stability criteria

In the following we will present and compare several stability criteria.

Mean field decoupling. We first describe a simple approximation [125]
which rests on the assumption that the characteristic time of the driving
stochastic process is fast compared to all other characteristic times. Then
the system will ”feel” only the average value of the stochastic field

By =< By >= Bgo, B! =< E? >= E% 4+ F~ (38)

This physical picture corresponds to a simple mean-field type decoupling of
the averages

<Eyz>—< E><z>. (39)

With the above replacements in (27) one obtains from det C = 0 the threshold

Ay — Ay B2

_— 40
ogaly + Az ’ (40)

2 —
Edet,th -

which increases (A < 0) in a linear way with the strength of the stochastic
field £2. In the mean field approximation it is therefore impossible to explain
neither the experimentally found discontinuous behaviour of the threshold
[126, 127, 128] nor the dependence on the correlation time of the noise [128].
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Stability of moments. The equations of motions for the first moments
form a closed system for < z > and < EPMPz > One uses a theorem of
Shapiro and Loginov [151]

(0/0t +2a) < EPMP g 5= EPMPS (41)
and exploits in addition (EPM¥)2 = E? = const. The quantity z on the
RHS of Eq. (41) is replaced by Eq. (26). (Similar equations hold for the
higher moments.) The ezact threshold condition for the stability of moments
is nonlinear in the field strength thus opening the possibility for a qualitative
(though not quantitative) understanding of the behaviour of the threshold.
The standard model in its one-, two- and three-dimensional versions and
the 1d model including flexoeffect have been extensively studied within this

approach [132) 133, 134, 135].

Sample stability. For the following it is crucial that one is able to reduce
the complicated dynamics of EHC to a system of two coupled stochastic equa-
tions (Eqgs. (26)). In that case there exists a standard method to analyze the
asymptotic stability of the trajectory (Eq. (37)) for almost all realizations of
the driving process (sample stability) [145]. The first step is a transformation
from (¢, %) to polar coordinates (r, ¢), which leads from (26) to the pair of
equations

r= g(Et, QD)T, (42)
¢ = h(E, ). (43)

Equation (43) depends only on ¢ (the system is skew symmetric) and it is
possible to find the stationary solution P,(¢) of the associated Kolmogorov
forward equation for the joint process (Fy, ¢)

. d
Py = = (hsPy) = a(PLy = Pp)0 = &, (44)
¥

where h, is a shorthand notation for h(F,, ¢). Equation (42) is linear in r
and can be solved for a given trajectory of the driving process. This leads to
an expression for the leading Lyapunov exponent [145]

w=fim g fara) = [ de 30 PeatEg) @)

3
- upp o=+

The second equality holds due to the multiplicative ergodic theorem of Os-
eledec [152] with Prob 1, i.e., for almost all trajectories.

For the nondegenerate (the matrices Ct and C1 do not have an eigen-
vector in common) and nonrotational (the eigenvalues of C? are real and
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distinct) case which is of interest here, A\; can be found up to quadratures
[145]
fsupp de F - %ln|h+/hJ_|

40 = — Sp C? — , (46)
O;E fsupp dp Ffhy
where
ks 1 1
F(p,p0) =exp |—a [ dp|—+7— ]|, ©o € supp. (47)
¥o h+ hJ—
The two Lyapunov exponents of the system A; > Ay are related by
M+ =1/2) SpCe. (48)
o=%

For pure stochastic excitation (Eg = 0), the quadratures in (46) and
(47) have been evaluated explicitly in terms of generalized hypergeometric
functions both for the 1d [134] and 2d model [139]. Also for a constant, finite
field F4.; analytical results exist for the 1d model, whereas for the 2d model
the integrals in (46) and (47) were evaluated numerically [139].

Numerical simulations. The numerical simulation folloes trajectories z,, (¢)
starting from a nonzero but small initial value z(0) for a given realization of
the driving stochastic process, cf. Eq. (37). A trajectory with N jumps (cor-
responding to an average time N/« with constant F; intervalls) is considered
as diverging if ¥ = 9,0 ~ k6 = (70)/d > 7°/(4d), i.e. for § > 0, ~ 7/4.
This critical value for ¢ is choosen, because for 6 > 7/4 the linearization of
sinfl & ¢ on which Eq. 27 is based becomes invalid. The thus determined
thresholds are virtually independent of N and ), for N > 10%, i.e. they vary
only within a limit of less than one percent when N and . are varied both
over a range of several orders of magnitude [139].

In the following the theoretical results are exemplified in detail and also
compared with experimental results.

6.4 Results

Comparison of different stability criteria. The thresholds for the ap-
pearance of normal rolls calculated in the one-dimensional model according
to the different criteria discussed above are compared in Fig. 14. The total
voltage is the superposition of a constant deterministic part (/1 = Ege¢) and
a stochastic one (U = Fjypep) with fast and slow stochastic driving frequency
v, respectively. In this part the material parameters are taken in general from
[153] (referred to as MBBA T in [139])), but we allow for modifications of the
electrical conductivities. The cell thicknes is fixed to 100y in all calculations.

For small values of the stochastic voltage U the thresholds from all criteria
coincide as must be expected irrespective of v. The insert in Fig.14 addresses
the case of slow driving calculated for o = 1.5 104302+ mt! and of/oL =
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Fig.14. Thresholds for the appearance of normal rolls calculated in the
one-dimensional model for a superposition of constant voltage U1 and a fast stochas-
tic dichotomous voltage U (v ~ 1000 SJ'l). The thresholds are obtained from:
mean-field decoupling (dashed line), stability of first moments (dash-dotted line),
sample stability (solid line), and numerical simulation (e). The insert shows the case
of a ’slow’ stochastic voltage (v ~ 100s*") for which all criteria (besides the mean
field decoupling) give the same result (from [139]; for the material parameters: see
text).

1.3. This corresponds to a cut-off frequency f; &~ 62Hz in the case of an
applied deterministic ac voltage, which is comparable with v = 100Hz. The
results for fast driving are shown (for o =6 - 1049924+ mt! and of/oL =
1.3) are shown in more detail. The stochastic frequency is now much larger
than the corresponding cut-off frequency f; = 26Hz. For a wide range of
U the threshold from the mean field decoupling is very close to that of the
sample stability, but for U beyond the threshold (= 240V) for pure stochastic
excitation (U; = 0) they are drastically different.

The results can be understood through an comparison of the characteristic
times of the system and of the noise, cf. Fig. 15. The characteristic times of
the stochastically driven system are given by the modulus of the inverse
of the Lyapunov exponents A; and A;. At the threshold we have Ay = 0,
the corresponding time 7 diverges and is thus well separated from 7440
The second characteristic time for the electric fields at the threshold can be
determined exactly [139]

o= |1/ Aa| = (1/Ty + Ay — Ao(E2,, + ) (49)

it decreases with increasing values of the threshold fields and may reach the
order of Tyy4cp. In this case the mean-field decoupling is not justified and the
threshold obtained from the stability of the moments differs quantitatively
from the sample-stability threshold. If instead 74,5 18 clearly separated from
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Fig.15. The characteristic time 72 = |1/A2| at the sample stability threshold shown
in 14 decreases with increasing voltage [139]. The initially clearly separated time
scales of 72 and T.tock = 1/2v become of the same order at sufficiently high stochas-
tic voltage. The insert shows the case where the time scales are well separated.

at least one of the characteristic times of the system, both moment’s and
sample stability criteria give similar results, see inserts in Figs. 14 and 15.
The numerical simulations confirm the results obtained from the criterion of
sample stability, which was therefore used in [139, 140].

The region describing the stability of the moments is always smaller than
that for sample stability since the divergence of the trajectories is sufficient
for the divergence of the moments: For large times one finds

e = oSBTt < c A Sy > (50)

where the inequality holds due to the convexity of the exponential function.
Finally one should mention that the thresholds for stochastic excitation are
always below that for deterministic excitation (for otherwise identical pa-
rameters and wave numbers). This is plausible since generally the thresholds
increase with the increasing frequency and a stochastic trajectory with a
given mean number of jumps always contains lower Fourier components.

Pure stochastic excitation. The stability diagram for pure stochastic ex-
citation shows a topological difference between ’slow’ and ’fast’ driving, cf.
Fig. 16. In the former case we have an unstable island in the left lower corner
of Fig. 16a. The corresponding mode (low threshold and small wavenumber)
is called conductive. With increasing mean frequency v of the driving field
this 1sland shrinks continuously. There is a sharp transition if it disappears:
The instability is now towards a mode with a higher threshold and a much
larger wave number as it is typical for the dielectric regime, cf. Fig. 16b.
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We remark that also for deterministic driving the stability diagram has
analogous properties. Note, that the different temporal symmetries of dielec-
tric and conductive mode in the deterministic case (see Sect. 3) are not crucial
here.

U[V]
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) 10000 ——=— 10000 ——1-

k, [cm1] ke, [em-l]

Fig.16. Mode selection for pure stochastic excitation [139]. Shown are the neutral
curves for the two-dimensional model in (a) the conductive regime (v = 100 s**)
and in (b) the dielectric regime (v = 400 s*'). The unstable region in the left lower
corner of (a) corresponds to the conductive mode and shrinks with increasing mean
frequency of the driving process and is then absent in the dielectric regime (b).

The “critical” wave number k; increases as function of the mean frequency
v with a slope much smaller than for deterministic driving. This is also found
in experiments [138], cf. Fig. 17, and can be qualitatively understood by an
argument similar to that given above according to which stochastic driving
contains always contributions of lower Fourier modes.

For stochastic driving one observes in the region indicated in Fig. 17 by
open rectangles phenomena which resemble on-offintermittency: Normal roll
patches appear and disappear in an irregular way at voltages already below
the sample stability threshold [137, 138, 140]. The frequency of the bursts
increases with the strength of the stochastic field, their duration depends on
the characteristic time 7y, of the noise. Since the undistorted state is well
described by the linear theory this phenomenon can be captured by simu-
lations based on Eq. (37). We have found when approaching the threshold
(A1 = 0) from below that the probability distribution for the duration 7,¢; of
the undistorted state (i.e the laminar or off-periods) is governed by a power-
law p(1orf) ~ 723/2 over several orders of magnitude, in good agreement

P\Tory off g ) g g
with the experiment [140].

Superposition of deterministic and stochastic field. The superposition
of a deterministic voltage U1 with a ’fast’ stochastic voltage U with increas-
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Fig.17. Theory versus experiment: Thresholds and selected wave numbers of nor-
mal rolls depending on the (mean) frequency of the driving field [138]. As explained
in the text, the curves for stochastic driving are always below those for deterministic
driving. Experimentally determined thresholds (e deterministic driving, triangles:
stochastic driving) are compared with those obtained from the two-dimensional the-
ory (sample stability criterion for the stochastic case). The experiment is performed
with the nematic “Mischung 5”. The open rectangles indicate the range where for
stochastic driving phenomena were observed which resemble on-off-intermittency
(see text).

ing strength stabilizes at first the undistorted state. This is shown in Fig.
18, where the threshold increases initially with increasing U. This remains
true up to a certain “critical” value of U beyond which the threshold curve
bends down (U becomes destabilizing). The threshold curves are determined
experimentally following a suitable protocol involving changes in U, Uy inside
the stable regime until a point on the linear stability curve is hit.

The region where the undistorted state is stable may extend beyond the
threshold values of deterministic or stochastic driving alone, thus forming
a stable tongue in the U-U; plane (i.e. the upper curve in Fig. 18 bends
back at large U). This explains why in experiments [126, 127, 128, 129] a
discontinuous behaviour of the threshold was observed, when a stochastic
voltage U of a given strength was applied first and then the deterministic
voltage U1 was increased up to the instability of the homogeneous phase. In
other words, below a certain value U, (& 230V in Fig. 18) the threshold is
found at a finite deterministic voltage Uy4p, whereas for U > U, convection
sets in immediately at Uy = 0.

The appearance of the stable tongue depends on the material parame-
ters. Roughly speaking, the tendency towards its formation decreases with
increasing Helfrich parameter (? (independent of the stability criterion, i.e.
for moment’s stability [132] as well as for sample stability [139]. The Hel-
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Fig. 18. Comparison of sample stability thresholds for different values of the con-
ductivity at fixed v = 1000s™" in the one-dimensional model [139]. The tendency to-
wards formation of a stable tongue increases with increasing conductivity. Shown are
the cases o =111- 1011° 02+ cmt! and o =222 1011041 ch‘l, cr”/ch_ =1.5.
In the latter case there is a stable tongue so that, following the measuring proce-
dure described in the text, the threshold curve appears discontinuous. The mean
number of jumps is ¥ = 1000s*! (Material parameters MBBA TI from [148, 139]).

frich parameter (which alone determines fg in units of the charge relaxation
time 7, (see Eq. (12)) depends only on the ratio o)/ . A further important
parameter is in fact the absolute value of the conductivity o) which may
differ from sample to sample considerably and which can be changed easily
by doping. The tendency towards formation of a stable tongue increases with
increasing o) while o) /o1 is kept constant (cf. Fig. 18). Note that fz ~ o)
in physical units.

The early experiments [126, 127, 128, 129] were performed presumably
with highly doped MBBA (f; = 360Hz in [129]). In later experiments with
undoped MBBA [136, 137] (fs = 170Hz) and a different, chemically more
stable nematics (Mischung 5) [138] no stable tongue and correspondingly no
discontinuous behaviour of the threshold was found.

As already mentioned the superposition of a deterministic field with a
’slow’ stochastic one leads always to a monotonous decrease of the thresh-
old with increasing stochastic field (see insert in Fig. 14) in agreement with
experiments.

The difference of the thresholds for the one-dimensional and two-dimensional
versions of the standard model are in general small. The selected wave num-
bers, however, differ significantly, cf. Fig. 19. This is evident, since k, is
always chosen to be 7/d in the one-dimensional version, whereas it increases
in fact with increasing strength of the stochastic field. This is consistent with
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Fig.19. Thresholds and selected wave numbers for the superposition of a con-
stant voltage U; with a stochastic dichotomous voltage U obtained for the
one-dimensional (dashed line) and the two-dimensional model (solid line) from the
sample stability criterion and from numerical simulation (e) [139]. Material param-
eters from [148], v = 1000 s**.

experimental findings [136, 137, 138]. A detailed quantitative comparison of
two-dimensional theory and experiment is in preparation.

6.5 Concluding remarks and outlook

The theoretical treatment presented in this review has obviously the capa-
bility for a convincing explanation of a variety of experimental findings. This
has been demonstrated for the following phenomena: (i) The discontinuous
behaviour of the threshold at a critical strength of the noise, (ii) the change
from discontinuous to continuous behaviour of the threshold with increasing
correlation time of the noise, (iii) the change from continuous to discontinu-
ous behaviour of the threshold with increasing conductivity, (iv) the change
from stabilizing to destabilizing effect of the noise if its correlation time be-
comes comparable to the correlation time of the system, and (v) the on-off
intermittency observed in very recent experiments. In the following we will
mention some issues that certainly need further investigation.

In the numerical simulations of the two-dimensional model it was observed
that the fluctuations in the distribution of Lyapunov exponents for trajec-
tories of finite length (which mean fluctuations of the threshold) increase if
the characteristic times of noise and system become comparable, cf. Fig. 19.
Fluctuations of thresholds were also observed in experiment for sufficiently
large noise [136, 137, 138, 140]. The theoretical treatment of these fluctua-
tions leads to the problem of generalized Lyapunov exponents [150, 154].

The conductivity enters the standard model considered here as a mate-
rial parameter. Recently, Treiber and Kramer [33] have developed a more
sophisticated model (WEM, see Sect. 4.2), where ionic migration, diffusion
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and dissociation-recombination processes are included. Thus the electric con-
ductivity becomes a variable which introduces new time and length scales.
In the deterministic case the primary bifurcation phenomena become much
richer (Hopf, subcritical). and the analysis of stochastic driving within this
model will be certainly rewarding.

In the present work the stability of the undistorted state against one
mode describing roll patterns of a fixed wave number was considered. If the
characteristic time of the noise is of the order of the inverse growth rate of a
typical mode, the process of mode selection will not be completed until the
next jump of the noise. Thus a band of wave numbers might be involved.
This could lead to a sort of dynamical pattern as observed in experiments.
At least in a conceptually different system (of Hamiltonian or dissipative
gradient type) it has been recently shown, that a continuous band of wave
numbers might remain relevant for the long-time behaviour [162].

The inherent difficulties of stochastically driven EHC substantially in-
crease if it comes to the description of the nonlinear regime. A numerical
treatment of the full set of nonlinear electrohydrodynamic equations seems
at present not to be feasible even in the deterministic case. However, a reli-
able description is possible in the weakly nonlinear regime in terms of order
parameter equations (see Sect. 3). The general problem of systematically
deriving amplitude equations in the stochastic case has been addressed in
few investigations, see e.g. [157, 158, 159, 160, 161]. However, it is an open
question, which approach applies to the case of multiplicative noise in EHC
with not always well separated time scales and finite correlation time of the
noise. One might speculate that for sufficiently fast driving a kind of order
parameter equations with “averaged” coefficients could result, while in the
opposite case the coefficients might be stochastic quantities. One should also
be aware of the fact, that a deterministic supercritical bifurcation can change
to a subcritical one under the influence of noise [155, 156].

At the moment nonlinear partial differential equations, e.g. of Ginzburg-
Landau or Swift-Hohenberg type, with additive or multiplicative Gaussian
white noise (introduced ad hoc) are a subject of intense studies [163, 164,
165, 166, 167, 168, 169, 170, 171, 172, 173, 174]. In this context, Becker
and Kramer [175, 176] found a controllable approximation to determine the
threshold of sample stability without knowledge of the stationary distribu-
tion. A zero-dimensional version, the Stratonovich model, was solved rigor-
ously for Gaussian white noise [177, 178] and dichotomous noise [179]. More
recently, a 1d model with multiplicative noise that is a product of a Gaussian
white noise in time and a spatial periodic function was considered [180].

Here we have concentrated on the case of stochastically driven electro-
hydrodynamic convection, i.e. a multiplicative, parametric, external noise.
One should note that the very interesting and intriguing problem of thermal
fluctuations, i.e. the case of additive, internal noise has also motivated many
experimental and theoretical activities [24].
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7 General Conclusions

In this review we have described to some extent the present status of research
in EHC. In near future it is to be expected, that the combined application of
electric and magnetic fields will be explored in more detail. Any additional
control parameter is obviously very useful to enfold bifurcation scenarios and
to accentuate specific mechanism (for a recent example see [181]). But also
very unexpected and not yet understood phenomena can show up like the
dendritic growth of EHC patterns (see [182]). Many other problems ask for
further investigation. Among them are the properties of the abnormal rolls,
in particular the defect and wall structures in this state, which certainly
determine the patterns not too far from threshold. EHC is a nice paradigm
for the formation of chevrons, i1.e. an super-structure of particle-like defects,
which develops out of a gas of “free” defects. The formation of defect chains
is also observed in other cases for instance in simulations of the complex
Ginzburg-Landau equation [183].

Another issue is the characterization of spatial temporal chaos (STC),
which 1s the subject of current research in general. STC can easily be pro-
duced in EHC experiments by increasing the driving voltage. The system is
apparently well suited to study such statistical issues, because of the short
characteristic timesi and large aspect ratios. For example it has been stressed
recently that time-averages of the patterns unlike a single snapshot might
contain useful information about characteristic times and length of a system
[184] as function of the control parameter. This has been confirmed in recent
experimental studies [185], where the transition and the possible origin of the
STC has been characterized.

Furthermore one should keep in mind, that typical bifurcation scenarios
in EHC can be found as well in RBC of nematics [186]. It is for instance easy
to find a Hopf bifurcation at threshold in the homeotropic case (for recent
experiments see e.g. [187]). The close analogy between EHC and RBC is also
reflected in the theoretical analysis [56].

Though not directly related, one should mention finally that interesting
instabilities in nematics can also appear under the influence of shear flow
[188]. Then a viscous torque is exerted on the director, which was part of the
destabilisation loop in EHC| where the director is situated in the shear plane.
The flow instabilities in this geometry are currently under investigation, under
the application of oscillatory flows. The scenarios are unexpectedly rich. One
finds spatially homogeneous oscillations of the director in Couette flow [189]
as well as the bifurcation to convection-roll patterns under Poisseuille flow

[190].
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