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In the last years the understanding of electroconvection in nematics
in the nonlinear regime has benefitted considerably from the use of
reduced descriptions that can be obtained largely from a phenomeno-
logical approach. Close connection with hydrodynamic theory and
experiments is essential.
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INTRODUCTION

The description of a complex phenomenon like electroconvection in
nematics has to start from hydrodynamic theory (for reviews see
[1, 2]). One has the usual nematodynamic equations supplemented
by an electric part, which consists of the charge conservation equa-
tion with Poisson’s law. The material is described by an anisotropic
dielectric tensor, and, in the Helfrich “standard model” (SM), by
an ohmic conductivity tensor. In the Navier-Stokes equation the
Maxwell stress tensor has to be included. The full linear stability
analysis of the SM is nowadays feasible, even with the inclusion of
the flexoeffect (which has limited influence under the usual ac driv-
ing).

The SM describes all measured effects, like normal and oblique
rolls at threshold, conduction and dielectric destabilization depend-
ing on frequency w (see Fig.1a for a sketch). To describe the observed
traveling rolls [3], a generalization, the “weak electrolyte model”
(WEM), has been developed. Here an additional dynamic process is
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included by considering two species of mobile ions which arise in a
(slow) dissociation-recombination reaction [4, 5].

The first task of nonlinear theory is to describe the saturation of
the pattern evolving from the linear modes in the spirit of a (time-
dependent) Landau theory [6]. In the oblique-roll regime a super-
position of zig and zag rolls leading to rectangular structures is in
principle possible. Next, slow spatial modulations of the ideal peri-
odic pattern with wave vector q. are included by introducing a slowly
varying complex amplitude A such that the pattern is described by
the real part of A(x)exp(iq.x). The generic amplitude equation for
anisotropic systems in the range of static normal rolls is the real
Ginzburg-Landau equation [7, 8, 6]

T0,A = (e — g|A]? + 102 + §02) A, (1)

where € = (V2 — V?)/V2, with the critical voltage V., is the reduced
control parameter. g (> 0 in the SM) describes the nonlinear satura-
tion and & » represent the coherence lengths. Generalization to the
neighbourhood of the Lifshitz point wy, which separates the normal
(w > wr,) from the oblique roll regime, is possible [7]. Deep inside the
oblique-roll range one has to use two coupled equations. The coeffi-
cients of the amplitude equations were calculated from the SM in [6]
(without flexoeffect). The Ginzburg-Landau equations can be used
in particular to study the stable wavevector band (the wavenumber
and the orientation can be changed to some extent without loosing
stability) and the structure and dynamics of dislocations, in good
agreement with experiments [9].

In the framework of the WEM the Hopf bifurcation to travel-
ling rolls is supercritical. Then one has the complex Ginzburg-
Landau equation (actually two or four such coupled equations for
the counter-propagating, and possibly oblique, roll systems [10]) to
describe the weakly nonlinear behaviour [5]. The stationary bifur-
cation near the crossover to travelling rolls is typically subcritical.
The resulting small hysteresis has been measured in various materi-
als [11, 12, 4]. Particularly interesting scenarios involving extended
spatio-temporal chaos at onset [13] and subcritically arising localized
structures (“worms”) [14] have been found in the material Merck I52.
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The former can be understood on the basis of two coupled complex
Ginzburg-Landau equations describing zig and zag rolls travelling in
the same direction [15]. A phenomenological model has been pro-
posed to describe the worms [16]. Well inside the nonlinear regime
WEM effects are presumably negligible because the velocity field
tends to level out gradients in the density of the charge carriers.

Thus any extended nonlinear analysis has been considered within
the SM.

EXTENDED NONLINEAR REGIME

To extend the range of validity of the above description various
finite—e corrections have been taken into account [17]. In partic-
ular the curvature of rolls is known to induce a so called mean flow.
In the presence of 2D lateral spatial variations (3D on the hydro-
dynamic level) the mean flow cannot be fully eliminated due to the
singular structure of its spatial dependence. Thus, one is left with
an additional (static) equation. The analysis showed that, at least
near to the transition to oblique rolls, normal rolls are destabilized
with increasing e by a zigzag (or undulatory) instability at ez as
found in experiments [18].

A full numerical Galerkin calculation confirmed this result and
extended it to larger € and frequencies [19, 20]. Surprisingly, at fre-
quencies above some value war > wyr (to the right of C2 in Fig.
la destabilization of normal rolls occurs at € = e4g via a spatially
homogeneous (in the plane of the layer) mode involving a twist of
the director. The mode is the analog of that which destabilizes the
basic state in a twist Fréedericksz transition (magnetic field in the
y direction). The instability signalizes a (continuous) pitchfork bi-
furcation from normal to “abnormal rolls” (ARs) where the director
attains such a twist deformation, either to the left or to the right.
Interestingly one has restabilization of ARs for w < wsg above € 4.
This line will be discussed in greater detail subsequently. At larger €
the ARs destabilize either via a long-wave skewed-varicose instabil-
ity (SV) (here the modulation wave vector of the destabilizing mode
is at an oblique angle), or, at smaller frequency, via a short-wave
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Fig.1a. Schematic stability dia- Fig.1b. Blow-up of the vicin-
gram for planar EC. Convection ity of the C2-point for the ma-
sets in above the lowest solid terial MBBA (79: charge relax-
curves. For the secondary bifur- ation time) showing the mod-
cations, see text. ification of eqpst by skewed-

varicose modulations. For de-
tails, see text.

skewed-varicose instability. This is also called a bimodal varicose
instability (BV) [21, 20|, because it indicates the transition to a bi-
modal state composed of the superposition of two roll systems with
different orientation.

When one extends this diagram to oblique rolls (wavevector q =
(g,p)), the AR bifurcation becomes imperfect (smooth), since in
oblique rolls the left-right symmetry is already broken. Also, the
destabilization is shifted upward and restabilization downward, so
that the curves meet at some value P, (w) (with vertical slope) [19].
Thus one has an unstable bubble in the e — P plane which is bounded
from below by €7z, and from above by €srs [22, 23]. Consequently
there is a very interesting codimension-2 (C2) point at wag, €4r-

The reason why ARs had escaped the notice of experimentalists
is that in planarly aligned cells and with the ordinary visualization
(at most one polarizer in x direction) they cannot be distinguished
from NRs. For homeotropic alignment this is different, and there
the signature of ARs had indeed been observed before [24]. Indi-
rect evidence comes from the observation of domain walls between
the two variants of ARs [19]. Meanwhile direct evidence has been
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obtained from measurements of the ellipticity of the light induced
by ARs [25, 26]. In these measurements also the ZZ instability, to-
gether with the restabilization line, could be identified. Apparently
the rather small width of the system in the = direction, which allowed
for 12 roll pairs, stabilized the ZZ structures, which appear above the
instability, otherwise they are unstable against coarsening. Interest-
ingly, another line at ey p was found, which lies above €4z and also
goes through the C2 point: whereas the angle of the ZZ structures
first increases with € when ez is crossed, it subsequently decreases
again, becoming zero at egg. Then one is left with ARs with domain
walls, because the different orientations in the ZZs induce different
variants of ARs. The domain walls quickly annihilate and there re-
mains a single AR domain. When one now decreases €, a massive
hysteresis occurs: the ARs persist down to €4rs. Then there is a
discontinuous transition to the ZZ branch.

These features can be understood in terms of a simple, phe-
nomenological description of the AR bifurcation [25, 23]. The two
active modes involved are the twist mode, characterized by an an-
gle ¢, and the phase of the modulations of the roll pattern 6. The
equations are

0 = (1—9¢")¢+ (K107 + K0,)b — 70,9,
00 = (D102 + D202)0 — (v + h¢?)9, 9, (2)

The control parameters p and v are to be associated with e—e4g and
w—wagr- The coupling terms are obtained from symmetry considera-
tions. The term proportional to A is included because v goes through
zero. (A similar term in the ¢ equation would allow to include desta-
bilization of ARs at larger values of p.) This model contains all the
features described above. The slopes of the different lines are easily
expressed in terms of the parameters of the model. In particular,
for v < 0, the ZZ instability of NRs at u = (v/Ds)v preempts the
AR instability and ARs exhibit the observed restabilization. At the
HB line there is a heteroclinic connection between ZZ solutions and
NRs. Above the HB line domain walls that are not parallel to the
rolls move spontaneously [23].

This description is well-founded when only modulations along y
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occur, like in the ZZ instability and in ZZ solutions. In order to
describe y and z variations, one has to include in particular singular
mean flow by adding a term —S;09,G on the rhs of the f—equation
where G satisfies the equation v,05G +140; G +d105¢+d3$0,0yd = 0.
This changes the restabilization from a ZZ into a skewed-varicose in-
stability and moves it upward. With parameters calculated from
hydrodynamics for MBBA the effect is particularly strong near the
C2 point where in fact a “nose” develops, see Fig. 1b (solid curve
without symbols). Also included is the restabilization line as ob-
tained from full Galerkin calculations (symbols only) [27]. It would
be interesting to identify the “nose” experimentally (the experiments
in [25, 26] were presumably not accurate enough).

The reduced descriptions (1) and (2) are mutually exclusive: they
represent normal-form type models of the primary and the secondary
bifurcations, respectively. One can combine them by replacing in (2)
the phase of the pattern by its complex amplitude. The simplest
version of such equations

1A = e — glAP + 202 + (02 — 2C1qe40, — CogZ® — iv By9)| 4,
Op = Glige A*(0y —iqep)A+ c.c) — T+ (K107 + K20;) . (3)

is quantitatively valid when the secondary bifurcation is near to the
primary one [28].

Such a situation occurs naturally in homeotropically aligned sys-
tems in materials with manifestly negative dielectric anisotropy, where
one first has a bend Fréedericksz transition through which the direc-
tor acquires a planar component (planar director c¢). The transition

to convection occurring at higher voltage is in many ways similar to
that in planar cells, except that the preferred axis (the ¢ director)
is not externally fixed. The Goldstone mode related to rotation of
the c director, which is here the analog of the twist mode, is now
undamped (7" = 0 in Egs.(3), which means that the AR bifurcation
coincides with the primary one. In this case one also has from overall
rotation invariance C; = Cy = 1 [29, 28](in general 1 > C2 > C)).
The first term in the ¢—equation expresses the “abnormal torque”
on the c director (G > 0 !), which arises at second order in the
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convection amplitude. For 7" = 0 all roll solutions are unstable. In
simulations ¢ grows without bounds (for C; = Cy = 1!), and then
a globally invariant generalization of these equations must be used,
which exhibit dynamic disorder (“soft-mode turbulence”) [29, 28],
which is essentially what is found experimentally [24, 30, 31, 32]|.

The linear damping ~ 7" appears in the presence of effects that
break rotation invariance, like an additional planar magnetic field
(then T =~ x,H?). Then one has a situation which is in some ways
similar to the planar case. In planar systems, on the other hand, the
AR bifurcation can be shifted downward by applying an additional
(destabilizing) magnetic field in the y direction. Then T = x,(Hz —
H?) so that T, and therefore also €4, tends to zero for H — Hp.
In that situation Eqgs.(3) apply quantitatively (now 1 > C7 > ().
In simulations ¢ remains bounded even for 7" = 0, in contrast to the
case C; =Cy =1.

For T > 0 Egs.(3) describe NRs at band center (|A| = \/%, o=
0), which are stable against homogeneous ¢ perturbations for ¢ <
ear = T'/(2G) and against ZZ fluctuations for € < €77 = ear/(1—v).
A quantitative comparison of the pitchfork bifurcation to ARs A =

\€ar/g, ¢ = +/(€ — €ar/(£1q9.) with experiment has been made in a

homeotropic cell [33].

For negative v one has a restabilization curve which passes through
the C2 point with slope de/dv = —1/(2(1 — C})) and saturates for
v — —o0 at €5 = Cy/(2C, + C3). Destabilization of ARs towards
increasing € is also captured. For negative values of v there is a short-
wave instability merging with a long-wave instability curve at some
positive v. For v — oo the instability curve tends to €5, from above.
Thus the scenario is qualitatively as in Fig.1la. For C;, Cy — 1 the
scenario degenerates such that there is in effect no restabilization
(actually for v < 0 there is restabilization at € = 3/2e4g, but at the
same line the short-wave destabilization sets in [28]) and destabiliza-
tion of ARs for v > 0 occurs at € = 3/2¢e4g.

In the range of stable ARs the equations describe interesting de-
fect scenarios. For e above the stable range one has defect chaotic
states. For € > esg (this can be achieved for any positive value
of € by choosing T (> 0) sufficiently small) one has a spontaneous
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ordering of defects along periodically arranged lines along y, which
appears to explain the most common types of chevrons observed in
the dielectric range of planarly aligned cells [34]. The theory is in-
deed applicable to the dielectric range because here the orienting
effects of the boundaries can be considered as small perturbations
[35], which is consistent with experiments [36, 37]. The prediction
that chevrons should occur in homeotropic systems also in the con-
duction range has been verified [30, 32]. For 1 > C2 > C; one also
has a new type of static chevrons (at larger €) [38].

When €45 is not sufficiently small, as is the case for planar sys-
tems without additional magnetic field, corrections have to be in-
cluded, which in particular involve mean flow. This has been carried
out for the case with modulations only in the y direction [20] (as
mentioned before, mean flow can then be eliminated). Otherwise the
equations become somewhat tedious, so we will not write them out
here. In Fig. 1b the restabilization line (with the “nose”) is included
as obtained from the extended equations (solid curve with symbols).
We intend to study complex patterns with these equations.

CONCLUSION

We could sketch here only some rather basic results while work
on various detailed aspects is still in progress. There is hope that
phenomena like the “wide domains” [39, 40, 41] (or “prechevrons”
[32, 42]), which seemingly arise in a primary instability, but can be
understood only as a secondary bifurcation (they resemble the static
chevrons mentioned before), will eventually be understood. Possibly
the instability of drift-recombination induced boundary layers as de-
scribed by the WEM [43] can lead to convection at the boundaries
as observed many years ago [44]. These effects would presumably
persist in the isotropic phase which would be consistent with old [45]
and new results [42].
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