An Initial Look at Acceleration-Modulated
Thermal Convection

Jeffrey L. Rogers, Michael F. Schatz, Werner Pesch, and Oliver Brausch

1 Introduction

The formation of patterns in spatially extended nonequilibrium systems is a
problem of fundamental interest in a broad set of disciplines including physics,
engineering, chemistry, and biology. Two of the most commonly studied sys-
tems are drawn from hydrodynamics: a fluid layer with an imposed vertical
temperature difference (Rayleigh-Bénard convection [1-3]) and an open dish
of vertically oscillated fluid (Faraday surface waves [4]). These systems do
share common features. For sufficiently weak driving (thermal and vertical vi-
brations, respectively) both systems are in macroscopically time-independent
and uniform states. As driving is increased regular spatial variations appear
at well-defined thresholds and the dynamics become complex in space and
time when the driving is sufficiently large. However, Rayleigh-Bénard convec-
tion and Faraday waves each represent different classes of spatially extended
systems, since basic mechanisms of pattern formation differ between these
two cases in important ways.

One important distinction is the mechanism which selects a pattern’s
length scale. At the onset of fluid motion in Rayleigh-Bénard convection, the
pattern will display a wavenumber dependent on the geometrical constraints.
In particular, the pattern wavenumber ¢ is directly proportional to the fluid
layer depth (Fig. 1). Patterns of the geometry-induced type occur in a number
of other systems, for example in the buckling of thin plates [5]. In contrast,
Faraday surface waves are driven by vertical vibration, often sinusoidal with
a drive period 7. This time-dependent driving leads to wavenumber selection
by the forcing frequency via a dispersion relation. Other examples of such
dispersion-induced [6] patterns include optical waves in a fiber laser [7] and
crystallization waves in *He [8].

Another important distinction between Rayleigh-Bénard convection and
Faraday surface waves is the way system symmetries arise and dictate the
pattern planform near onset. Patterns in both systems may exhibit inversion
symmetry; the equations governing the pattern mode amplitudes A are invari-
ant under the operation A — —A. This symmetry excludes even order terms
in the amplitude equations, thereby, strongly influencing the pattern struc-
ture near onset. In Rayleigh-Bénard convection, inversion symmetry takes
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the form of the Boussinesq symmetry; spatial invariance under vertical re-
flection about the fluid layer mid plane and is manifested by the stationary
stripe patterns typically observed at convective onset. By contrast, inversion
symmetry in Faraday waves is temporal, viz., invariance under discrete time
translation by 7 and is displayed in the subharmonic (periodic at 27) waves
frequently observed near onset.

Inversion symmetry can be broken in distinct ways in these systems, lead-
ing to differences in pattern forming behavior. Breaking inversion symmetry
permits quadratic terms in the amplitude equations, leading to pattern selec-
tion dominated by three-mode interactions (resonant triads) [9]. In convec-
tion experiments, the Boussinesq symmetry is typically broken by the spatial
dependence of fluid properties in the layer [1,10]. This effect becomes sig-
nificant when the imposed temperature difference is sufficiently large. The
corresponding resonant triad interactions typically lead to the appearance of
hexagonal patterns at onset [10,11]. For Faraday waves, inversion symmetry
may be broken in a number of different ways [12-14] involving careful choice
of the time-dependence of the drive. The character of the resulting resonant
triads can depend sensitively on the choice of drive frequencies and therefore,
unlike standard Rayleigh-Bénard convection, pattern selection with broken
symmetry can be flexibly tuned for Faraday waves.

Recently, pattern formation studies have extended the focus to include
the emergence of what Pismen [15] has termed complex-ordered states. These
spatially complex patterns are described by a finite number of peaks in the
spectral domain and may be classified as quasicrystals or superlattices using
the criteria defined by Lifshitz [16]. Essentially, if the number of vectors
(indexing vectors) required to span the stimulated modes is greater than the
pattern dimension the state is a quasicrystal [16]. Accordingly, if the number
of vectors equals the pattern spatial dimension, the state is periodic. Hence,
a superlattice is a pattern whose power spectrum contains a finite number
of modes which are indexed by a number of vectors equal to the spatial
dimension of the pattern. Quasicrystals and superlattices have been reported
in other hydrodynamic [12,13,17-19] and optical systems [20,21]. Features
generally found among the examples where complex-order has previously
been observed include a nearby codimension-two point and multiple accessible
wavenumbers.

Many of the characteristics that are distinctive to either Rayleigh-Bénard-
type or Faraday-type patterns can be found in a single system: a fluid layer
driven by both heating from below and sinusoidal vertical oscillations (Fig.
1). A classical Rayleigh-Bénard convection experiment (no vertical oscilla-
tions) of infinite lateral extent is described by two nondimensional param-
eters: Rayleigh number R and Prandtl number Pr. These parameters are
defined,
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Fig. 1. Sketch of convection cell (not to scale). The relatively thin CO. layer of
depth d is driven away from equilibrium by an imposed temperature difference AT
and vertical oscillations (e coswt). The top and bottom surfaces are maintained at
uniform temperatures T; and Tb, respectively (AT = T, — T1). Oscillations are
defined in terms of the dimensionless acceleration € and w (2).

in terms of AT (Fig. 1), gravitational acceleration g, d (Fig. 1), thermal dif-
fusivity &, kinematic viscosity v, and thermal expansivity «a. Intrinsic scales
in the experiment are d and the vertical diffusion time (¢, = k/d?). Impos-
ing vertical oscillations on Rayleigh-Bénard convection [22,23] (acceleration-
modulated Rayleigh-Bénard convection) results in two additional nondimen-
sional parameters that are analogous to those used to characterize states in
Faraday wave experiments: the displacement amplitude 0 F'r and the modu-
lation frequency w;

2 2
_ Ko _da,
0Fr = d4g6 and w= P (2)

where &' is the dimensional displacement amplitude and «’ is the dimen-
sional angular frequency of oscillation. It is important to note that unlike the
Faraday waves there is no free surface in the present case.

In this paper we report the first experimental results for acceleration-
modulated Rayleigh-Bénard convection [24-26], which we confirm and aug-
ment with a number of new numerical findings [27]. Brief descriptions of our
experimental apparatus and numerical methods are presented in Sects. 2.1
& 2.2, respectively. Most of the presented results are for a fixed Pr = 0.930
and w = 100. Predicted modulation induced shifts in onset R (R.) and onset
q (g.) are compared in Sect. 3.1 with experimental observations. In Sect. 3.2
patterns are confirmed to display harmonic (synchronous to the oscillations)
and subharmonic temporal dependence for the appropriate parameter values.
Harmonic patterns near onset and away from onset are reported and discussed
in Sects. 3.3 & 3.4. Examples of subharmonic patterns near and away from
onset are presented in Sects. 3.5 & 3.6. For sufficiently large R a direct tran-
sition between purely harmonic and purely subharmonic patterns is found to
occur. Boundaries for this gradual transition and typical coexisting patterns
are investigated in Sects. 4.1 & 4.2. Over a wide range of parameters novel
complex-ordered patterns are reported. These complex states are found to be
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superlattices, one type of which is found to emerge directly from conduction
at a point of codimension-two. The presence of inversion symmetry is found
to be important to the coexistence pattern observed near onset. We propose
a resonance mechanism for the formation of observed superlattices in Sect.
5.3. Complex-ordered patterns at other w values are investigated numerically
and experimentally in Sect. 5.4.

2 Laboratory

2.1 Experimental Apparatus

Performing the experiments requires vertically oscillating a convection cell
(Fig. 1), while controlling the relevant physical quantities to vary the dimen-
sionless parameters in the appropriate manner. The experiment is composed
of a convection cell, means for controlling cell temperatures and pressure, a
mechanical shaking device, an image acquisition system, and computers to
analyze the various data streams. In this section we briefly describe each of
these sub-systems. For a more detailed description see [26].

The convection apparatus is based on well-tested designs for standard
Rayleigh-Bénard convection using compressed gases [28,29]. The actual con-
vection cell is bounded from below by a 5.08 cm-diameter, 0.60 cm-thick
aluminum mirror; from the side by a 3.8 cm-inner-diameter, 5.08 cm-outer-
diameter stack of filter paper; and from above by a 5.0 cm-diameter, 2.54 cm-
thick sapphire crystal. The cell is confined in an aluminum pressure contain-
ment vessel. The sapphire crystal is held tightly against the top of the vessel
by the pressure of the compressed CO2 gas. The aluminum mirror is aligned
parallel to the bottom of the sapphire crystal by a kinematic mount with an
additional pull-down screw. Interferometry measurements demonstrate that
the bounding surfaces remain level when oscillations are imposed.

Fluid properties are under dynamic computer control. Temperature con-
trol is provided by heating through a resistive pad the bottom mirror while
cooling with a water bath the sapphire crystal. The heating and the cooling
are both under computer control allowing the fluid layer mid-plane temper-
ature T and AT to be held fixed within +0.01° C. The containment vessel
is filled with 99.99% pure CO-, typically at a pressure near 32.72bar. Pres-
sure is computer-controlled through the heating of a ballast allowing constant
pressure to be maintained to + 0.01 bar

Vertical oscillations are supplied by hydraulically-driven mechanical shak-
ing systems. The convection apparatus is attached to a piston whose motion
is driven by the flow of oil at 120bar. The oil flow is regulated by high-
performance electrodynamic servo valves, which, in turn, are driven by a
high-current amplifier under closed-loop control. Thus, controlled oscillations
of the piston are achieved by feeding an oscillatory control voltage signal into
the amplifier. The displacement amplitude of the oscillations is measured
by two devices: a linear variable displacement transducer (LVDT) attached
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directly to the piston and an accelerometer attached to the bottom of the
containment vessel. The hydraulic shaker is rigidly attached to a heavy mount
(ballast), which in turn, rests on elastic supports to damp out vibrational re-
coil. Lateral vibrations are held to approximately 0.2 % of the vertical motion
through the use of a rectangular air-bearing assembly on the drive shaft.

Patterns are visualized using the established method of shadowgraphy
[28,29]. Utilizing compressed gases greatly enhances the sensitivity of the
shadowgraph [28], since the refractive index is reinforced and the contrast is
enhanced by the very thin layers (d = 0.0650 cm) which may be used. Shadow-
graph images are captured using a ccd camera interfaced with a computer-
controlled frame grabber. The image acquisition is synchronized with the
shaker drive by use of a ferroelectric liquid crystal shutter. Pattern images
are acquired at a predefined phase of the oscillation.

Recorded images are analyzed predominantly in terms of average spectral
quantities. To each image a radial Hanning function is applied to reduce
aliasing, prior to performing a spatial Fourier transform. The constituent
phase angles and power spectra [p(q)] is found for each pattern. Generally,
the power spectrum are normalized by the windowed image variances so that
the total power in the spectrum will sum to unity. The power spectrum are
then azimuthally averaged to produce the radial spectrum. Radial power
spectrum for all the images at a data point are then averaged. The resulting
distribution in ¢ is described by the first two moments,

 Jmo o(a)dg
ST ap(@)de @

2 o Po(0)dg
ST ap(q)da @

Patterns at a given set of parameters may then be characterized by three
spectral quantities: the relative power, characteristic ¢ (< ¢ >), and the
width of ¢ (0 = /< g2 > — < ¢ >2). Some patterns may contain multiple
distinct wavenumbers. In these cases, 8t"-order Butterworth filters are applied
to remove frequency components outside the band being considered.

2.2 Numerical Methods

The convective flow can be described by the Oberbeck-Boussinesq equations,
which, when nondimensionalized by d and t,, take the form

V-v=0
0'w' 1 v
2 5 — - — . -
Viu+2(1+ coswt)® — VP Pr(v Vo + 8t)
V2@+R2-v:'u-V@+@ (5)

ot’
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where v is the velocity, © the convection modification of the linear heat con-
duction temperature profile, and P the pressure. In the co-moving frame to
the layer, the effect of modulation appears only in the time-dependent buoy-
ancy term 2(‘519—“' coswt)@ [22,23]. The Boussinesq symmetry is not broken
by the modulation.

Numerical simulations of (5) are performed by modifying well-tested nu-
merical techniques for standard Rayleigh-Bénard convection. Only minor
modifications are required since the time-dependent buoyancy (a linear term)
is integrated explicitly in time by employing the approach used previously
for quadratic nonlinearities [30]. The equations are solved using isothermal
(© = 0), no-slip (v = 0), and no penetration (8,v, = 0) boundary conditions
at the confining (upper and lower) plates. The boundary conditions are en-
forced by expanding all fields in appropriate test functions (trigonometric or
Chandrasekhar functions) [23]. The incompressibility condition V - v = 0 is
satisfied by the introduction of a poloidal and a torroidal velocity potential.
We follow closely the standard approach [23] by expanding all fields into a
Fourier series in time combined with a Galerkin expansion in the z—direction.
Linearization permits calculation of both R, and ¢, as function of the modula-
tion parameters, 6Fr and w (Fig. 2). Nonlinear stripe solutions are calculated
within the Galerkin approach and examined for secondary bifurcations.

In some cases we include non-Boussinesq effects using the same approach
employed for non-Boussinesq effects in standard Rayleigh-Bénard convec-
tion [1]. In brief, the temperature dependence of all material parameters is
expanded about T = %(Tl + T5) to linear order. This results in both non-
Boussinesq corrections obtained for standard Rayleigh-Bénard convection [1]
and modification of the time-dependent buoyancy term via the temperature
dependence (at quadratic order) of the density. For a more detailed descrip-
tion of the numerical methods see [27]

3 Onset, Time-Dependence, and Typical Patterns

The conduction state competes with temporally modulated convection over a
wide range of parameter values. Our studies focus on this competition for the
case of fixed Pr and w. By varying the remaining control parameters § F'r and
R over a range where R is not too large, the conduction state is found to lose
stability to flows with either a harmonic or subharmonic temporal response.
Linear stability analyses [22,23] of the current experiment indicate that each
type of temporal flow occurs at a distinct spatial scale (Fig. 2). Harmonic
flows are predicted to be more stable than unmodulated convection, i.e., the
R, for harmonic convection RY is found to be larger than the R, in the
absence of modulation (R? = 1708). In contrast, subharmonic flows may be
either more stable (RS > R?) or less stable (R < R?). The g, of subharmonic
patterns g3 is typically significantly larger than g, of harmonic patterns g

[Fig. 2(b)]-
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Fig. 2. Linear stability of acceleration-modulated Rayleigh-Bénard convection.
Solid lines are marginal stability curves for harmonic response, while dashed lines
indicate subharmonic marginal stability curves. Arrows in (a) point to bicritical
points at the labeled values of w (= 98 & 50).

3.1 Onset Measurements
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Fig. 3. Comparison of conduction marginal stability predictions to experimental
observations of R. (a) as well as g. (b) at Pr = 0.930 and w = 98.0. Solid lines are
predicted values for onset of harmonic convection and dashed lines for subharmonic
convection. Experimental observations for harmonic and subharmonic (A) flows are
in quantitative agreement with predictions.

Linear stability predictions of the onset of fluid motion due to parametric
modulations are quantitatively confirmed by laboratory observations. In the
absence of modulations (6Fr = 0, w = 0) the experiment reduces to classi-
cal Rayleigh-Bénard convection where it is known conduction loses stability
at RY with ¢ = 3.117. For these parameters, we observe parallel stripes at
onset, suggesting that non-Boussinesq effects are weak and not observable
within the resolution of our measurements. Figure 3(a) compares conduction
marginal stability boundaries to experimental measurements of the bound-
ary between conduction and convection. With increasing dFr conduction
is increasingly stabilized until the harmonic marginal stability curve inter-
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sects the subharmonic marginal curve. At the point of intersection (bicritical
point) conduction loses stability to two different spatial scales simultaneously
as R is increased. For w = 98.0, our linear stability predicts bicriticality at
0Fry. = 3.768 x 10~* & Ry, = 4553. For 6Fr > 6Fry., the stability anal-
yses and experiments find the slope of the marginal stability curve changes
sign. For sufficiently large 6Fr, beyond the accessibility of the current ex-
periments, onset is predicted to occur for R < R? [23] [see also Fig. 2(a)].
The stability predictions of ¢ and ¢° are compared with experimentally
measured values in Fig. 3(b). For 6Fr < 3 x 107, the onset wavenumber
changes only slightly from ¢2. With increasing §Fr, ¢ begins to decrease.
With 6 F'r > 0Fra., subharmonic convection arises with a substantially larger
g than harmonic convection. Both experiments and the stability analyses find
g3 remains relatively constant for the range of §Fr > §Fry, studied. Neither
harmonic nor subharmonic onset exhibited hysteresis within the resolution
of our experiments.

3.2 Confirmation of time-dependence

1

time x T

Fig. 4. Temporal dependence of Fourier modes (simulation) in the fluid horizontal
mid plane of (a) purely harmonic convection and (b) purely subharmonic convec-
tion.

To investigate the fluid’s temporal dependence multiple images are recorded
during a single 7, each separated by a constant time interval. Temperature
time series from the simulations indicate that harmonic convection oscillates
about nonzero mean [Fig. 4(a)] with a period of 7; shadowgraph images [Fig.
5(a) & 5(b)] from the experiments demonstrate flows with period 7. By con-
trast, simulations indicate the subharmonic temperature field oscillates about
zero mean with a period of 27 [Fig. 4(b)]. Oscillations in the subharmonic
temperature field must satisfy the subharmonic time-translation (inversion)
symmetry which requires the field variables invert under discrete time trans-
lation by 7. This effect of symmetry is observed in the experiments as time-
periodic switching of the temperature field. Shadowgraph images separated
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in time by an odd multiple of 7 demonstrates switching between the upflow
(light) and downflow (dark) regions of the pattern [Fig. 5(c) & 5(d)].
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Fig. 5. Shadowgraph (ezperiment) of singly resonant flows. Purely harmonic pat-
terns (a & b) repeat every 7 time interval. At ¢ = 0 (a) the stripe state is well-
defined. For odd multiples of 7 (b) the stripe state becomes broader, while at even
multiples of 7 the original state (a) repeats. Each 128 by 128 pixel frame is over the
same spatial location separated in time by 7/2. In contrast, purely subharmonic
patterns (¢ & d) invert every 7 time-interval. Note, the + signs near the image
(c & d) centers, these are plotted at the same coordinates in both frames. The
disclinations center stripe is light at even multiples of 7 [(c) t=0] and dark at odd
multiples of 7 [(d) ¢ = 357].

3.3 Harmonic Patterns at Onset

Harmonic patterns at onset are striped and may contain domains of hexagons
depending on R. Parallel stripes [Fig. 6(a)] and targets [Fig. 6(b)] are typically
observed at onset. These patterns may be found anywhere (2000 < R < 4500)
along the harmonic stability curve (Fig. 7), while domains of hexagons only
occur close to onset at larger R values (3800 < R < 4800). From classical
Rayleigh-Bénard convection studies in compressed gases (Pr = 1) it is known
that parallel stripes form when the side wall forcing is minimal and that cell
filling (giant) targets or spirals [31] are present near onset when the side
wall forcing is more significant (for example, due to side wall heating [32]).
We expect a similar mechanism to be at work in our experiments where the
selection of stripes or targets varies with different experimental configura-
tions. Thus, we associate stronger side wall forcing from the circular lateral
boundary with the onset of targets and weaker side wall forcing with par-
allel stripe formation. Targets may display light or dark cores, designating
cold (downflowing) or warm (upflowing) centers, respectively. Domains of
hexagons may be present in both striped and target base states at larger R
values with the domains of hexagons becoming larger with R [Figs. 6(c) &
6(d)]. Hexagons with both downflowing centers [Fig. 6(c) & 6(d)] and upflow-
ing centers are observed. Transitions between domains of locally upflowing
and downflowing hexagons are also observed. The presence of hexagonal do-
mains indicates the approximation of Boussinesq symmetry is not valid near
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onset for at relatively large R. Similar mixed stripe-cellular patterns have
been observed previously in temperature-modulated Rayleigh-Bénard con-
vection experiments [33]. Physically this is likely due to the temperature
dependence of fluid properties; the variation of these properties within the
layer increases with increasing R (increasing AT') and explains why hexagons
are most readily observed when the onset of harmonic convection occurs at
the largest values of R near Ra.. Over most of the purely harmonic region the
majority of stable states are strikingly similar to patterns found in classical
Rayleigh-Bénard convection studies (without modulation) [32].

Fig. 6. Harmonic onset striped patterns include: (a) parallel stripes (§F'r = 3.34 x
107, w = 97.8, & R = 3002), (b) targets (0Fr = 3.29 x 107, w = 98.0, &
R = 2979), (c) stripes with hexagons (6Fr = 3.71 x 107*, w = 96.2, & R = 4388),
and (d) targets with hexagons (§Fr = 3.76 x 107*, w = 96.6, & R = 4107).

3.4 Harmonic Patterns Away from Onset
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Fig. 7. Parameter space showing conduction marginal stability curves for harmonic
(solid) and subharmonic (dashed) convection as well as experimental determined
regions of behavior.
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Onset patterns undergo a transition to spiral defect chaos as the system
moves from conduction further into the convection regime by combinations
of decreasing dFr and increasing R (Fig. 7). Two different scenarios are
observed, depending upon whether the transition sequence begins with either
parallel stripes or target patterns. The domains of hexagons observed near
onset at larger R play no role in this transition sequence because, for small
decreases in 0 F'r away from onset, hexagons disappear and only patterns of
either stripes or targets remain.

Fig. 8. Examples of typical patterns observed moving away from onset stripes: (a)
stripes with point defects and two wall foci forming (§Fr = 3.47 x 10™*, w = 98.4,
& R = 3926), (b) three-foci stripes (0Fr = 3.36 x 10™*, w = 98.4, & R = 3926), (c)
spiral defect chaos (§Fr = 2.06 x 10™%, w = 96.2, & R = 4385), and (d) harmonic
cellular (§Fr = 2.70 x 10™*, w = 100.3, & R = 8077).

The transition from parallel stripes to spiral defect chaos is similar to
that observed in classical Rayleigh-Bénard convection [32]. Moving away from
onset, stripe curvature increases, forming focus singularities at the lateral
boundaries, as the stripes increasingly align themselves perpendicular to the
side walls. Initially, two foci will form [Fig. 8(a)] with the stripe curvature
increasing as the experiment is tuned away from onset. Two-foci patterns are
similar to the so-called Pan-Am states observed in classical Rayleigh-Bénard
convection at comparable Pr and aspect ratio [34,35]. Away from onset, stripe
curvature gradually increases and more wall foci form [Fig. 8(b)] leading to
local frustration of the pattern wavenumber and formation of point defects.
These defects typically include locations where two stripes are replaced by
a single stripe (dislocations) and lines of point defects where the pattern
amplitude goes to zero (amplitude grain boundaries). Dislocations increase
in number as the experiment moves away from onset, while amplitude grain
boundaries are typical in stripe patterns with 3-foci. Generally, once the
number of wall foci is larger than four, spirals will begin to appear in the
interior of the pattern. The system then begins to display states composed of
left and right handed spirals [Fig. 8(c)]. As spiral defect chaos gradually fills
the convection cell, the harmonic wavenumber ¢ remains well-defined, but
the corresponding peak width ¢ increases. The emergence of dislocations
and grain boundaries, focus singularities, and the broadening of ¢ distribution
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about a characteristic value observed in the transition from stripes to spiral
defect chaos is also seen without modulation [32]. With both sufficiently large
dFr and relatively large R, ¢/ becomes less well-defined and o becomes
large as spiral defect chaos gradually gives way to cellular patterns without
spirals [Fig. 8(d)].

Fig. 9. Moving into the convection regime from a onset target typically observed
patterns include: (a) one arm spirals (§Fr = 1.74 x 107*, w = 98.4, & R = 2479),
(b) multi arm spirals with defects (6Fr = 1.95 x 1074, w = 99.4, & R = 2422),
(c) off-center multi arm spirals with defects (6Fr = 2.26 x 107*, w = 99.0, &
R = 2936), and (d) spiral defect chaos (§Fr = 2.30 x 10™*, w = 98.5, & R = 3663.)

When the side wall influence is more substantial the onset striped pat-
tern is a target and the transition to spiral defect chaos is somewhat different.
Moving away from onset a defect mediated transition from targets to spirals
occurs. Pairs of defects emerge in the pattern due to skew-varicose insta-
bilities. One defect from each pair will translate radially to the spiral core
producing a one arm spiral while the other defect will translate radially to the
side walls and annihilate. In Fig. 9(a) the defect pair originated in a target
near the core producing the one arm spiral, the other defect is translating
to the side walls. Sufficiently near onset continual nucleation can result in
switching between targets and one arm spirals [26]. Continuing away from
onset additional defects enter the pattern due to skew-varicose instabilities
producing multi arm spirals, as many as six arm spirals are observed. Occa-
sionally, an additional instability results in the targets or spirals cores moving
off-center. An example of this instability in shown in Figs. 9(b) & 9(c) for a
three arm spiral. Further away from onset, skew-varicose and off-center insta-
bilities result in numerous defects throughout the pattern and the giant spiral
will become unstable as spiral defect chaos [Fig. 9(d)] forms [31]. Moving to
larger R at sufficient § F'r spiral defect chaos gradually gives way to patterns
like Fig. 8(d). The transition from spiral defect chaos to states like Fig. 8(d)
is qualitatively independent of the onset planform.

3.5 Subharmonic Patterns at Onset

At onset, observed subharmonic states are parallel stripes [Fig. 10(a)] that
may include defects [Fig. 10(b-d)]. In contrast to the harmonic flows, hexagons
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Fig. 10. Examples of patterns observed near onset of subharmonic convection.
Patch (a) of parallel stripes (6Fr = 4.02 x 107, w = 97.9, & R = 4395), (b)
parallel stripes with dislocations (6Fr = 3.74 x 107*, w = 97.9, & R = 4857), (c)
stripes with a giant convex disclination and several dislocations (6 Fr = 3.34 x 1074,
w = 97.5, & R = 4811), and (d) onset spiral (6Fr = 4.12 x 107, w = 97.9, &
R =4173).

are not observed anywhere along the subharmonic marginal stability curve.
This is expected, due to the temporal subharmonic inversion symmetry, which
excludes the resonant triads.

Giant convex disclinations are common near onset, while cell filling con-
cave disclinations are not observed. Cell filling subharmonic spirals [Fig.
10(d)] can arise when side wall forcing is sufficiently large. However, subhar-
monic spirals are unusual even when sidewall forcing is sufficient to induce
targets or spirals at the onset of harmonic convection. Only one and three
arm giant spirals have been observed. If giant convex disclinations [Fig. 10(c)]
or giant spirals form at onset they are typically centered about the midpoint
of the convection cell and move off center as the system begins to move
away from onset. Sufficiently far from onset, the cores of convex disclinations
annihilate at the lateral boundary leaving a parallel stripe pattern. Due to
the characteristic wave length of subharmonic patterns being substantially
smaller than that of harmonic patterns it might be expected that side wall
forcing would have less of an influence over the selected planform.

3.6 Subharmonic Patterns Away from Onset

With combinations of increasing d F'r and increasing R (Fig. 7), subharmonic
patterns exhibit a transition to disorder that is qualitatively different from
that observed for harmonic patterns. In particular, spiral defect chaos is
not observed for subharmonic convection. Parallel stripes near onset display
cross-roll defects and dislocations as mechanisms to adjust local variations in
the pattern wavenumber; ¢° slowly decreases away from onset. Further from
onset, wall foci form as stripes begin to show curvature [Fig. 11(a)]. Two
and three foci stripes are common, with three foci patterns often contain-
ing a amplitude grain boundary near the pattern center. These states often
contain several dislocations and regular spacing of the focal singularities. For
0Fr and R sufficiently large (Fig. 7), patterns with transverse modulations
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Fig. 11. Examples of typical subharmonic patterns observed away from onset: (a)
two-foci stripes with defects (6Fr = 4.17x107%, w = 98.1, & R = 4888), (b) three-
foci transverse modulated stripes (JFr = 4.01x10™*, w = 98.0, & R = 6552), radial
stripes - onset of subharmonic disorder (§Fr = 4.83 x 10™*, w = 95.0, & R = 6120),
and (d) subharmonic disorder (§Fr = 4.60 x 10™*, w = 95.0, & R = 7670.)

[Fig. 11(b)] bifurcate from the parallel stripe state. The focal singularities and
point defects present in the pattern prior to the bifurcation are preserved after
the emergence of transverse modulations. The transverse modulations prop-
agate along the length of the stripes and oscillate in time with a period that
is different from either the harmonic or subharmonic period. Spatial power
spectra of the transverse modulated pattern demonstrate that the modula-
tion q is only slightly greater than ¢ [Fig. 14(e)]; moreover, the width of the
subharmonic peaks ¢ increases significant at the bifurcation. With further
increases in dF'r and R, transverse modulation disappears as the stripes be-
gin to align themselves radially from the center to the lateral boundary [Fig.
11(c)]. During this transition ¢ continues to decrease, while the formation of
radial stripes corresponds to a reduction in ¢°. Continuing away from onset
the radial stripes begin to lose coherent structure, initially in the pattern in-
terior. Sufficiently far from onset this fragmented state occurs throughout the
convection cell [Fig. 11(d)] and retains a characteristic ¢° with a o larger
than that for radial stripes.

4 Direct Harmonic-Subharmonic Transition

At sufficiently large R conduction is not stable for any § F'r and a direct transi-
tion between harmonic and subharmonic patterns can occur as § F'r is varied.
Experiments indicate this transition is not abrupt, but occurs gradually over
a range of parameter values where harmonic and subharmonic patterns co-
exist. Roughly speaking, this coexistence region lies between the conduction
marginal stability curves extended into the convection regime (Fig. 12).

4.1 Transition from Pure Harmonics to Coexistence

Purely harmonic patterns [Fig. 13(b)] lose stability to coexisting states with
localized regions of subharmonic strips [Fig. 13(b)]. Prior to onset, the har-



Acceleration-Modulated Thermal Convection 15

9 2>
<,
N\ >
. .
r coexistence
8 ~. % Xi
N
SR
7 S <>
R i <
6t A <> o1
N =
S 3 S
sl pure S.. % &
harmonic S D L =
=2 3
conduction ~~__
2.5 3.0 .0

3.5
3 Fr x1i0*

Fig.12. Phase plane comparing the experimentally measured coexistence onset
to the marginal stability curves for conduction. Boundary between coexistent and
purely harmonic flows (diamonds) follows the marginal subharmonic (w/2) curve
(dashed), while the boundary between coexistent and purely subharmonic patterns
(circles) tracks the marginal harmonic (w) curve (solid) as far as the boundary can
be reliably determined. Filled in triangles are the locations of patterns in Figs. 13
& 16.

monic pattern typically consists of parallel stripes with defects. With increas-
ing 0 F'r at constant R, localized domains of subharmonic stripes emerge with
a characteristic wavenumber ¢° slightly less than 3¢*’. These subharmonic
domains are typically either centered about defects in the harmonic pattern
or aligned perpendicular to the lateral boundaries [Fig. 13(b)]. Subharmonic
stripes at the lateral boundary typically remain pinned to the boundary and
do not move into the interior. Harmonic defects continually nucleate, are
advected, and annihilate in the pattern interior. These dynamics drive the
behavior of the subharmonic patches, which correspondingly appear, move
and disappear. Although harmonic defects are virtually always present for
parameter values near the pure harmonic-coexistence boundary, not all har-
monic defects have associated subharmonics. As a result, near onset, the
subharmonic stripe patches are intermittent in time for a range of §Fr of
width ~ 4e — 06. Because of intermittency in both space and time, the onset
of subharmonics is difficult to detect in spatial power spectra [Figs. 14(a) &
14(b)]. Detection is more reliably performed using the real space images of
the patterns. The onset value of § F'r for a given R corresponds to the pres-
ence of subharmonic patches in the pattern interior for at least 10% of the
observation time.

Our results provide evidence that harmonic patterns have an inhibitory
effect on the emergence of subharmonic patterns. In the first place, the
boundary for convective onset in the experiments lies above the subharmonic
marginal stability curve over the entire experimentally accessible range of pa-
rameters (Fig. 12). In other words, the subharmonic onset is delayed relative
to the linear theory predictions of onset from the conduction state. Further-
more, subharmonics always appear in regions where the harmonic flows are
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Fig. 13. Patterns on either side of the purely harmonic-coexistence boundary. Pure
harmonic stripes (a) with defects (6Fr = 3.31 x 107*, w = 98.0, & R = 6280).
Coexistence state (b) with 3-foci harmonic stripes and subharmonic stripe patches
(6Fr=3.54x107* w =98.0, & R = 6280).

weaker, namely in the cores of defects amplitude of convection flow is reduced
[36].

The subharmonic component remains localized and spatially intermittent
even as 0 F'r is increased (with R fixed) to move the system well away from the
pure harmonic-coexistence boundary. The subharmonic component is spec-
trally indistinguishable from the background noise and the second harmonic
of ¢ over a wide range of 6 F'r [Figs. 15(a), 14(a) & 14(b)]. The wavenumber
of the harmonic modes ¢ remains relatively fixed [Fig. 15(b)]. The spectral
width o decreases [Fig. 15(c)] because the harmonic pattern exhibits fewer
defects as the system moves further away from the pure harmonic-coexistence
boundary (Fig. 13). The subharmonic pattern component gradually increases
with 6 F'r.

02 (@) (b) (©)
0.1
0
02 (d) (e) ®
0.1
0 k

Fig. 14. Azimuthally averaged power spectra for six different experimental con-
ditions from the transition from pure harmonic convection to pure subharmonic
convection, passing through a region of coexisting harmonic-subharmonic convec-
tion. Representative images from each data point are shown in other figures: (a)
see Fig. 13(a), (b) see Fig. 13(b), (c) see Fig. 16(a), (d) see Fig. 16(b), (e) see Fig.
16(c), and (f) see Fig. 16(d).
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Fig. 15. Average spectral quantities (ezperiment) during a transition from purely
harmonic to purely subharmonic patterns by increasing § F'r at R = 6280+ 10. The
azimuthally averaged spectra for both the harmonic and subharmonic modes are
characterized by (a) the power the in harmonic ¥ and subharmonic p° wavenum-
ber bands, (b) ¢ & ¢°, (c) o™ & ¢, and (d) the wavenumber ratio Z_I;' Through-
out, O indicates harmonic pattern component and A the subharmonic pattern com-
ponent. Filled in symbols correspond to patterns shown in Figs. 13 & 16. Dotted
lines mark the onset of square superlattices (Sect. 5).

4.2 Transition from Pure Subharmonics to Coexistence

(@)
Fig. 16. Patterns on either side of the harmonic-coexistence marginal stability

curve (Pr = 0.930, w = 98.0) for R = 4980 [0Fr = 3.80 x 10™* (a) & 6Fr =
3.69 x 107*(b)] and R = 6280 [0Fr = 3.93 x 107*(c) & §Fr = 3.77 x 10~* (d)].

The transition from purely subharmonic states to coexisting patterns is
qualitatively different from that at onset from pure harmonics. Pure subhar-
monic patterns lose stability to coexisting states where the harmonic com-
ponent emerges globally; no localized states are observed. For w = 98.0, we
consider two cases: Ry, < R < 5500 and R > 5500

For Ry, < R < 5500 the coexistence regime competes with pure sub-
harmonic parallel stripes [Fig. 16(a)]. Slowly decreasing d F'r at constant R a
harmonic pattern component emerges at a well-defined location in parameter
begins to be present throughout the pattern [Fig. 16(b)]. Although the har-
monic component is weak at onset, the transition is well-defined and readily
detectable in Fourier space by looking for the initial presence of power at
g [Figs. 14(c) & 14(d)]. Typically, the emerging harmonic component is
parallel stripes which may display domains with several orientations. In this
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parameter range, this transition is well-predicted by the conduction marginal
stability curve (Fig. 12), suggesting that the onset of large length scale har-
monic convection is neither enhanced or suppressed by the presence of short
length scale subharmonic flows. Hysteresis is not experimentally observed in
the transition between pure subharmonic flows and the coexistence regime.

For R > 5500 the coexistence states compete with more complex pure
subharmonic flows. For 5500 < R < 7000, subharmonics with transverse
modulations [Fig. 16(c)] are found when §F'r is large (Fig. 7). For R > 7000,
the subharmonic flows are more disordered [Figs. 11(c) & 11(d)]. As 0Fr is
decreased at constant R to cross the conduction marginal stability bound-
ary, the flow structure changes gradually to patterns like that shown in Fig.
16(d). In all cases, these states are difficult to distinguish spectrally because
they contain spectral peaks with similar power content at wavenumbers cor-
responding to both ¢° and g [Figs. 14(e) & 14(f)]. As a result, the onset of
the coexistence regime from pure subharmonics is ill-defined for this range of
R.

Spectral analysis demonstrates that the gradual nature of the transition
from pure subharmonics to coexisting patterns continues as dF'r is further
decreased. For R < 5500 the growing harmonic stripes have little effect on
the subharmonic stripes as the two components are simply superimposed. For
5500 < R < 7000 the subharmonic striped base state that supports the trans-
verse modulations gradually breaks down as numerous domains form [Figs.
16(c) & 16(d)]. Typically, these domains nucleate in the pattern interior and
spread to fill the pattern with decreasing dFr. For R > 7000 the struc-
turally disordered state [Fig. 11(d)] becomes more ordered with decreasing
0Fr. Regardless of the R value the spectral measures display similar trends.
First, relative power in p° gradually decreases and p! slowly increases as
the harmonic pattern becomes more significant [Fig. 15(a)]. Eventually, p°
contributes < 60%. Second, ¢ [Fig. 15(b)] remains relatively fixed while o
decreases [Fig. 15(c)]. Simultaneously, ¢° slowly increases while o remains
relatively constant. These similarities indicate that as the pattern passes fur-
ther into coexistence the harmonic pattern slowly grows and becomes more
regular while p° slowly decrease and ¢° increases.

5 Superlattices

Exotic complex-ordered patterns [Fig. 17(a)] abruptly form as the system
moves sufficiently far into the coexistence parameter regime. These patterns
are reminiscent of recently observed nonequilibrium structures [12-14,17-19]
that have been designated as quasicrystals (quasipatterns) or superlattices.
The formation of the current complex-ordered structures corresponds to rapid
changes in the spectral quantities, including the formation of distinct peaks
in the power spectrum [Fig. 17(b)]. Since these twelve peaks can be indexed
by only two basis vectors, this pattern is a superlattice [16]. We call patterns
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Fig. 17. Square superlattices observed in both experiments (a) and simulations
(b). Parameter values are: (a) §Fr = 3.88 x 10™*, w = 95.3, & R = 7030 and (b)
§Fr =3.75x 107, w = 98, & R = 4750.

of this type square superlattices [25]. To the best of our knowledge, the pat-
terns observed in this investigation are the first complex-ordered states to
be reported in convection experiments. In the related case of heating from
above (R < 0) a numerical study [37] predicted quasiperiodic structures in
the presence of non-Boussinesq effects.

5.1 Observations Near Bicriticality

6500
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o square o . m q p
superlattices u
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Fig. 18. Phase planes showing the onset of superlattices in (a) numerics and (b)
experiments. Squares designate onset of square superlattices, while triangles record
the observation of stripe superlattices. Open symbols are numerical observations;
solid symbols are experimental findings. The parameter range in (a) is marked by
the dotted box in (b).

First, consider observations made in the vicinity of the bicritical point.
Numerical simulations of (5) demonstrate that square superlattices [Fig.
17(c)] arise very near the bicritical point (intersection of the solid and dashed
lines in Fig. 18). With § F'r = § F'ry., numerics find square superlattices bifur-
cate directly from the conduction state at R = Rs.. Both harmonic and sub-
harmonic modes contain equal spectral power, which increases continuously
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from zero as v R — Ry, i.e., the square superlattices bifurcate supercritically
from conduction. As R increases, the range of 0 F'r where square superlattices
are attracting becomes wider [Fig. 18(a)]. These simulations of the inversion
symmetric (5) find parallel stripe patterns at both pure harmonic and pure
subharmonic onset in the vicinity of the bicritical point.

A second type of complex-ordered state is observed numerically near the
bicritical point when §Fr < 6F'ry, [Fig. 18(a)]. Power spectrum for these
patterns display six distinct peaks at two different wavenumbers. Since these
spectral peaks can be indexed by two basis vectors, by & b, in [Fig. 19(b)],
these states are also superlattices that we call stripe superlattices. Increas-
ing R at constant § F'r stripe superlattices are found to bifurcate supercriti-
cally from the base state of parallel harmonic stripes. Stripe superlattices are
bistable with square superlattices over a relatively very narrow parameter
range [Fig. 18(a)]. During the initial report of these states [25] we referred to
them as roll superlattices.

8 ]
q .
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Fig. 19. Numerical solutions of (5) find a periodic complex-ordered pattern over a
narrow parameter range [Fig. 18(a)]. These (a) stripe superlattices (6Fr = 3.732 x
107%, w = 98, & R = 4794) are constructed of (b) spectral modes which can be
indexed by two vectors (b1 & ba).

Near the bicritical point experiments do not find superlattices. Shown in
Fig. 20(a-c) are patterns observed at fixed w = 95.0 and slowly increasing R.
Additionally, § F'r values are maintained near the bicritical point (0Frs. =
3.91 x 107* & Ry, = 4640 + 10) values. The initial state is conduction.
Onset occurs to pure regular harmonic hexagons. Slowly increasing R small
localized regions of subharmonic stripes (R = 5100) occur on the harmonic
hexagons [Fig. 20(a)]. Moving further into the coexistence parameter region,
harmonic hexagons become less pronounced as domains of locally hexagonal,
square and rhombic symmetries begin to form [Fig. 20(b)] [24]. Eventually
(R > 6280), the harmonic component displays only domains of locally square
symmetry as square superlattices emerge [Fig. 20(c)].

The experiment shown in Fig. 20(a-c) suggests non-Boussinesq effects
are responsible for superlattices not being experimentally observed near bi-
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criticality. The presence of hexagons near the bicritical point suggests non-
Boussinesq effects are significant in this parameter region. Physically, the
significant variation of fluid properties due to large AT (~ 17°C, in this
case) near bicriticality is expected to lead to observable non-Boussinesq ef-
fects. Moving further into coexistence, experiments at §Fr ~ dFrs. find
domains of hexagons coexisting with domains of squares and rhombuses. Nu-
merics that account for temperature-dependent non-Boussinesq effects con-
firm experimental observations and indicate hexagons form throughout the
harmonic component sufficiently near to bicriticality [Fig. 20(d)]. Interest-
ingly, hexagons in coexistence patterns may contain cold and warm centers
simultaneously [Fig. 20(d)]. This unexpected hexagon characteristic is also
experimentally observed near pure harmonic onset in the vicinity of the bi-
critical point.

Fig. 20. Coexisting patterns observed in the vicinity of the bicritical point. Experi-
mental patterns (a-c) are from a trial passing from conduction by slowly increasing
R at §Fr slightly less than §Fry.. Simulations including non-Boussinesq effects
(d) find hexagons in the harmonic component. Corresponding parameters are: (a)
dFr =3.89 x 107, w = 95.0, & R = 4778, (b) §Fr = 3.88 x 107*, w = 95.0, &
R =5389, (¢) 6Fr =3.73x107*, w = 96.7, & R = 6267, and (d) 6 F'r = 3.75x107%,
w =98, & R = 4750.

5.2 Observations Away from Bicriticality

Well-ordered superlattices are observed in the experiments for a wide range
of parameter values away from the bicritical point. Nearly defect-free square
superlattices [Fig. 17(a)] form between R = 6280 up to the maximum experi-
mentally accessible R ~ 9300 [Fig. 18(b)]. Square superlattices persist over a
O F'r range where the spectral power in the harmonic and subharmonic modes
are approximately equal (pf ~ @7 [Fig. 15(a)]). Simulations of (5) at these
large values of R well-predict the range of § F'r over which square superlat-
tices are observed [Fig. 18(b)]. These results suggests that non-Boussinesq
effects are only significant to superlattice formation near the bicritical point.

Experimental results indicate several common features are observed for
transitions between superlattices and other coexisting patterns as § F'r is var-
ied for fixed R. For small values of § F'r in the coexistence regime, the observed
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patterns are harmonic stripes with localized patches of subharmonic stripes
(Sect. 4.1). With increasing §F'r just prior to superlattice onset, harmonic
dominated patterns abruptly begin to show significant subharmonic contri-
bution, and the harmonic planform separates into multiple domains. With
a small increase in 6Fr ~ 5 x 107%, square superlattices abruptly begin to
form. At the transition, the harmonic modes contain ~ 60% of the total
power and reach minimum values in ¢ and o, while ¢° is at its maximum
value (Fig. 15). Upon further increases of 0 F'r, the superlattice patterns lose
stability abruptly to coexistence patterns dominated by subharmonics (Sect.
4.2). At this transition, the subharmonic modes contain (~ 60%) of the total
power and the subharmonic wavenumber ¢° decreases with increasing F'r.
The harmonic modes increase in ¢! with p remaining finite (Sect. 4.2).
The relaxation time for the formation of a single domain of square super-
lattices becomes substantially larger near the transition boundary with both
harmonic-dominated and subharmonic-dominated coexistence patterns. No
hysteresis is observed at the transitions from superlattices to other coexis-
tence patterns.

5.3 Resonant Tetrads

a, s

(b) 41

Fig. 21. Power spectra for (a) the square superlattice (ezperiment) in Fig. 17(a)
and (b) the stripe superlattice (simulation) shown in Fig. 19(a).

Power spectra for the superlattice patterns demonstrate that the com-
plex spatial structure of these states are described by a few spectral modes.
Square superlattices (Fig. 17) have spectra with twelve dominant peaks at
two distinct wavenumber bands [Fig. 21(a)]. The four peaks +(qf,q#') cor-
respond to the square sublattice, which displays a harmonic temporal re-
sponse. The eight peaks at the larger [+(qf, q5,q3,q7)] correspond to the
small length scale ”star” sublattice, which displays a subharmonic tempo-
ral response. Stripe superlattices exhibit six dominant peaks. The harmonic
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stripe sublattice corresponds to the two peaks at +qi! while subharmonic
sublattice corresponds to peaks at +(qy,q3).

Interactions between the modes from the harmonic and subharmonic sub-
lattices are found to satisfy resonance conditions. Spectral changes made as
the experiment passes into the square superlattice parameter regime are sug-
gestive of interactions between the harmonic and subharmonic sublattices.
During the transition to square superlattices the power, which is typically
distributed in azimuthally averaged wavenumber bands ¢¥ & ¢%, moves to
a few discrete spectral peaks on the two sublattices. These peaks will form
the vertices of parallelograms between two of the harmonic and a pair of the
subharmonic peaks [Fig. 21(a)]. Existence of these parallelograms suggests
the four wave resonance (resonant tetrad) conditions:

+(qf' —aqff) =+(qf —q5) and
+(af’ + ') = £(a§ — q3). (6)

Square superlattices in both experiments and numerics always satisfy these
resonant tetrad (6) conditions. In the vicinity of the bicritical point, nu-
merics find the mode parallelograms become rectangles. Further from onset,
translations of the subharmonic peaks along the straight lines allows the |q? |
(7 = 1...4) to take on different values for all 7, while always satisfying (6). Ex-
periments indicate that with increasing R square superlattices are composed
of relatively constant ¢ (0.91¢L < ¢! < 0.94¢%) and that ¢° decreases
monotonically from 0.92¢5, at R = 6280 to 0.77¢5, at R = 8920. A four wave
resonance condition also applies for the stripe superlattices. For the stripe
superlattices the condition is given by

+2q;" = +(q; — q3). (7)

This resonance condition is again a resonant tetrad between modes of two
different wavenumbers and contains a harmonic “self-interaction’ term (2q¥).

The noted prominence of the twelve modes satisfying resonant tetrad
conditions (6) suggests the square superlattice patterns may be represented
using the ansatz of a eigenmode expansion in the spirit of a weakly nonlinear
analysis. The pattern field T'(x, t), which is the shadowgraph intensity or mid
plane temperature, may be defined as

2

T(x,t) = R{VH(t) Z Texp(iq) - x)} +

4

R{VS(2) 2 5 exp (it - %)}, (8)

where x is the horizontal coordinate parallel to the plane of the fluid layer.
The time dependence of the harmonic and subharmonic eigenmodes [V (t) &
V'5(t)] is given by Floquet’s theorem — V5 = R{exp(uf9t) 37 ¢S exp(inwt)},

nOn
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normalized such that |c(€{ | = 1 — with Floquet exponents uf = 0 for har-
monic modes and p° = iw/2 for subharmonic modes. Since the mode V# is
essentially sinusoidal about nonzero mean, only the first two terms (n = 0
& n = 1) need to be retained [25]. In contrast, V' requires several higher
harmonics of w/2. To represent the snapshot of a regular square superlattice
[Fig. 17(b)], where the spectral peaks form rectangles, only two constant real
amplitudes A and B with A = A = —AH B = Ay = A = A = A}
are needed in (8). The amplitudes of the dominant Fourier modes in (8),
which are directly available from the numerical temperature field, exhibit
time dependence that is very well represented by AV (t) and BV 5(t) with
adjusted amplitudes A, B [25]. The stripe superlattice pattern (Fig. 19) can
be described analogously by (8) with one harmonic amplitude A and two
subharmonic amplitudes A7 ,, where AY = A5 = iB.

Inversion symmetry (both Boussinesq and subharmonic time-translation)
plays an essential role in both the temporal dependence of the eigenmodes
and the magnitudes of amplitudes in (8). The subharmonic eigenmodes (V°),
regardless of the presence of Boussinesq symmetry, are subject to the tem-
poral inversion symmetry of time-translation. Higher harmonics of V¥ must
satisfy V5(t + 7) = —V5(t). In the non-Boussinesq experiments and numer-
ics quadratic couplings between the harmonic modes are allowed. Resonant
triads from quadratic interactions in the harmonic component are responsi-
ble for the harmonic hexagons observed in the vicinity of the bicritical point
and for delaying the onset of square superlattices. In the Boussinesq nu-
merics, inversion symmetry rules out quadratic couplings and requires those
amplitudes to be zero. At cubic order the equation describing A has the
common terms ~ A{T[Af]> (j = 1,2) and ~ A{T|AF|? (j = 1...4) existing
with different coupling constants. However, according to (6) additional res-
onant coupling terms ~ A AF(A$)*, (A¥)" A5 (A$)" play a crucial role. It
should be noted that two phases for the four subharmonic amplitudes remain
arbitrary within the amplitude equations up to cubic order. To fix them,
higher order resonances, which are automatically included in (5), come into
play. The analogous coupled amplitude equations for the stripe superlattice
pattern contain a resonant coupling ~ (Af)" A5 (AS5)".

5.4 Other Frequencies

Differences in the dependence sensitivity of ¢ and ¢° on w provide a means
of changing superlattice structure. The ratio ¢°/qf is then a convenient
parameter to change, where ¢ depends weakly on w and ¢° depends strongly
on w. A limited number of simulations of (5) were performed to search for
superlattices at other w. Superlattices at w = 40 [Fig. 22(a)] are composed of
a harmonic square sublattice and a subharmonic sublattice that is described
by eight subharmonic peaks [Fig. 22(b)] qualitatively similar to the square
superlattice power spectrum at w = 98.0. In this case, the wavenumber ratio
is ¢°/q* = 2.24. At w = 300 numerics again find superlattices [Fig. 22(c)],
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Fig. 22. Superlattices (simulations) and power spectrum at other w values: (a &
b) w =40 and (c & d) w = 300.

this time with a much larger ¢°/¢fl = 5.42. Again, the harmonic sublattice
displays regular square symmetry. However, the subharmonic sublattice is
composed of stripes of two different orientations. In all cases studied, the
superlattice patterns satisfied resonant tetrad conditions similar to (6).

Fig. 23. Superlattice (ezperiment) at w = 50.4 (a) and its power spectra (b) at
Pr=10.928, §Fr =~ 8.92 x 107*, & R = 5180.

Experiments were also performed to search for superlattices at other w
values. Figure 23(a) displays the superlattice found in experiments performed
for w = 50.4. The harmonic sublattice is well-defined by two pairs of spectral
peaks [Fig. 23(b)] while the subharmonic sublattice is also defined by two
pairs of peaks, in contrast to the four pairs of peaks found for square super-
lattices at w = 98. These rhombic superlattices also satisfy resonant tetrad
conditions [Fig. 23(b)].

6 Discussion

We have described initial results from studying pattern formation driven
both thermally and by vertical oscillations. In the limits of weak and strong
vertical oscillations the geometry-induced and dispersion-induced instabili-
ties dominate pattern formation, respectively. Confirmations of linear sta-
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bility predictions and pure state patterns are consistent with expectations.
When the harmonic and subharmonic temporal responses are mutually stable
we found a number of novel patterns, including superlattices. These exotic
states were found numerically to emerge directly from conduction at a bi-
critical (codimension-two) point. A formation mechanism was proposed that
is qualitatively different than the resonant triad interactions used to explain
quasicrystals and superlattices recently reported in other pattern forming sys-
tems. The majority of this investigation was performed at w =~ 100. Glimpses
of the patterns at other values of w suggest there are many other interesting
directions of investigation for acceleration-modulated Rayleigh-Bénard.

The work at the Georgia Institute of Technology is supported by NASA-
Office of Life and Microgravity Sciences Grant NAG3-2006.

References

1. E. Bodenschatz, W. Pesch, G. Ahlers: Annu. Rev. Fluid Mech. 32, 709 (2000)

2. M.C. Cross, P.C. Hohenberg: Rev. Mod. Phys. 65, 851 (1993)

3. C. Bowman, A. C. Newell: Rev. Mod. Phys. 70, 289 (1998)

4. M. Faraday: Philos. Trans. R. Soc. London 121, 299 (1831)

5. M. Boucif, J.E. Wesfreid, E. Guyon: Eur. J. Mech. A. 10, 641 (1991)

6. P. Coullet, T. Frisch, G. Sonnino: Phys. Rev. Lett. 49, 2087 (1994)

7. C. Szwaj, S. Bielawski, D. Derozier, T. Erneux: Phys. Rev. Lett. 80, 3968 (1998)

8. W. van Saarloos, J. D. Weeks: Phys. Rev. Lett. 74, 290 (1995)

9. M. Silber, A.C. Skeldon, Phys. Rev. E 59, 5446 (1999)

10. E. Bodenschatz, J.R. de Bruyn, G. Ahlers, D.S. Cannell: Phys. Rev. Lett. 67
3078 (1991)

11. F. H. Busse, J. Fluid. Mech. 30, 625 (1967)

12. W.S. Edwards, S. Fauve: Phys. Rev. E 47, R788 (1993); J. Fluid Mech. 278,
123 (1994)

13. A. Kudrolli, B. Pier, J.P. Gollub: Physica D 123, 99 (1998)

14. C. Wagner, H.W. Miiller, K. Knorr: Phys. Rev. Lett. 83, 308 (1999)

15. L. M. Pismen, B. Y. Rubinstein: Chaos, Solitons and Fractals 10, 761 (1999)
16. R. Lifshitz: Rev. Mod. Phys. 69, 1181 (1997)

17. H. Arbell, J. Fineberg: Phys. Rev. Lett. 81, 4384 (1998)

18. H. Arbell, J. Fineberg: Phys. Rev. Lett. 84, 654 (2000)

19. H. Pi, S. Park, J. Lee, K.J. Lee: Phys. Rev. Lett. 84, 5316 (2000)

20. E. Pampaloni, P.L. Ramazza,S. Residori, F.T. Arecchi: Phys. Rev. Lett. 74,

258 (1995)

21. E. Pampaloni, S. Residori, S. Soria, F.T. Arecchi: Phys. Rev. Lett. 78, 1042
(1997)

22. P. M. Gresho, R. L. Sani: J. Fluid Mech. 40, 783 (1970)

23. R. Clever, G. Schubert, F.H. Busse: J. Fluid Mech. 253, 663 (1993)

24. J.L. Rogers, M.F. Schatz, J.L. Bougie, J.B. Swift: Phys. Rev. Lett. 84, 87
(2000)

25. J.L. Rogers, M.F. Schatz, O. Brausch, W. Pesch: Phys. Rev. Lett. 85, 4281
(2000)

26. J.L. Rogers: Modulated Pattern Formation: Stabilization, Complex-Order,
and Symmetry. PhD thesis, Georgia Institute of Technology, Atlanta (2001)
(http://cns.physics.gatech.edu/~ jeff)



27

28.
29.

30.
31.

32.

33.
34.
35.
36.
37.

Acceleration-Modulated Thermal Convection 27

. O. Brausch: PhD thesis, Rayleigh Bénard Konvektion f’ur verschiedene
isotrope und anisotrope Systeme, Physikalisches Institut der Universitét
Bayreuth, Bayreuth (2001)

V. Croquette: Contemp. Phys. 30, 113 (1989); 30, 113 (1989)

J.R. de Bruyn, E. Bodenschatz, S.W. Morris, S.P. Trainoff, Y. Hu, D.S. Cannell,
G. Ahlers: Rev. Sci. Instrum. 67, 2043 (1996)

W. Pesch: Chaos 6, 348 (1996)

B. B. Plapp, D. A. Egolf, E. Bodenschatz, W. Pesch: Phys. Rev. Lett. 81 5334
(1998)

S. W. Morris, E. Bodenschatz, D. S. Cannell, G. Ahlers: Physica D 97 164
(1996)

C. W. Meyer, D. S. Cannell, G. Ahlers: Phys. Rev. A 45, 8583 (1992)

V. Croquette: Contemp. Phys. 30, 113 (1989); 30, 153 (1989)

Y. Hu, R. Ecke, G. Ahlers: Phys. Rev. E 51 3263 (1995)

M. C. Cross: Phys. Rev. A 25, 1065 (1982)

U. E. Volmar, H. W. Miiller: Phys. Rev. E 65, 5432 (1997)



