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Abstract.

We study hexagon patterns in non-Boussinesq convection of a thin rotating layer

of water. For realistic parameters and boundary conditions we identify various linear

instabilities of the pattern. We focus on the dynamics arising from an oscillatory

side-band instability that leads to a spatially disordered chaotic state characterized

by oscillating (whirling) hexagons. Using triangulation we obtain the distribution

functions for the number of pentagonal and heptagonal convection cells. In contrast

to the results found for defect chaos in the complex Ginzburg-Landau equation and

in inclined-layer convection, the distribution functions can show deviations from a

squared Poisson distribution that suggest non-trivial correlations between the defects.
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1. Introduction

Rayleigh-Bénard convection has served as an excellent paradigm to study spatio-

temporal chaos in pattern-forming systems. For small Prandtl numbers, for which

large-scale flows driven by the curvature of the roll pattern are important, quite

complex dynamical roll patterns exhibiting various types of defects like spirals, targets,

dislocations, and disclinations are found [1]. Another type of spatio-temporally chaotic

state is obtained if the system is rotated about a vertical axis. Then the Küppers-Lortz

instability [2] leads to the formation of domains of rolls of different orientation, which

are separated by domain walls. Due to the propagation of the domain walls or by the

nucleation of defects in the bulk of the pattern a persistent switching of the local roll

wavevector of the different domains is induced [3].

While striped planforms typically prevail in convection, hexagonal cellular patterns

are observed at onset if the temperature variation across the layer is large and the

variation of the material parameters with the temperature becomes substantial. In this

case the Boussinesq approximation is invalid and a certain up-down reflection symmetry

is strongly broken [4]. Recently, results have been presented also for spatio-temporal

chaos based on a hexagonal rather than a stripe-like planform. Within the framework of

Ginzburg-Landau equations and of order-parameter equations of the Swift-Hohenberg

type the effect of rotation [5, 6, 7] and of large-scale flows [8] on hexagonal patterns has

been investigated. Two interesting scenarios of spatio-temporal chaos have been found

that are both due to the rotation. One scenario arises from the Hopf bifurcation to

oscillating hexagons that replaces the common steady transition from hexagons to rolls

[4] in the presence of rotation [9, 10]. The oscillations of the hexagons are described

by the complex Ginzburg-Landau equation [11]. If the transition to the oscillating

hexagons occurs close to threshold the parameters of the complex Ginzburg-Landau

equation are generically in a regime in which spatially homogeneous and spatially

modulated oscillations (i.e. traveling waves in the oscillation amplitude) are bistable

with spiral-dominated defect chaos [6]. For general initial conditions, which induce

the formation of spirals, the oscillations of the hexagons are therefore expected to

be spatio-temporally chaotic. The other scenario involves the steady-hexagon state

below its transition to oscillating hexagons. Within a weakly nonlinear Swift-Hohenberg

framework a chaotic state was found that is maintained by the nucleation of dislocations

in the vicinity of already existing penta-hepta defects. Due to this induced nucleation the

probability distribution function for the number of defects in the pattern is substantially

broader than that obtained in simulations of defect chaos in the complex Ginzburg-

Landau equation [12] and in a model for Ca+-waves [13], as well as in experiments on

electroconvection of nematic liquid crystals [14] and on undulation chaos in inclined-

layer convection [15, 16].

Motivated by the interesting dynamics of defects in the oscillation amplitude or

in the hexagonal pattern itself that were obtained in the Ginzburg-Landau and the

Swift-Hohenberg models we investigate here the dynamics of hexagonal patterns in the
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presence of rotation on the basis of the standard hydrodynamical description of non-

Boussinesq convection [17, 4, 18, 19]. Thus, we use the Navier-Stokes equations coupled

to the heat diffusion equation (called NONBE henceforth, see below) corresponding to

convection in a layer of water near its density maximum. We perform Galerkin stability

calculations for the hexagonal pattern and direct numerical simulations of the NONBE

and find spatio-temporal chaos that involves an oscillatory instability of the hexagons as

well as defects in the hexagonal background pattern. In contrast to the defect chaos of

the oscillating hexagons studied in the weakly nonlinear regime [5], here the oscillatory

instability does not correspond to spatially homogeneous oscillations but involves a

spatial modulation of the oscillation amplitude and it leads to the nucleation of defects

in the hexagonal background pattern.

2. Basic Equations

A horizontal fluid layer of thickness d that is heated from below and cooled from above

and that is rotated about a vertical axis with angular velocity ω~k is described by the

Navier-Stokes equation for the momentum,

∂t(ρui) + ∂j(ρujui) = − ∂ip − ρgδi3 +

∂j (νρ (∂iuj + ∂jui)) + 2ρωεilmklum, (1)

the continuity equation,

∂tρ + ∂j(ρuj) = 0, (2)

and the heat equation,

∂tT + uj∂jT =
1

ρcp

∂j(λ∂jT ). (3)

Here ~u = (u1, u2, u3) is the fluid velocity, T the temperature, ρ the density, p the

pressure, g the acceleration of gravity, ν the viscosity, λ the heat conductivity, cp the

specific heat of the fluid, and ~k is the unit vector in the z-direction. The Kronecker

delta is given by δij and εijk is the unit antisymmetric tensor of the rank 3. We assume

the Einstein summation convention. We have omitted viscous heating, volume viscosity,

and the centrifugal force.

In our analysis we take realistic rigid boundary conditions at the top and bottom

plates and keep the top and bottom temperatures fixed,

~u = 0 at z = ±d

2
, (4)

T = T0 +
∆T

2
at z = −d

2
, (5)

T = T0 −
∆T

2
at z = +

d

2
. (6)

Here T0 denotes the mean temperature and ∆T > 0 is the temperature difference

across the layer. In the lateral directions we chose periodic boundary conditions or

introduce a suitable ramp in the imposed temperature gradient (see below).
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In this paper we focus on weakly non-Boussinesq convection. We therefore keep

the temperature dependence of the various fluid properties to leading order and expand

them about the mean temperature T0 in the form [4]

ρ(T )

ρ0

= 1 − γ0
T − T0

∆T
(1 + γ1

T − T0

∆T
) + ... (7)

ν(T )

ν0

= 1 + γ2
T − T0

∆T
+ ... (8)

λ(T )

λ0

= 1 + γ3
T − T0

∆T
+ ... (9)

cp(T )

cp0

= 1 + γ4
T − T0

∆T
+ ... (10)

where ρ0, ν0, λ0, and cp0 denote the values of the respective quantities at the mean

temperature T0. The dots denote higher-order terms to be neglected in the sequel.

In line with a clever experimental strategy we assume that T0 is kept fixed when

changing the main control parameter ∆T . Thus, the quantities γi/∆T, i = 0, 2, 3, 4,

which describe, respectively, the slope of the density, viscosity, heat conductivity, and

heat capacity at T0, are fixed as well. This implies that the γi, which give the change

of the respective fluid property across the fluid layer, are linear in the main control

parameter ∆T and therefore need to be adjusted with increasing ∆T (see below). The

usual heat expansion coefficient at T = T0 is given by α0 = γ0/∆T , but going beyond

the Boussinesq approximation also the curvature of ρ(T ) at T0, which is proportional to

γ0γ1/∆T 2, comes into play.

Note that for constant fluid parameters the volume viscosity term and the

centrifugal force can be absorbed into the pressure term. This is not true when the

properties depend on the temperature. While the z-dependence of the volume viscosity

generates only a higher-order correction, neglecting the centrifugal force is only possible

as long as the rotation rates are not too large for a given system size L, i.e. as long as

γ0Lω2/g is small.

To render the equations dimensionless we use the usual scales for the length (d), time

(d2/κ0), velocity (κ0/d), pressure (ν0κ0ρ0/d
2), and temperature (ν0κ0/α0gd3 ≡ ∆T/R).

Here we have introduced the heat diffusivity κ0 = λ0/ρ0cp0. This leads to the usual

dimensionless quantities like the Prandtl number Pr = ν0/κ0, the Rayleigh number

R = α0∆Tgd3/ν0κ0, and the rotation rate Ω = ωd2/ν0. Finally, we write the equations

in terms of the dimensionless momenta vi = ρdui/ρ0κ0 instead of the velocities.

Since the fluid velocities are small compared to the sound velocity we make the

anelastic approximation [20] (see also [18]) and neglect the time derivative in the

continuity equation (2). This simplifies the computation considerably since it reduces

the number of evolution equations. Furthermore, vi becomes a solenoidal field, which

can be represented in the standard poloidal-toroidal decomposition by two velocity

potentials [18], which automatically enforces the mass conservation.
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The conduction solution (~v = 0) of (3) with (5,6,7,9,10) is given by

Tcond = T0 + R
(

−z − γ3

2
(z2 − 1

4
) + O(γ2

3)
)

. (11)

We rewrite the temperature T in terms of the deviation Θ from the conductive profile

(11) neglecting its contribution of O(γ2
3),

Θ = T − Tcond = T − T0 − R
(

−z − γ3

2
(z2 − 1

4
)
)

. (12)

We then obtain as the final dimensionless equations

1

Pr

(

∂tvi + vj∂j

(

vi

ρ

))

= − ∂ip + δi3

(

1 + γ1(−2z +
Θ

R
)
)

Θ +

+ ∂j

[

νρ

(

∂i(
vj

ρ
) + ∂j(

vi

ρ
)

)]

+ 2Ωεij3vj, (13)

∂jvj = 0, (14)

∂tΘ +
vj

ρ
∂jΘ =

1

ρcp

∂j(λ∂jΘ) − γ3∂zΘ − R
vz

ρ
(1 + γ3z). (15)

The dimensionless boundary conditions are

~v(x, y, z, t) = Θ(x, y, z, t) = 0 at z = ±1

2
. (16)

The nondimensionalized fluid parameters (7)-(10) read now:

ρ(Θ) = 1 − γ0(−z +
Θ

R
), (17)

ν(Θ) = 1 + γ2(−z +
Θ

R
), (18)

λ(Θ) = 1 + γ3(−z +
Θ

R
), (19)

cp(Θ) = 1 + γ4(−z +
Θ

R
). (20)

We consider the non-Boussinesq effects to be weak and keep in all material

properties only the leading-order temperature dependence beyond the Boussinesq

approximation. Therefore the γ1-term appears explicitly in (13), while in all other

terms it would constitute only a quadratic correction just like the terms omitted in (7)-

(10). Correspondingly, we expand the denominators in (13,15) that contain material

properties to leading order in the γi. In analogy to [4] (eq.(6.7)), we further omit

non-Boussinesq terms that contain cubic nonlinearities in the amplitudes vi or Θ, as

they arise from the expansion of the advection terms vj∂j(vi/ρ) and (vj/ρ)∂jΘ, once

the temperature-dependence of the density is taken into account. Since we will be

considering Rayleigh numbers up to twice the critical value, which implies enhanced non-

Boussinesq effects, these approximations may lead to quantitative differences compared

to the fully non-Boussinesq system, even though the temperature-dependence of the

material properties themselves may quite well be described by a linear (or quadratic in

the case of the density) approximation.
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3. Computational methods

We solve the NONBE (13,14,15) with top and bottom boundary conditions given by (16)

and the material parameters by (17,18,19,20) numerically using a number of approaches.

As usually, the stability properties of the patterns are determined by Galerkin

methods. We assume an infinite extension of the layer in the lateral directions, which

is captured by a Fourier expansion on a hexagonal lattice. The Fourier wave vectors

q are constructed as linear combinations of the hexagonal basis vectors b1 = q(1, 0)

and b2 = q(1/2,
√

3/2) as q = mb1 + nb2 with the integers m and n in the range

|m| + |n| ≤ nq. The largest wavenumber is then nqq and the number of Fourier modes

retained is given by 1 + 6
∑nq

j=2 j. Typically we used nq = 3. The top and bottom

boundary conditions are satisfied by using appropriate combinations of trigonometric

and Chandrasekhar functions in z [17, 4]. In most of the computations we used nz = 6

modes for each field in eq.(13,14,15). The linear analysis yields the critical Rayleigh

number Rc(γi) as well as the critical wavenumber qc(γi). In the large Pr-number

regime, to be considered in this paper, the bifurcation to convection is stationary. Note

that qc(γi), Rc(γi) show O(γ2
i ) corrections compared to the standard Boussinesq values

Rc = 1708 and qc = 3.118 for γi = 0.

To investigate the nonlinear hexagon solutions, we start with the standard weakly

nonlinear analysis to determine the coefficients of the three coupled amplitude equations

for the modes making up the hexagonal pattern. This allows us to get a first insight

into the Küppers-Lortz instability of the rolls, and for the weakly non-Boussinesq case

the transition from hexagons to rolls as well as the transition to oscillating hexagons.

To obtain the fully nonlinear solutions requires the solution of a set of nonlinear

algebraic equations for the expansion coefficients with respect to the Galerkin modes.

This is achieved with a Newton solver for which the weakly nonlinear solutions serve

as convenient starting solutions. The fully nonlinear solutions are then tested for

amplitude and modulational instabilities following the standard methods. Alternatively,

we solve the NONBE by direct numerical simulation to describe in general the temporal

evolution of the pattern. While this allows for a precise check of the Galerkin results,

its main purpose is to capture the complex spatio-temporal dynamics resulting from

the instabilities of the hexagonal pattern, which are not accessible in the Galerkin

approach. The simulation code involves slight extensions of a previous, well-proven

version [21, 22, 19] to include the effect of the non-Boussinesq effects.

4. Results

Instead of extensive parameter studies, we concentrate in this paper on a specific,

interesting scenario that should be experimentally realizable. We focus our investigation

on fluids with a fairly large Prandtl number (water). For smaller Prandtl numbers our

previous results using a Swift-Hohenberg equation and also some initial test runs using

the Navier-Stokes equations indicate that rolls [4], which may be nucleated in defects
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T0 [oC] ∆Tc [oC] Pr γ
(c)
0 γ

(c)
1 γ

(c)
2 γ

(c)
3 γ

(c)
4

12 2.81 8.728 0.0003 0.1652 -0.0765 0.0097 -0.0011

12 10 8.728 0.0012 0.5888 -0.2760 0.0345 -0.0038

Table 1. Values for the non-Boussinesq coefficients γ
(c)
i and the Prandtl number

Pr for water at onset as a function of the mean temperature and the temperature

difference.

Ω T0 [oC] ∆Tc [oC] Rc0 Rcγ qc0 qcγ τth[s] ω[Hz]

0 12 2.81 1708 1706 3.12 3.12 150.7 0

65 12 10 6121 6080 5.27 5.39 64.6 0.600

Table 2. Dependence of the critical Rayleigh number and of the critical wavenumber

on the rotation rate for a layer thickness of d = 0.46cm. The critical Rayleigh numbers

in the Boussinesq approximation (γi = 0) and for γi = γi(∆T = ∆Tc) are denoted by

Rc0 and Rcγ , respectively. Similarly for the critical wavenumber qc0,γ . The physical

rotation rate for this cell thickness is given by ω and the vertical thermal diffusion time

by τth.

or at the wall, take over the hexagon pattern already for relatively small values of

the Rayleigh number. Furthermore, we have confined ourselves in this work on one

representative rotation rate (Ω = 65, see below).

To obtain strong non-Boussinesq effects the layer would have to be taken quite thin.

However, then the dimensionless rotation rates obtained for a given physical rotation

rate are relatively low. Therefore we decided to consider water near its density maximum

as the convecting fluid. Strong non-Boussinesq effects at larger layer thickness are also

obtained with glycerin. However, since the rotation rate is made dimensionless using

the viscous diffusion time d2/ν the extremely large viscosity ν of glycerin yields only

small dimensionless rotation rates. The second row in Table 1 gives the non-Boussinesq

parameters used in all computations in this paper. For Ω = 65 they correspond to a

critical temperature difference of 100C across the layer at a mean temperature of 12oC.

Note that for a given thickness of the fluid layer the critical Rayleigh number increases

significantly with the rotation rate. Therefore, the coefficients γ
(c)
i , which give the non-

Boussinesq effects at onset, also increase strongly with the rotation rate. Consequently,

while in the absence of rotation the system is essentially Boussinesq for the chosen layer

thickness of d = 0.46cm (first line in table 1) it is strongly non-Boussinesq for Ω = 65.

We first determine numerically the linear stability of the stationary hexagon

patterns as a function of the wavenumber and the control parameter ε = (R −
Rc(γi))/Rc(γi) for Ω = 65 and the corresponding non-Boussinesq coefficients γ

(c)
i as given

in table 1. As indicated before, the γi are linear in the temperature difference ∆T and

are therefore given by γi = γ
(c)
i (1+ε). All results were obtained with nq = 3 and nz = 6.

In the parameter regime investigated these cut-off parameters are sufficient. As shown

in Fig.1 the hexagon pattern can undergo a variety of linear instabilities in the nonlinear

regime. Close to threshold the dominant instability is a long-wave instability, i.e. its
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growth rate vanishes for vanishing modulation wave number β (Floquet parameter) but

grows quadratically with β for small β. Very close to onset it can be steady (black

circles). For slightly larger ε, however, it becomes oscillatory (red squares). As the

control parameter is increased a steady instability at finite Floquet parameter limits the

stability region of the hexagons for large wavenumbers (blue triangles). Increasing the

control parameter, on the low-wavenumber side the stability region becomes limited by

an oscillatory instability that sets in with a finite Floquet parameter (green diamonds).

For non-Boussinesq coefficients that differ slightly from those of table 1 (by O(20%)) an

oscillatory instability with vanishing Floquet parameter determines the stability limit

for low q and ε ≈ 1. For the parameters in table 1 it is, however, preempted by the

Hopf bifurcation at finite modulation wavenumber.

The spatially homogeneous and the short-wave oscillatory instabilities are similar

to the oscillatory instability of hexagons that is found within the framework of three

coupled Ginzburg-Landau equations [9, 10, 5, 6]. There it replaces the steady instability

of hexagons that in the absence of rotation leads to an unstable mixed-mode solution.

With rotation it turns into a supercritical Hopf bifurcation at which the oscillating-

hexagon solution branches off the stationary hexagons.

4.4 4.6 4.8 5 5.2 5.4 5.6

Wavenumber q

0

0.5

1

C
on

tr
ol

 P
ar

am
et

er
 ε

steady long-wave
Hopf long-wave
Hopf short-wave
steady short-wave

Figure 1. Stability limits of stationary hexagon pattern for the parameters given in

Table 1 (nq = 3, nz = 6, except for dark green diamond, which is for nq = 5, nz = 8):

long-wave steady (black circle), long-wave oscillatory (red squares), oscillatory short-

wave instability (green diamonds), steady short-wave instability (blue triangles).

Numerical simulations support the expectation that the modes corresponding to

the Hopf bifurcation are similar to the oscillating hexagons. In a small computational

domain of length L = 2 · 2π/q, which contains only four convection cells, the oscillatory

side-band instability is suppressed and the homogeneous Hopf bifurcation arises when

the parameters are chosen sufficiently far beyond the stability limit corresponding to

the short-wave oscillatory instability (green diamonds in Fig.1). This instability leads

to an elliptic deformation of the convection cells which oscillates in time, giving the cells
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the appearance as if they were rotating or in fact whirling. In sufficiently large domains

the side-band instability leads to a spatial modulation of these oscillations as shown in

Fig.2a (L = 8 · 2π/q with 64 × 64 Fourier modes).

Figure 2. Snapshots of the pattern for ε = 1.0, L = 8 × 2π/q with q = 4.5 (see also

movie sn76.T.mpg). Initial growth of modulational instability at t = 7.5 (left panel)

and t = 7.9 (middle panel). Disordered state during an intermediate phase at t = 51.3

(right panel). Black denotes hotter rising fluid.

As the instability develops and the oscillation amplitude grows the regular spatial

structure is destroyed and defects arise in the pattern as pictured in Fig.2c. This

temporal evolution is illustrated in the movie sn76.T.mpg. While the apparently chaotic

dynamics appear to be reaching a statistically steady state, they do, however, not persist

and around t = 130 a relative rapid transition to an ordered, stationary hexagon pattern

occurs. It has a slightly larger wave number q, which is in the stable regime (cf. Fig.

1). During this chaotic transient the overall disordered pattern intermittently exhibits

relatively large domains of ordered hexagonal patterns. The duration of the transient

increases with ε as illustrated in Fig.3, reflecting presumably the narrowing of the band

of stable wavenumbers with increasing ε. To monitor the activity of the pattern we

consider as a representative measure the temperature field in the mid plane of the layer

and plot the ‘whirling’ activity W given by the L1-norm of the time derivative of its

Fourier modes ‡ normalized by the L1-norm of the Fourier modes themselves. As ε is

increased the fluctuations in this quantity decrease, which is expected to reduce the

probability of excursions to one of the linearly stable stationary states, and eventually

for ε = 1.1 our simulations did not end up in a stationary pattern for times as large as

t = 400.

The duration of the transients is presumably related to the size of the system.

We therefore performed also simulations in larger systems of size 16 · 2π/q (128 × 128

Fourier modes). For this system size the dynamic state persists for quite a long time

(tmax ≈ 300τth ≈ 5hrs) even for control parameters as low as ε = 0.87 (compare with

the transients for the smaller system shown in Fig.3). This increased duration of the

‡ Since the temperature field is dominated by the linear eigenvector with the maximal growth rate this

allows to reduce the computational overhead.
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Figure 3. Dependence of the duration of the transient on ε for L = 8 × 2π/q with

q = 4.5 as quantified by the whirling activity W (see text). In physical units t = 400

corresponds to about 7 hours.

transient is due to the longer time it takes for the defects in the pattern to annihilate. For

ε = 1.0, a snapshot of the pattern and of the corresponding temporal derivative is shown

in Fig.4a,b. The latter makes the spatially intermittent behavior of the dynamics more

apparent. The dynamics are illustrated in the two corresponding movies (sn79h.T.mpg,

sn79h.D.mpg).

Figure 4. Disordered state for ε = 1.0 and L = 16 × 2π/q with q = 4.5. Snapshot

of the pattern (blue denotes hotter rising fluid); see also movie sn79h.T.mpg (left

panel). Middle panel shows the difference between two successive snapshots (separated

by ∆t = 0.1) corresponding to the pattern shown in left panel (see also movie

sn79h.D.mpg). Blue (red) denotes locations with growing (decreasing) temperature.

Right panel: identification of the minima with lattice nodes. Blue (red) circles have 5

(7) nearest neighbors. Up- (down-) triangles have 4 (8) neighbors.

For the characterization of weakly disordered hexagon patterns it is often

advantageous to locate defects in the pattern by demodulating the pattern using

the (three) main wavevectors comprising the pattern (e.g. [23, 7]). This allows the

identification of the penta-hepta defects that are characteristic of weakly disordered

hexagon patterns and which consist of correlated convection cells with five and seven
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neighbors, respectively. Obviously, this approach requires that the Fourier spectrum of

the pattern exhibits well-defined peaks at the three hexagon modes.

In the strongly disordered patterns obtained in our simulations the spectrum does

not exhibit clear peaks. Demodulation is therefore not possible and other techniques

for the analysis of the patterns have to be brought to bear. We use a triangulation

of the pattern to locate the defects. To that end we map the convection pattern to a

point lattice by identifying the local minima in the temperature with nodes in a lattice.

To avoid spurious minima we require that the minima fall below a certain threshold.

The coordination number of each node is then obtained using a Delaunay triangulation,

which is the unique triangulation obtained by the requirement that the circle through

the corners of each triangle do not contain any other node of the pattern. We use

the program triangle [24] to perform the triangulation. Figure 4c shows the lattice

of the snapshot shown in Fig.4a with the local coordination numbers obtained from

the triangulation. Black diamonds indicate nodes with six neighbors, i.e. the center

of a hexagonal cell. Nodes with seven (i.e. heptagons) and five neighbors (pentagons)

are marked with red and blue circles, respectively, while up- and down-triangles denote

nodes with four and eight neighbors, respectively. For less disordered patterns pentagons

and heptagons are often strongly correlated and can be associated with each other in

pairs. These pairs correspond then to penta-hepta defects and can be identified with

pairs of topological dislocation defects in two of the three modes that make up the

hexagonal pattern (see e.g. Fig.25 in [19]). Isolated pentagons or heptagons, however,

do not correspond to single dislocations.

In previous analyses of defect-dominated spatio-temporal chaos it was found that

the distribution function of the number of defects in the patterns gives some insight

into the dynamics of the system. More specifically, in the defect chaos obtained in the

complex Ginzburg-Landau equation [12], in electroconvection of nematic liquid crystals

[14], and in undulation chaos in inclined-layer convection [15, 16] the statistics were

found to be close to a Poisson-type distribution. Such a distribution arises if defects of

opposite topological charge are created randomly in pairs with a fixed probability and

are annihilated with a rate that is proportional to the square of the density of the defects.

The Poisson statistics therefore suggest that the defects move like uncorrelated random

walkers. In contrast, for the penta-hepta defect chaos that was found in hexagon patterns

in the presence of rotation within the framework of a Swift-Hohenberg-type equation

the distribution function was found to be considerably broader [7]. The origin of this

broadening was identified to be the induced nucleation of dislocations by penta-hepta

defects through which also the creation rate depends on the defect density [7, 25].

Using the triangulation procedure, we have measured the distribution functions for

the number of pentagons and heptagons. For the state corresponding to Fig.4 they are

presented in Fig.5a,b, where the blue circles and red triangles denote the distribution

functions for pentagons and heptagons, respectively. As mentioned previously, in

strongly disordered patterns pentagons and hexagons are not necessarily bound in penta-

hepta defects. Correspondingly, the number of pentagons does not always agree with
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Figure 5. a) Probability distribution function for the number of pentagons (blue) and

heptagons (red) for ε = 1 and corresponding best fit to the Poisson distribution (21)

(dashed lines).

b) Probability distribution function for the number of rectangles (blue), octagons (red),

and for the difference (Pn5−n7
) between the number of pentagons and heptagons (solid

line). Parameters as in Fig.4.

the number of heptagons. The distribution function for their difference is given by the

dashed line in Figure 5b along with the distribution function for rectangles (blue circles)

and octagons (red triangles).

As a first step it appears reasonable to assume that the dynamics of the pentagons

and heptagons are captured by a kinetic model that is analogous to the description of

dislocations [12]. For periodic boundary conditions [15] this leads then to the standard

Poisson distribution for each species,

P(N) =
αN

I(2
√

α)Γ(1 + N)2
, (21)

where α ≡< N 2 > and I(2
√

α) is the modified Bessel function. In some simulations we

observe that a given whirling cell creates a new convection cell nearby, which implies

the creation of defects. The newly created cell then often merges with the whirling

cell. Conversely, defects in the pattern induce whirling activity. This mutual nonlinear

enhancement of defects and whirling activity suggests that the existence of defects may

lead to the creation of further defects, somewhat similar to the induced nucleation in

penta-hepta defect chaos [7]. As shown by the dashed lines in Fig.5a, for the state

of Fig.4 the Poisson distribution (21) does not fit the pentagon and the heptagon

distributions very well. The distributions therefore suggest that the creation rates

for the pentagons and heptagons are not independent of their respective densities. In

some preliminary parameter studies involving non-Boussinesq coefficients that may not

correspond to a realistic convection cell with water as fluid, we have found distributions

that are fitted quite well by the Poisson distribution and others that are even broader

than the distributions obtained in Fig.5. This suggests that a mechanism akin to

induced nucleation may be operative in this system, with its significance depending
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on the specific parameter values [26]. A study of the dependence of the distribution on

the physical parameters of the fluid is beyond the scope of the present paper.

Fig.4b shows that in the disordered state not all cells are active and at times

sizable patches of relatively ordered quiescent domains arise. To characterize this

intermittent behavior we consider the distribution function for the time derivative of

the temperature as obtained from all snapshots of the type shown in Fig.4b. The

logarithmic scale of Fig.6a reveals an exponential decay of the distribution function for

ε = 1.0. This exponential dependence is consistent with the visually apparent spatio-

temporal intermittency of the activity of the pattern. The pronounced peak exhibited

for ε = 0.87 represents the large spatial domains in which the hexagons are ordered and

quiescent.
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Figure 6. Probability distribution function for the difference between successive

snapshots (∆t = 0.1) for L = 16 × 2π/8 and q = 4.5.

In all simulations so far we have employed periodic boundary conditions. In

experiments boundary effects may strongly perturb the patterns. We therefore have also

performed some simulations in which we mimic a circular container by applying a strong

radial subcritical ramp in the Rayleigh number that suppresses any convection outside

a certain radius. In previous simulations [19] this was seen to provide a reasonable idea

of the impact of boundaries. Experimentally, it has been found that boundaries tend

to induce defects and may also promote the formation of rolls, which could invade the

system and replace the hexagonal pattern [27]. For the parameter regimes investigated

here we find that no patches of rolls invading from the side replace the hexagons. Instead

the precession of the cells near the boundary and the associated formation of defects

triggers persistent dynamics in the whole convection cell even for parameter values for

which in the absence of the boundaries the pattern eventually becomes ordered and

stationary. Fig.7a shows a snapshot for ε = 0.87 with the associated temporal evolution

displayed in the movie sn74.c.T.mpg. A snapshot for a larger system size and ε = 1.0 is

shown in fig.7b (movie sn79h.c.T.mpg). We therefore expect that the defect-dominated

spatio-temporal chaos will also be accessible in experiments.

We have not investigated in detail the nonlinear evolution ensuing from the steady
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Figure 7. Snapshot of defect-dominated pattern in the presence of a radial ramp

mimicking a circular container. a) ε = 0.87, L = 8 · 2π/q with q = 4.5. b) ε = 1.0,

L = 16 · 2π/q with q = 4.5. Temporal evolution shown in movies sn74.c.T.mpg and

sn79h.c.T.mpg.)

instability at finite wavenumber that limits the wavenumber band on the high-q side.

In preliminary simulations the instability led to the formation of defects in the pattern,

which eventually, however, disappeared yielding a stationary, regular hexagonal pattern.

5. Conclusion

In this paper we have considered hexagonal non-Boussinesq convection focusing on

rotating systems, in which the chiral symmetry is broken. The main motivation for

this work stems from the interesting chaotic states that had been identified in previous

investigations of the stability of hexagonal patterns and of the dynamics resulting from

their instabilities. The chaotic states were associated with the secondary instability to

oscillating hexagons [5, 6] and with the induced nucleation of dislocations [23, 7, 25],

respectively. These results were obtained within order-parameter and Ginzburg-Landau

models. To make closer contact with experimental systems we have investigated in this

paper the effect of rotation on realistic hexagonal convection in a thin layer of water in

a temperature regime near the anomalous density maximum.

Using a numerical stability analysis and direct numerical simulations of the Navier-

Stokes equations we have identified an oscillatory side-band instability, which leads

to spatially modulated whirling hexagons that in turn become disordered in space and

exhibit irregular persistent dynamics, which coexists with linearly stable regular hexagon

patterns.

Coexistence of spatio-temporal chaos with ordered patterns has been observed

previously in roll convection at low Prandtl numbers [1, 28]. There the spiral defect

chaos is sustained by the mean flow, which compresses the rolls so as to push them

locally across their stability limit with respect to the skew-varicose instability, which

then leads to the formation of defects [29]. This mechanism for sustaining dynamics is
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reminiscent of that observed earlier in a much smaller systems [30, 31].

The method employed in [29] to analyze the disordered pattern, which extracts the

local wavenumber and orientation of the rolls, is not applicable to the strongly disordered

hexagonal patterns found in our simulations. We therefore use Delaunay triangulation

to measure the distribution functions for the number of pentagons and heptagons. Both

show deviations from a squared Poisson distribution, which suggests that their dynamics

(including their creation and annihilation) exhibit correlations that are absent in the

dynamics of dislocations in the complex Ginzburg-Landau equation [12] or in inclined-

layer convection [15, 16]. It is, however, not quite clear whether a kinetic description of

the pentagons and heptagons similar to that of dislocations or of penta-hepta defects

[12, 15, 7] is in fact appropriate. To characterize the intermittent appearance of ordered

domains in the chaotic states we have determined the distribution function for the

temporal derivative of the temperature field. It exhibits an exponential decay reflecting

the spatio-temporal intermittency. For smaller Rayleigh number a pronounced peak

appears, which reflects the large ordered, quiescent domains.

In this paper we have focused on one set of fluid parameters (cf. table 1). For

these values the oscillatory instability with finite modulation wavenumber preempts a

spatially homogeneous oscillatory instability. We found, however, that the situation can

be reversed if the non-Boussinesq parameters are changed only slightly. In these cases,

which may not correspond to a realistic convection cell with water as fluid, we have

found defect-chaotic states with distribution functions that are significantly wider than

the squared Poisson distribution suggesting again a nonlinear interaction between the

whirling of the hexagons and the formation of defects, as well as distribution functions

that are well described by the squared Poisson distribution. In addition, we have

identified a state in which the whirling is spatially and temporally intermittent in the

form of bursts while the underlying hexagonal planform has essentially no defects [26].

Acknowledgments

We thank G. Ahlers for providing us with the software to determine the necessary

fluid parameters. We gratefully acknowledge support by grants from the Department

of Energy (DE-FG02-92ER14303), NASA (NAG3-2113), and NSF (DMS-9804673).

YY acknowledges computation support from the Argonne National Labs and the

DOE-funded ASCI/FLASH Center at the University of Chicago. The codes used for

the computations are extensions of codes that were developed over the years at the

Universität Bayreuth with contributions by W. Decker and A. Tschammer as well as V.

Moroz.

[1] S. W. Morris, E. Bodenschatz, D.S. Cannell, and G. Ahlers. Spiral defect chaos in large aspect

ratio Rayleigh-Bénard convection. Phys. Rev. Lett., 71:2026, 1993.
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