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The transonic flow in a tube following an abrupt enlargement of the cross section produces self-
induced flow oscillations which generate sound (whistler). The frequency of the oscillation is
influenced by the tube length: increasing length leads to a frequency decrease, but only up to a
critical length /, of the tube. If this length is further increased, the frequency will jump to higher
values. This jump shows hysteresis: decreasing the tube length again leads to a jump to the lower
frequency at a length /, < /.. Having presented details of the above phenomenon, the two
mathematical models are then presented, in which the transonic oscillator is represented by two
simple nonlinear equations which behave harmonically, and the acoustic resonator, i.e., the tube,
is represented by a term including a time lag. It is shown that the hysteresis vanishes for both the
experiment and the model if the sound reflection at the end of the tube is decreased below a certain
critical value. This behavior is one of the few reported examples of a cusp catastrophe in an

oscillating system.

I. INTRODUCTION

Hysteresis phenomena in physical systems can often be
interpreted as being a consequence of a subcritical bifurca-
tion, and such bifurcations can often be shown to be part of a
cusp catastrophe.' In fluid dynamics this has been done by
Benjamin® and Schaeffer® for a steady flow. The Duffing
equation, an example of a bifurcating oscillating system, has
been interpreted in terms of catastrophe theory by Holmes
and Rand.? While the Duffing equation describes a forced
oscillator, the present work is concerned with a particular
type of self-induced flow oscillation—the so-called base
pressure oscillation. This is a special flow oscillation follow-
ing a sudden enlargement of cross section in an air tube
(whistler), one of the best known examples of self-induced
flow oscillations accompanied by shock waves.>® This flow
has also been investigated theoretically by Grabitz.’

We concern ourselves here with the hysteretic frequen-
cy jumps of the base pressure oscillation forced by varying
length / of the tube, or by varying the inlet pressure of the air
flow.

Il. EXPERIMENTAL RESULTS

The experimental setup is shown in Fig. 1. The nozzle is
supplied with air under a maximum pressure of about 6 bar.
The length / of the tube downstream of the abrupt enlarge-
ment of the cross section is continuously variable. This outer
cylinder is motor driven, so that the length can slowly be
changed with a speed of approximately 1 mm/sec during the
experiment. The cylinder is also connected to a length trans-
ducer (Heidenhain VRZ100.070), so that the length / can be
recorded by a computer (Digital PDP 11/34). The inlet pres-
sure p, is measured by a piezoresistive pressure transducer
(Kistler 4071A10), then digitized by a voltmeter (Keithley
177DDM), and finally sent to the computer via an IEC-Bus.
The sound produced by the pipe is recorded by a micro-
phone, filtered and amplified, digitized (Digital LPA-11K),
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and sent to the computer memory. For the purpose of mea-
suring sound reflection coefficients by the standing wave
method, it is necessary to measure the wall pressure fluctu-
ations within the tube. This is done using a piezoresistive
Kulite XCS-093 pressure transducer. The output signal of
that transducer is handled in the same way as the output of
the microphone. Both the frequency and the amplitude of
the sound are calculated by discrete Fourier analysis using
an array processor (AP120B) connected to the PDP 11/34.
A more detailed description of the computer system has been
given elsewhere.®

The experimental parameters in this measurement are
the length of the tube, the inlet pressure p,, and the sound
reflection coefficient at the open end of the outer cylinder.
The values measured as a function of these parameters are
the frequency and amplitude of the radiated sound. The pro-
cedure for obtaining these values is the following: 1024 sam-
ples of the output of the microphone or pressure transducer
are taken by the LPA with a sampling rate of 50 kHz. After-
wards, an FFT of these 1024 measured points together with
7168 additional zeros is done by the array processor. The
zeros are added to reduce the picket-fence effect below the
natural uncertainty of the amplitude.

In Fig. 2 the amplitude of the oscillations measured by
the microphone is plotted against the parameters pressure
ratio p = p,/p., and length /. One sees that the oscillations
with a high intensity of a discrete frequency peak only occur
at special values of pressure p and length /. As can be seen,
the maximum amplitude is reached at /=50 mm and

Pressure
Transducer

Microphone

FIG. 1. Experimental setup. Either the length / of the tube or the position of
the pressure transducer can be changed slowly by a motor. The sound is
recorded via the pressure transducer or the microphone.
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FIG. 2. Amplitude of the radiated sound versus tube length and inlet pres-
sure.

p = 0.3. The amplitude in both this, as well as the following
measurements, is given in arbitrary units. The highest mea-
sured acoustical intensity of the sound was 115 dB(A), mea-
sured at a distance of about 1 m from the tube. Furthermore,
one sees from this figure that the oscillations only take place
within a certain range of pressure values. There is no shock
wave in the tube for small inlet pressures, and thus no oscilla-
tions are present. The shock wave attaches to the wall for
high inlet pressures, thus destroying the feedback mecha-
nism. More details concerning the oscillation mechanism of
the base pressure oscillation can be found in Refs. 5 and 7.

Figure 3 shows four typical spectra for the parameters
=200 mm, / =220 mm, p = 0.25 and p = 0.4. They were
obtained from an FFT of 1024 samples of the output of the
microphone sampled with 50 kHz. Note that almost all the
power of the oscillation lies in one discrete peak and its har-
monics, indicating a pure tone.

Figure 4 shows the behavior of the oscillation as a func-
tion of length for a fixed value of p = 0.278. The frequency of
the peak with the highest intensity in the power spectrum
and the intensity of that peak is plotted using a linear scale
and arbitrary units. For short lengths of the tube (below 10
mm) we have a supersonic jet producing screech noise with
an intensity maximum around 10 kHz, which is outside the
frequency range of our plot. For / = 10 mm the amplitude of
the highest peak in the spectrum of the radiated sound went

FREQUENCY [KHZ]

0 S 10

. ey 1
< 4 4 05
S ] ]
uN) . T ,Mﬁ; 0
o
da’
w 1 ]
[v4
=]
7
(V)
& 1 |

LENGTH: 200 220MM

FIG. 3. Four typical spectra.
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FIG. 4. Frequency and amplitude of the radiated sound as a function of tube
length.

down beyond the noise level, so that neither amplitude nor
frequency values were plotted here. For lengths between
! = 10and / = 25 mm the tube produces a loud pure tone of a
frequency falling from 4.8 to 2.8 kHz. There is again no mea-
surable oscillation between / = 25 mm and / = 45 mm, fol-
lowed by another range of pure tone sound {45 mm </ < 60
mm) with falling frequency—and so on. One notices that the
range of vanishing oscillation between /=120 mm and
! = 125 mm is fairly small and at 175 mm the oscillation does
not really vanish, but rather a new phenomenon becomes
apparent—the frequency jumps irregularly between the up-
per and the lower branch. Arrows indicate these jumps, ly-
ing so densely packed that individual arrows cannot be dis-
tinguished.

The behavior for longer tubes is shown in Fig. 5. Here
the irregular frequency jumps between the two states has
vanished and one observes a true hysteretic behavior instead,
for instance, at / = 280 mm. By this we mean that if the tube
oscillates with the higher frequency, it will remain on that
branch; if one then decreases the length below 270 mm and
increases it to 280 mm again, the flow will oscillate with the
lower frequency, this latter being also a stable state. Notice
that the hysteresis domain increases with the length of the
tube: it is small at / = 160 mm, larger at / = 220 mm, and
largest at / = 280 mm. One difference between the measure-
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FIG. 5. Frequency and amplitude of the pressure measured inside the tube
as a function of tube length.
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FIG. 6. Frequency and amplitude of the pressure measured inside the tube
as a function of inlet pressure.

ments in Figs. 4 and 5 is that a diffusor was connected to the
tube end, thereby increasing the sound reflection coefficient
and the hysteresis domains. A further difference is that pres-
sure measurements for the latter were made by the pressure
transducer within the tube and not by the microphone out-
side the tube. Therefore, the amplitude behavior is much
more regular than that of Fig. 4. The pressure was measured
at a distance of 105 mm from the end of the tube.

What happens if the length / of the tube is held constant
and only the pressure p is changed? The answer is shown in
Fig. 6. Both the frequency and the amplitude of the pressure
measured inside the tube used for the last figure are plotted
against the pressure ratio p, p having first been decreased and
then again increased. Note the hysteretic jumps at p = 0.27
and p =0.3.

A further question is whether these hysteretic frequen-
cy jumps are characteristic for the base pressure oscillation.
To shed some light on this problem, the sound reflection
coefficient of the end of the cylinder was decreased. This was
done by drilling holes and longitudinal slits into the cylinder
beginning at a distance of approximately 100 mm from the
end of the tube. The result is shown in Fig. 7. The amplitude
of the oscillation when compared to that of Fig. 6 is reduced
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FIG. 7. Frequency and amplitude of the wall pressure measured within the
tube as a function of inlet pressure for a small sound reflection coefficient.

92 Phys. Fluids, Vol. 28, No. 1, January 1985

and the frequency is now a smooth function of the pres-
sure—without any jumps at all. There seems to be an opti-
mal pressure ratio for the base pressure oscillation where its
amplitude has a maximum. The frequency of the oscillation
increases with decreasing pressure ratio.

This last experiment suggests that something may be
gained by measuring the sound reflection coefficient. This
was done using the standing wave method. Figure 8 shows
two examples. While the base pressure oscillation was main-
tained by a fixed pressure p, the pressure transducer was
moved over a slit of 1 mm thickness along the tube length.
The procedure for getting the amplitude of the oscillation is
the same as described above. The points show measured am-
plitudes, and the solid line is a least squares fit to the function

A(x)=[f1+£2*sin(f3*x + f4)]*°, (1)

where A is the amplitude, x is the position of the transducer,
and f1-f4 are the fitting parameters. The reflection coeffi-
cient is thus

po L1729 — (f1—F2° )
(112 (f1—f2)°

Having shown experimental curves both with and with-
out hysteretic frequency jumps, we can formulate perhaps
the most interesting question of this paper: If there are jumps
for high sound reflection coefficients and no jumps for low
sound reflection coefficients, what is the behavior between
these two extremes? The experimental answer is given in Fig.
9. Here the frequency as a function of the resonator length is
shown for four different sound reflection coefficients of the
tube. To obtain the different sound reflection coefficients, we
sawed a cross slit 120 mm from the end of the tube with the
low sound reflection coefficient. The area of the above slit
could be varied by means of a ring. If open, the sound reflec-
tion coeflicient is about 0.4; when closed, however, it is less
than 0.1. The lowest frequency curve of Fig. 9 shows the
result for the closed slit.The frequency seems to be a smooth
function of /. Near / = 275 mm there is some sort of critical
behavior, though the frequency of the osciliation is not well
defined here. This effect is clearly visible for r = 0.17, but
still weaker for » = 0.26. For r = 0.37 the frequency jumps
irregularly between two discrete values. The explanation for
this behavior will be given in Sec. IV.
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FIG. 8. Two examples of standing wave measurements for the determina-
tion of the sound reflection coefficient.
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FIG. 9. Frequency of the wall pressure measured within the tube as a func-
tion of length for four different sound reflection coefficients.

Iil. TWO QUALITATIVE MODELS

The behavior described in the last section, i.e., hystere-
tic frequency changes caused by the variation of the length of
an acoustical resonator, not only occurs in our special kind
of flow oscillation, but has also been observed for a reed pipe
by Vogel.® This led to the idea that for a mathematical simu-
lation the oscillator could simply be globally accounted for.
To this end, we numerically studied the interaction of the
resonator with (i) the well-known van der Pol oscillator and
(ii) another self-induced oscillator.

To understand the motivation for using the following
equations, one must first consider the mechanics of the air
flow oscillation. Here we follow Grabitz.” The pressure p, in
the dead-air region determines the exit angle of the super-
sonic jet, the position of the shock wave, and the pressure
downstream of the shock. This pressure can in turn effect the
dead-air pressure p, via that thin volume near the wall
where no shock wave is present. This system thus forms a
feedback loop which may give rise to self-induced oscilla-
tions. On the basis of these thoughts, Grabitz established a
simplified numerical model for the flow, and the numerical
evaluation of his system of differential equations led to the
correct values of the oscillation frequency. For the purpose
of this work two points are relevant: the pressure feedback
loop and the nonlinear terms in the feedback to prevent the
amplitude of the oscillation from growing beyond all
bounds. One of the most simple differential equations with
these properties is the van der Pol equation

A(t) +m[A(t)?~1]A(t) +4(t)=0, (3)

which was originally constructed for the description of self-
induced electrical oscillations.

How would one approach modelling the resonator? If
the dead air pressure p? changes, this leads to a change of the
pressure downstream of the shock. This propagates through
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FIG. 10. Interaction of the van der Pol equation with a time-lag term.

the tube as an acoustic wave, is reflected to a certain extent at

the end of the tube, and propagates back into the dead air

region, thus interacting with its source after some time delay

given by the speed of sound and the length of the tube. We

thus studied the equation

A(t) +m[A(t})—1]A(t) + A(t)+cA(t—1t2)=0.
(4)

The first three terms represent the self-induced oscilla-
tor; the additional term with the deviating argument repre-
sents the influence of the resonator. Here ¢ is a measure of
the sound reflection coefficient, and ¢ 2 is the total time for a
pressure fluctuation to propagate through the tube.

Figure 10 shows some results for the above equation
obtained thus: beginning with a time lag ¢ 2 = 0 and starting
with random numbers, Eq. (4) was integrated numerically by
astandard Runge-Kutta method. When the system reached
an equilibrium position, the frequency and the amplitude of
the state were stored. Here ¢ 2 was then increased, and, start-
ing with the old values of 4 ( ¢), iterated until a new steady
state was reached. This process was repeated until 2 reached
the value of 40, after which all values of the frequency and
amplitude had been connected by the solid line. The proce-
dure then was repeated, but now with decreasing ¢ 2 {dashed
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FIG. 11. Superecritical bifurcation for a nonlinear equation with a deviating
argument. The dashed arrows point to the values obtained by a linear stabil-
ity analysis.
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FIG. 12. Interaction of nonlocal equation with a time-lag term.

line). If we compare this figure with the measurements in
Figs. 4 and 5, there are two qualitative agreements: (i} For
certain small resonator lengths (small values of ¢ 2) the ampli-
tude goes to zero. (ii) Hysteretic frequency jumps may occur
for larger resonator lengths (large values of ¢ 2), and the thick-
ness of the hysteresis region increases with increasing reso-
nator length. »

One may argue that the van der Pol oscillator equation
is very special, and the agreement between physical and nu-
merical experiment is therefore not very convincing. We
thus also studied the time-lag term representing the acousti-
cal resonator with another kind of differential equation lead-
ing to self-induced oscillations. This time we took the oscilla-
tor equation

A'(t)+A(t—t1)+A4(t)P=0. (5)

Because this kind of oscillator equation is not so well
known as the van der Pol equation, Fig. 11 may help to
acquaint one with it. Here the amplitude and frequency of
the oscillation is plotted against ¢z 1. Note that there is no
oscillation for 7 1 less than /2, where the system undergoes a
Hopf bifurcation. Both the critical point 7/2 as well as the
frequency 1/(2m) at that point can be easily obtained by a
linear analysis.® The dashed arrows point to these values,
thus giving some indication of the quality of the numerical
procedure. Above the critical value, the system oscillates
with a well-defined amplitude and frequency. It is possible
that there are also more complicated “chaotic’ solutions for
higher values of ¢ 1, but for the values we used, no behavior of
that kind was observed.

InFig. 12,¢ 1 was chosen as 2.1, and this oscillator equa-
tion was combined with a time-lag term representing the
resonator. This led to

A'(t)+A(t—=2.1)+A(tP +cA(t—12)=0. (6)

The procedure for obtaining both the solid and the dashed
line has been the same as described in connection with Eq.
(4), and the results are qualitatively the same (see Fig. 10).

IV. CUSP CATASTROPHE

Having established a sufficient model for describing the
hysteretic frequency changes, an important question re-
mains: for high sound reflection coeflicients, there are hys-
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FIG. 13. Frequency as a function of delay time for three different values of ¢
representing sound reflection coefficients.

teretic jumps, and, for a reflection coefficient of zero, there is
clearly no influence on the oscillation at all. Thus on decreas-
ing the reflection coefficient, there must be a critical point
where the hysteretic jumps cease. What is happening in the
neighborhood of this critical point—in particular: how does
the frequency behave and how does the hysteresis domain
vanish?

An answer to the first question is given in Fig. 13. For
high sound reflection coeficients (c = 0.8, lower curve)
there is a clearly visible frequency jump between 2 = 5 and
t2 = 10; for ¢ = 0.5 the range of hysteresis becomes smaller
and for ¢ = 0.2 the frequency is a smooth function of 2,
hysteresis having vanished. The critical point is accompa-
nied by an infinite slope of the frequency curve.

Figure 14 shows the bifurcation set! for the model (4) as
obtained from the numerical experiment. The points show
jumps from the higher to the lower frequency, the crosses,
jumps from lower to higher frequency. The solid line is a
least squares fit to a linear deformation of a semicubic pa-
rabola. This fit is justified in the neighborhood of the critical
point: catastrophe theory’ tells us that there should be a dif-
feomorphism mapping a semicubic parabola into the bifur-
cation set, and near the critical point we can truncate the
diffeomorphism to a linear mapping. There is a visible devi-
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FIG. 14. Bifurcation set for the model equation.
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ation near the critical point of the fitted curve from the nu-
merical experiment. This is probably because the system is
very sensitive to perturbations near the critical point, the
necessarily unsteady change of time-lag ¢ 2 being such a dis-
turbance.

Catastrophe theory, a theory dealing with singularities
of smooth mappings or gradient dynamical systems, is not
necessarily applicable here. It is the underlying assumption
that the frequency is a smooth folded function of the param-
eters as illustrated in Fig. 15. Here the way in which the
hysteresis domain vanishes is shown by plotting the frequen-
cy as a function of the resonator length and the sound reflec-
tion coefficient. The dashed line in the center has an infinite
slope everywhere, the other dashed lines being its projec-
tions. Notice that, despite the fact that the line itself is
smooth, the projection onto the length/reflection plane is
cusped. It is this feature which led to the name cusp catastro-
phe. For other illustrations of such surfaces, refer to Ref. 1.
There are three possible frequencies for any single pair of
values of length #2 and reflection coefficient ¢ lying within
the cusped region. The numerical experiment reached only
the upper- or lower-frequency branch—the unstable solu-
tion separating the two stable solutions has not been proved
to exist for our special kind of nonlinear equation.

In Fig. 15 one sees that small changes of the experimen-
tal parameters cause large changes of the frequency near the
critical point. This sensitivity to disturbances has also been
observed in the numerical experiment (Fig. 14), but is much
more important for the physical experiment. The distur-
bances in the tube result from the turbulent character of the
flow. This explains the irregular frequency jumps near the
critical point as shown in Fig. 9. Here the frequency is not
well defined, but jumps within a relatively broad range of
values.

From Fig. 9 it should have become clear that it is not
possible to measure the bifurcation set (similar to Fig. 14) in
the physical experiment near the critical point because of the
large fluctuations caused by turbulence. Instead, we have
used a least squares fit to a cubic polynomial in order to
determine the critical point in the experiment. The result is
shown in Fig. 16. Notice that the frequency is not a unique
function of the 1ength, but that in a neighborhood of the
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FIG. 16. Measured frequency as a function of length, together with a local
fit to a cubic polynomial.

critical point the length is a unique function of the frequency.
For this reason the fitting procedure was done using the lat-
ter function. The underlying philosophy for using such a fit
is that near the critical point the curve may fluctuate from a
subcritical shape without bistability to a supercritical shape
with bistability. The small number of frequency values lying
between the two branches is probably because turbulence
briefly makes the curve subcritical. In that sense the function
is fitted to a time-averaged curve. The fluctuations destroy
the sharp distinction between subcritical and supercritical
behavior—a fact that is also well known in other hydrody-
namic instabilities.

In Fig. 16 the curve fitted to the experimental data for a
reflection coefficient of 17% is subcritical. The discriminant
of the cubic is positive. For 26% the discriminant is negative,
indicating a supercritical behavior. The critical point is de-
fined by a vanishing discriminant. Linear interpolation
between the two curves leads to a critical value of 26%.

V. CONCLUSION

We have shown that an acoustical resonator of the kind
used in the experiment can be described by a time-lag term.
This is of some interest because such equations, although
complicated from a mathematical point of view, are simple
to handle with digital computers.

We have shown further that both the hysteretic fre-
quency jumps of the base pressure oscillations as well as
those in the mathematical models can be understood as be-
ing part of a cusp catastrophe. This explanation leads to a
qualitative understanding of the phenomena observed near
the critical point.

ACKNOWLEDGMENTS

I would like to thank Professor E.-A. Miiller for giving
me the opportunity to do this work at the Max-Planck Insti-
tute of Fluid Dynamics. I am grateful to Professor E. O.
Schulz-DuBois and Dr. G. E. A. Meier for many valuable
hints. T had the pleasure of discussing many of the difficulties
with my colleagues Dipl. Phys. R. Timm and Dipl. Phys. D.
Auerbach.

This work was supported in part by the Deutsche Fors-
chungsgemeinschaft.

ingo Rehberg 95

Downloaded 13 Mar 2003 to 132.180.25.94. Redistribution subject to AIP license or copyright, see http://ojps.aip.org/phf/phfcr.jsp



'T. Poston and L. Stewart, Catastrophe Theory and Its Applications (Pitman, Fluid Mech. 79, 769 (1977).
London, 1978). 6J. S. Anderson and G. E. A. Meier, Rep. Max-Planck-Institut Stroe-

2T. B. Benjamin and T. Mullin, J. Fluid Mech. 121, 219 (1982). mungsforsch. 1 (1982).
3D. G. Schaeffer, Math. Proc. Cambridge Philos. Soc. 87, 307 (1980). ’G. Grabitz, Z. Angew. Math. Mech. 58, T 273 (1978).
“P. J. Holmes and D. A. Rand, J. Sound Vib. 44, 247 (1976). 8]. Rehberg, Mitt. Max-Planck-Institut Stroemungsforsc. 75 (1983).

3J. S. Anderson, W. M. Jungowski, W. J. Hiller, and G. E. A. Meier, J. °H. Vogel and M. Wien, Ann. Phys. 62, 649 (1920).

96 Phys. Fluids, Vol. 28, No. 1, January 1985 Ingo Rehberg 96

Downloaded 13 Mar 2003 to 132.180.25.94. Redistribution subject to AIP license or copyright, see http://ojps.aip.org/phf/phfcr.jsp



